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1 Introduction

The fields of dynamical systems and ergodic theory are concerned
with evolution of a given system under time. Given an initial condi-
tion (or a set of initial conditions) one is interested in its long term
behavior. One of the founders of modern dynamical systems is Henri
Poincaré. The famous Poincaré recurrence theorem [47] states that
a measure-preserving dynamical system will return (infinitely often)
arbitrarily close to its initial state. Subsequent fundamental achieve-
ments came with ergodic theorems, proven by John von Neumann
in the L2 setting [41] and by George Birkhoff in a stronger almost ev-
erywhere situation [3]. They imply that, under the natural ergodicity
assumption on the system, the time average is equal to the space
average. In particular, they yield quantitative information on the set
of return times in the Poincaré recurrence theorem. These theorems
gave first general statements on random behavior in dynamics. This
naturally sparked questions on what finer chaotic properties one
can (typically) observe in naturally appearing dynamical systems,
which became one of the central directions of study in the realm
of (smooth) dynamical systems in the second half of the last cen-
tury. More precisely, people were interested in random behavior
of deterministic systems, i.e., in how sensitive can the evolution of
a deterministic system be (depending on the initial condition). One
of the main motivations was coming from dynamical systems mod-
eling real-life phenomena, such as evolution of weather or motion
of planets in the solar system. Most notably, in the 1960s Edward
Lorenz [38], a meteorologist and mathematician, was conducting
an experiment on predicting the weather in a given place on earth.
He came up with a deterministic dynamical system modeling the
evolution of weather and noticed that even a tiny perturbation of
the initial condition would typically lead to a completely different
outcome after a relatively short time. This phenomenon became
known as the butterfly effect and this led to the discovery of the
so-called (chaotic) Lorenz attractor (see Figure 17).

At around the same time some fundamental mathematical
tools were developed which allowed to rigorously measure ran-

Taken from https://commons.wikimedia.org/wiki/File:Lorenz_system_r28_
s10_b2-6666.png.
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Figure 1. The Lorenz attractor. Nearby initial conditions diverge at
exponential speed.

domness of deterministic dynamical systems. The entropy of an
abstract measure-preserving system was defined by Kolmogorov
and Sinai in the late 1950s [35, 56]. Systems with positive entropy
would then exhibit strong randomness, at least in ‘parts’ of the
system. Other fundamental objects defined for smooth systems on
manifolds are the Lyapunov exponents. Positivity of Lyapunov expo-
nents is another manifestation of strongly chaotic properties. There
are also other qualitative and quantitative properties that yield
a hierarchy of possible chaotic behaviors. By qualitative properties
we mean properties that can be defined for an abstract dynamical
system. Some main examples are: ergodicity, weak mixing, mixing,
absolutely continuous spectrum, positive entropy, K-property and
Bernoulli property. Quantitative properties use some additional
structure of the system (in most cases smooth or piecewise-smooth
structure). Some main examples are: rates of deviation of ergodic
averages, rates of weak mixing and mixing (decay of correlations),
central limit theorem, large deviations. The last seventy years have
seen a spectacular development in studying chaotic properties of
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(smooth) dynamical systems. In the sections below | plan to give
a selective account of some important classical results in the theory,
highlight some of the more recent developments, and discuss some
open problems and future directions.

2 Randomness in deterministic systems

One of the fundamental discoveries in smooth dynamical systems in
the last seventy years is the fact that deterministic (smooth) dynami-
cal systems can behave very randomly. In particular, in many aspects
such systems can behave like a system generated by a sequence
of independent coin tosses. The first class of smooth systems for
which such phenomena where observed is that of the uniformly
hyperbolic systems, or Anosov systems [1], i.e., systems for which
the tangent space at every point splits into contracting and expand-
ing directions for the derivative of the map f and moreover these
directions are invariant under f. This in particular implies that all
Lyapunov exponents are non-zero.

2.1 Uniformly hyperbolic systems

The main class of uniformly hyperbolic examples is given by hyper-
bolic matrices with integer entries. Rather than giving a general
definition of a uniformly hyperbolic system, we will focus on these
examples which should provide some intuition for the general
situation.

Example 2.1. Let C = (?]). Note that C: R? > R? and since C
has integer entries, it descends to a map C: T2 -T2 Moreover, ¢
preserves the Lebesgue measure since detC = 1. The matrix C has

eigenvalues 11 = % > 1and A; = A7" < 1, with corresponding
eigendirections £, and E; given by the vectors vi = (1+2£’ 1) and

v, = (4 _2"@, 1), respectively. This implies that for the derivative of C

(which is C itself) the tangent space splits into the contracting £,
and expanding E; directions. This hyperbolic matrix is called the
Arnold’s cat map.?

More generally, one can take a hyperbolic matrix B € SL(n, Z)
(i.e., with no eigenvalues on the unit circle) and consider the action
of the associated map B on T".

Readers not familiar with dynamical systems may restrict their
attention to hyperbolic matrices in what follows. The main mecha-
nism that allows to study chaotic properties of uniformly hyperbolic
systems is the existence of so-called Markov partitions, constructed
in [5,57]. They allow showing that a uniformly hyperbolic dynami-
cal system is ‘almost’ Hélder conjugate to a subshift of finite type
(SFT). SFTs are a class of symbolic systems which essentially exhibit
the same statistical and chaotic properties as systems generated by

2 See https://galileo-unbound.blog/2019/06/16/vladimir-arnolds-cat-map/.

sequences of independent coin tosses (Bernoulli shifts). Rather than
defining Markov partitions in full generality, we will just present
one simple example of a Markov partition for a non-invertible map.
This should give the readers a general idea on usefulness of such
partitions.

Example 2.2. Letf(x) = 2x mod 1 on T = [0, 1) with addition
mod 1. Consider a partition of T given by Py = [0, 1/2) and
P1 =1[1/2,1). Note that we can code the orbit of any x by a se-
quence w € {0, 1V in the following way: x corresponds to w if
foranyi € N, f/(x) € P,,. This coding is uniquely defined (and
invertible) for points x whose orbit f(x) avoids the discontinuities
at 0 and 1/2. So for all but countably many points the system f
is Hélder conjugate to the full shift o on {0, 1}". The countably
many exceptions account for the word ‘almost’ in the paragraph
above. Then {Py, P1} is a Markov partition for f. One can then
study statistical properties of f by studying o, which is much easier.

Unfortunately, the powerful tool of Markov partitions is usually
not available for systems that are not hyperbolic, i.e., for partially
hyperbolic systems, or, in particular, systems with some Lyapunov
exponents equal to 0. This is a much wider class of systems for
which there might be some directions in the tangent space which
do not contract or expand (as fast) when iterated by the derivative.
The simplest examples would be an integer matrix like in Exam-
ple 2.1, but for which some of the eigenvalues have absolute value
one. Another class of straightforward examples would be time-1
maps of Anosov flows (think about the geodesic flow on the unit
tangent bundle of a hyperbolic surface). The flow direction is then
an isometry. Statistical and chaotic properties of systems for which
not all Lyapunov exponents are non-zero are much less under-
stood. There are two main classes for which one usually applies
completely different methods: (a) systems with positive entropy, or
equivalently, with some of the Lyapunov exponents different from
zero (i.e., there are some directions in which we see contraction
or expansion); and (b) systems of zero entropy (with all Lyapunov
exponents equal to zero). We will discuss these two classes in
separate subsections.

2.2 Systems with positive entropy

As mentioned above, the general theory of systems with some
Lyapunov exponents equal to zero is much less understood and
there is no general framework to study chaotic properties in this
class. In the last century, significant partial progress was made on
understanding qualitative (ergodic) properties of such systems that
we will now describe.

Qualitative properties

Qualitative properties can be defined for abstract measure-preserv-
ing systems. The strongest such property is being Bernoulli, i.e.,
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being measure-theoretically isomorphic to a Bernoulli shift (a sys-
tem generated by a sequence of independent coin tosses). A weaker
property is called the K-property (K for Kolmogorov) which is
equivalent to saying that every factor of the system has positive en-
tropy [54]. Some weaker properties are mixing, weak mixing and er-
godicity, but for simplicity we will focus here on the K and Bernoulli
properties only. Anatole Katok [30], and then Brin, Feldman and
Katok [6], have shown that every smooth manifold of dimension at
least 2 supports a Bernoulli diffeomorphisms, and so there are no
topological restrictions for Bernoullicity in the smooth setting. The
main development for establishing K and Bernoulli properties was
to use some geometric structures derived from the existence of
non-zero exponents (stable and unstable manifolds). Sinai [56] has
shown that the K-property follows from ergodicity of the so-called
unstable foliation. This is still the main mechanism for showing
K-property for smooth dynamical systems, used widely in literature,
see for example [8]. The theory of Bernoulli shifts was developed in
the second half of the last century, culminating in Ornstein’s theory
which allowed for their full classification in terms of entropy [42].
In particular, the very weak Bernoulli property introduced in [42]
turned out to be a very useful tool in establishing Bernoullicity of
smooth systems with (some) non-zero exponents. This came with
the work of Ornstein and Weiss [44], where they used a geometric
method to establish the very weak Bernoulli property for hyperbolic
toral automorphisms, as well as for geodesic flows. Even though the
systems they considered where algebraic, the introduced method
proved to be applicable in a much more general setting. Specifically,
the method is based on finding, for a given N, a matching between
two pieces of typical unstable manifolds, i.e., a measure-preserving
map Oy between these unstable manifolds such that the points
x and ©y(x) are close for most of the iterates under the dynamics
when the iterates are taken from the set [0, N]. This mechanism is
to this day the main technique to study the Bernoulli property for
smooth systems and has been used in various settings, e.g., [7, 10,
11,36,46,48,49]. Let us mention that despite considerable progress
in the study of qualitative properties of smooth systems there are
a number of open questions regarding whether a given dynamical
system is Bernoulli or not. In particular, in [16] the authors showed
that a smooth diffeomorphism which is exponentially mixing, is in
fact Bernoulli. The methods used in [16] seem to suggest that there
is a ‘competition” between mixing rates of the system and growth
on the center space which would determine if a system is Bernoulli
or not. It is also not known if exponential mixing (for Holder func-
tions) implies Bernoulli in the non-smooth (e.g., symbolic) setting.
Finally, let us mention that Kolmogorov initially conjectured that the
K and Bernoulli properties are equivalent. This was shown not to be
the case by Ornstein [43] in the abstract setting and independently
by Katok [31] and Rudolph [55] in the smooth setting. In [29] the
authors showed that K does not imply Bernoulli in dimension 4. It is
known that it does in dimension 2 [45]. The problem in dimension 3
is one of the big open questions in the field [32].
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Quantitative properties

Quantitative properties are those which use the fact that the sys-
tem is a smooth diffeomorphism acting on a smooth manifold.
Main quantitative properties are quantitative mixing (or decay of
correlations), central limit theorem (CLT), large deviations, quanti-
tative ergodicity. Quantitative properties are much less understood
than qualitative ones. There are still open questions regarding inter-
play of quantitative and qualitative properties. In what follows we
will mostly focus on quantitative mixing and central limit theorem.
In fact, if the system has fast decay of correlations of all orders, then
a CLT follows, see, e.g., [4]. The problem of establishing quantita-
tive mixing rates for a given smooth system is difficult and widely
open in general, even though a lot of progress was made for al-
gebraic systems where one uses representation theory, see, e.g.,
[25,34,40]. The most successful methods of establishing (exponen-
tial) rates of mixing is by using transfer operators and their spectral
gaps, initiated in the fundamental work of Dmitry Dolgopyat [13].
In fact, it seems that this method (or variants thereof) is the only
approach for establishing rates of mixing in the smooth setting.
It has been used by many authors in various situations, see, e.g.,
[37, 60] and references therein. In fact, this method also allows
one to get other statistical properties, such as large deviations
and CLT. It is based on translating the problem on (exponential)
mixing into a problem concerning the spectral nature of a natu-
rally associated operator (the transfer operator). One can then use
tools from complex and harmonic analysis to study the spectrum
of the system on so-called anisotropic Banach spaces, see, e.g.,
the survey [12] and references therein. As mentioned, existence
of a spectral gap usually implies all statistical properties, and so if
one wants systems with exotic behavior (enjoying some, but not
all of the properties) one needs to introduce different methods.
In particular, it is not known if there exists a smooth dynamical
system which is exponentially mixing, but not exponentially mixing
of order 3. In [14] the authors have produced exotic examples of
smooth dynamical systems (with finite smoothness) which have
zero entropy and still satisfy the CLT. A C* flow of zero entropy and
with CLT was constructed in [15]. Existence of a C* map with zero
entropy and with a CLT is still an open question. As mentioned in
the previous section, it is known that every manifold of dimension
at least 2 supports a Bernoulli diffeomorphism. It is not known if
every manifold of dimension at least 2 supports a smooth diffeo-
morphism which satisfies a CLT as well as a smooth diffeomorphism
which is exponentially mixing.

2.3 Systems with zero entropy

The world of zero-entropy systems in general is too wide to have
any meaningful general structures. According to, e.g. [33], there
are two rather different main classes of zero-entropy systems, el-
liptic systems and parabolic systems. The main model for elliptic
systems is provided by irrational rotations on compact Abelian



groups (irrational rotations of the circle being the main example),
but there are also less rigid examples of elliptic dynamics [20]. EI-
liptic dynamics is usually characterized by a rather non-chaotic,
tame behavior where mixing is often precluded. We will focus on
the class of parabolic systems and briefly highlight typical chaotic
features in this class. Unlike the hyperbolic world, there is no strict
definition of a parabolic system. It is rather a set of common char-
acteristics that is an indicator of parabolic behavior. The prime class
of parabolic systems are horocycle flows. In algebraic language,
the horocycle flow (h;) is given by the action of the matrix (} !)
acting on finite-volume quotients of the group SL(2, R). Ergodic
and statistical features of horocycle flows are the model behavior
in the class of parabolic systems. More generally, unipotent flows
on quotients of semisimple Lie group constitute a wider class of
(algebraic) parabolic systems. Yet another class of (non-algebraic)
systems that can be classified as parabolic (even though they also
exhibit some elliptic-like behavior) is the class of smooth flows on
surfaces, known as locally Hamiltonian flows (see Figure 2).

This is the class in which recently many tools from homoge-
neous dynamics were adapted to the non-algebraic setting. There
are also systems which share both elliptic and parabolic charac-
teristics: interval exchange transformations and translation flows,
nilrotations on nilmanifolds, reparametrizations (or perturbations)
of all the above-mentioned examples. One of the typical features
of parabolic systems is that the orbit growth (or orbit divergence)
happens typically at polynomial (or logarithmic) rate. This is the
difference with hyperbolic systems, where the growth is expo-
nential, and also with elliptic systems, where the growth is often
sub-logarithmic. Moreover, typically the divergence of all nearby
conditions occurs along well-understood, structured directions.
Some characteristic features that one usually observes for parabolic
systems are: small set of invariant measures (often a unique such
measure), polynomial (or logarithmic) rates of mixing, which are
usually obtained by the mixing via shearing mechanism, polynomial
deviation of ergodic averages, absolutely continuous or Lebesgue
spectrum, variants of Ratner’s property (shearing in the direction
of the dynamics), structured sets of joinings, ‘nice’ orbit closures.
These properties for horocycle flows (or more generally unipotent
flows) were established by a number of authors: Marina Ratner
in her seminal work [50, 52] studied orbit closures and measure

Figure 2. A locally Hamiltonian flow. The red points are fixed points of the
flow.

rigidity for unipotent flows, in [51] Ratner also studied rates of
mixing for horocycle flows. Higher-order mixing was established
by Marcus [39]. Deviation of ergodic averages was studied in [21]
and [59].

Much less was known until recently for parabolic systems that
are not algebraic. This has changed significantly in the last 20 years,
in which major progress in the study of spectral, mixing and rigidity
properties of these systems was made. Due to limited space we
will again only provide a list of references on the topic: deviation of
ergodic averages was studied in [22-24]. Mixing properties were
established in [17,53, 58, 61, 62]. Higher-order mixing was studied
in [19, 26, 28]. Joinings and rigidity were studied in [2, 27]. Spectral
properties were studied in [9, 18].

Even though there has been significant progress on general
parabolic systems, there are still many directions which are quite
open: spectral features (the spectral type and the multiplicity func-
tion) of non-algebraic parabolic systems are still not known in many
cases. Optimal rates of mixing and higher-order mixing is another
open problem in the area. And despite some partial results, the
theory of joinings is another problem that is rather widely open.
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