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Around the support problem for Hilbert class polynomials

Francesco Campagna and Gabriel A. Dill

Abstract. Let HD.T / denote the Hilbert class polynomial of the imaginary quadratic order
of discriminant D. We study the rate of growth of the greatest common divisor of HD.a/ and
HD.b/ as jDj ! 1 for a and b belonging to various Dedekind domains. We also study the
modular support problem: if for all but finitely many D every prime ideal dividing HD.a/ also
divides HD.b/, what can we say about a and b? If we replace HD.T / by T n � 1 and the
Dedekind domain is a ring of S -integers in some number field, then these are classical ques-
tions that have been investigated by Bugeaud–Corvaja–Zannier, Corvaja–Zannier, and Corrales-
Rodrigáñez–Schoof.

1. Introduction

Some of the recent research in diophantine geometry has been driven by the following
guiding philosophy: if an ambient variety X contains two generic subvarieties whose
dimensions do not add up to at least the dimension of X , then these two subvarieties
should not intersect; and, even if they do, this intersection must be “small” in some
sense. This philosophy has been motivated by the pioneering works of Bombieri,
Masser, and Zannier [8], Zilber [68], and Pink [54], and such a point of view can also
be pushed to the setting of arithmetic varieties, where X is now taken to be a variety
over the ring of integers of a number field. The archetypal result in this context of
“arithmetic unlikely intersections” is the following theorem of Bugeaud, Corvaja, and
Zannier [9].

Theorem 1.1 ([9, Theorem 1]). Let a; b be multiplicatively independent integers �2,
i.e., such that akb` ¤ 1 for all .k; `/ 2 Z2n¹.0; 0/º, and let " > 0. Then, provided n
is sufficiently large, we have

gcd.an � 1; bn � 1/ < exp."n/:

Here, the left-hand side measures the size of the intersection of the Zariski closure
in the square of the multiplicative group G2

m;Z of the singleton ¹.a; b/º � G2
m;Q.Q/
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with the kernel of the raising-to-the-n-th-power morphism. This size is always triv-
ially bounded by exp.cn/ for some constant c. Hence, Theorem 1.1 says that this
latter bound is too crude if we pick a and b generic enough, meaning that a and b do
not satisfy a relation of multiplicative dependence. The philosophy described above
incarnates in the fact that we are intersecting two 1-dimensional schemes inside a
3-dimensional ambient scheme (here, “dimension” always means “absolute Krull
dimension”). That Theorem 1.1 is an arithmetical analogue of results about unlikely
intersections in characteristic 0 has already been pointed out by Zannier in [66, Chap-
ter 2]. We remark that Theorem 1.1 has later been generalized by Corvaja and Zannier
in [15].

In this article, we replace Gm by the coarse moduli space of elliptic curves Y.1/,
which is the affine line A1, and we study the analogue of Theorem 1.1 and related
questions in this context. This venture is inspired by the well-known fact that there
is a notion of special subvarieties in both the realm of tori and the realm of (powers
of) modular curves. Let F be a field. A special subvariety of Gn

m;F is an irreducible
component of an algebraic subgroup of Gn

m;F . On the other hand, if X1; : : : ; Xn are
affine coordinates on Y.1/nF , then a special subvariety of Y.1/nF is an irreducible
component of the intersection of the zero loci of finitely many modular polynomials
ˆNk

.Xik ;Xjk
/ (k D 1; : : : ;K); see [36, p. 55] for the definition ofˆNk

. In particular,
a special point of Gm;C is a root of unity and a special point of Y.1/C is a singular
modulus, i.e., the j -invariant of an elliptic curve with complex multiplication.

Theorem 1.1 is about values of the polynomials T n � 1 (n 2 N D ¹1; 2; : : :º).
These have the property that their zeroes are all special points of Gm;C . It then appears
more natural to consider the family of cyclotomic polynomials‰n.T / (n 2N), which
are precisely the minimal polynomials over Q of the special points of Gm;C . Using the
dictionary above, the analogue of this family in the Y.1/ case is precisely the family of
Hilbert class polynomialsHD.T / withD 2 D, where D D ¹�3;�4; : : :º is the set of
negative integers� 0; 1 mod 4 andHD.T / 2 ZŒT � is the minimal polynomial over Q

of any j -invariant of an elliptic curve with complex multiplication by the imaginary
quadratic order of discriminantD. Thus, we are led to studying how large the greatest
common divisor of HD.a/ and HD.b/ can be, where a; b 2 Z.

This question, which we study in Section 3, as well as more general divisibility
questions also make sense with an arbitrary Dedekind domainR in place of Z. Indeed,
for any polynomial with integer coefficients like for example ‰n.T /, HD.T /, and
ˆN .X; Y /, we obtain an associated polynomial with coefficients in R by applying
the unique ring homomorphism Z ! R to all coefficients. We will always denote
this associated polynomial by the same symbol as the original one and also speak of
Hilbert class polynomials, cyclotomic polynomials, modular polynomials, etc. with
coefficients in R.
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To warm up, we begin by studying the case where R is the coordinate ring of
a smooth affine irreducible curve C over an algebraically closed field F of char-
acteristic 0. We prove Theorem 3.1, which is a modular analogue of the first part
of [1, Theorem 1] by Ailon and Rudnick: the greatest common divisor of the values
of two Hilbert class polynomials at two “generic” elements A;B 2 R always divides
a fixed non-zero ideal J D JA;B � R. Ailon and Rudnick proved their result using
the Manin–Mumford conjecture for plane curves, i.e., the theorem of Ihara, Serre,
and Tate [35]. Our result similarly follows from the André–Oort conjecture for plane
curves, i.e., from the theorem of André [2], which is the modular counterpart of the
theorem of Ihara, Serre, and Tate. Silverman also studied the analogue of this question
in the elliptic setting, but managed to obtain a comparable result only if the elliptic
curve is isotrivial, see [63, Conjecture 7, Theorem 8, and Remark 5]. His result has
recently been extended to the case of a product of two arbitrary elliptic curves by
Ghioca, Hsia, and Tucker [26] and to the case of a general split semiabelian variety
and F equal to the field of algebraic numbers by Barroero, Capuano, and Turchet [4].
In the proofs of all these results, there are two ingredients: the first one is a (relative)
Manin–Mumford result for curves, due in the constant case to Ihara–Serre–Tate [35],
Raynaud [55], and Hindry [30], in the non-isotrivial abelian case to Masser and Zan-
nier in a series of articles [44–49], and in the non-isotrivial split semiabelian case
to Bertrand–Pillay–Masser–Zannier [5] combined with the aforementioned results.
The second ingredient is a multiplicity estimate originating in the work of Silverman,
see [63, Lemma 4 and Remark 2], [26, Lemma 4.5], and [4, Lemma 4.1].

One may wonder whether a similar theorem as our Theorem 3.1 also holds if the
characteristic of F is positive. Our next result, which we prove using the abc theorem
for function fields by Mason [42], shows that this is not the case if F is an algebraic
closure of a finite field.

Theorem 1.2 (Theorem 3.4). Let p 2N be prime and fix an algebraic closureF D xFp
of Fp . Let R be the coordinate ring of a smooth affine irreducible curve C=F and let
A;B 2 RnF . Then

lim sup
D2D; jDj!1

deg.gcd.HD.A/;HD.B///
degHD

> 0;

where gcd.HD.A/;HD.B// WD RHD.A/CRHD.B/ and the degree deg I of a non-
zero ideal I of the Dedekind domain R is the number of maximal ideals appearing in
the prime factorization of I , counted with multiplicities.

In the multiplicative setting, Silverman proved a more precise analogue of The-
orem 1.2 as [62, Theorem 4] in the case where C D A1F . He also considered the
elliptic case for the same C , but again obtained a comparable result only under the
added condition of isotriviality, see [63, Conjecture 9 and Theorem 10]. A related
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question has been studied in the modular setting by Edixhoven and Richard in [20],
see also Richard’s work [56] over Z.

We finally come to the modular counterpart of Theorem 1.1 and its generalization
to arbitrary number fields.

Theorem 1.3 (Theorem 3.7). Let K be a number field and let S be a finite set of
maximal ideals of OK . Consider two elliptic curves E1=K ; E2=K with potential good
reduction outside of S , i.e., such that the j -invariant j.Ei / 2 OK;S for i D 1; 2.
Suppose that there exists a prime ideal p of OK;S at which both E1 and E2 have
potential good supersingular reduction. Let p denote the rational prime lying under p.
Then,

lim sup
D2D; jDj!1

.degHD/�1 logN
�
gcd

�
HD.j.E1//;HD.j.E2//

��
�

logp
p � 1

> 0;

where N.�/ denotes the ideal norm in OK;S .

In particular, Theorem 1.3 shows that the naive analogue of Theorem 1.1 over
number fields is false. Namely, the condition in Theorem 1.1 that a and b are multi-
plicatively independent is equivalent to demanding that the point .a; b/ 2 G2

m;C.C/

is not contained in any proper special subvariety of G2
m;C . In the modular setting,

this translates into the condition that a and b are both not singular moduli and that
ˆN .a; b/ ¤ 0 for all N 2 N. However, we will show that there are infinitely many
such pairs .a; b/ 2 O2

K;S such that a and b are the j -invariants of elliptic curves with
a fixed common prime ideal of potential good supersingular reduction. On the other
hand, proving that two general elliptic curves have a common supersingular prime is
a difficult open problem, already if they are defined over Q. Conjecturally, there are
infinitely many common supersingular primes if both E1 and E2 do not have com-
plex multiplication, are defined over Q, and are not geometrically isogenous; see [38]
and [24], where also an averaged version of this conjecture is proved.

The reader might now wonder about possible elliptic and abelian analogues of
Theorem 1.1. Silverman conjectured in [63, Conjecture 1 (a)] an analogue of The-
orem 1.1, where the square of the multiplicative group is replaced by the square of an
elliptic curve over the rationals. Assuming certain cases of Vojta’s conjecture, Silver-
man proved a generalization of [63, Conjecture 1 (a)] to an arbitrary abelian variety
over Q in [64, Proposition 9] and to a product of an elliptic curve over Q with Gm;Q

in [64, Theorem 4]. So at least conditionally on Vojta’s conjecture, elliptic curves and
abelian varieties seem to behave like the multiplicative group and not like the moduli
space of elliptic curves. However, unconditionally, nothing non-trivial beyond the re-
sults in [9,15] is known at the time of writing in the setting of abelian and semiabelian
varieties over number fields.
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There are other examples where the arithmetic behaviour in Shimura varieties
and in algebraic groups is different. Let us mention, for example, the S -integrality
properties of special points with respect to a divisor in Gm; xQ and Y.1/ xQ respectively,
where S is a finite set of rational primes and xQ will always denote a fixed algebraic
closure of Q: for Gm; xQ, Baker, Ih, and Rumely proved in [3, Theorem 0.1] that there
are at most finitely many special points that are S -integral with respect to some non-
special point P , but this fails to hold if P itself is special. For Y.1/ xQ, Habegger
proved in [28, Theorem 2] that there are at most finitely many special points that are
;-integral with respect to an arbitrary finite non-empty set of points, which can also
consist of only one special point.

In order to prove Theorem 1.3, we apply [51, Theorem 3] by Michel to find arbi-
trarily large discriminants D 2 D such that many zeroes of HD.T / reduce to the
reductions of j.E1/ and j.E2/ respectively modulo a fixed prime ideal P that lies
over p in a fixed algebraic closure of K. For our argument to work, it is essential that
each such D is coprime to p and that therefore p is unramified in the splitting field
of HD.T / over K.

Supersingularity seems to be a fundamental feature of the modular world that the
multiplicative one is lacking and that explains some of the differences between the
two: it allows several distinct special points in the same Galois orbit to reduce to
the same element modulo a maximal ideal lying over some rational prime p while
p remains unramified in the corresponding ring class field. Multiplying the discrim-
inant of a singular modulus or the order of a root of unity by powers of p also leads to
several distinct elements of the Galois orbit having equal reductions modulo a max-
imal ideal above p (see Proposition 2.4 for the modular case), but at the same time
introduces arbitrarily large ramification over p. It seems likely that the supersingular
primes are the only obstacle to proving an analogue of Theorem 1.1 in the modu-
lar case. In particular, we can ask for the rate of growth of the norm of the g.c.d. of
HD1

.a/ and HD2
.b/ deprived of all common supersingular prime factors for a, b in

some ring of S -integers such that ˆN .a; b/ ¤ 0 for all N 2 N and neither a nor b is
a singular modulus.

When trying to understand the size of the greatest common divisor of HD.a/
and HD.b/ for a and b in some Dedekind domain R, we were led to consider the
extreme case where every prime dividing HD.a/ also divides HD.b/ for all but
finitely manyD 2 D. For which a and b is this possible? This is the modular instance
of the so-called support problem. If we again replace the polynomialsHD.T / (D2D)
by the polynomials T n � 1 (n 2 N), this becomes the multiplicative support prob-
lem. In the case where R is the ring of S -integers in some number field, Corrales-
Rodrigáñez and Schoof have solved this problem in [14, Theorem 1], which, as a
special case, yields an answer to a question posed by Erdős at the 1988 number
theory conference in Banff. An answer to the question of Erdős also follows from
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earlier work of Schinzel [57]. Furthermore, Corrales-Rodrigáñez and Schoof solved
an analogue of this problem with an elliptic curve in place of the multiplicative
group, see [14, Theorem 2]. Later, Larsen solved the problem in the case of an arbi-
trary abelian variety [39] and Perucca generalized his result to split semiabelian vari-
eties [53]. It is interesting to note that the conclusions of all these results are invariant
under localization of the base ring at some finite set of maximal ideals although their
hypotheses depend on the base ring. This will also be the case in our own results. One
can also investigate the support problem as well as possible analogues of Theorem 1.1
in Shimura varieties other than Y.1/2 or in arithmetic dynamics (for the latter, cf. [31]
and [50, Section 5]).

In Section 4, we introduce the support problem for general families of polynomi-
als in T with coefficients in a Dedekind domain which is not a field and revisit the
multiplicative support problem as well as its cyclotomic counterpart, where T n � 1
is replaced by the n-th cyclotomic polynomial ‰n.T / for n 2 N. We show in The-
orem 4.5 and Theorem 4.6 how the theorem of Corrales-Rodrigáñez–Schoof [14,
Theorem 1] and the theorem of Ihara–Serre–Tate [35, p. 230] can be used to give
a comprehensive solution to the multiplicative and cyclotomic support problem in
characteristic 0, which is best possible in all cases.

In Section 5, we finally consider the modular support problem. We first solve the
function field version of the problem.

Theorem 1.4 (Theorem 5.2). Let R be the coordinate ring of a smooth affine irre-
ducible curve C over an algebraically closed field F of characteristic 0. Let A;B 2
RnF and suppose that there exists D0 2 N such that, for all discriminants D 2 D

with jDj>D0, every prime ideal ofR that dividesHD.A/ also dividesHD.B/. Then
A D B .

In the proof of Theorem 1.4 we rely on Theorem 3.1, but additional arguments
are needed to deal with the case where ˆN .A; B/ D 0 for some N 2 N, N > 1

(see Proposition 5.1, which is inspired by the theory of isogeny volcanoes). We then
turn to the modular support problem in the number field case and prove the following
theorem.

Theorem 1.5 (Theorem 5.4). Let K be a number field and let S be a finite set of
maximal ideals of OK . Let j; j 0 2 OK;S . Suppose that there exists D0 2 N such that
all the prime ideals of OK;S dividingHD.j / also divideHD.j 0/ for everyD 2D with
jDj>D0. Then either j D j 0 or there exists zD 2D such thatH zD.j /DH zD.j

0/D 0.

An important ingredient in our proof of Theorem 1.5 is a result of Zarhin [67] that
allows us to find many primes of good ordinary reduction for a given elliptic curve
without complex multiplication such that the endomorphism ring of its reduction sat-
isfies some suitable local conditions. We also crucially use a result by Khare and
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Larsen [34] that implies that two elliptic curves are geometrically isogenous if their
reductions modulo p are geometrically isogenous for all p in a set of prime ideals of
density 1 (if the adverb “geometrically” is dropped, then this is a direct consequence
of the work of Faltings [23, Korollar 2, p. 361], see also Serre’s [60, Proposition,
p. IV-15]). Furthermore, the proof relies again on Proposition 5.1.

We do not know whether the conclusion of Theorem 1.5 can be strengthened to
saying that j D j 0 always. However, this strengthened conclusion is certainly false if
we assume that p jHD.j /) p jHD.j

0/ holds just for infinitely manyD (and all p)
instead of holding for all but finitely many D (and all p). The following theorem
provides a counterexample.

Theorem 1.6 (Theorem 5.6). Let

j D
�191025 � 85995

p
5

2
and j 0 D

�191025C 85995
p
5

2

be the two singular moduli of discriminant �15 in xQ. Then for every discriminant
D 2D withD� 1 mod 8, the support property holds in both directions, i.e., for every
maximal ideal p of ZŒ.�1C

p
5/=2�, we have that p jHD.j / if and only if p jHD.j

0/.

2. Preliminaries and notation

Throughout the paper, we adopt the following notation: if K is a number field, we
denote its ring of integers by OK and for every finite set S of maximal ideals of OK ,
we denote by OK;S the ring of S -integers in OK . The norm N.I / of a non-zero
ideal I � OK;S is the index ŒOK;S W I �. We have N.IJ / D N.I /N.J / for all ideals
I; J � OK;S . Finally, if R is an arbitrary Dedekind domain and a; b 2 R, we write
gcd.a; b/ for their greatest common divisor, i.e., for the ideal RaCRb � R.

2.1. Elliptic curves with complex multiplication

If E is an elliptic curve over a field K, we denote its j -invariant by j.E/. If L=K
is a field extension, we denote the endomorphism ring of the base change EL of E
toL by EndL.E/. We say thatE has complex multiplication if the canonical inclusion
Z ,! End xK.E/ is strict for some algebraic closure xK ofK. We say that it has complex
multiplication by a ring O 6' Z if End xK.E/ ' O.

Over a field of characteristic 0, an elliptic curve with complex multiplication
always has complex multiplication by an imaginary quadratic order O. The j -invari-
ants of the elliptic curves with complex multiplication by the imaginary quadratic
order O of discriminant D D disc.O/ are precisely the zeroes of the corresponding
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Hilbert class polynomial HD.T /. Recall that the Hilbert class polynomials HD.T /,
whereD runs through the set D D ¹�3;�4; : : :º of negative discriminants, all belong
to ZŒT � and are monic and irreducible in this ring. For all of this in the language of
lattices in C, see [17, §13, in particular Proposition 13.2]. The degree of HD will be
denoted by h.D/ and equals the class number of the imaginary quadratic order of dis-
criminant D. The discriminant of a singular modulus, i.e., of a zero of some HD.T /,
is the discriminant D of the corresponding imaginary quadratic order.

Over fields of positive characteristic, the geometric endomorphism ring of an
elliptic curve with complex multiplication is isomorphic either to an order in an imag-
inary quadratic field or to a maximal order in a quaternion algebra. In the first case or
if the elliptic curve does not have complex multiplication, we call the elliptic curve
ordinary. In the second case, we call it supersingular. For an ordinary elliptic curve
over a finite field, all the geometric endomorphisms are already defined over the base
field as we will now show.

Lemma 2.1. Let k be a finite field with an algebraic closure xk and let E=k be an
ordinary elliptic curve. Then, Endk.E/ D Endxk.E/, where we identify an endomor-
phism of E with its base change to xk.

Proof. Since E is ordinary, the identity automorphism idE and the Frobenius endo-
morphism � are Z-linearly independent by [32, Chapter 13, Propositions 6.1 and 6.2].
Hence, Endk.E/ has finite index N inside Endxk.E/. There exists a finite Galois
extension k � k0 with k0 � xk such that Endxk.E/ D Endk0.E/, where we identify an
endomorphism of Ek0 with its base change to xk. By [27, Theorem 14.84], Endk.E/
is precisely the subset of Endk0.E/ fixed by Gal.k0=k/. Since Nf 2 Endk.E/ for
all f 2 Endk0.E/ and the latter is an integral domain, it follows that all elements
of Endk0.E/ are fixed by Gal.k0=k/, and so Endxk.E/ D Endk0.E/ D Endk.E/, as
desired.

2.2. Reduction of elliptic curves

When we say that an elliptic curve E over a number field K has (potential) good/bad
reduction at a maximal ideal p of OK;S , we mean that its base change to the com-
pletion Kp of K at p has (potential) good/bad reduction in the sense of [65, VII,
Section 5]. The elliptic curve E has (potential) good ordinary/supersingular reduc-
tion at p if its reduction at p is (potentially) good and ordinary/supersingular. If E
does not have complex multiplication, Serre has proved that for p in a set of maximal
ideals of natural density 1, the reduction of E modulo p is ordinary. This follows
from [59, Théorème 20, p. 189 and Remarque 2, p. 190] combined with the facts that
the reduction ofE at a maximal ideal of prime norm> 3 is supersingular if and only if
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the trace of the Frobenius endomorphism of the reduced elliptic curve is 0 (see [65, V,
Exercise 5.10]) and that the set of maximal ideals of prime norm has natural density 1.

However, understanding the geometric endomorphism ring of the reductions of E
modulo p for varying p is a difficult problem. We will use the following theorem of
Zarhin, which allows us to find infinitely many maximal ideals p � OK;S at which E
has good ordinary reduction and such that the endomorphism ring of the reduction
of E at each such p satisfies some prescribed local conditions.

Theorem 2.2 (Zarhin). Let L be an imaginary quadratic field and let O � L be an
order. Let K be a number field with ring of S -integers OK;S for some fixed set of
maximal ideals S and consider an elliptic curve E=K without complex multiplication.
Fix a non-empty finite set P of rational primes and set O` WD O ˝Z Z` for all ` 2 P .
Define A to be the set of maximal ideals p � OK;S such that

(1) the characteristic of the residue field kp at p does not belong to P ,

(2) the curve E has good ordinary reduction Ep at p, and

(3) Endkp
.Ep/˝Z Z` ' O` for all ` 2 P .

Then A has positive density in the set of prime ideals of OK;S .

Proof. If S D ;, this is a special case of [67, Theorem 1.3], see [67, Example 1.5];
in [67, Theorem 1.3], the condition that E has ordinary reduction is absent, but this
condition can be added since E does not have complex multiplication and therefore
the set of ordinary primes for E has density 1 as remarked above. The theorem with
S ¤ ; follows easily from this case.

If E has complex multiplication, then the behaviour of the geometric endomor-
phism rings of its reductions modulo various maximal ideals p of good reduction with
residue characteristics p is well understood thanks to the work of Deuring [19]. It is
connected to the value of the Kronecker symbol . �

p
/ at the discriminant of the geomet-

ric endomorphism algebra of E, see [36, Chapter 13, Theorem 12]. Proposition 2.4,
which we will prove now, tells us how the reduction behaviour of a Galois orbit of
singular moduli at a fixed maximal ideal P in the ring of integers of xQ changes if
we replace their discriminant by its product with a power of the residue characteristic
of P. This is certainly well known to the expert, but we have not managed to find an
appropriate reference in the literature, so we provide a proof here. We begin by estab-
lishing the following auxiliary lemma, which is proved in [40, Proposition 2.3 (1)] in
the adelic language; for the reader’s convenience, we give an alternative proof here.
For the definition and basic properties of the ring class field associated to an imaginary
quadratic order, we refer the reader to [17, Chapters 8 and 9].

Lemma 2.3. For every discriminant � 2 D, we denote by L� � xQ the ring class
field associated to the imaginary quadratic order of discriminant �. Let p 2 N be
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a prime and let D 2 D. Then the extension LD � LDp2 is totally ramified at every
prime of LD lying above p.

Proof. It suffices to show that, for every k 2 N and every discriminant D 2 D such
that the conductor of the order of discriminant D is not divisible by p, the exten-
sion LD � LDp2k is totally ramified at every prime of LD lying above p. We write
D D D0f

2
0 , where D0 is a fundamental discriminant and the conductor f0 is not

divisible by p. We set f D f0pk and L D Q.
p
D0/ � xQ.

Suppose by contradiction that the extension LD � LDp2k is not totally ramified
at some prime of LD lying above p. Since the extension L � LDp2k is abelian and
the extension L � LD is unramified at every prime of L lying above p, it follows that
there exists an extension L � L0 such that LD ¨ L0 � LDp2k and some prime p of L
lying above p is unramified in L � L0.

We use IL.f / to denote the group of fractional OL-ideals that are coprime to fOL.
If J is an ideal of OL that divides f OL, we set

PL;J;1.f / WD h¹˛OL 2 IL.f /I˛ 2 OL; ˛ � 1 mod J ºi � IL.f /:

If J D jOL for some j 2Zn¹0º, we also writePL;j;1.f / instead ofPL;J;1.f / and set

PL;j;Z.f / WD h¹˛OL 2 IL.f /I˛ 2 OL; ˛ � a mod jOL

for some a 2 Z with gcd.a; j / D 1ºi:

We set PL;1.f / WD PL;f;1.f / and PL;Z.f / WD PL;f;Z.f /. Our definition of IL.f /,
PL;1.f /, and PL;Z.f / coincides with the definition in [17, Chapter 8]. Furthermore,

PL;J;1.f / D IL.f / \ PL;1.J / and PL;j;Z.f / D IL.f / \ PL;Z.j /;

where PL;1.J / WD PL;J;1.J / and PL;Z.j / WD PL;j;Z.j / are defined analogously to
PL;1.f / and PL;Z.f /.

The Artin map IL.f / ! Gal.LDp2k=L/ has kernel equal to PL;Z.f / and the
Artin map IL.f /! Gal.LD=L/ has kernel equal to

IL.f / \ PL;Z.f0/ D PL;f0;Z.f /:

We denote by G the kernel of the Artin map IL.f /! Gal.L0=L/. Since LD ¨ L0 �

LDp2k , we have that PL;f0;Z.f / © G � PL;Z.f / by [17, Theorem 8.6].
The conductor f (in the sense of [17, Theorem 8.5]) of the extension L � L0

divides f OL and is coprime to p. We know that G � IL.f /\ PL;1.f/ D PL;f;1.f /.
We distinguish two cases: first, suppose that p is the only prime ofL lying above p.

Then f divides f0OL and it follows that

G � PL;Z.f /PL;f0;1.f / D PL;f0;Z.f /;

a contradiction.
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Second, suppose that pOL D pxp for some prime xp¤ p of L. Then f divides f0xpk

and it follows that
G � PL;Z.f /PL;f0xpk ;1.f /:

But again, the right-hand side is equal to PL;f0;Z.f /: suppose that ˛OL 2 IL.f / and
˛ 2 OLn¹0º satisfies ˛ � a mod f0OL for some a 2 Z with gcd.a; f0/ D 1. Under
the natural isomorphisms

.OL=f0p
kOL/

�
' .OL=f0OL/

�
� .OL=p

k/� � .OL=xp
k/�

and
.OL=p

k/� ' .OL=xp
k/� ' .Z=pkZ/�;

the element ˛ mod f0pkOL corresponds to a triple .a0; a1; a2/ with a0 D aC f0OL
and a1; a2 2 .Z=pkZ/�. The decomposition

.a0; a1; a2/ D .a0; a2; a2/ � .1; a1=a2; 1/

then shows that ˛OL 2PL;Z.f /PL;f0xpk ;1.f /. It follows thatGDPL;f0;Z.f /, which
is another contradiction.

Therefore, there is no such L0 and we are done.

Proposition 2.4. For every discriminantD 2D, every prime p 2N, and every n2N,
we have

HDp2n.X/ � HD.X/
k mod p;

where, if O denotes the order of discriminant D, we have

k D
h.Dp2n/

h.D/
D
2pn�1

jO�j

�
p �

�D
p

��
:

Proof. By [17, Corollary 7.28], we have that

h.Dp2n/

h.D/
D
2pn�1

jO�j

�
p �

�D
p

��
for all n, D, and p.

By induction, it now suffices to prove the statement only for nD 1 and allD and p
since then, for arbitrary n � 1, we have that

HDp2n.X/ � HDp2.n�1/.X/h.Dp
2n/=h.Dp2.n�1// mod p;

which yields the inductive step.
We fix j 2 xQ such thatHD.j / D 0. Let E= xQ be an elliptic curve with j.E/ D j .

Since HD is irreducible over Q, we can fix an embedding xQ ,! C and an embed-
ding O ,! C such that EC is complex-analytically isomorphic to C=O. Consider a
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complex elliptic curve E 0 whose analytification is isomorphic to C=.ZC pO/. The
inclusion Z C pO � O induces an isogeny of degree p from E 0 onto EC and E 0

has complex multiplication by ZC pO, which has discriminant Dp2. It follows that
j.E 0/ is an algebraic number and so both E 0 as well as the isogeny can be defined
over xQ. We will denote the corresponding elliptic curve over xQ byE 0 as well. Letting
j 0 WD j.E 0/ 2 xQ, one then has

p̂.j
0; j / D 0 (2.1)

by [17, Proposition 14.11], where we recall that p̂ denotes the p-th modular poly-
nomial.

Let LD , LDp2� xQ be the ring class fields associated to the orders of discriminant
D and Dp2 respectively. By [17, Theorem 11.1 and Proposition 13.2], j and j 0 are
primitive elements for the extensions Q.

p
D/� LD and Q.

p
D/� LDp2 of degrees

h.D/ and h.Dp2/ respectively. Then, the extension Q � LDp2 is Galois, and so the
extensionLD�LDp2 is Galois as well, of degree ŒLDp2 W LD�Dh.Dp

2/=h.D/DWk.
We set

G WD Gal
�
LDp2=Q.

p
D/
�

and G0 WD Gal
�
LDp2=LD

�
� G:

We fix representatives �1; : : : ; �h.D/ of the right cosets of G0 in G.
In the following, we fix a prime P � LDp2 lying above p. By Lemma 2.3, we

have that

HDp2.X/ D

h.D/Y
iD1

Y
�2G0

�
X � �.�i .j

0//
�
�

h.D/Y
iD1

�
X � �i .j

0/
�k mod P:

Let � 2Gal.LDp2=Q/ be an element of the decomposition group of P that reduces
to the Frobenius automorphism x 7! xp in the Galois group of the residue field exten-
sion and let N denote the order of this Frobenius automorphism. Since �.P/DP, ap-
plying � t for t 2 ¹1; : : : ;N º to the above congruence yieldsN congruences modulo P.
Taking the product of these congruences and using the fact thatHDp2.X/ 2 ZŒX�, we
obtain that

HDp2.X/N �

NY
tD1

h.D/Y
iD1

�
X � � t .�i .j

0//
�k mod P:

Using (2.1) and Kronecker’s congruence relation [17, Theorem 11.18 (v)], we
obtain that

0 D p̂

�
�i .j

0/; �i .j /
�
�
�
�i .j

0/ � �i .j /
p
��
�i .j

0/p � �i .j /
�

mod P
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for all i . Hence, we have that, for each i , either �i .j 0/� �.�i .j // mod P or �i .j /�
�.�i .j

0// mod P, and so

NY
tD1

�
X � � t .�i .j

0//
�
�

NY
tD1

�
X � � t .�i .j //

�
mod P

since �.P/ D P and �N is the identity modulo P. Taking the product over i D
1; : : : ; h.D/, we deduce that

HDp2.X/N �

NY
tD1

h.D/Y
iD1

�
X � � t .�i .j //

�k
� HD.X/

kN mod P:

Since HDp2.X/ and HD.X/k are both monic, this concludes the proof.

2.3. Degrees in function fields

Let F be an algebraically closed field of arbitrary characteristic and let R be the coor-
dinate ring of a smooth affine irreducible curve C over F . By [27, Example 15.2 (2)],
R is a Dedekind domain. It is an example of the kind of Dedekind domains with
which we will work in this article. Therefore, the following technical machinery will
be useful for us later.

Let K denote the fraction field of R, i.e., the field of rational functions on C . Any
f 2 K has a degree degf 2 N [ ¹0º, defined by

degf D

´
ŒK W F.f /� if the field extension F.f / � K is finite,

0 otherwise.

If deg f D 0, the element f must be algebraic over F since K is a finitely gen-
erated field extension of F of transcendence degree 1 and the transcendence degree
is additive in towers of field extensions. This implies that f belongs to F since F is
algebraically closed.

If F.f / � K is finite, we can apply [27, Proposition 15.31] with C2 D P1F ,
D2¹Œ0�; Œ1�º, C1 equal to a smooth projective irreducible curve with an open immer-
sion C ,! C1 (cf. [27, Corollary 6.32, Remark 15.15 (3), Theorem 15.21]), and f
equal to the finite morphism C1 ! C2 induced by f (that we also denote by f ).
It follows that

degf D �
X

x2C1.F /

min¹0; ordx.f /º D
X

x2C1.F /

max¹0; ordx.f /º; (2.2)

where ordx.f / denotes the order of vanishing of f at x. Note that (2.2) also holds
if f 2 F �.
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Remark 2.5. In particular, we deduce that, for every f 2K�, the degree degf coin-
cides with the heightH.f / as defined in [42, equation (2), p. 8 and after equation (1),
p. 96]; we will use this later when applying Mason’s function field version of the abc
conjecture in positive characteristic.

For future reference, we summarize some basic properties of the degree in the
following proposition.

Proposition 2.6. The degree map has the following properties:

(1) deg.fg/ � degf C degg for all f; g 2 K,

(2) deg.f n/ D jnj degf for all f 2 K� and all n 2 Z, and

(3) deg f D 0 if and only if f 2 F .

Proof. Property (1) as well as property (2) are clear from (2.2). Property (3) has
already been established above.

Since R is a Dedekind domain, we may also define the degree deg I of a non-zero
ideal I of R by stipulating that

(1) degR D 0,

(2) deg I D 1 if I is a maximal ideal, and

(3) deg.IJ / D deg I C degJ for all non-zero ideals I and J .

Note that degf and deg.fR/ are not equal in general, e.g., if f 2 R�nF �.

3. G.C.D.’s and Hilbert class polynomials

We now study the “size” of greatest common divisors of the form gcd.HD.a/;HD.b//
for varying D 2 D and fixed a; b belonging to several Dedekind domains of interest.
As explained in the introduction, this problem is a modular analogue of the more clas-
sical question concerning the size of gcd.an � 1; bn � 1/ for n 2 N. In this setting,
one usually assumes a and b to be multiplicatively independent since otherwise the
greatest common divisors involved become trivially large. Equivalently, one assumes
that over the fraction field of the Dedekind domain under consideration, the point
.a; b/ is not contained in any proper special subvariety of G2

m. Using the dictio-
nary between the multiplicative and the modular world, one sees that this condition
translates into taking a and b as the j -invariants of elliptic curves without complex
multiplication that are not geometrically isogenous to each other.

We begin with the function field case in characteristic 0, i.e., with the case where
a and b are assumed to be elements of the coordinate ring R of a smooth irreducible
affine curve defined over an algebraically closed field F of characteristic 0.
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Theorem 3.1. Let F be an algebraically closed field of characteristic 0, let R be
the coordinate ring of a smooth affine irreducible curve C=F , and let A; B 2 R.
If ˆN .A;B/ ¤ 0 for all N 2 N, then there exists a non-zero ideal J � R such that

gcd.HD1
.A/;HD2

.B// j J or HD1
.A/HD2

.B/ D 0

for all D1;D2 2 D.

Note that the second alternative in Theorem 3.1 can only occur if either A or B is
constant and equal to a singular modulus. Theorem 3.1 is the analogue of the first part
of [1, Theorem 1] by Ailon and Rudnick (with F DC andRDCŒX�) that one obtains
by substituting HD1

.T /, HD2
.T / for T k � 1 and “not j -invariants of geometrically

isogenous elliptic curves” for “multiplicatively independent”. Our proof goes along
the lines of the proof in [1], but we apply André’s theorem for Y.1/2 instead of Ihara–
Serre–Tate’s theorem for G2

m.

Proof. Suppose first that A 2 F . Then, for allD 2D, eitherHD.A/D 0 orHD.A/ 2
R� and so the theorem holds with J D R. The same argument works if B 2 F .

From now on, we assume that A 62 F and B 62 F . Set

JD1;D2
D gcd.HD1

.A/;HD2
.B//

for D1; D2 2 D and suppose that some maximal ideal m of R divides JD1;D2
. We

want to show that m has to belong to a finite set that is independent of D1;D2.
The tuple .A; B/ defines a morphism 'WC ! Y.1/2F ' A2F . Let C 0 denote the

Zariski closure of the image of '. SinceA is non-constant by assumption, C 0 is a curve
and ' has finite fibers by [27, Theorems 5.22 (3) and 10.19 and Proposition 15.16 (1)].
Now, the maximal ideal m corresponds to a point Qm 2 C.F /. Since m divides
JD1;D2

, we deduce that Pm WD '.Qm/ 2 C 0.F / is a special point. It follows from our
assumptions that the number of special points lying on C 0 is finite: if F D C, this is
a direct consequence of André’s theorem [2]; otherwise, we may reduce to the case
where F D C by embedding into C some field of finite transcendence degree over xQ
over which C 0 is defined. So Pm indeed belongs to a finite set that is independent
of D1; D2. Since ' has finite fibers, the same holds for Qm. Because the correspon-
dence between m and Qm is a bijection, the ideal m lies in a finite set that does not
depend on D1;D2.

It remains to show that the order with which a given maximal ideal m divides
JD1;D2

is bounded independently of D1;D2. Set e.m/ equal to the supremum of the
orders with which m divides A � � ¤ 0, where � runs over the set of all singular
moduli. We have e.m/ < 1 since at most one A � � can be divisible by m. But
HD1

.A/ factors as a product of pairwise coprime elements A � � , where � runs over
the singular moduli of discriminant D1. So the order to which m divides JD1;D2

is
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bounded by the order to which it divides HD1
.A/, which is in turn bounded by e.m/.

The theorem now follows.

Remark 3.2. If we do not assume that ˆN .A; B/ ¤ 0 for all N 2 N, the theorem
becomes false. More precisely, ifˆN .A;B/D 0 for some positive integerN , then for
everyD 2D and for every maximal ideal m dividingHD.A/, there existsD0 2D such
that m j HD0.B/. Indeed, with the notation from the proof of Theorem 3.1, if Qm is
the point of C.F / corresponding to m, then A.Qm/ is a singular modulus of discrim-
inant D. Since by specialization ˆN .A.Qm/; B.Qm// D 0, we deduce that any two
elliptic curves over F with j -invariants A.Qm/ and B.Qm/ are isogenous. It follows
that also B.Qm/ is a singular modulus of some discriminant D0 2 D. This precisely
means that m jHD0.B/. Note finally that, ifA 62 F , the set of maximal ideals dividing
some HD.A/ is infinite. Indeed, the image of the morphism 'AWC ! A1F defined by
A 2 RnF is then open and dense, hence cofinite in A1F by [27, Proposition 15.4 (1)].
In particular, all but finitely many singular moduli are in the image of 'A and the result
easily follows.

Corollary 3.3. Let F be an algebraically closed field of characteristic 0, let R be
the coordinate ring of a smooth affine irreducible curve C=F , and let A; B 2 RnF .
If ˆN .A; B/ ¤ 0 for all N 2 N, then for all but finitely many .D1; D2/ 2 D2 the
elements HD1

.A/ and HD2
.B/ are coprime.

Proof. Suppose by contradiction that gcd.HD1
.A/;HD2

.B//¤R for infinitely many
pairs of discriminants .D1;D2/ 2 D2. Then by Theorem 3.1, there exists some maxi-
mal ideal m ofR dividing gcd.HD1

.A/;HD2
.B// for infinitely many .D1;D2/2D2.

Let Qm 2 C.F / denote the point corresponding to m. If 'WC ! Y.1/2F denotes
the morphism induced by .A; B/, then the coordinates of '.Qm/ 2 Y.1/

2.F / ' F 2

are singular moduli of discriminants D1 and D2 respectively for infinitely many
.D1;D2/ 2 D2. This is a contradiction and the corollary follows.

In the case FDC, CDA1F , andRDF ŒX�, it is easy to find polynomialsA;B 2R
for which HD1

.A/ and HD2
.B/ are coprime for every choice of .D1; D2/ 2 D2.

Indeed, it suffices to choose A and B in such a way that the specializations A.�/
and B.�/ at complex numbers � 2 C are never both singular moduli. As an example,
one could take A D X and B D X C a, for a 2 C not an algebraic integer. One can
even find A;B 2 ZŒX� with this property: for instance, the polynomials A D X and
B D X C 1 satisfy gcd.HD1

.A/;HD2
.B// D 1 for all .D1;D2/ 2 D2. This follows

from the fact that differences of singular moduli are never units in the ring of algebraic
integers, see [41, Corollary 1.3].

We now turn to the function field case in positive characteristic. If F is an alge-
braic closure of a finite field, then the statement of Theorem 3.1 is false as the follow-
ing theorem shows.
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Theorem 3.4. Let p 2 N be prime and fix an algebraic closure F D xFp of Fp . Let R
be the coordinate ring of a smooth affine irreducible curve C=F and let A;B 2 RnF .
Then

lim sup
D2D; jDj!1

deg.gcd.HD.A/;HD.B///
degHD

> 0:

Theorem 3.4 forRD F ŒX� can be considered a slightly weaker modular analogue
of [62, Theorem 4]. See also [16] for an upper bound for the g.c.d. in the multi-
plicative setting in the function field case in positive characteristic. The hypothesis in
Theorem 3.4 that F D xFp rather than an arbitrary field of characteristic p is essential
as the following example shows.

Example 3.5. Suppose that F is an algebraic closure of Fp.S/, where S is an inde-
pendent variable, C DA1F , andRDF ŒX�. Then,HD1

.X �S/ andHD2
.X �S2/ are

coprime for all D1; D2 2 D since they have no common zeroes in F (for all D 2 D,
every zero of HD.X/ in F is algebraic over Fp , but S is transcendental over Fp).

In order to prove Theorem 3.4, we will make use of the following preliminary
result.

Proposition 3.6. Let p 2N be prime and let F , C ,R,A, andB be as in Theorem 3.4.
Let ƒ � FpŒT � be any set of polynomials such that

¹t 2 F IP.t/ D 0 for some P 2 ƒº D F:

Then there exist infinitely many ˛ 2 C.F / for which there is a polynomial P 2 ƒ
satisfying P.A.˛// D P.B.˛// D 0.

Proof. The idea is to find infinitely many ˛ 2 C.F / such that B.˛/ is the image of
A.˛/ under some k-th power of the Frobenius automorphism of F , where k D k.˛/ 2
N [ ¹0º is allowed to depend on ˛. Since by assumption there exists P 2 ƒ such that
P.B.˛// D 0 and the polynomial P has Fp-coefficients, one then has

0 D P
�
B.˛/

�
D P

�
A.˛/p

k �
D P

�
A.˛/

�pk

for all these ˛ and the result follows.
In order to find infinitely many such points ˛, we will use the function field ver-

sion of the abc conjecture in characteristic p, which has been proven by Mason [42,
Lemma 10, p. 97]. To this aim, we let m 2 N [ ¹0º denote the biggest non-negative
integer such that there exists A0 2 R with A D A

pm

0 . Note that m is well defined
thanks to Proposition 2.6 (2)–(3) and the fact that A is non-constant by assumption.

For every n 2 N, set Pn WD A0 � Bp
n
2 R. We have Pn ¤ 0 thanks to the max-

imality of m, and obviously

A0 � B
pn

� Pn D 0:
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We want to apply [42, Lemma 10, p. 97] to the above equality. First of all, note that
A0=.�B

pn
/ is not a p-th power in the fraction field of R since A0 is not a p-th

power in R and R is integrally closed by [27, Corollary 6.32, Lemma 6.38 (1), Corol-
lary 6.39, Proposition B.70 (1)]. Moreover, by Proposition 2.6 we also have

deg
A0

�Bp
n � p

n deg.B/ � deg.A0/ (3.1)

and the right-hand side goes to infinity as n increases since B 62 F by hypothesis.
Let now xC be the smooth projective closure of the curve C (see [27, Corollary 6.32,
Remark 15.15 (3), and Theorem 15.21]) and let S � xC.F / be an arbitrary finite set
of points containing xC.F /nC.F / as well as all the zeroes of A0 and B . Inequal-
ity (3.1) shows that if we choose n large enough, then the degree of A0=.�Bp

n
/

will be strictly bigger than jS j C 2g � 2, where g D g. xC/ is the genus of xC . Hence,
by [42, Lemma 10, p. 97] and Remark 2.5, there exists ˛ 2 C.F /nS such that the
orders of vanishing at ˛ of the functions A0, Bp

n
, and Pn are not all equal; note that

the set xC.F / is in bijection with the set of valuations on the fraction field of R con-
structed in [42, Chapter VI]. Since our choice of S implies that A0 and B both do not
vanish at ˛, we deduce that Pn.˛/D 0. This means precisely that A.˛/D B.˛/p

mCn
.

Now, by repeatedly enlarging the set S , one can find infinitely many points ˛ 2 C.F /

with this property. We have reached the desired conclusion.

We remark that, by Deuring’s lifting theorem [36, Chapter 13, Theorem 14] (or
[13, Theorem 1.7.4.6]) and the fact that every elliptic curve over xFp has endomor-
phism ring larger than Z, the setƒD ¹HD.T / mod pID 2Dº satisfies the hypothesis
of Proposition 3.6.

Proof of Theorem 3.4. Our goal is to find a sequence ¹Dkºk2N of discriminantsDk 2
D such that jDkj ! 1 as k !1 and

lim inf
k!1

deg.gcd.HDk
.A/;HDk

.B///

degHDk

> 0: (3.2)

Proposition 3.6 applied to ƒ D ¹HD.T / mod pID 2 Dº implies that there exists
some discriminant D0 2 D and some ˛ 2 C.F / such that

HD0
.A.˛// D HD0

.B.˛// D 0:

It follows from the definition of the degree of an ideal that

deg
�
gcd.HD0

.A/;HD0
.B//

�
� 1:
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For k 2 N, set Dk D D0p2k . It is clear that jDkj ! 1 as k !1. We can now
apply Proposition 2.4 to deduce that

deg
�
gcd.HDk

.A/;HDk
.B//

�
�

degHDk

degHD0

deg
�
gcd.HD0

.A/;HD0
.B//

�
�

degHDk

degHD0

> 0:

So (3.2) holds and the theorem follows.

We finally leave the cozy realm of function fields to enter the more hostile world
of number fields. Influenced by the previous discussion, one may be tempted to be-
lieve that the modular analogues of the multiplicative results of Bugeaud–Corvaja–
Zannier [9] and Corvaja–Zannier [15] should also hold true in this setting. For in-
stance, the aforementioned results inspire the following natural conjecture in the
modular framework: for all “well-chosen” a; b 2 Z and for every " > 0, we have

log
�
gcd.HD.a/;HD.b//

�
< " degHD

provided thatD 2D is sufficiently large in absolute value. Here “well-chosen” means
that neither a nor b is a singular modulus and that furthermore a and b are not
j -invariants of geometrically isogenous elliptic curves over Q, conditions that, as
we have already remarked above, correspond to multiplicative independence in the
multiplicative setting. Perhaps surprisingly, this just stated conjecture turns out to be
completely false in general. The reason for this is the possible existence of common
supersingular primes for the elliptic curves having a and b as their j -invariants.

Theorem 3.7. Let K be a number field and let S be a finite set of maximal ideals
of OK . Consider two elliptic curves E1=K , E2=K with potential good reduction out-
side of S , i.e., such that j.Ei / 2 OK;S for i D 1; 2. Recall that, for a non-zero ideal I
of OK;S , its norm is denoted by N.I /. Suppose that there exists a prime ideal p

of OK;S at which both E1 and E2 have potential good supersingular reduction. Let p
denote the rational prime lying under p. Then

lim sup
D2D; jDj!1

.degHD/�1 logN
�
gcd

�
HD.j.E1//;HD.j.E2//

��
�

logp
p � 1

> 0:

Here, the logarithm of the ideal norm plays the role of the degree of an ideal in
the function field case. Both of them count with multiplicity the number of maximal
ideals dividing a given non-zero element; deg weights each maximal ideal by 1 while
logN weights each maximal ideal by the logarithm of the cardinality of its residue
field.
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In order to prove Theorem 3.7, we will crucially rely on an equidistribution result
due to Michel [51] concerning supersingular reduction of CM elliptic curves. The-
orem 3.8 below, which we will apply to prove Theorem 3.7, is a direct consequence
of this result. Let us introduce the setting.

Let p 2 N be a rational prime and fix a prime p � xQ lying above it. Let xFp
denote the residue field of p, which is an algebraic closure of Fp . Let L be an imag-
inary quadratic field and assume that p is inert in L. We denote by Ell.OL/ the set
of xQ-isomorphism classes of elliptic curves with complex multiplication by OL and
by Ellss.xFp/ the set of isomorphism classes of supersingular elliptic curves over xFp .
Both sets are finite: indeed, the cardinality of Ell.OL/ equals the class number of L
while Ellss.xFp/ is finite by [65, V, Theorem 3.1]. Moreover, every class in Ell.OL/
can be represented by the base change E xQ of E to xQ, where E is an elliptic curve
over a number field L0 � xQ that has good reduction at p\L0. We define E xQ mod p

as the base change to xFp of E mod .p \ L0/. We then have a map

‰p;OL
WEll.OL/! Ellss.xFp/; ŒE xQ� 7! ŒE xQ mod p�

that is well defined by [61, II, Proposition 4.4].

Theorem 3.8. Let D denote the discriminant of L. There exist an absolute constant
� > 0 and a constant c D c.p/ 2 R such that for each class Œ zE� 2 Ellss.xFp/, we haveˇ̌®

ŒE� 2 Ell.OL/I‰p;OL
.ŒE�/ D Œ zE�

¯ˇ̌
�
�
.p � 1/�1 � cD��

�
h.D/;

where h.D/ denotes the class number of L.

Proof. We want to apply [51, Theorem 3] with G D GK . Following [51], we denote
the cardinality of Ellss.xFp/ by n and its elements by e1; : : : ; en. We also use the prob-
ability measure �p on Ellss.xFp/ as defined in [51, top of p. 189]. We recall that, for
1 � i � n,

�p.ei / WD
1=wiPn
jD1 1=wj

;

where wj is half the cardinality of the automorphism group of any elliptic curve in
the class ej for j D 1; : : : ; n.

If p > 5, it follows from [65, III, Theorem 10.1] and the definition of �p that
�p.ei / � .3n/

�1 for all i D 1; : : : ; n. Furthermore, we have

.3n/�1 �
4

p C 13
� .p � 1/�1

thanks to [32, Chapter 13, Table 1, p. 264] and the fact that p > 5.
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If p 2 ¹2; 3; 5º, then jEllss.xFp/j D 1 thanks to [32, Chapter 13, Theorem 4.1 and
the following paragraphs up to and including Table 1], so that n D 1 and

�p.e1/ D 1 � .p � 1/
�1:

Hence, Theorem 3.8 follows from [51, Theorem 3] with G D GK .

We can now prove Theorem 3.7.

Proof of Theorem 3.7. Let � 2 .0; 1=.p � 1// be an arbitrary real number and fix an
algebraic closure xK of K as well as a prime P � xK lying over p. By Theorem 3.8,
there exist fundamental discriminants D 2 D with jDj arbitrarily large such that p is
inert in Q.

p
D/ � xK andˇ̌®
j 2 xKIHD.j / D 0; j � j.Ei / mod P

¯ˇ̌
� .degHD/� (3.3)

for i D 1;2. For any suchD, letKD � xK denote the compositum ofK and the Hilbert
class field of Q.

p
D/, and set PD D P \KD . By [61, II, Theorem 4.1], KD is the

splitting field of HD over K.
p
D/. Together with inequality (3.3), this implies that

there exist integers eD;i � .degHD/� such that

HD
�
j.Ei /

�
D

Y
j2KD ;HD.j /D0

�
j.Ei / � j

�
2 P

eD;i

D

for i D 1; 2. Since p does not ramify in Q.
p
D/, the extensionK �KD is unramified

over p by [61, II, Example 3.3] and [7, Propositions B.2.3 and B.2.4]. We deduce that
HD.j.Ei // 2 peD;i for i D 1; 2. Together with the lower bound for eD;i , this implies
that

.degHD/�1 logN
�
gcd

�
HD.j.E1//;HD.j.E2//

��
� � logN.p/ � � logp:

The theorem follows.

Remark 3.9. The careful reader has certainly noticed the similarity between the
statements of Theorems 3.4 and 3.7. However, arguing along the lines of the proof
of Theorem 3.4 does not suffice to prove Theorem 3.7. First of all, we do not have
an analogue of Proposition 3.6 that would allow us to find at least one discriminant
whose associated greatest common divisor is non-trivial. Another obstacle is that, by
Lemma 2.3, passing from an order of discriminantD to an order of discriminantDp2

gives rise to an extension of ring class fields that is totally ramified at each prime
above p. Therefore, it is not clear whether the norm of the greatest common divisor
increases at all when one passes from discriminant D to discriminant Dp2.

On the other hand, supersingular primes can be used to prove Theorem 3.4 in
some special cases: if there exists some ˛ 2 C.F / such that both A.˛/ and B.˛/ are
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j -invariants of supersingular elliptic curves, then we can deduce Theorem 3.4 from
Theorem 3.8 with a similar proof as the one of Theorem 3.7. In this case, we can
even strengthen Theorem 3.4 to say that the limit superior is greater than or equal
to .p � 1/�1. However, since the set of supersingular j -invariants in F is finite, it
is clear that, for some choices of A; B 2 RnF , no such ˛ exists; for instance, take
any A 2 RnF and B D AC b, where b 2 F is not a difference of two supersingular
j -invariants.

It is easy to construct examples where E1 and E2 have no complex multiplication
and are not geometrically isogenous to each other, but nevertheless have a com-
mon prime of potential good supersingular reduction. Indeed, let us fix any maximal
ideal p of OK;S ; by [17, Theorem 14.18] and since 0 is supersingular in character-
istics 2 and 3, we can choose (not necessarily distinct) supersingular j -invariants
j1;p; j2;p 2 OK;S=p. All but finitely many of the lifts of j1;p to OK;S are not singular
moduli since the degree of a singular modulus equals the class number of the corre-
sponding imaginary quadratic order and this goes to1 with the absolute value of the
discriminant by [37, Chapter XVI, Theorem 4] and [52, Chapter I, Proposition 12.9].
Fix any such lift j1 2 OK;S . Then, all but finitely many of the lifts of j2;p to OK;S are
j -invariants of elliptic curves without complex multiplication as above. Moreover, all
but finitely many of these lifts are j -invariants of elliptic curves that are not geomet-
rically isogenous to the elliptic curve with j -invariant j1 since the existence of such
an isogeny implies the existence of an isogeny whose degree is bounded in terms ofK
and j1 by the main theorem of [43]. Hence, one can find many examples where the
hypothesis of Theorem 3.7 holds although the two elliptic curves have no complex
multiplication and are not geometrically isogenous to each other.

We know that there exist infinitely many common supersingular primes for E1
and E2 in the following cases:

(1) Both E1 and E2 have complex multiplication, see [36, Chapter 13, The-
orem 12].

(2) Both E1 and E2 do not have complex multiplication, one of them can be
defined over a number field with at least one real embedding, and E1 and E2
are geometrically isogenous, see [21, 22].

Based on [38, Remark 2, p. 37], Fouvry and Murty conjectured in [24, equa-
tion (1.4)] that there are infinitely many common supersingular primes if both E1
and E2 do not have complex multiplication, are defined over Q, and are not geo-
metrically isogenous. In the same article, they also prove an averaged version of this
conjecture. A similar averaged result is known if both E1 and E2 are defined over
the rationals, E1 has complex multiplication, and E2 does not, see [33, Theorem 10]
and [18, pp. 199–200].
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We can also consider the following modular version of [1, Conjecture A] by Ailon
and Rudnick and [64, Conjecture 10] by Silverman: for which a, b 2 OK;S do there
exist infinitely many D 2 D such that HD.a/ and HD.b/ are coprime? Does it suf-
fice to assume that a ¤ b or at least that neither a nor b is a singular modulus and
ˆN .a; b/ ¤ 0 for all N 2 N? This problem would be trivial if HD.a/ 2 O�K;S or
HD.b/ 2 O�K;S for infinitely many D 2 D. If a and b are not both singular moduli
and S ¤ ;, then it is an open problem whether this can happen or not. We can at least
show that HD.a/ cannot belong to O�K;S for all but finitely many D 2 D.

Theorem 3.10. Let K be a number field and let S be a finite set of maximal ideals
of OK . Let j 2 OK;S and let E=K be an elliptic curve with j.E/ D j . Then

lim sup
D2D; jDj!1

Po
�
HD.j /

�
D1;

where Po.a/ is defined as follows: Po.0/ D1 and for a 2 OK;Sn¹0º, Po.a/ denotes
the largest norm of a prime factor of a which is of good ordinary reduction for E and
Po.a/ D 1 if no such prime factor exists.

If P.a/ denotes the largest norm of a prime factor of a 2 OK;Sn.O
�
K;S [ ¹0º/ and

P.a/ D1 or 1 for a D 0 and a 2 O�K;S respectively, then

lim
D2D; jDj!1

P
�
HD.j /

�
D1

is equivalent to the fact that, for every finite set zS of maximal ideals of OK , there are
at most finitely many D 2 D such that HD.j / is an zS -unit. As mentioned above, it
is still an open problem whether this is true or not. It is known if either zS D ; [28]
or if j is a singular modulus [29]. See [6,10–12,58] for work on making these results
effective.

These results actually provide another example besides Theorem 3.7 where the
analogy between Shimura varieties and algebraic groups fails to hold perfectly. Name-
ly, there is a discrepancy between Habegger’s [28, Theorem 2] in the modular case
and [3, Theorem 0.1] by Baker, Ih, and Rumely in the multiplicative case: for instance,
in the modular case, for every algebraic integer j , the algebraic number HD.j / is an
algebraic unit for at most finitely many D 2 D whereas in the multiplicative case, for
a non-zero algebraic integer a, ‰n.a/ is an algebraic unit for at most finitely many
n 2 N if and only if a is not a root of unity. The elliptic case behaves analogously to
the multiplicative case, see [3, Theorem 0.2].

We can ask whether removing the supersingular prime factors eliminates all these
discrepancies: certainly, if j 2 OK;S is a singular modulus, then N.HD.j // is divis-
ible only by supersingular primes for j for infinitely manyD 2 D. Does the converse
hold as well?
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Proof of Theorem 3.10. Fix an algebraic closure xK ofK. In the proof, we will repeat-
edly use the fact that there exist infinitely many primes of good ordinary reduction
for E, see Section 2.2. The goal of our proof is to construct a strictly decreasing
sequence of discriminantsD for which Po.HD.j // goes to1. We do this recursively
as follows. Let p1 � OK;S be a maximal ideal of good ordinary reduction for E and
choose a prime P1 � xK lying above it. By Deuring’s Lifting theorem [36, Chapter 13,
Theorem 14] (or [13, Theorem 1.7.4.6]), the fact that every elliptic curve over a
finite field has complex multiplication, and Proposition 2.4, there exist a discriminant
Dp1
2Z<0 and an elliptic curveEp1= xK with complex multiplication by the imaginary

quadratic order of discriminant Dp1
such that

Ep1
mod P1 ' E xK mod P1 and HDp1

.j / ¤ 0:

Note that this implies in particular that p1 divides HDp1
.j /, so that

N.p1/ � Po
�
HDp1

.j /
�
<1:

Suppose now that we have constructed a sequence of primes p1, . . ., pn�1 such
thatN.p1/ < � � �<N.pn�1/ and a sequence of discriminantsDp1

> � � �>Dpn�1
such

that N.pm/ � Po.HDpm
.j // <1 for allm 2 ¹1; : : : ; n� 1º. We take some maximal

ideal pn of good ordinary reduction for E such that

N.pn/ > max
mD1;:::;n�1

®
Po
�
HDpm

.j /
�¯
:

For the same reasons as above, there exist a prime Pn � xK lying above pn, a
discriminant Dpn

, and an elliptic curve Epn= xK with complex multiplication by the
imaginary quadratic order of discriminant Dpn

satisfying

Epn
mod Pn ' E mod Pn; HDpn

.j / ¤ 0; jDpn
j > jDpn�1

j:

This implies that N.pn/ � Po
�
HDpn

.j /
�
<1.

Iterating this construction, we find a sequence of discriminants .Dpn
/n2N with

the desired properties. This concludes the proof.

Remark 3.11. For a 2 OK;Sn¹0º, let us denote by Pss.a/ the largest norm of a prime
factor of a which is of good supersingular reduction for E and set Pss.a/ D 1 if there
is no such prime factor and Pss.0/ D 1. If there are infinitely many primes of good
supersingular reduction forE, which is known in certain cases thanks to [21,22], then
we can follow the proof of Theorem 3.10 to show that

lim sup
D2D; jDj!1

Pss
�
HD.j /

�
D1:
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4. The support problem

In the previous section, we studied gcd.HD.a/;HD.b// for varyingD 2 D and fixed
a; b in some Dedekind domain. This greatest common divisor is as big as possible if
HD.a/ dividesHD.b/ (or vice versa). We now want to investigate in which cases this
can happen for all but finitely many discriminants D. In fact, we want to understand
more generally in which cases the set of prime ideals dividing HD.a/ (its support)
is contained in the set of prime ideals dividing HD.b/ for all but finitely many D.
If we pass from the modular to the multiplicative world and replace the polynomials
HD.T / (D 2 D) by the polynomials T n � 1 (n 2 N), then this question has been
answered by Corrales-Rodrigáñez and Schoof [14].

We are therefore led to introduce a general setting which encompasses both ver-
sions of this problem: let R be a Dedekind domain which is not a field and let N be
an arbitrary countably infinite set. We are given a polynomial fn.T / 2 RŒT � for each
n 2 N and two elements a; b 2 R. If for all but finitely many n 2 N , every prime
ideal factor of fn.a/ also divides fn.b/, i.e., if the support property holds for all but
finitely many n 2 N , what can we say about a and b? Following [14], we will refer
to this question as the support problem for the polynomials fn.T / 2 RŒT � (n 2 N ).
Clearly, the answer cannot be of universal nature and it depends very much on R and
on the polynomials fn.T / for n 2 N .

In many of the instances of the support problem that we will consider later, there
are some trivial subcases that are easily dealt with. We present them in the following
examples:

Example 4.1 (Isotriviality). Let F be an algebraically closed field and let R be the
coordinate ring of a smooth affine irreducible curve C=F . Recall that R is a Dedekind
domain by [27, Example 15.2 (2)]. In this example, we study the case where fn.T / 2
F ŒT � � RŒT � for all n 2 N and either a 2 F or b 2 F . We will see that the support
problem is often trivial in this case.

(1) Set

Z WD ¹� 2 F Ifn.�/ D 0 for infinitely many n 2 N such that fn ¤ 0º:

For instance, if the polynomials fn.T / (n 2N ) are pairwise coprime, thenZD;. For
every a 2 F nZ and for all but finitely many n 2N such that fn ¤ 0, the values fn.a/
are non-zero and hence units in R. In particular, for every b 2 R, we have that fn.a/
divides fn.b/ for all but finitely many n 2 N .

On the other hand, if a 2 Z and for all but finitely many n 2N , every prime ideal
dividing fn.a/ also divides fn.b/, then we deduce that fn0

.b/ D 0 for some n0 2 N

such that fn0
¤ 0. It follows that b 2 F since F is algebraically closed.
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(2) Let now fn.T / 2 F ŒT � (n 2 N ) and b 2 F be such that

Zb WD
[

n2N ; fn.b/¤0

¹� 2 F Ifn.�/ D 0º

is infinite. For instance, if the polynomials fn.T / (n 2 N ) are all non-constant and
pairwise coprime, then this holds for every choice of b 2 F . It in particular implies
that the set of polynomials fn.T / that do not have b as a zero is infinite. Since
fn.T / 2 F ŒT � and b 2 F , the value fn.b/ is a unit in R as soon as fn.b/ ¤ 0. If
for all but finitely many n 2 N , every prime ideal factor of fn.a/ also divides fn.b/,
it follows that fn.a/ is a unit for all but finitely many n 2 N such that fn.b/ ¤ 0,
which implies that a� � 2R� for all but finitely many � 2Zb . SinceZb is infinite, the
morphism C ! A1F induced by a must then be constant by [27, Proposition 15.4 (1)]
and it follows that a 2 F .

On the other hand, if Zb is finite and no element of Zb belongs to the image of
the morphism C ! A1F induced by a, then, for all n 2 N , every prime ideal divid-
ing fn.a/ also divides fn.b/ since either fn.b/ D 0 or fn.a/ is equal, up to scaling
by a constant in F �, to a product of factors a � � 2 R� for � 2 Zb .

Example 4.2 (Frobenius). Suppose that Fq � R for some prime power q and that
fn.T / 2 FqŒT � � RŒT � for all n 2 N . Then, for every c 2 R and for all k; ` 2 Z,
k; ` � 0, we have that every prime ideal that divides fn.cq

k
/ D fn.c/

qk
also divides

fn.c
q`
/ D fn.c/

q`
for all n 2 N . Thus, if a D cq

k
and b D cq

`
, then, for all n 2 N ,

every prime ideal dividing fn.a/ also divides fn.b/.

In the case of the multiplicative support problem, i.e., if N D N and fn.T / WD
T n � 1 for n 2 N , we have that fn.a/ j fn.ak/ for every a 2 R, every k 2 N [ ¹0º,
and every n 2N . If a 2R�, this also holds for negative exponents k since fn.a�1/D
�fn.a/a

�n. Answering a question of Erdős at the 1988 number theory conference in
Banff, Corrales-Rodrigáñez and Schoof solved the multiplicative support problem in
the number field case by proving that these are the only possibilities if ab ¤ 0:

Theorem 4.3 (Corrales-Rodrigáñez–Schoof [14, Theorem 1]). Let K be a number
field and let S be a finite set of maximal ideals of OK . If a; b 2 OK;Sn¹0º satisfy that
for all but finitely many n 2N, every prime ideal of OK;S dividing an � 1 also divides
bn � 1, then b D ak for some k 2 Z.

The case where the hypothesis holds for all n 2N is exactly the result of Corrales-
Rodrigáñez–Schoof; the general case then directly follows by a short argument that
we provide below.

In the proof of Theorem 4.3 as well as in many of the proofs that follow, we will
sometimes enlarge S to a bigger set S 0. When doing this, we will always identify
the primes of OK;S 0 as well as the primes of OK;S with subsets of the primes of OK
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by identifying p with p \ OK . We will also implicitly use that divisibility by primes
of OK;S outside of S 0 is preserved when we replace S by S 0.

Proof. Let us assume that the hypothesis holds for n>N0 for someN0 2N and let us
see how the theorem follows from the case where the hypothesis holds for all n 2 N,
which is [14, Theorem 1]: if a is not a root of unity, then one just has to replace S by
a set S 0 � S that contains all prime factors of

QN0

iD1 .a
i � 1/. If, on the other hand, a

is a root of unity, then an � 1 D 0 for infinitely many n 2 N and one deduces that b
is a root of unity and even, by taking n equal to two consecutive sufficiently large
multiples of the order of a, that the order of b divides the order of a. Thus, b is a
power of a, as desired.

The zeroes of T n � 1 in C are the roots of unity of order dividing n. It might
seem more natural to look at the polynomials whose zeroes are the roots of unity
of order precisely n since these are the minimal polynomials over Q of the special
points of Gm;C just as the Hilbert class polynomials are the minimal polynomials
over Q of the special points of Y.1/C . Thus, we replace the polynomials T n � 1 by
the cyclotomic polynomials ‰n.T / (n 2 N DW N ) to create the cyclotomic support
problem. To prove the analogue of Theorem 4.3, we need the following lemma.

Lemma 4.4. Let K be a number field, let S be a finite set of maximal ideals of OK ,
and fix a maximal ideal p � OK;S of residue characteristic p. The following are
equivalent for a 2 OK;Snp and k 2 N coprime to p:

(1) a has order k modulo p,

(2) ‰kp`.a/ 2 p for some ` 2 Z�0, and

(3) ‰kp`.a/ 2 p for all ` 2 Z�0.

Proof. It is clear that (1) implies (2) and that (3) implies (1), just take ` D 0 and,
for the second implication, use that the polynomial T k � 1 modulo p is separable.
Finally, for every ` 2 Z�1, we have the identity

‰kp`.T / �
�
‰k.T /

�.p�1/p`�1

mod p;

which one can deduce from the identity

T kp
`

� 1 � .T k � 1/p
`

mod p

using double induction on .k; `/, and so (2) implies (3).

We are now ready to solve the cyclotomic support problem as a direct consequence
of Theorem 4.3.
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Theorem 4.5. Let K be a number field, let S be a finite set of maximal ideals of OK ,
and fix N0 2 N. If a; b 2 OK;Sn¹0º satisfy that for all n 2 N with n > N0, every
prime ideal of OK;S dividing ‰n.a/ also divides ‰n.b/, then either a and b are roots
of unity of the same order or b D a˙1.

The conclusion of Theorem 4.5 is best possible: if a and b are roots of unity
of the same order k and p is a maximal ideal of OK;S of residue characteristic p,
then Lemma 4.4 implies that a and b both have order k0 modulo p where p does
not divide k0 and k D k0p

`0 for some `0 2 Z�0. Hence, Lemma 4.4 implies that
for n 2 N, ‰n.a/ 2 p if and only if n D k0p

` for some ` 2 Z�0 if and only if
‰n.b/ 2 p. So the hypothesis of the support problem holds. The same is true if
b D a�1 2 O�K;S since a and a�1 have the same order modulo every maximal ideal
of OK;S .

Proof. If a is a root of unity, k is its order, and p is a maximal ideal of OK;S of
residue characteristic p, then‰kp`.a/ 2 p for all ` 2 Z�0 by Lemma 4.4. Choosing `
large enough and applying our hypothesis on a and b, we deduce that ‰kp`.b/ 2 p

for some ` 2 Z�0 and so, again by Lemma 4.4,‰k.b/ 2 p. Varying p, we deduce that
‰k.b/ D 0 and we are done.

If a is not a root of unity, then, after enlarging S if necessary, we can assume
without loss of generality that a 2 O�K;S and that

QN0

iD1 ‰i .a/ 2 O�K;S so that the
support property holds for all n 2 N. Observe now that this property also holds in the
other direction: if p is a prime ideal of OK;S dividing ‰n.b/ for some n 2 N, then p

also divides ‰n.a/. Indeed, let p be the residue characteristic of p and let m be the
order of a modulo p, which is well defined since a 62 p. It follows that p j ‰m.a/ and
the support property implies that p j ‰m.b/. By Lemma 4.4, b has ordermmodulo p.
On the other hand, since we assumed that p j ‰n.b/, writing n D n0p` with p − n0,
we must have m D n0 by Lemma 4.4. Using once more Lemma 4.4, we deduce that
p j ‰n0p`.a/ D ‰n.a/, as wanted.

We conclude that for all n2N, a prime ideal of OK;S divides an � 1D
Q
i jn‰i .a/

if and only if it divides
Q
i jn‰i .b/ D b

n � 1. Thus, Theorem 4.3 implies that b D ak

and aD br for some k; r 2Z. Hence, we have ajkr�1j D 1 and, since by assumption a
is not a root of unity, this yields kr D 1, so k 2 ¹˙1º. The proof is concluded.

The next theorem resolves the function field case of the multiplicative and the
cyclotomic support problem in characteristic 0.

Theorem 4.6. Let R be the coordinate ring of a smooth affine irreducible curve C

over an algebraically closed field F of characteristic 0. Let A; B 2 RnF and let
N0 2 N. The following hold:



Around the support problem for Hilbert class polynomials 449

(1) Suppose that for all n 2 N with n > N0, every prime ideal of R that divides
An � 1 also divides Bn � 1. Then B D Ak for some k 2 Zn¹0º.

(2) Suppose that for all n 2 N with n > N0, every prime ideal of R that divides
‰n.A/ also divides ‰n.B/. Then B D A˙1.

The case where A 2 F or B 2 F is uninteresting, see Example 4.1. Note that the
set ZB in Example 4.1 (2) is in both cases infinite for all B 2 F n¹1º (and in case (2)
even for all B 2 F ). In both cases of Theorem 4.6, we begin by proving that A and B
are multiplicatively dependent; our proof of this fact runs along the same lines as the
proof of [1, Theorem 1] by Ailon and Rudnick in the case C D A1C .

Proof. Throughout the proof, we treat both cases simultaneously until the very end,
where case .2/ receives some extra attention. The tuple .A;B/ defines a rational map
'WC Ü G2

m;F . Let C 0 denote the Zariski closure of the image of '. Since A is non-
constant, C 0 is a curve and ' has finite fibers. Thanks to [27, Proposition 15.4 (1)],
applied to the morphism C ! A1F induced by A, we can assume, after increasing N0
if necessary, that for every root of unity # of order n > N0 there exists some maximal
ideal m# of R dividing A � # . It then follows by hypothesis that m# also divides
B � # 0 for some root of unity # 0, and so

.#; # 0/ 2 C 0.F / � G2
m;F .F / ' .F

�/2:

Varying n shows that C 0 contains a Zariski dense set of special points. By the theorem
of Ihara–Serre–Tate [35], C 0 is a special subvariety of G2

m;F and so A; B are multi-
plicatively dependent. Since A; B 62 F , it follows that there exist coprime non-zero
integers k; ` 2 Z and a root of unity � of order r such that AkB` D � holds in the
fraction field of R.

Let p denote a prime such that p > max¹N0; jkj; j`j; rº and let � be a root of
unity such that � WD ���k has order j`jrp. It follows that the order m of � is divisible
by p and divides jk`jrp. By our assumptions onN0 and p, there exists some maximal
ideal m� of R dividing A � �.

Choose � 2 ¹1;�1º such that jkj D �k. We know that A � � divides

���
�
Ajkj � �jkj

�
D ���

�
Ajkj � .���1/�

�
D ���

�
��B��` � .���1/�

�
D B��` � ���

in R. In particular, if ��` D �j`j, then B 2 R� and A � � divides

�B j`j��
�
B�j`j � ���

�
D B j`j � ��

in R. It follows in any case that A � � divides .B j`j � �/.B j`j � ��1/.
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Since m� divides A � �, we deduce that m� also divides .B j`j � �/.B j`j � ��1/
and so divides B � � 0 for some root of unity � 0 of order `2rp. At the same time, m�

also divides Bm � 1 by hypothesis. Since m divides jk`jrp, m� divides B jk`jrp � 1
and so divides B � �0 for some root of unity �0 of order dividing jk`jrp. It follows
that �0 D � 0, so ` divides k and ` 2 ¹˙1º since k and ` are coprime.

After taking the reciprocals of both sides of the equation AkB` D � and replacing
.k;�/ by .�k;��1/ if necessary, we can assume without loss of generality that `D�1,
i.e., that B D ��1Ak in the fraction field of R. Let again p denote a prime such that
p > max¹N0; jkj; rº and let � be a root of unity of order p. By our assumption onN0,
there exists some maximal ideal m� of R dividing A � �. It follows that m� divides
B � ��1�k , while also dividing Bp � 1 by hypothesis. The order of ��1�k is rp and
so r D 1. Hence, we have � D 1 and we deduce that B D Ak .

In case (1), we are now done. In case (2), let again p denote a prime such that p >
max¹N0; jkjº and let � be a root of unity of order pjkj. By our assumption onN0, there
exists some maximal ideal m� of R dividing A� �. It follows that m� divides B � �k

while also dividing B � �0 for some root of unity �0 of order pjkj by hypothesis. We
deduce that �0 D �k , so pjkj D p and k 2 ¹˙1º.

5. The modular support problem

Let R be a Dedekind domain. Recall that D D ¹D 2 Z<0ID � 0; 1 mod 4º and
that, for D 2 D, HD.T / denotes the image under the canonical ring homomorphism
ZŒT �! RŒT � of the Hilbert class polynomial associated to an imaginary quadratic
order of discriminant D. The modular support problem for R is the support problem
for the family of polynomials HD.T / 2 RŒT � (D 2 D). We will consider the cases
where R is either the coordinate ring of a smooth affine irreducible curve over an
algebraically closed field of characteristic 0 or a ring of S -integers in some number
field.

We start by proving an auxiliary proposition that will be used in both cases. It is
inspired by the theory of isogeny volcanoes.

Proposition 5.1. Let F be an algebraically closed field. Let E=F and E 0
=F

denote
two elliptic curves with complex multiplication by the same imaginary quadratic
order O and let 'WE ! E 0 be an isogeny with cyclic kernel such that deg ' and
disc.O/max¹1; char.F /º are coprime. Then, there is no prime ` that divides deg '
and is inert in the fraction field of O.

Proof. Since gcd.deg ';max¹1; char.F /º/ D 1, the isogeny ' is separable. Let P 2
E.F / be a generator of ker'. Fix an abstract isomorphism �WEndF .E/! EndF .E 0/
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and set a D ¹˛ 2 EndF .E/I ˛.P / D 0º. Then, a is an ideal of EndF .E/. We begin
by showing that ŒEndF .E/ W a� D deg'.

We have ŒEndF .E/ W a�D j¹ˇ.P /Iˇ 2 EndF .E/ºj. We want to show that ˇ.P / 2
ker' for every ˇ 2 EndF .E/. Let � W EndF .E/! EndF .E/ denote the unique non-
trivial ring automorphism of EndF .E/. One can check that for every endomorphism
ˇ 2 EndF .E/, there exists ˇ0 2 ¹�.ˇ/; �.�.ˇ//º such that ' ı ˇ D ˇ0 ı '. Indeed,
since ' is separable, it follows from [65, III, Corollary 4.11] that there exists ˇ00 2
EndF .E 0/ such that .deg'/.' ı ˇ/ D ˇ00 ı '. Hence,

Q.ˇ00/ ı ' D ' ıQ
�
.deg'/ˇ

�
D 0;

where Q denotes the minimal polynomial of .deg '/ˇ in ZŒT �. We deduce that
Q.ˇ00/ D 0 and so

ˇ00 2
®
.deg'/�.ˇ/; .deg'/�

�
�.ˇ/

�¯
:

It follows that ' ı ˇ D ˇ0 ı ' for some ˇ0 2 ¹�.ˇ/; �.�.ˇ//º, as desired. This implies
that '.ˇ.P //D ˇ0.'.P //D 0, so ˇ.P / 2 ker'. Since ker' D Z �P , we deduce that

j¹ˇ.P /Iˇ 2 EndF .E/ºj D deg';

so ŒEndF .E/ W a� D deg'.
Since gcd.deg '; disc.O// D 1, this implies that a is invertible (see [17, Proposi-

tion 7.4 and Lemma 7.18]).
Aiming for a contradiction, we now assume that there exists a prime ` that divides

deg' and is inert in the fraction field of O. Since gcd.deg'; disc.O// D 1, it follows
from [17, Proposition 7.20] that there exists an ideal b of EndF .E/ such that a D `b

and
deg' D ŒEndF .E/ W a� D `2ŒEndF .E/ W b�:

Hence, bD¹˛ 2EndF .E/I`˛ 2 aºD ¹˛ 2EndF .E/I˛.`P /D 0º. By [65, III, Propo-
sition 4.12], there exist an elliptic curve E 00

=F
and a separable isogeny  WE!E 00

whose kernel is generated by `P . We have

deg D jZ � `P j � j¹ˇ.`P /Iˇ 2 EndF .E/ºj D ŒEndF .E/ W b� D `�2 deg'

or, equivalently, .deg'/=.deg / � `2.
Since ker � ker' and  is separable, [65, III, Corollary 4.11] implies that there

exists an isogeny �WE 00 ! E 0 such that ' D � ı  . Since ' is separable, also � is
separable. By [65, III, Theorem 4.10 (c)] together with the above, we have

j ker �j D deg � D
deg'
deg 

� `2:

But ker � D  .ker '/ ' .ker '/=.ker / ' Z=`Z, and we get the desired contradic-
tion.
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5.1. The modular support problem over function fields of characteristic 0

In this section, we consider the case where R is the coordinate ring of a smooth
affine irreducible curve over an algebraically closed field F of characteristic 0. Since
the Hilbert class polynomials are irreducible over Q, monic, and pairwise distinct,
it suffices, thanks to Example 4.1, to consider the problem for A; B 2 RnF . The
following theorem gives a complete solution to the modular support problem in this
setting.

Theorem 5.2. Let R be the coordinate ring of a smooth affine irreducible curve C

over an algebraically closed field F of characteristic 0. Let A;B 2 RnF and suppose
that there exists D0 2 N such that for all discriminants D 2 D with jDj > D0 every
prime ideal of R that divides HD.A/ also divides HD.B/. Then A D B .

Proof. We first show that ˆN .A;B/ D 0 for some N 2 N, where we recall that ˆN
denotes the N -th modular polynomial. Suppose by contradiction that this is not the
case. Then Theorem 3.1 yields a non-zero ideal J of R such that

gcd
�
HD.A/;HD.B/

�
j J

for all D 2 D. By our assumption, every prime ideal of R that divides some HD.A/
(D 2 D with jDj > D0) also divides the ideal J . On the other hand, since HD.A/
and HD0.A/ are coprime for D;D0 2 D with D ¤ D0, we deduce from [27, Propo-
sition 15.4 (1)] applied to the morphism C ! A1F D Y.1/F induced by A that for
infinitely many D 2 D, there exists a maximal ideal mD that divides HD.A/. So J
must be divisible by infinitely many pairwise distinct maximal ideals, which contra-
dicts the fact that J ¤ .0/. Hence there exists N 2 N such that ˆN .A;B/ D 0.

Our goal is now to show that N D 1. This would yield the desired result, since

ˆ1.A;B/ D A � B:

Assume then, again by contradiction, that N > 1 and let p 2 N be a prime factor
of N .

The morphisms  A; B WC ! Y.1/F induced by A;B are non-constant, so in par-
ticular, by [27, Proposition 15.4 (1)], the set Y.1/F n A.C/ is finite. By enlarging D0
if necessary, we can assume without loss of generality that � 2  A.C/ for every sin-
gular modulus � whose discriminant D satisfies jDj > D0. By Dirichlet’s theorem
on primes in arithmetic progressions, there exists a fundamental discriminant D 2 D

with jDj > D0 such that gcd.D;N / D 1 and p is inert in K WD Q.
p
D/ � xQ.

By our assumption onD0, there exist an elliptic curveE=F and a point P 2 C.F /

such that
EndF .E/ ' OK
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and  A.P /D j.E/ 2 Y.1/.F /' F is the j -invariant of E. Let mP denote the max-
imal ideal of R corresponding to P . Clearly, mP j HD.A/.

By assumption, mP dividesHD.B/ and so  B.P / is the j -invariant of an elliptic
curve E 0

=F
with complex multiplication by OK . We know that

ˆN
�
 A.P /;  B.P /

�
D 0;

so by [17, Proposition 14.11], there exists an isogeny 'WE ! E 0 of degree N with
cyclic kernel. This contradicts Proposition 5.1 with ` D p. We conclude that N D 1
and the theorem follows.

5.2. The modular support problem over number fields

In this section, we analyze the modular support problem over a ring of S -integers in a
number field. In all but finitely many exceptional cases, we will be able to show that
the conclusion of Theorem 5.2 stays true. However, the proof is much more involved.
We first prove an auxiliary lemma that is a modular analogue of Lemma 4.4.

Lemma 5.3. Let K be a number field, let S be a finite set of maximal ideals of OK ,
and let p denote a maximal ideal of OK;S of residue characteristic p. The following
are equivalent for a 2 OK;S and a discriminant D 2 D:

(1) there exist a finite field extension K � L, a singular modulus j 2 L of dis-
criminant D, and a prime P of L lying above p such that a � j mod P,

(2) HDp2`.a/ 2 p for some ` 2 Z�0, and

(3) HDp2`.a/ 2 p for all ` 2 Z�0.

Proof. Choosing `D0, we see immediately that (1) implies (2) and that (3) implies (1)
with L equal to a splitting field of HD over K.

Since p 2 p, it follows from Proposition 2.4 that for every ` 2 Z�0, there exists
k 2 N such that

HDp2`.a/ � HD.a/
k mod p:

Hence, (2) and (3) are equivalent and we are done.

We are now ready to prove Theorem 1.5 that we restate here for the reader’s con-
venience.

Theorem 5.4. Let K be a number field and let S be a finite set of maximal ideals
of OK . Let j; j 0 2 OK;S . Suppose that there exists D0 2 N such that all the prime
ideals of OK;S dividing HD.j / also divide HD.j 0/ for every D 2 D with jDj > D0.
Then, either j D j 0 or there exists zD 2 D such that H zD.j / D H zD.j

0/ D 0.
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Proof. Denote by Ej , Ej 0 any two fixed elliptic curves overK with j -invariants j; j 0

respectively. We begin by showing that, under the hypothesis of the theorem, the two
curves are geometrically isogenous.

Fix an algebraic closure xK of K. Let p � OK;S be a prime ideal of good reduc-
tion for Ej and Ej 0 and let P be a prime of xK lying above it. By Deuring’s lifting
theorem [36, Chapter 13, Theorem 14] (or [13, Theorem 1.7.4.6]), there exist a dis-
criminant D 2 D and an elliptic curve .ED/= xK with complex multiplication by the
order of discriminant D such that

ED mod P ' Ej mod P:

In particular, p j HD.j / so that, by Lemma 5.3, p j HDp2n.j / for every n 2 N,
where p denotes the residue characteristic of p. Choosing n large enough, we deduce
from the hypothesis of the theorem that p jHDp2n.j 0/ and then, again by Lemma 5.3,
that p j HD.j

0/. Hence, there exists an elliptic curve .E 0D/= xK with complex multipli-
cation by the order of discriminant D such that

E 0D mod P ' Ej 0 mod P:

After fixing an embedding of xK into C, one can show that ED.C/ ' C=a for some
non-zero ideal a of the imaginary quadratic order of discriminantD in C and similarly
for E 0D.C/. Hence, ED and E 0D are isogenous over C and therefore over xK.

It follows that also Ej mod P and Ej 0 mod P are isogenous. Hence, for all but
finitely many maximal ideals p of OK;S , the reduced elliptic curves Ej and Ej 0 mod-
ulo p are geometrically isogenous. By [34, Theorem 1] we conclude that .Ej / xK
and .Ej 0/ xK are isogenous. In particular, the geometric endomorphism rings of Ej
and Ej 0 must have the same Z-rank.

It now suffices to consider two cases.

Case 1. Both Ej and Ej 0 do not have complex multiplication.
Let 'W .Ej / xK ! .Ej 0/ xK be an isogeny and set d D deg'. We can assume without

loss of generality that ' has cyclic kernel. If d D 1, then ' is an isomorphism and
j D j 0. Suppose then by contradiction that d > 1 and hence j ¤ j 0 since Ej does
not have complex multiplication. We want to apply Theorem 2.2 with the following
inputs:

(i) We take P to be the set of rational primes dividing dN.K/, where K � OK;S

denotes the ideal generated by
Q
D2D; jDj�D0

HD.j /. Note that P is finite since j is
not a singular modulus, and P ¤ ; because d > 1 by assumption.

(ii) We takeL to be an imaginary quadratic field where all primes ` 2P are inert.
For instance, we can take L of discriminant �� where � is a prime that is congruent
to 3 modulo 4 and satisfies suitable congruence conditions modulo 4

Q
`2P ` (such
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a � exists by Dirichlet’s theorem on primes in arithmetic progressions). We also take
O D OL to be the ring of integers in L.

Since Ej does not have complex multiplication and Ej and Ej 0 are geometrically
isogenous, by Theorem 2.2 there exist infinitely many maximal ideals p � OK;S such
that p − dK, Ej and Ej 0 have good ordinary reduction modulo p, and

Endkp
.Ej mod p/˝Z Z` ' O ˝Z Z` DW O` (5.1)

for all ` 2 P . In particular, denoting by A this infinite set of primes obtained from
Theorem 2.2 and setting Rp WD Endkp

.Ej mod p/ for all primes p 2 A, we deduce
from our choice of L and from (5.1) that all primes ` 2 P are inert in the fraction
field Lp of Rp for every p 2A. Moreover, (5.1) also implies that the conductor of Rp

is not divisible by any ` 2 P since, by [25, equation (1.8), p. 109], O` is the ring
of integers of the local field L ˝Z Z`, which is isomorphic to a quadratic exten-
sion of Q`. Finally, we remark that Rp can be identified with Endxkp

.Ej mod p/ by
Lemma 2.1, where xkp denotes a fixed algebraic closure of kp.

Fix now p 2A and set zEj WD Ej mod p. By Deuring’s lifting theorem [36, Chap-
ter 13, Theorem 14] (or [13, Theorem 1.7.4.6]), there exist an elliptic curve E= xK with
complex multiplication by an imaginary quadratic order of some discriminant D and
a prime P � xK lying above p such that E mod P ' . zEj /xkp

, where we identify the
residue field of P and xkp via a fixed isomorphism. In particular, p j HD.j /. Since
by construction p − K, we must have jDj > D0 so that p j HD.j

0/ by hypothesis.
This implies that zEj 0 WD Ej 0 mod p and zEj have complex multiplication by the same
imaginary quadratic order Rp by [36, Chapter 13, Theorem 12]. Moreover, by [61, II,
Proposition 4.4] the reduction of ' modulo P gives an isogeny z'W . zEj /xkp

! . zEj 0/xkp

of degree d . Since the residue characteristic p of p does not divide d , the kernel of z'
must be equal to the reduction of ker ' modulo P by [65, III, Theorem 4.10 (c) and
VII, Proposition 3.1 (b)]. Hence, z' has cyclic kernel. Since every prime dividing d
does not divide disc.Rp/p and is inert in Lp by construction, but d > 1, we can apply
Proposition 5.1 to deduce a contradiction. Hence, j D j 0, and this concludes the proof
in this case.

Case 2. Both Ej and Ej 0 have complex multiplication.
Let Dj 2 D be the discriminant of End xK.Ej /. Take p 2 N to be a prime such

that .Dj =p/ D 1 and let E= xK be an elliptic curve with complex multiplication by
the imaginary quadratic order of discriminant p2nDj for some fixed n 2 N. By [36,
Chapter 13, Theorem 12], for every prime P � xK lying above p, the reduction of E
modulo P is an elliptic curve with complex multiplication by the imaginary quadratic
order of discriminant Dj , and by Proposition 2.4 we can choose E in such a way that
P j .j � j.E//, and hence p j Hp2nDj

.j /.
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If we now choose n sufficiently large, the hypothesis of the theorem implies that
we also have that p j Hp2nDj

.j 0/. Again, it follows from [36, Chapter 13, Theo-
rem 12] thatEj 0 has complex multiplication by an order of discriminantDj 0Dp2kDj
for some k 2Z�0. Arguing in the same way with a prime `¤ p such that .Dj =`/D 1,
we conclude that there exists r 2 Z�0 such that

Dj 0 D p
2kDj D `

2rDj

and, since gcd.Dj ; p`/ D 1, we deduce that Dj 0 D Dj . In particular, we have

HDj
.j / D HDj

.j 0/ D HDj 0
.j 0/ D 0;

as desired.

Remark 5.5. In the proof of Theorem 5.2, we knew, for algebro-geometric reasons,
that all but finitely many imaginary quadratic orders could be obtained as the geo-
metric endomorphism rings of specializations of the elliptic curve with j -invariant A.
For the proof of Theorem 5.4, we only have Theorem 2.2 by Zarhin, which yields a
weaker analogue of this statement. However, this analogous statement is still strong
enough to allow us to create a situation where Proposition 5.1 applies.

In the case whereH zD.j /DH zD.j
0/D 0 for some zD 2D, it is unclear whether the

support property can be satisfied for all but finitely many D 2 D. Numerical exper-
iments seem to suggest that this should be true only if j D j 0. On the other hand,
we will now present an example of two distinct Galois conjugate singular moduli for
which the support property holds for 25% of all D 2 D. In particular, if the support
property holds for infinitely manyD 2 D, this does not imply that j D j 0. We do not
know if there are any other examples of this nature.

Theorem 5.6. Let

j1 D
�191025 � 85995

p
5

2
and j2 D

�191025C 85995
p
5

2

be the two singular moduli of discriminant �15 in xQ. Then for every discriminant
D 2 D with D � 1 mod 8, the support property holds in both directions, i.e., for
every maximal ideal p of ZŒ.�1C

p
5/=2�, we have

p j HD.j1/ , p j HD.j2/:

Proof. In this proof, we will use the notion of two isogenies being equivalent, which
we now recall. Let F be an arbitrary algebraically closed field. If E1; E2, and E3 are
three elliptic curves over F and if 'WE1!E2 and  WE1!E3 are two isogenies, we
say that ' and  are equivalent if there exists an isomorphism �WE2 ! E3 such that
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� ı ' D  . If deg' and deg are not divisible by char.F / and so ' and  are sepa-
rable, then this is the same as requiring that ker' D ker by [65, III, Corollary 4.11].
Of course, if ' and  are equivalent, then j.E2/ D j.E3/.

We fix an embedding xQ ,! C. Let E=C be an elliptic curve with complex multi-
plication by an imaginary quadratic order O � xQ of discriminant D � 1 mod 8 and
fix an isomorphism Œ��E WO ! EndC.E/. The hypothesis that D � 1 mod 8 implies
that 2O D p2p

0
2, where p2; p

0
2 � O are distinct Galois conjugate invertible ideals of

norm 2 (see [17, Proposition 7.20]).
We have that E.C/ ' C=ƒ for some invertible ideal ƒ of O (see [17, The-

orem 10.14]). Under this isomorphism, the p2-torsion subgroup

EŒp2� WD ¹P 2 E.C/I Œ˛�E .P / D 0 for all ˛ 2 p2º

corresponds to .p�12 ƒ/=ƒ. Hence, for the quotient .Ep2
/=C of E by EŒp2�, we have

that Ep2
.C/ ' C=p�12 ƒ.

We now apply [61, II, Proposition 1.2 (a) (ii)] with a D p�12 to deduce that the
endomorphism ring of .Ep2

/=C is isomorphic to O. For this, note that [61, II, Propo-
sition 1.2 (a) (ii)], although formulated only for maximal orders, also holds for an arbi-
trary order (with the same proof) as long as the fractional ideal a (for the given order)
is invertible. Let 'WE!Ep2

denote an isogeny with kernelEŒp2�. The degree of ' is
equal to the norm of p2, which is 2. Similarly, there exists an isogeny '0WE ! Ep0

2
of

degree 2 with kernel EŒp02� such that .Ep0
2
/=C is an elliptic curve with complex multi-

plication by O where EŒp02� is defined analogously to EŒp2�. The isogenies '; '0 are
not equivalent since p2C p02 DO and thereforeEŒp2�¤ EŒp02�. This shows in partic-
ular that every elliptic curve with complex multiplication by an imaginary quadratic
order of discriminant D � 1 mod 8 admits two non-equivalent isogenies of degree 2
towards elliptic curves with complex multiplication by the same order.

In the case D D �15, these isogenies can be described explicitly in complex
analytic terms. For k 2 ¹1; 2º, denote by .Ek/= xQ a fixed elliptic curve such that
j.Ek/ D jk . Since 2O D p2p

0
2, where p2 D .2; .1C

p
�15/=2/ is non-principal, it

follows from [61, II, Proposition 1.2] that there exist complex analytic isomorphisms

�1WEi .C/! C=O; �2WEk.C/! C=p2; ¹i; kº D ¹1; 2º:

We then see that the map z 7! 2z induces an isogeny C=O ! C=p2 with kernel
p0�12 =O and an isogeny C=O ! C=p02 with kernel p�12 =O. Since p2 and p02 are in
the same ideal class in Pic.O/, we have C=p2 ' C=p02, and we thus obtain two in-
equivalent isogenies '1; '2W .Ei /C ! .Ek/C . Since E1 and E2 are defined over xQ,
both these isogenies are base changes of isogenies Ei ! Ek that we will denote by
'1 and '2 as well. We can assume without loss of generality, after maybe applying an
automorphism of xQ which maps

p
5 to �

p
5, that i D 1 and k D 2.
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We are now ready to conclude the proof of the theorem. Since j1 and j2 are
Galois conjugate, it suffices to prove that p j HD.j1/ implies that p j HD.j2/ for
every maximal ideal p of ZŒ.�1C

p
5/=2�. Fix a negative discriminantD� 1 mod 8,

a maximal ideal p of ZŒ.�1C
p
5/=2� such that p jHD.j1/, and a prime P� xQ lying

above p. SinceE1 andE2 have complex multiplication, they both have good reduction
at P. As a first step, assume that p lies above 2. Since 2 is inert in Q.

p
5/ and j1; j2

are Galois conjugate, we deduce that p D .2/ and

p j HD.j1/ , p j HD.j2/:

Assume from now on that p does not lie above 2 and that p divides HD.j1/. To
ease notation, we will use a tilde z� to denote the reduction of some object (curve,
morphism, etc.) modulo P. It follows from our assumption that there exists j 2 xQ
such thatHD.j /D 0 and j1� j mod P. Fix an elliptic curve .Ej /= xQ with j.Ej /Dj .
The above discussion shows that Ej admits at least two non-equivalent degree-2 iso-
genies  k WEj ! ED;k for k 2 ¹1; 2º, where

End xQ.ED;k/ ' Z

�
D C

p
D

2

�
:

We set jD;k WD j.ED;k/ so that HD.jD;k/ D 0 for k 2 ¹1; 2º (it is possible that
jD;1 D jD;2, e.g., if D D �15). Since the aforementioned elliptic curves all have
complex multiplication, they all have good reduction at P. Let Ej Œ2� denote the 2-
torsion subgroup of Ej , then the reduction map Ej Œ2�!AEj Œ2� is injective by [65,
VII, Proposition 3.1 (b)]. It follows that, for k 2 ¹1; 2º, the kernel of z k is precisely
the reduction modulo P of ker k � Ej Œ2� since deg z k D deg k D 2 by [61, II,
Proposition 4.4]. Hence, ker z 1 ¤ ker z 2 and so the reduced isogenies z 1; z 2 are
non-equivalent. Similarly, it follows that also the reduced isogenies z'1 and z'2 are non-
equivalent. On the other hand, the elliptic curve zE1 ' zEj cannot have more than three
non-equivalent isogenies of degree 2 since there are only three distinct subgroups of
order 2 of the 2-torsion subgroup of zE1. Hence, there exist i; k 2 ¹1; 2º such that the
isogeny z'i is equivalent to the isogeny z k . This in particular implies that zj2 D zjD;k ,
and we conclude that p divides HD.j2/, as desired.
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