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1. Introduction

This note is motivated by a question raised by Michael Cowling [6]: in Rn, it is known
that a function f 2 L2.BEuc.0; 1// with vanishing average can be expressed as the
divergence of a vector field F 2 L2.BEuc.0; 1//

n, satisfying

kF kL2.BEuc.0;1//n � Ckf kL2.BEuc.0;1//:

The question is whether a similar result holds in Heisenberg groups, which can be
identified with R2nC1 or, more generally, in the so-called Carnot groups (of which
Heisenberg groups are a special case), provided the usual divergence is replaced by a
suitable “intrinsic” divergence (see (5) below).

This problem can be rephrased in terms of Sobolev inequalities for differential forms
in the Rumin complex .E�0 ; dc/ (see Section 3.1 for precise definitions). Specifically,
given a compactly supported volume form ! D f dV with vanishing average, does
there exist an .n � 1/-compactly supported primitive � whose L2-norm is controlled
by the L2-norm of !?

Sobolev inequalities for the Rumin complex in Heisenberg groups have been studied
in [2], but unfortunately, the results in [2] do not cover the case of volume forms. The
aim of this paper is to fill this gap by providing a positive answer to Cowling’s question.
Furthermore, as already mentioned, the results of this note are formulated in the more
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general setting of Carnot groups, and the L2-norms are replaced with any suitable
Lp-norms.

The main result is presented in Theorem 3.1 in Section 3 (see also Theorem 3.17
for an equivalent formulation). Section 2 provides some preliminary definitions, while
Section 3.1 gives a brief introduction to Rumin’s complex (for more details, see [3, 11,
15]). Finally, Section 4 is an appendix which collects various results on convolution
kernels in Carnot groups, some of which are well known.

2. Preliminary results and notations

A Carnot group G of step � and dimension n is a connected, simply connected Lie
group whose Lie algebra g has dimension n and admits a step � stratification. This
means there exist linear subspaces V1; : : : ; V� such that

(1) g D V1 ˚ � � � ˚ V� ; ŒV1; Vi � D ViC1; V� ¤ ¹0º; Vi D ¹0º for i > �;

where ŒV1; Vi � is the subspace of g generated by the commutators ŒX; Y � with X 2 V1
and Y 2 Vi . Letmi D dim.Vi / for i D 1; : : : ; �, and define hi D m1 C � � � Cmi , with
h0 D 0 and, clearly, h� D n.

Choose a basis ¹e1; : : : ; enº of g, adapted to the stratification, i.e., such that

ehj�1C1; : : : ; ehj is a basis of Vj for each j D 1; : : : ; �:

This basis ¹e1; : : : ; enº will be fixed throughout this note.
LetXD¹X1; : : : ;Xnº be the family of left-invariant vector fields such thatXi .0/Dei .

Given (1), the subset X1; : : : ; Xm1 generates, by commutations, all the other vector
fields. We will refer to X1; : : : ; Xm1 as the generating vector fields of the group.

The Lie algebra g can be endowed with a scalar product h�; �i, making ¹X1; : : : ;Xnº
an orthonormal basis. The group G can be identified with its Lie algebra g, endowed
with the product defined by the Campbell–Hausdorff–Dynkin formula. In particular,
we can identify G with .Rn; �/ where the explicit expression of the group operation � is
determined by the Campbell–Hausdorff–Dynkin formula.

A point p 2 G can be written as p D .p1; : : : ; pn/ or as p D p.1/ C � � � C p.�/,
where p.i/ 2 Vi for i D 1; : : : ; �. The Haar measure on G can be taken to be equal to
the Lebesgue measure on g � Rn.

Two important families of maps from G to G are the group translations and dilations.
For any x 2 G, the (left) translation �x W G ! G is defined as

z 7! �xz WD x � z:

For any � > 0, the dilation ı� W G ! G is defined as

ı�.x1; : : : ; xn/ D .�
d1x1; : : : ; �

dnxn/;
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where di 2 N is the homogeneity of the variable xi in G (see [9, Chapter 1]) and is
given by

dj D i whenever hi�1 C 1 � j � hi :

Hence, 1 D d1 D � � � D dm1 < dm1C1 D 2 � � � � � dn D �.
If f is a real function defined on G, we denote by Lf the function defined by
Lf .p/ WD f .p�1/.

Following [9], we adopt the following multi-index notation for higher-order deriva-
tives. If I D .i1; : : : ; in/ is a multi-index, we set

XI D X
i1
1 � � �X

in
n :

By the Poincaré–Birkhoff–Witt theorem (see, e.g., [5, Chapter 1, Section 2.7]), the
differential operators XI form a basis for the algebra of left-invariant differential
operators on G. Moreover, we define the order of the differential operator XI as
jI j WD i1C � � � C in, and its degree of homogeneity with respect to dilations as d.I / WD
d1i1 C � � � C dnin.

Again, following [9], we define the group convolution in G. If f 2 D.G/ and
g 2 L1loc.G/, we set

f � g.p/ WD

Z
f .q/g.q�1p/ dq for p 2 G:

It is important to note that if g is a smooth function and L is a left-invariant differential
operator, then

L.f � g/ D f � Lg:

The convolution is also well defined when f; g 2D 0.G/, provided at least one of them
has compact support. In this case, the following identities hold:

(2) hf � g; 'i D hg; Lf � 'i and hf � g; 'i D hf; ' � Lgi

for any test function '.
If f 2 E 0.G/ and g 2 D 0.G/, then for  2 D.G/, we have˝

.XIf / � g; 
˛
D
˝
XIf; � Lgi D .�1/jI j

˝
f; � .XI Lg/

˛
D .�1/jI j

˝
f � .XI Lg/L;  

˛
:

Let 1 � p �1 andm 2 N, and letW m;p
Euc .U / denote the usual Sobolev space. We

also recall the definition of the (integer order) Folland–Stein Sobolev space (see, e.g.,
[8, 9] for a general presentation).

Definition 2.1. IfU �G is an open set, 1� p �1, andm 2N, the spaceW m;p.U /

consists of all u 2 Lp.U / such that

XIu 2 Lp.U / for all multi-indices I with d.I / � m;
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endowed with the norm

kukWm;p.U / WD

X
d.I/�m

kXIukLp.U /:

When p D 2, we will simply write Hm.U / D W m;2.U /.

Theorem 2.2. Let U � G be an open set, 1 � p � 1, and m 2 N. Then,

(i) W m;p.U / is a Banach space.

In addition, if p <1, the following hold:

(ii) W m;p.U / \ C1.U / is dense in W m;p.U /.

(iii) If U D G, then D.G/ is dense in W m;p.U /.

(iv) If 1 < p <1, then W m;p.U / is reflexive.

(v) W
m;p

Euc;loc.U / � W
m;p.U /, i.e., for any V �� U and for any u 2 W m;p

Euc;loc.U /,

kukWm;p.V / � CV kukWm;p
Euc .V /:

(vi) W �m;p.U / � W
m;p

Euc;loc.U /, i.e., for any V �� U and for any u 2 W �m;p.U /,

kukWm;p
Euc .V / � CV kukW �m;p.U /:

Definition 2.3. Let G be a Carnot group. A homogeneous norm k � k on G is a
continuous function

k � k W G ! Œ0;C1/

such that

(3)

kpk D 0 ” p D 0I

kp�1k D kpkIı�.p/ D �kpkI
kp � qk � kpk C kqk;

for all p; q 2 G and all � > 0.
A homogeneous norm induces a homogeneous left-invariant distance d in G in

a standard way. If p 2 G and r > 0, we denote by Bd D Bd .p; r/ the open d -ball
centered at p with radius r .

In a Carnot group G, we shall consider in particular the homogeneous norm defined
in the following theorem.

Theorem 2.4 (see [10]). Let GDV1˚ � � �˚V� be a Carnot group. Let k �kV1 ; : : : ; k �kV�
be fixed Euclidean norms on the layers.
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Then, there exist constants "1; : : : ; "� , with "1D 1 and "2; : : : ; "� 2 .0;1�, depending
only on the group G and the norms k � kV1 ; : : : ; k � kV� , such that the functions

(4) kxk1 WD max
j
"j
�
kx.j /kVj

�1=j
are homogeneous norms on G.

We denote by d1 the homogeneous left-invariant distance associated with k � k1
and by B1 the metric balls of d1.

We stress that the balls B1.e; r/ are convex.

The vectors of V1, also called horizontal vectors, define by left translations the
horizontal bundle, which we also denote by V1. A section of the horizontal bundle is
called a horizontal vector field.

If F D
Pm1
iD1 Fi Xi is a horizontal vector field,

F 2 L1loc.G; V1/;

we define

(5) divGF WD
X
j

XjFj

in the sense of distributions.

3. Main result

The main result of this note is stated in the following theorem.

Theorem 3.1. Let d be a left-invariant distance on a Carnot group associated with a
homogeneous norm. Suppose 1 � p < Q and � > 1. Set B WD Bd .e; r/ and B 0 WD
Bd .e; �r/. If f 2 Lp.B/ is compactly supported and satisfiesZ

B

f .p/ dp D 0;

then there exists a compactly supported horizontal vector field F 2 Lq.B 0; V1/, where

(i) 1 � q � pQ
Q�p

if p > 1, or

(ii) 1 � q < Q
Q�1

if p D 1,

such that
f D divGF in B:

Additionally, there exists a constant C D C.p; q; �; B/, independent of f , such that

kF kLq.B0;V1/ � Ckf kLp.B/:

If p > 1 and q D pQ
Q�p

, then the constant C does not depend on B .
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Our proof of Theorem 3.1 involves several steps and relies on Sobolev inequalities
for differential forms in Rumin’s complex. In the next subsection, we recall the key
features of the Rumin’s complex.

3.1. Rumin’s Complex

Let g be the Lie algebra of the Carnot group G. The dual space of g is denoted byV1 g. The basis dual to ¹X1; : : : ; Xnº is the family of covectors ¹�1; : : : ; �nº.
Following Federer (see [7, Section 1.3]), the exterior algebras of g and of

V1 g are
the graded algebras indicated as^

�
g WD

nM
kD0

^
k

g and
�̂

g WD

nM
kD0

k̂
g

where
V
0 g D

V0 g D R and, for 1 � k � n,^
k

g WD span¹Xi1 ^ � � � ^Xik W 1 � i1 < � � � < ik � nº;

k̂
g WD span¹�i1 ^ � � � ^ �ik W 1 � i1 < � � � < ik � nº:

The elements of
V
k g and

Vk g are called k-vectors and k-covectors.
We denote by ‚k the basis ¹�i1 ^ � � � ^ �ik W 1 � i1 < � � � < ik � nº of

Vk g.
We denote also by dV WD �1 ^ � � � ^ �n the volume form associated with our

adapted basis of g, which can be though as the Lebesgue measure on Rn up to a
suitable normalization constant. Obviously,

Vn g WD span¹dV º.
The dual space

V1
.
V
k g/ of

V
k g can be naturally identified with

Vk g. The action
of a k-covector ' on a k-vector v is denoted as h'jvi.

The inner product h�; �i extends canonically to
V
k g and to

Vk g making the bases
Xi1 ^ � � � ^Xik and �i1 ^ � � � ^ �ik orthonormal.

Definition 3.2. For 1 � k � n, we define linear isomorphisms (Hodge duality: see
[7, Section 1.7.8])

? W
^

k
g !

^
n�k

g

as follows.
If I D ¹i1; : : : ; ikº, 1� i1 < � � �< ik � n, I ? D ¹i?1 < � � �< i

?
n�k
º D ¹1; : : : ; nº n I ,

and
XI D Xi1 ^ � � � ^Xik ;

we write
?XI WD .�1/

�.I/XI? ;
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where �.I / is the number of couples .ih; i?` /with ih > i?` . Hence, putting vD
P
I vIXI

we set
?v WD

X
I

vI .?XI /:

Analogously, the Hodge operator

? W
k̂

g !
n̂�k

g

can be defined as follows.
If �I D �i1 ^ � � � ^ �ik , we write

?�I WD .�1/
�.I/�I? :

For ' D
P
I 'I�I , we put

?' WD
X
I

'I .?�I /:

Notice that if vDv1^ � � � ^vk is a simple k-vector, then ?v is a simple .n� k/-
vector. If v 2

V
k g, we define v\ 2

Vk g by the identity hv\jwi WD hv;wi, and analo-
gously we define '\ 2

V
k g for ' 2

Vk g.

Definition 3.3. If ˛ 2
V1 g, ˛ ¤ 0, we say that ˛ has pure weight k, and we write

w.˛/ D k if ˛\ 2 Vk . More generally, if ˛ 2
Vh g, we say that ˛ has pure weight k if

˛ is a linear combination of covectors �i1 ^ � � � ^ �ih with w.�i1/C � � � Cw.�ih/ D k.

Obviously, if for example ˛ 2
V1 g,

w.˛/ D k if and only if ˛ D
hkX

jDhk�1C1

j̨ �j ;

with ˛hk�1C1; : : : ; ˛hk 2 R.

Remark 3.4 (see [3, Remark 2.6]). If ˛;ˇ 2
Vh g andw.˛/¤ w.ˇ/, then h˛;ˇi D 0.

We have

(6)
ĥ

g D

Mmax
hM

pDMmin
h

^h;p
g;

where
Vh;p g is the linear span of the h–covectors of pure weight p and Mmin

h
, Mmax

h

are respectively the smallest and the largest weight of h-covectors.
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Since the elements of the basis‚h have pure weights, a basis of
Vh;p g is given by

‚h;p WD ‚h \
Vh;p g (in Section 2, we called such a basis an adapted basis).

We denote by �h;p the vector space of all smooth h–forms in G of pure weight p,
i.e. the space of all smooth sections of

Vh;p g. We have

(7) �h D

Mmax
hM

pDMmin
h

�h;p:

Lemma 3.5. We have d.
Vh;p g/ D

VhC1;p g; i.e., if ˛ 2
Vh;p g is a left invariant

h-form of weight p, then w.d˛/ D w.˛/.

Proof. See [15, Section 2.1].

Let now ˛ 2 �h;p be a (say) smooth form of pure weight p. We can write

˛ D
X

�h
i
2‚h;p

˛i �
h
i ; with ˛i 2 E.G/:

Then,

d˛ D
X

�h
i
2‚h;p

nX
jD1

.Xj˛i /�j ^ �
h
i C

X
�h
i
2‚h;p

˛id�
h
i :

Hence, we can write
d D d0 C d1 C � � � C d� ;

where
d0˛ D

X
�h
i
2‚h;p

˛id�
h
i

does not increase the weight,

d1˛ D
X

�h
i
2‚h;p

m1X
jD1

.Xj˛i /�j ^ �
h
i

increases the weight of 1, and, more generally,

dk˛ D
X

�h
i
2‚h;p

X
w.�j /Dk

.Xj˛i /�j ^ �
h
i ; k D 1; : : : ; �:

In particular, d0 is an algebraic operator.

Definition 3.6. If 0 � h � n and we denote by d�0 the L2-adjoint of d0, we set

Eh0 WD ker d0 \ ker d�0 D ker d0 \ .Im d0/? � �h:
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Since the construction of Eh0 is left invariant, this space of forms can be viewed as
the space of sections of a fiber bundle, generated by left translation and still denoted
by Eh0 .

We denote by Nmin
h

and Nmax
h

the minimum and the maximum, respectively, of the
weights of forms in Eh0 .

If we set Eh;p0 WD Eh0 \�
h;p , then

Eh0 D

Nmax
hM

pDNmin
h

E
h;p
0 :

We notice that also the space of forms Eh;p0 can be viewed as the space of smooth
sections of a suitable fiber bundle generated by left translations, which we still denote
by Eh;p0 .

As customary, if��G is an open set, we denote by E.�;Eh0 / the space of smooth
sections of Eh0 .

The spaces D.�;Eh0 / and �.G; Eh0 / are defined analogously.
Since both Eh;p0 and Eh0 are left invariant as

Vh g, they are subbundles of
Vh g

and inherit the scalar product on the fibers.
In particular, we can obtain a left invariant orthonormal basis „h0 D ¹�

h
j º of Eh0

such that

(8) „h0 D

Nmax
h[

pDNmin
h

„
h;p
0 ;

where „h;p0 WD „h \
Vh;p g is a left invariant orthonormal basis of Eh;p0 . All the

elements of „h;p0 have pure weight p.
Once the basis ‚h0 is chosen, the spaces E.�;Eh0 /, D.�;Eh0 /, �.G; Eh0 / can be

identified with E.�/dimEh
0 , D.�/dimEh

0 , S.G/dimEh
0 , respectively.

Proposition 3.7 ([15]). If 0 � h � n and � denote the Hodge duality (see Defini-
tion 3.2), then

?Eh0 D E
n�h
0 :

By a simple linear algebra argument, we can prove the following lemma.

Lemma 3.8. If ˇ 2 �hC1, then there exists a unique ˛ 2 �h \ .ker d0/? such that

d�0 d0˛ D d
�
0 ˇ:

With the notation of the lemma, we set ˛ WD d�10 ˇ.
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Remark 3.9. We stress that d�10 is an algebraic operator, like d0 and its adjoint d�0 .

Lemma 3.10 ([15]). The map d�10 d induces an isomorphism from Im.d�10 / to itself.
In addition, there exists a differential operator

P D

NX
kD1

.�1/kDk; N 2 N suitable;

such that
Pd�10 d D d�10 dP D IdIm.d�1

0
/:

We set Q WD Pd�10 .

Remark 3.11. If ˛ has pure weight k, then P˛ is a sum of forms of pure weight
greater than or equal to k.

We state now the following key results.

Theorem 3.12 ([15]). The de Rham complex .��; d / splits as the direct sum of two
sub-complexes .E�; d / and .F �; d /, with

Eh WD ker d�10 \ ker.d�10 d/ and F h WD Im.d�10 /C Im.dd�10 /;

for h D 0; : : : ; n, such that we have the following:

(i) The projection…E onE alongF is given by…E D Id�Qd � dQ. In particular,
…E is a differential operator of order s � 0 in the horizontal derivatives, where
s depends on G and on the degree of the forms it acts on.

(ii) If …E0 is the orthogonal projection from�h onEh0 , then…E0…E…E0 D…E0

and …E…E0…E D …E .

Theorem 3.13 ([15]). If we set

dc WD …E0 d …E ;

then dc W Eh0 ! EhC10 satisfies

(i) d2c D 0;

(ii) the complex .E�0 ; dc/ is exact.

In particular, if h D 0 and f 2 E00 D E.G/, then

dcf D

mX
iD1

.Xif /�
1
i

is the horizontal differential of f .
In addition, by Proposition 3.7, En0 D ¹f dV; f 2 E.G/º.
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Remark 3.14 (see [3, Remark 2.17]). We have

(9) d …E D …Ed:

It follows from [3, Proposition 2.18] that if ˛ 2 Eh0 has weight p, then

…E˛ D ˛ C terms of weight greater than p:

Remark 3.15. In particular, if ˛ 2 En0 (and therefore has weight Q), then …E˛ D ˛

since there are no forms of weight > Q.

Definition 3.16. We denote by d�c the L2-(formal) adjoint of dc .

We recall that on Eh0 ,

d�c D .�1/
n.hC1/C1 ? dc ? :

3.2. Equivalent formulation and proof of Theorem 3.1

Let us start by noticing that d�c on 1-forms can be identified with the horizontal
divergence. Indeed, ifF D

Pm1
iD1Fi Xi 2L

1
loc.G; V1/, we denote byF ] the differential

1-form defined by

hF \jV i D hF; V i D
X
j

Z
G
FjVj dp

for any V D
Pm1
iD1 Vi Xi 2 D.G; V1/, i.e.

F \ D
X
i

Fi �i :

If now � 2 D.G/, then (keeping in mind that d�c F \ is a 0-form)

(10)
Z

G
� d�c F

\ dp D

Z
G
hF \; dc�i dp D

X
j

Z
G
Fj Xj� D �

Z
G
� divGF;

where the above identities are meant in the sense of distributions. Hence, f D divGF

if and only if d�c F \ D f , i.e.

� ? dc ? F
\
D f:

Applying Hodge operator to identity, and keeping in mind that dc ? F \ is an n-form
and hence ?? D Id, we obtain

� ? ?dc ? F
\
D ?f;
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i.e.
dc.� ? F

\/ D f dV:

If we set � WD � ? F \ and ! WD f dV , an equivalent formulation of Theorem 3.1
becomes as follows.

Theorem 3.17. Let d be a left invariant distance on a Carnot group associated
with a homogeneous norm. Let 1 � p < Q and � > 1, and set B WD Bd .e; r/ and
B 0 WD Bd .e; �r/. If ! 2 Lp.B;En0 / is compactly supported and satisfiesZ

B

! D 0;

then there exists a compactly supported differential form � 2 Lq.B 0; En�10 / with

(i) 1 � q � pQ=.Q � p/ if p > 1

or

(ii) 1 � q < Q=.Q � 1/ if p D 1,

so that
dc� D ! in B:

In addition, there exists C D C.p; q; �; B/ independent of ! such that

k�kLq.B0;En�1
0

/ � Ck!kLp.B;En0 /:

If p > 1 and q D pQ=.Q � p/, the constant does not depend on B .

Since different homogeneous norms are equivalent (see, e.g., [12, Section 1.2]),
without loss of generality, from now on we may assume that d D d1 and for the
sake of simplicity, we shall write B.e; r/ for B1.e; r/. From now on, for the sake of
simplicity, by a rescaling argument and since dc is homogeneous with respect to the
group dilations, we take r D 1 in Theorems 3.1 and 3.17, that is, B D B.e; 1/.

The first step in order to prove Theorem 3.17 will be to define an operator acting on
n-forms which inverts Rumin’s differential dc (albeit with a loss of regularity). Inspired
by the work of [13], Mitrea, Mitrea, and Monniaux, in [14], define a compact homotopy
operator JEuc;h in Lipschitz star-shaped domains in Euclidean space Rn, providing an
explicit representation formula for JEuc;h, together with continuity properties among
Sobolev spaces. Since in this note we are interested in forms of top degree n, we recall
what [14, Theorem 4.1] states only in this particular case. Theorem 4.1 of [14] says
that if D � RN is a star-shaped Lipschitz domain, then there exists

JEuc;h W L
p
�
D;
^

n
�
! W

1;p
Euc

�
D;
^

n�1
�
,! W �;p.D;En�10 /
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such that

(11) ! D dJEuc;n! C

�Z
D

!

�
� dV for all ! 2 D

�
D;
^

n
�
;

where � 2 D.G/ satisfies Z
G
� dp D 1:

Furthermore, JEuc;n maps smooth compactly supported forms to smooth compactly
supported forms.

For the sake of simplicity, from now on we drop the index n – the degree of the
form – writing, e.g., JEuc instead of JEuc;n.

To our aim, take now D D B . If ! 2 D.B;En0 /, with vanishing average, we set

(12) J D …E0 ı…E ı JEuc ı…E :

Since …E! D ! on En0 , we can also write

(13) J! D …E0 ı…E ı JEuc!:

Then, J inverts Rumin’s differential dc on forms of degreen in the sense of the following
result.

Lemma 3.18. If ˛ 2 En0 is a compactly supported smooth form in a ball zB withZ
zB

˛ D 0;

then

(14) ˛ D dcJ˛:

In addition, J˛ is compactly supported in zB .

Proof. By (11),

(15) ˛ D dJEuc˛:

We recall now that …E…E0…E D …E and …E0…E…E0 D …E0 . In addition, on
forms of degree n � 1, d…E D …Ed . Thus, by (15),

dcJ˛ D …E0d…E…E0…EJEuc˛ D …E0d…EJEuc˛

D …E0…EdJEuc˛ D …E0…E˛ D …E0˛ D ˛

since ˛ 2 En0 . Finally, if supp ˛ � zB , then supp J˛ � zB since both …E and …E0

preserve the support.
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Unfortunately, the operator J contains the differential operator…E that yields a loss
of regularity. We can get rid of this inconvenient combining J with a smoothing operator
coming from an approximated homotopy formula. The approximated homotopy formula
is based on a global homotopy identity relying on the inverse of Rumin’s Laplacian.

Indeed, if ! D fdV 2 D.G; En0 /, we can define its sub-Laplacian as

�G;n! WD dcd
�
c !:

Since ?? D Id on n-forms,

�G;n! D ?�G;0 ? !;

and the fundamental solution ��1G;n of �G;n is given by

��1G;n D ?�
�1
G;0?

that is associated with a kernel of type 2 (see [8]).
We are now able to prove the equivalent formulation of Theorem 3.1 arguing as in

[2, Theorem 5.12].

Proof of Theorem 3.17. Suppose first that ! 2D.B;En0 /. If ! is continued by zero
on all of G, we notice preliminarily that

! D �G;n�
�1
G;n! D dc.d

�
c �
�1
G;n/!;

where d�c ��1G;n is associated with a matrix-valued kernel k1 of type 1 acting on f .
Keeping in mind that, by Hodge duality, ! can be identified with the function f ,
without loss of generality, we can treat k1 as it were a scalar kernel. We consider a
cut-off function  R supported in an R-neighborhood of the origin, such that  R � 1
near the origin. We can write

(16) k1 D  Rk1 C .1 �  R/k1:

Since the kernel of��1G;n is of type 2, the kernel Rk1 belongs toL1.G/. Let us denote
by K1;R the convolution operator associated with  Rk1 and by S the convolution
operator associated with the kernel

(17) KS WD dc
�
.1 �  R/k1

�
:

It follows from (16) that

(18) ! D dcK1;R! C S! if ! 2 D.B;En0 /:
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The kernel KS is smooth. We stress also that suppK1;R! is contained in an R-
neighborhood of B so that

(19) suppK1;R! � B 0

provided R D R.�/ < d.B; @B 0/. By (18), also

(20) suppS! � B 0:

Finally, by (18), S! 2 En0 .
The homotopy formula (18) still holds in the sense of distributions when ! 2 Lp .

To prove that, we need the following lemma.

Lemma 3.19. With S and K1;R defined as above, we have the following:

(i) S is regularizing from E 0.G/ to E.G/. In addition, if p; q � 1 andm 2 N [ ¹0º,
then S can be continued as a bounded map from Lp.B; En0 / \ E 0.B; En0 / to
W m;q.B 0; En0 /

S W Lp.B;En0 /! W m;q.B 0; En0 /:

In particular, by Theorem 2.2 (vi), due to the arbitrariness of the choice ofm, we
also have

S W Lp.B;En0 /! W
m;q

Euc .B
0; En0 /I

(ii) if p � 1, the map K1;R can be continued as a bounded map from Lp.B;En0 / \

E 0.B;En0 / to Lp.B 0; En0 /;

(iii) ifp>1, then the mapK1;R can be continued as a bounded map fromLp.B;En0 /\
E 0.B;En0 / to W 1;p.B 0; En0 / and the identity (16) still holds for

! 2 Lp.B;En0 / \ E 0.B;En0 /I

(iv) the identity (16) still holds for ! 2 L1.B; En0 / \ E 0.B; En0 / in the sense of
distributions;

(v) if p > 1, then

K1;R W L
p.B;En0 / \ E 0.B;En0 /! Lq.B 0; En�10 / for p � q � Q=.Q � 1/I

(vi) K1;R W L
1.B;En0 / \ E 0.B;En0 /! Lq.B 0; En�10 / for 1 � q < Q=.Q � 1/.

Proof. Let us prove (i). Since the kernel KS is smooth and the convolution maps
E 0.G/ � E.G/ into E.G/, the operator S is regularizing from E 0.G/ to E.G/ (see
[16, p. 167]). In addition, since B is bounded, then without loss of generality, we may
assume that p D 1.
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Remember ! D fdV ; hence, we can identify ! and the scalar function f . We have

kS!kWm;q.B0;En
0
/ D k! �KSkWm;q.B0/

D

X
d.I/�m

k! �XIKSkLq.B0/

D

X
d.I/�m

�Z
B0

�Z
B

ˇ̌
!.y/

ˇ̌ˇ̌
XIKS .y

�1x/
ˇ̌
dy

�q
dx

�1=q
:

Notice now that if x 2 B 0 and y 2 B , then y�1x 2 B.e; 1C �/. Thus, if � 2 D.G/

is a cut-off function, � � 1 on B.e; 1C �/, then �XKS 2 Lq.G/, so that, by Young’s
inequality (see Theorem 4.3 (i) and [9, Proposition 1.18]),

kS!kWm;q.B0;En
0
/ �

X
d.I/�m

ˇ̌�!.y/ˇ̌ � jXIKS jLq.G/
� C

!.y/
L1.G/

D C
!.y/

L1.B/
:

Proof of (ii). By a similar argument,

kK1;R!kLp.B0;En
0
/ � k! �  Rk1kLp.B0;En

0
/

�

�Z
B0

�Z
B

ˇ̌
!.y/

ˇ̌ˇ̌
 Rk1.y

�1x/
ˇ̌
dy

�p
dx

�1=p
� Ck Rk1kL1.B.1C�//k!kLp.B;En0 /:

Proof of (iii). Let X be a horizontal derivative. Then, we have only to estimate the
Lp-norm of

X.! �  Rk1/ D ! � .X R/k1 C ! � . RXk1/:

By Lemma 4.4,! � .X R/k1Lp.B0/ � C! � .X R/k1LpQ=.Q�p/.B0/
� C

! � .X R/k1LpQ=.Q�p/.G/
� Ck!kLp.G/ D Ck!kLp.B/I

analogously, since Xk1 is a kernel of type 0,! � . RXk1/Lp.B0/ � Ck!kLp.G/ � Ck!kLp.B/:
Finally, since ! is compactly supported in B , it can be approximated in Lp.B/ by a
sequence .!k/k2N in D.B/. Thus,

dcK1;R!k ! dcK1;R! in Lp.G/ as k !1:
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In addition, by (i),
S!k ! S! in Lp.G/ as k !1;

and (iii) is proved
Proof of (iv). Take a sequence .!k/k2N as in the proof of (iii). By (ii),

K1;R!k ! K1;R! in Lp.G/ as k !1:

In particular, dcK1;R!k ! dcK1;R! in the sense of distributions. Then, (iv) follows
from (16).

Proof of (v). The statement follows by Lemma 4.4.
Proof of (vi). The statement follows by Remark 4.10.

Let us resume the proof of Theorem 3.1. Since S is a smoothing operator, then
S! 2 D.B 0; En0 /, keeping also in mind that S! is supported in B 0 (see (20)).

We notice also that for any p � 1, S! has vanishing average since ! has vanishing
average. Indeed, take � 2 D.G/, � � 1 on B 0. Again, identify ! D fdV with the
scalar function f ; we have, by Lemma 3.19 (iii) and (iv), that the homotopy formula
(18) holds in the sense of distributions. Therefore,Z

B0
S! dV D

Z
B0
�S! dV

D

Z
G
�! dV C

Z
G
.dc�/ ^K1;R! D 0

since dc� D 0 on suppK1;R!.
Since S! has vanishing average, we can apply (14) to ˛ WD S! and we get S! D

dcJS!, where J is defined in (12). By Lemma 3.18, JS! is supported in B 0. Thus, if
we set � WD .JS CK1;R/!, then � is supported in B 0. Moreover, dc� D dcJS! C
dcK1;R! D S! C ! � S! D !.

Remember now that, by Theorem 3.12 (i), …E on forms of degree .n � 1/ is a
differential operator of order s � 0 in the horizontal derivatives. Thus, by Lemma 3.19,

k�kLq.B0;En�1
0

/ � kJS!kLq.B0;En�1
0

/ C kK1;R!kLq.B0;En�1
0

/

� kJS!kLq.B0;En�1
0

/ C Ck!kLp.B0;En0 /

� kS!k
W
s�1;q

Euc .B0;En�1
0

/
C Ck!kLp.B0;En

0
/

� kS!kW s;q
Euc .B

0;En�1
0

/ C Ck!kLp.B0;En0 /

� C
�
kS!kW �s;q.B;Eh

0
/ C k!kLp.B0;En0 /

�
� Ck!kLp.B0;En

0
/:

(21)

This completes the proof of the theorem.
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4. Appendix: Kernels in Carnot groups

Following [8, 9], we now recall the notion of a kernel of type � and some related
properties, as outlined in Propositions 4.2 and 4.3 below. For these results, we refer to
[1, Section 3.2].

Definition 4.1. A kernel of type � is a homogeneous distribution of degree � �Q
(with respect to group dilations) that is smooth outside of the origin.

The convolution operator with a kernel of type � is still called an operator of type �.

Proposition 4.2. Let K 2 D 0.G/ be a kernel of type �.

(i) vK is again a kernel of type �;

(ii) WK and KW are associated with kernels of type � � 1 for any horizontal
derivative W ;

(iii) if � > 0, then K 2 L1loc.G/.

Theorem 4.3. We have the following:

(i) Hausdorff–Young inequality holds; i.e., if f 2 Lp.G/, g 2 Lq.G/, 1� p;q; r �
1 and 1

p
C

1
q
� 1 D 1

r
, then f � g 2 Lr.G/ (see [9, Proposition 1.18]).

(ii) IfK is a kernel of type 0, 1 < p <1, then the mapping T W u! u �K defined
for u 2 D.G/ extends to a bounded operator on Lp.G/ (see [8, Theorem 4.9]).

(iii) Suppose 0 < � < Q, 1 < p < Q=� and 1
q
D

1
p
�

�
Q

. LetK be a kernel of type
�. If u 2 Lp.G/, the convolutions u �K andK � u exist a.e. and are in Lq.G/
and there is a constant Cp > 0 such that

ku �Kkq � Cpkukp and kK � ukq � Cpkukp

(see [8, Proposition 1.11]).

Lemma 4.4 (see [2, Lemma 3.5]). Suppose 0 < � < Q. If K is a kernel of type �
and  2 D.G/,  � 1 in a neighborhood of the origin, then the statement (iii) of
Theorem 4.3 still holds if we replace K by  K or .1 �  /K.

Analogously, if K is a kernel of type 0 and  2 D.G/, then statement (ii) of the
same theorem still holds if we replace K by  K or . � 1/K.

Definition 4.5. Let f be a measurable function on G. If t > 0, we set

�f .t/ D
ˇ̌®
jf j > t

¯ˇ̌
:

If 1 � r � 1 and
sup
t>0

t r�f .t/ <1;

we say that f 2 Lr;1.G/.



primitives of volume forms in carnot groups 615

Definition 4.6. Following [4, Definition A.1], if 1 < r <1, we set

kukM r WD inf
²
C � 0I

Z
K

juj dx � C jKj1=r
0

for all L-measurable set K � G

³
;

and M r DM r.G/ is the set of measurable functions u on G satisfying kukM r <1.

Repeating verbatim the arguments of [4, Lemma A.2], we obtain the following.

Lemma 4.7. If 1 < r <1, then

.r � 1/r

rrC1
kukrM r � sup

t>0

®
t r
ˇ̌®
juj > t

¯ˇ̌¯
� kukrM r :

In particular, if 1 < r <1, then M r D Lr;1.G/.

Corollary 4.8. If 1 � q < r , then M r � L
q
loc.G/ � L

1
loc.G/.

Proof. By Lemma 4.7, if u 2M r , then jujq 2M r=q , and we can conclude thanks to
Definition 4.6.

Lemma 4.9. Let K be a kernel of type � 2 .0;Q/. Then, for all f 2 L1.G/, we have

f �K 2MQ=.Q��/

and there exists C > 0 such that

kf �KkMQ=.Q��/ � Ckf kL1.G/

for all f 2 L1.G/. In particular, by Corollary 4.8, if 1 � q < Q=.Q � �/, then

f �K 2 L
q
loc.G/ � L

1
loc.G/:

As in [1, Remark 3.10], we have the following remark.

Remark 4.10. Suppose 0 < � < Q. IfK is a kernel of type � and  2D.G/,  � 1
in a neighborhood of the origin, then the statements of Lemma 4.9 still hold if we
replace K by .1 �  /K or by  K.
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