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1. Introduction

In this paper, we consider the Kinetic Fokker–Planck (KFP) equation, also called the
degenerated Kolmogorov or the ultraparabolic equation,

(1.1) @tf C v � rxf ��vf � divv.vf / D 0 in U

on the function f WD ft D f .t; �/D f .t; x; v/, with .t; x; v/ 2U WD .0;T /���Rd ,
T 2 .0;C1�, � � Rd a suitably smooth domain, d � 3, complemented with the
Maxwell reflection condition on the boundary

(1.2) �f D RCf D .1 � �/SCf C �DCf on ��;

and associated with an initial condition

(1.3) f .0; x; v/ D f0.x; v/ in O WD � �Rd :

Here, �� denotes the incoming part of the boundary, S denotes the specular reflection
operator, D denotes the diffusive reflection operator (see precise definitions below),
and � W @�! Œ0; 1� denotes a (possibly space-dependent) accommodation coefficient.
More precisely, we assume that � WD ¹x 2 Rd I ı.x/ > 0º for a W 2;1.Rd / function
ı such that jı.x/j WD dist.x; @�/ on a neighborhood of the boundary set @� and thus
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nx D n.x/ WD �rı.x/ coincides with the unit normal outward vector field on @�. We
next define †x

˙
WD ¹v 2 Rd I ˙v � nx > 0º the sets of outgoing (†xC) and incoming

(†x�) velocities at point x 2 @�, then the sets

†˙ WD
®
.x; v/I x 2 @�; v 2 †x˙

¯
; �˙ WD .0; T / �†˙;

and finally the outgoing and incoming trace functions ˙f WD 1�˙f . The specular
reflection operator S is defined by

(1.4) .Sg/.x; v/ WD g.x;Vxv/; Vxv WD v � 2nx.nx � v/;

and the diffusive operator D is defined by

(1.5) .Dg/.x; v/ WDM.v/ Qg.x/; Qg.x/ WD

Z
†x
C

g.x;w/ .nx � w/ dw;

where M stands for the (conveniently normalized) Maxwellian function

(1.6) M.v/ WD .2�/�.d�1/=2 exp
�
� jvj2=2

�
;

which is positive on Rd and verifies zM D 1. We assume that the accommodation
coefficient satisfies �2W 1;1.@�/. For further references, we also define the (differently
normalized) Maxwellian function

(1.7) f1.x; v/ D
1

j�j
�.v/ WD

1

j�j.2�/d=2
exp

�
� jvj2=2

�
;

which is positive on O and verifies kf1kL1.O/ D 1. The elementary (and well-known
at least at a formal level) properties of the Kinetic Fokker–Planck equation are that it is
mass conservative, namely,

(1.8) hhft ii D hhf0ii; 8t � 0; with hhhii WD
Z

O

hdx dv;

it is positivity preserving, namely, ft � 0 if f0 � 0, and f1 is a stationary solution.
The aim of this paper is twofold:

(1) On the one hand, we prove the ultracontractivity of the semigroup associated with
the evolution problem (1.1)–(1.2)–(1.3) by establishing some immediate gain of
Lebesgue integrability and even immediate uniform bound estimate.

(2) On the other hand, we prove the convergence of the solution to the associated
stationary state, namely, ft ! hhf0iif1 as t !1, with constructive exponential
rate in many weighted Lebesgue spaces.

These results extend some previous similar results known for other geometries
or less general reflection conditions. For both problems, we adapt or modify some
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recent or forthcoming results established in [7, 12] for the Landau equation for the
same geometry as considered here. In that sense, the techniques are not really new and
the present contribution may rather be seen as a pedagogical illustration on one of the
simplest models of the kinetic theory of some tools we develop in other papers for more
elaborated kinetic models. We also refer to [10, 11, 22] for further developments of
these techniques for related kinetic equations set in a domain with reflection conditions
on the boundary.

For a weight function ! W Rd ! .0;1/ and an exponent p 2 Œ1;1�, we define the
associated weighted Lebesgue space

Lp! WD
®
f 2 L1loc.R

d /I kf kLp! WD kf!kL
p <1

¯
:

Our first main result is an ultracontractivity property.

Theorem 1.1. There exist two weight functions ! D exp.�jvj2/, !0 D exp.�0jvj2/,
with 0 < �0 < � < 1=2, and some constants � > 0, C1 � 1, C2 � 0 such that for any
exponents p; q 2 Œ1;1�, q > p, and any initial datum f0 2 L

p
!.O/, the associated

solution f with the Kinetic Fokker–Planck (KFP) equation (1.1)–(1.2)–(1.3) satisfies

(1.9)
f .t/

L
q

!0
� C1

eC2t

t�.1=p�1=q/
kf0kLp! ; 8t > 0:

We refer to Section 3.5 for a possible definition of the set W1 of weight functions !
for which the above ultracontractivity property holds true. In the whole space� D Rd ,
such a kind of ultracontractivity property is a direct consequence of the representation
of the solution thanks to the Kolmogorov kernel; see [33], as well as [8, 31] for related
regularity estimates. Some local uniform estimate of a similar kind for a larger class
of KFP equations in the whole space has been established [2, 13, 47] by using Moser
iterative scheme introduced in [43, 44], from what some Gaussian upper bound on the
fundamental solution may be derived; see [4, 34, 46]. In [23], the same local uniform
estimates (as well as the Harnack inequality and the Holder regularity) has been shown
for a still larger class of KFP equations in the whole space by using De Giorgi iterative
scheme as introduced in [15]. We also refer to [1] for a general survey about these
issues and to [3,32,35,50,51] for additional results on the KFP equations in the whole
space. In [29], a gain of regularity estimate has been established by adapting Nash
argument introduced in [45]; see also [24,39, 49] for further developments of the same
technique.

In [19], an ultracontractivity result similar to ours is obtained for the KFP equation
in a domain with specular reflection at the boundary by an extension argument to the
whole space (used first in [26]) and then reduces the problem to the application of
[23, 47]. In [52], some kind of regularity up to the boundary is proved for the KFP
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equation with inflow or specular reflection at the boundary using the extension argument
of [19] and some appropriate change of coordinates. See also [48], where some similar
results are established for the KFP equation with zero inflow. We finally refer to [10]
where the same kind of ultracontractivity result is established with !0 D ! for a large
class of weight functions !.

We are next concerned with the longtime behavior estimate. We start by establishing
a hypocoercivity result. For that purpose, we define the operator

(1.10) Lf WD �v � rxf C�vf C divv.vf /

and we denote by Dom.L/ its domain in the Hilbert space H WD L2.��1dx dv/

endowed with the norm kf kH D k��1=2f kL2 .

Theorem 1.2. There exists a scalar product ..�; �// on the space H so that the associated
norm jjj � jjj is equivalent to the usual norm k � kH , and for which the linear operator L
satisfies the following coercivity estimate: there is a positive constant �2.0; 1/ such that

(1.11) ..�Lf; f // � �jjjf jjj2

for any f 2 Dom.L/ satisfying the boundary condition (1.2) and the mass condition
hhf ii D 0.

The result and the proof is a mere adaptation and simplification of the same hypocoer-
civity estimate established in [7]. This last one is inspired by, generalizes, and simplifies
some previous results established in [9, 25]; see also [16, 18, 20, 27, 28, 30, 49] and the
references therein for more material about the hypocoercivity theory.

We deduce from the two previous results the announced exponential convergence
result.

Theorem 1.3. There exists a class of weight functions W2 such that for any weight
function ! 2W2, any exponent p 2 Œ1;1�, and any initial datum f0 2 L

p
!.O/, the

associated solution f with the KFP equation (1.1)–(1.2)–(1.3) satisfies

(1.12)
f .t/ � hhf0iif1Lp! � Ce��tf0 � hhf0iif1Lp! ; 8t � 0;

for the same constant � 2 .0; 1/ as in Theorem 1.2 and for some constant C D C.!/.

It is worth emphasizing that the set W2 contains some exponential functions and
some polynomial (increasing fast enough) functions. The case p D 2 and ! D ��1=2 is
an immediate consequence of Theorem 1.2. The general case is then deduced from this
particular one thanks to Theorem 1.1 and some enlargement and shrinking techniques
introduced and developed in [24, 39, 40].

Let us end the introduction by describing the organization of the paper which is
mainly dedicated to the proof of the above results.
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In Section 2, we establish some growth estimates in many weighted Lebesgue
spaces on the semigroup associated with the KFP equation (1.1)–(1.2)–(1.3). We do
not discuss the existence and uniqueness issues about solutions to the KFP equation
and the construction of the associated positive semigroup which will be discussed
in detail in the companion paper [10]. We however emphasize that solutions to the
KFP equation must be understood in the renormalized sense as defined in [17, 38] so
that the associated trace functions are well defined; see [10, 12, 38] and the references
therein. We thus rather focus on the (a priori) estimates by exhibiting suitable twisted
weight estimates for the solutions to the KFP equation (1.1)–(1.2)–(1.3) and its dual
counterpart.

Section 3 is dedicated to the proof of Theorem 1.1. The strategy mixes Moser’s
gain of integrability argument of [44] and Nash’s duality and interpolation arguments
of [45]. It is also based on a twisted weight argument which is somehow slightly
more elaborated than the one used in the previous sections. In Section 4, we prove
Theorem 1.2, and Section 5 is dedicated to the proof of Theorem 1.3.

2. Weighted Lp growth estimates

This section is devoted to the proof of a first and somehow rough set of growth estimates
in some convenient weighted Lp spaces for solutions to the KFP equation (1.1)–(1.2)–
(1.3) and the associated semigroup that we denote by the same letter SL whatever is
the space in which it is considered. It is classical that we may work at the level of
the evolution equation and the associated generator or at the level of the associated
semigroup. We will do the job at both levels.

As announced, we will not bother with too much rigorous justification but rather
establish a priori weighted Lebesgue norm estimates from which we may very classically
deduce the well-posedness of the Cauchy problem (1.1)–(1.2)–(1.3) and also deduce
the existence of the associated semigroup. The solutions of the KFP equations would
have to be understood in an appropriate renormalized sense, but again we will not bother
about this important but technical point and we will freely make the computations as if
the considered functions are smooth and fast enough decaying at infinity. Because the
KFP equation conserves the positivity, the associate semigroup is positive and we may
thus only handle it with nonnegative functions. All these issues are discussed in the
companion papers [10, 12, 21] for more general classes of KFP equations, and we thus
refer to these works for more details.

We now introduce the class of weight function we deal with. We denote by C the
operator

(2.1) Cf WD �vf C divv.vf /;
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which is nothing but the collision part of the Kinetic Fokker–Planck operator involved
in (1.1). We observe that for f; ! W Rd ! RC and p 2 Œ1;1/, we have

(2.2)
Z

Rd
.Cf /f p�1!pdv D �

4.p � 1/

p2

Z
Rd
jrv.f!/

p=2
j
2
C

Z
jf jp!p$;

with

(2.3) $D$!;p.v/ WD2

�
1�

1

p

�
jrv!j

2

!2
C

�
2

p
� 1

�
�v!

!
C

�
1�

1

p

�
d �v �

rv!

!
I

see for instance [21, Lemma 7.7] and the references therein. We define W as the set of
radially symmetric nondecreasing weight functions ! W Rd ! .0;1/ such that

� D �! WD max
pD1;1

sup
v2Rd

$!;p <1:

It is worth noticing that ! WD hvike�hvis , with k 2 R and s; � � 0, satisfies

$.v/ �
jvj!1

.s�/2jvj2s�2 � s�jvjs if s > 0;

$.v/ �
jvj!1

d

p0
� k if s D 0;

so that ! 2W when

(2.4) s 2 .0; 2/; or s D 2 and � < 1=2; or s D 0:

On the other hand, we may check

(2.5) $M�1C1=q ;p.v/ D �
1

q

�
1 �

1

q

�
jvj2 C

�
1

p
C
1

q
�

2

pq

�
d;

so that for the limit case ! D M�1 2 W, since then $M�1;p � 2d=p. We finally
define

(2.6) W0 WD
®
! 2WI 1 . ! . M�1; !�1jvj; !Mjvj 2 L1.Rd /

¯
:

Proposition 2.1. For any weight function ! 2W0, there exist � � 0 and C � 1 such
that for any exponent p 2 Œ1;1� and any solution f to the KFP equation (1.1)–(1.2)–
(1.3), there holds

(2.7) kftkLp! � Ce
�t
kf0kLp! ; 8t � 0;

and we write equivalently

(2.8) SL.t/ W L
p
! ! Lp! ; with growth rate O.e�t /; 8t � 0:
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We start recalling the following classical estimate based on very specific choices of
the weight functions, so that Darrozès–Guiraud type inequality [14] may be used.

Lemma 2.2. For any p 2 Œ1;1�, the semigroup SL is a contraction on Lp
M�1C1=p

.

Proof of Lemma 2.2. We fix p 2 Œ1;1/, 0 � f0 2 LpM�1C1=p , and we denote by
f D f .t;x;v/� 0 the solution to the Cauchy problem associated with (1.1)–(1.2)–(1.3).
We compute

1

p

d

dt

Z
O

f pM1�p
D

Z
O

.Cf /f p�1M1�p
�
1

p

Z
†

.f /pM1�p nx � v

�

Z
O

$M�1C1=p ;pf
pM1�p

�
1

p

Z
†C

.Cf /
pM1�p

jnx � vj

C
1

p

Z
†�

®
.1 � �/SCf C �DCf

¯p
M1�p

jnx � vj;

where we have used the Green-Ostrogradski formula in the first line, we have thrown
away the first term coming from (2.2) in the second line, we have split the boundary
term into two pieces, and we have used the boundary condition on its incoming part in
the second and third lines. For the last term we haveZ

†�

®
.1 � �/SCf C �DCf

¯p
M1�p

jnx � vj

�

Z
†�

.1 � �/.SCf /
pM1�p

jnx � vj C

Z
†�

�.eCf /pMjnx � vj

�

Z
†C

.1 � �/.Cf /
pM1�p

jnx � vj C

Z
@�

�.eCf /p;

where we have used the convexity of the function s 7! sp in the second line and we
have used both the change of variables v 7! Vxv in the last integral (which transforms
†� into †C with unit Jacobian) and the normalization condition on M (see (1.6)) in
the third line. Observing next that

.eCf /p D
�Z

†x
C

.Cf=M/Mjnx � vj dv

�p
�

Z
†x
C

.Cf=M/
pMjnx � vj dv;

thanks to the Jensen inequality (also called Darrozès–Guiraud’s inequality in this
context!), which is true because of the normalization condition on M, we have thus
establishedZ

†�

®
.1 � �/SCf C �DCf

¯p
M1�p

jnx � vj �

Z
†C

.Cf /
pM1�p

jnx � vj;
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from which we obtain
d

dt

Z
O

f pM1�p
� p

Z
O

$M�1C1=p ;pf
pM1�p:

Coming back to (2.5), we observe that

$M�1C1=p ;p.v/ D �
1

p

�
1 �

1

p

�
jvj2 C

2

p

�
1 �

1

p

�
d � 0;

from which we immediately deduce that SL is a contraction on Lp
M�1C1=p

when
p 2 Œ1;1/. We get the same conclusion in L1

M�1
by letting p !1.

We extend the decay estimate to a general weight function in an L1 framework by
using an appropriate modification of the initial weight. That kind of moment estimate
is reminiscent of L1 hypodissipativity techniques; see e.g. [6,24,41]. Our multiplicator
is inspired from the usual multiplicator used in order to control the diffusive operator in
previous works on the Boltzmann equation; see e.g. [5,6,37,38]. For further references,
we define the formal adjoints

(2.9) L� WD v � rx C C�; C�g WD �vg � v � rvg:

Lemma 2.3. Let ! W Rd ! .0;1/ be a radially symmetric nondecreasing weight
function such that ! 2W and M!jvj 2 L1.Rd /. There exists � � 0 such that we have

SL.t/ W L
1.!/! L1.!/; 8t � 0;

with growth estimate O.e�t /.

It is worth emphasizing that with a very similar proof we may establish the same
growth rate in Lp! for p 2 .1;1/, but we were not able to reach the limit exponent
p D1 because our estimates blow up as p !1.

Proof of Lemma 2.3. Without loss of generality, we may suppose that ! � 1. We
split the proof into two steps.

Step 1. For 0 � f0 2 L1.!/, we denote by f D f .t; x; v/ � 0 the solution to the
Cauchy problem (1.1)–(1.2)–(1.3), so that f .t/ D SL.t/f0.

We introduce the weight functions

!A.v/ WD �A.v/C
�
1 � �A.v/

�
!.v/;

with �A.v/ WD �.jvj=A/,A� 1 to be chosen later and � 2 C 2.RC/, 1Œ0;1� � �� 1Œ0;2�,
and next

z!.x; v/ WD !A.v/C
1

2
nx � Qv;
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with Ov WD v=hvi and Qv WD Ov=hvi. It is worth emphasizing that

(2.10) 1 � !A � ! and c�1A ! � 1
2
!A � z! �

3
2
!A;

with cA 2 .0;1/. We write

(2.11)
d

dt

Z
O

f z! D

Z
O

f L� z! �

Z
†

f z! nx � v:

We first compute separately each contribution of the boundary term

B WD �

Z
†

f z! nx � v D B1 C B2;

with

B1 WD �

Z
†C

Cf!Ajnx � vj C

Z
†�

®
.1 � �/SCf C �DCf

¯
!Ajnx � vj;

B2 WD �
1

2

Z
†

f .nx � Ov/
2:

Making the change of variables v 7! Vxv in the last integral involved in B1, we get

B1 D �

Z
†C

�Cf !A jnx � vj C

Z
†C

�DCf !A jnx � vj:

We then define

(2.12) K1.!A/ WD

Z
Rd

M!A .nx � v/C dv;

which is finite by the assumption on !, so thatZ
†C

�DCf !A jnx � vj D

Z
@�

�K1.!A/eCf :

Since !A � 1, we then obtain

B1 �

Z
@�

�.K1.!A/ � 1/eCf :

On the other hand, denoting

(2.13) K0 WD

Z
Rd

M.nx � Ov/
2
C dv 2 .0;1/;

which we observe is independent of x, we have

�

Z
†

f .nx � Ov/
2
� �

Z
†C

�DCf .nx � Ov/
2
D �K0

Z
@�

�eCf :
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Recalling (2.10) and observing that !A ! 1 a.e. when A!1, we get K1.!A/!
K1.1/ D 1 as A!1 thanks to the dominated convergence Theorem of Lebesgue
and the normalization condition on M. We may thus fix A � 1 large enough in such a
way that

K1.!A/ � 1 �
1

2
K0 � 0;

and the contribution of the boundary is nonpositive.

Step 2. For the contribution of the volume integral, we write

L� z! D C�! C C�
�
�A.1 � !/

�
C C�Œnx � Qv�C v � rx.nx � Qv/;

where we recall that the adjoint Fokker–Planck operator C� is defined in (2.9). Because
! 2W, we have

C�! � $!;1 ! � �1!;

for some �1 2 R. On the other hand, because �A has compact support and because of
the regularity assumption of �, we have

C�
�
�A.1 � !/

�
C C�Œnx � Qv�C v � rx.nx � Qv/ � �2;

for some �2 2 RC. Coming back to (2.11), we deduce that

d

dt

Z
O

f z! � �

Z
O

f z!;

with � WD 2�1 C cA�2. We immediately conclude thanks to Grönwall’s lemma and the
comparison (2.10) between ! and z!.

We establish now a similar exponential growth estimate in a general weighted L1

framework for the dual backward problem associated with (1.1)–(1.2)–(1.3), namely,

(2.14)

8̂<̂
:
�@tg D v � rxg C C�g in .0; T / �O;

Cg D R��g on .0; T / �†C;
g.T / D gT in O;

for any T 2 .0;1/ and any final datum gT . The adjoint Fokker–Planck operator C� is
defined in (2.9), and the adjoint reflection operator R� is defined by

R�g.x; v/ D .1 � �/Sg.x; v/C �D�g.x/;

with
D�g.x/ DeMg.x/ WD

Z
Rd
g.x;w/M.w/.nx � w/� dw:
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Again, we do not discuss the very classical issue about well-posedness in Lebesgue
spaces for these problems nor the possibility to approximate the solutions by smooth
enough solutions, which is useful in the following argument. Consider f a solution
to the forward Cauchy problem (1.1)–(1.2)–(1.3) and g a solution to the above dual
problem (2.14). We compute (at least formally)Z

O

f .T /gT D

Z
O

f0g.0/C

Z T

0

Z
O

.@tfg C f @tg/ ds

D

Z
O

f0g.0/ �

Z T

0

Z
O

.v � rxfg C f v � rxg/ ds

D

Z
O

f0g.0/ �

Z T

0

Z
†

.v � n/f g ds

D

Z
O

f0g.0/ �

Z T

0

Z
†C

.v � n/.Cf /.R
��g/ ds

C

Z T

0

Z
†�

jv � nj.RCf /.�g/ ds;

by using the Green-Ostrogradski formula and the reflection conditions at the boundary.
From the very definition of R and R�, we then deduce the usual identity

(2.15)
Z

O

f .T /gT D

Z
O

f0g.0/;

or equivalently that g.t/ D S�L.T � t /gT . We observe now that for a weight function
!, we have

(2.16) C!�1 D !�1$!;1:

We then define N the class of weight functionsm WRd!.0;1/ such that! Dm�12W.
In particular, because of (2.16) and the definition of W, there exists �0 2 R such that

(2.17) Cm � �0m:

We also define

(2.18) N0 WD
®
m 2 NI M . m; mv 2 L1.Rd /

¯
:

For further discussion, we emphasize that ! 2W0 clearly implies !�1 2 N0.

Lemma 2.4. For any weight function m 2 N0, there exists � 2 R such that

S�L.t/ W L
1
m ! L1m; O.e�t /:



k. carrapatoso and s. mischler 654

More precisely, there exists C � 1 such that for any T > 0 and any gT 2 L1m, the
associated solution g with the backward dual problem (2.14) satisfies

(2.19)
g.0/

L1m
� Ce�T kgT kL1m :

Proof of Lemma 2.4. Without loss of generality, we may suppose that m �M. For
T 2 .0;1/ and 0� gT 2L1m, we denote by gD g.t; x; v/ the solution to the backward
dual Cauchy problem (2.14). We introduce the weight functions

(2.20) mA WD �AMC .1 � �A/m; zm WD mA �
1

2
.nx � Qv/M;

with the notations of Lemma 2.3. It is worth emphasizing that

(2.21) M � mA � m and c�1A m � 1
2
mA � zm �

3
2
mA;

with cA 2 .0;1/. Similarly as in the proof of Lemma 2.3, we compute

�
d

dt

Z
O

gmA D

Z
O

g .CmA/C

Z
†

g mA nx � v

D

Z
O

g .CmA/C

Z
†C

�
.1 � �/S�g C �A�gM

�
mA jnx � vj

�

Z
†�

�gmA jnx � vj;

where we have used again the Green-Ostrogradski formula in the first line and the
reflection condition at the boundary in the second line. We deduce

�
d

dt

Z
O

gmA D

Z
O

g .CmA/ �

Z
†�

��gmA jnx � vj

C

�Z
Rd
mA.nx � v/C dv

�Z
†�

�M�g jnx � vj;

by making the change of variables v 7! Vxv on the outgoing part †C of the boundary
(which is in fact the incoming part of the boundary for the backward dual problem).
Since mA �M, we have established a first estimate

�
d

dt

Z
O

gmA �

Z
O

g .CmA/C

Z
†�

�
�
K1.mA/ � 1

�
M�g jnx � vj;

with now
K1.mA/ WD

Z
Rd
mA .nx � v/C dv ! 1; as A!1:

On the other hand, with the same notations as in the proof of Lemma 2.3, we have

d

dt

Z
O

gM .nx � Qv/ D

Z
O

gC
�
M .nx � Qv/

�
�

Z
O

gM Ov �Dxnx Ov �

Z
†

gM .nx � Ov/
2:
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For the last term, there holdsZ
†

gM .nx � Ov/
2
�

Z
†C

�.D��g/.nx � Ov/
2M

�

�Z
Rd

M.nx � Ov/
2
C

�Z
†�

�M�gjnx � vj;

which implies a second estimate
d

dt

Z
O

gM .nx � Qv/

�

Z
O

gC
�
M .nx � Qv/

�
�

Z
O

gM Ov �Dxnx Ov �K0

Z
†�

�M�gjnx � vj;

with now

(2.22) K0 WD

Z
Rd

M .nx � Ov/
2
C dv 2 .0;1/:

Choosing A > 0 large enough such that K1.mA/ � 1 � 1
2
K0 � 0, the contribution of

the boundary is nonpositive and we obtain

�
d

dt

Z
O

g zm �

Z
O

g
�
CmC C

�
�A.M �m/

�
C CŒnx � QvM� � v � rx.nx � QvM/

�
� �

Z
O

g zm;

for some � 2R, by arguing similarly as during the proof of Lemma 2.3 and in particular
using (2.17). By Grönwall’s lemma, we then deduce

(2.23)
g.0/

L1. Qm/
� e�T kgT kL1. Qm/;

from which we immediately conclude to (2.19).

We may now come to the proof of the main result of this section.

Proof of Proposition 2.1. For f0 2 L1! , let us define f .t/ WD SL.t/f0 the associ-
ated flow. Because of the duality identity (2.15), for any gt 2 L1!�1 , we haveZ

O

f .t/gt D

Z
O

f0g.0/ � kf0kL1!

g.0/
L1
!�1

:

Together with (2.19), we deduceZ
O

f .t/gt � kf0kL1! Ce
�t
kgtkL1

!�1
:

Taking the supremum on gt over the unit ball of L1.!�1/, we thus conclude thatf .t/
L1!
� Ce�tkf0kL1! ;
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for any f0, which is the desired estimate (2.8) when p D 1. The estimate (2.8) for
p D 1 has been established in Lemma 2.4. We then conclude to the estimate (2.8) for
any p 2 Œ1;1� by using a standard interpolation argument.

Remark 2.5. The conditions on the weight function ! in the statement of Proposi-
tion 2.1 are not optimal but they are more than enough for our purpose. As a matter of
fact, we may observe that
• Lemma 2.2 gives an estimate on SL in L1 and in L1

M�1
;

• Lemma 2.3 gives an estimate onSL inL1! from!D1 and up to!DM�1hvi�d�1�",
" > 0;

• Lemma 2.4 gives an estimate on S�L in L1m from m D hvi�d�1�", " > 0, and up to
m DM, and thus an estimate on SL in L1! from ! D hvidC1C", " > 0, and up to
! DM�1.

We may straightforwardly check that ! WD hvike�hvis 2W0 when

(2.24) s 2 .0; 2/; or s D 2 and � < 1=2; or s D 0 and k > d C 1:

3. Ultracontractivity: Proof of Theorem 1.1

3.1. An improved weighted L2 estimate at the boundary

The De Giorgi–Nash–Moser theory tells us that for parabolic equations some gain
of integrability estimates can be obtained by elementary manipulations when evalu-
ating the evolution of functions f q for q 6D 1. That kind of regularity effect is also
called ultracontractivity. More recently, a similar theory has been developed for the
Kolmogorov equation in the whole space; see in particular [23, 47]. Our purpose is to
generalize these techniques to a bounded domain framework. In the present framework
and in order to be able to deduce next (by interpolation) the same kind of regularity
effect in the border L1! space, we first consider q < 1. Let us observe that for q 6D 0
and f a positive solution to the KFP equation (1.1), we may compute

@tf
q
C v � rxf

q
� v � rvf

q
� qdf q ��vf

q
� 4

.1 � q/

q
jrvf

q=2
j
2
D 0:

Multiplying the equation byˆq WD 'qmq with q 2 .0;1/,' 2D..0;T //, and integrating
in all the variables, we obtain

1

q

Z
�

.f /qˆqnx � v C
1

q

Z
U

f qT �ˆq

D 4
.1 � q/

q2

Z
U

jrv.f ˆ/
q=2
j
2
C

Z
U

f qˆq$;

(3.1)
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with $ WD $m;q defined in (2.3) and

(3.2) T �‰ WD �@t‰ � v � rx‰:

Alternatively, defining

(3.3) T WD @t C v � rx

and recalling that C has been defined in (2.1), we may write

T
f q

q
D f q�1T f D f q�1Cf;

so that
1

q

Z
�

.f /qˆqnx � v C
1

q

Z
U

f qT �ˆq D

Z
U

f q�1.Cf /ˆq;

from which we deduce (3.1) with the help of (2.2)–(2.3).
We now establish a key new moment estimate on the KFP equation (1.1)–(1.2)–(1.3)

which makes it possible to control a solution near the boundary. The proof is based on
the introduction of an appropriate weight function which combines the twisting term
used in the previous section and the twisting term used in [21, Section 11], that last
one being in the spirit of moment arguments used in [36, 42].

Proposition 3.1. Letq2.0;1/ and letm WRd!.0;1/ be a radially symmetric decreas-
ing weight function such that m

q
1�q jvj 2 L1.Rd /. There exists C D C.q;m;�/ > 0

such that for any nonnegative solution f to the KFP equation (1.1)–(1.2)–(1.3) and
any test function 0 � ' 2 D..0; T //, there holdsZ

U

f q zmq
.nx � Ov/

2

ı1=2
'q C

Z
U

jrv.f
q=2
zmq=2/j2'q � C

Z
U

f qmqŒj@t'
q
j C h$�i'

q�;

where zm is a modified weight function such thatm. zm.m and$ WD$ Qm;q is defined
in (2.3).

Proof of Proposition 3.1. We fix q 2 .0; 1/ and we introduce the modified weight
functions

(3.4) m
q
A WD �AM

1�q
C .1 � �A/m

q;

for A � 1 and with the notations of Lemma 2.3. We next introduce the function

ˆq WD 'q zmq; zmq WD m
q
A �

m
q
A

4
nx � Qv C

m
q
A

4D1=2
ı.x/1=2nx � Qv;

where D D sup ı is half the diameter of �, so that in particular an estimate similar to



k. carrapatoso and s. mischler 658

(2.21) holds. From (3.1), we have

4
.1 � q/

q

Z
U

jrv.f ˆ/
q=2
j
2
�

Z
�

.f /qˆqnx � v �

Z
U

f qT �2 ‰3

D

Z
U

f qT �2 ‰12 � q

Z
U

f qˆq$ C

Z
U

f qT �1 ˆ
q;

(3.5)

where T �1 D �@t , T �2 D �v � rx , $ D $ Qm;q , and

‰12 WD '
qm

q
A

�
1 �

1

4
nx � Qv

�
; ‰3 WD '

q m
q
A

4D1=2
ı.x/1=2nx � Qv:

We now compute each term separately.

Step 1. For the second term at the left-hand side of (3.5), we observe that

�

Z
†

.f /qm
q
Anx � v D �

Z
†C

.Cf /
qm

q
Ajnx � vj C

Z
†�

.�f /
qm

q
Ajnx � vj

and, using the boundary condition together with the fact that the map s 7! sq is concave,
we get Z

†�

®
.1 � �/SCf C �DCf

¯q
m
q
Ajnx � vj

�

Z
†�

.1 � �/.SCf /
qm

q
Ajnx � vj C

Z
†�

�.eCf /qMqm
q
Ajnx � vj:

Removing the contribution of the specular reflection thanks to the change of variables
v 7! Vxv as in the proof of Lemmas 2.3 and 2.4 and using the Hölder inequality in
order to manage the term involving K2, we therefore obtain

�

Z
†

.f /qm
q
Anx � v �

Z
†�

�.eCf /qMqm
q
A.nx � v/� �

Z
†C

�.Cf /
qm

q
A.nx � v/C

�
�
K1.mA/ �K2.mA/

1�q
� Z
@�

�.eCf /q;

with

K1.mA/ WD

Z
Rd

Mqm
q
A.nx � v/�dv < C1;

K2.mA/ WD

Z
Rd
m

q
1�q
A .nx � v/Cdv < C1:

On the other hand, we haveZ
†

.f /qm
q
A

.nx � Ov/
2

4
� K0.mA/

Z
@�

�.eCf /q
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with
K0.mA/ WD

1

4

Z
Rd

Mqm
q
A.nx � Ov/

2
�dv:

Both together, we obtain

�

Z
†

.f /q zmqnx � v �
�
K0.mA/CK1.mA/ �K2.mA/

1�q
� Z
@�

�.eCf /q:

Observing thatmA!M
1
q�1whenA!1, we deduce thatK1.mA/!K1.M

1
q�1/D1,

K2.mA/! K2.M
1
q�1/ D 1, and K0.mA/! K0.M

1
q�1/ > 0 as A!1, thanks to

the integrability condition made on m and the dominated convergence theorem of
Lebesgue. We may thus choose A > 0 large enough in such a way that

(3.6) K0.mA/CK1.mA/ �K2.mA/
1�q
� 0:

Step 2. In order to deal with the third term at the left-hand side of (3.5), we define
 WD ı.x/1=2nx � Qv. Observing that hvi 2 L1.O/, rv 2 L1.O/, and

v � rx D
1

2

1

ı.x/1=2
. Ov � nx/

2
C ı.x/1=2 Ov �Dxnx Ov;

we compute

�

Z
U

f qT �2 ‰3 D
1

4D1=2

Z
U

f q'qm
q
A

²
1

2

1

ı.x/1=2
. Ov � nx/

2
C ı.x/1=2 Ov �Dxnx Ov

³
:

We may now conclude. Because of (3.6), we may get rid of the boundary term, and
together with the last inequality, we get

4
1 � q

q

Z
U

jrv.f zm/
q=2
j
2'q C

1

8D1=2

Z
U

f q'qm
q
A

1

ı.x/1=2
.nx � Ov/

2

�
1

4

Z
U

f qm
q
A'

q v � rx.nx � Qv/ � q

Z
U

f q'q zmq$ �

Z
U

f q zmq@t'
q

�
1

4D1=2

Z
U

f q'qm
q
Aı.x/

1=2
Ov �Dxnx Ov

� C�;A

Z
U

f qmqh$�i'
q
C CA

Z
U

f qmqj@t'
q
j;

where we have used that ı 2 W 2;1.�/ and � is bounded.

Using an interpolation argument, we may write our previous weighted Lq estimate
in a more convenient way where the penalization of a neighborhood of the boundary is
made clearer. In order to do this, we use the following interpolation estimate.

Lemma 3.2. We set ˇ WD .2.d C 1//�1. For any function g W O ! R, there holds

(3.7)
Z

O

g2

ıˇ
.
Z

O

�
ghvi

�2 .nx � Ov/2
ı1=2

C

Z
O

ˇ̌
rv

�
ghvi

�ˇ̌2
:
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Proof of Lemma 3.2. For �; & > 0, we start by writingZ
O

g2ı�2� D

Z
O

g2

ı2�
1.nx �v/2>ı2& C

Z
O

g2

ı2�
1jnx �vj�ı& DW T1 C T2:

For the first term, we have

T1 �

Z
O

g21.nx �v/2>ı2&
.nx � v/

2

ı2&C2�
�

Z
O

g2
.nx � v/

2

ı1=2
;

by choosing 2& C 2� D 1=2. For the second term, we define 2� WD 2d=.d � 2/ the
Sobolev exponent in dimension d � 3, and we compute

T2 �

Z
�

ı�2�
�Z

Rd

�
hvig

�2��2=2��Z
Rd
hvi�d1jnx �vj�ı&

�2=d
.
Z
�

ı�2�C2&=d
Z

Rd

ˇ̌
rv

�
hvig

�ˇ̌2
;

where we have used the Hölder inequality in the first line and the Sobolev inequality
in the second line together with the observation that hvi�d 2 L1.RIL1.Rd�1//.
Choosing 2&=d D 2�, we get � D .4.d C 1//�1 and we conclude to (3.7).

Gathering the estimates of Proposition 3.1 and Lemma 3.2, we immediately obtain
the following result.

Proposition 3.3. Letq2.0;1/ and letm WRd!.0;1/ be a radially symmetric decreas-
ing weight function such that m

q
1�q jvj 2 L1.Rd /. There exists C D C.q;m;�/ > 0

such that for any nonnegative solution f to the KFP equation (1.1)–(1.2)–(1.3) and
any test function 0 � ' 2 D..0; T //, there holdsZ

U

f q

ıˇ
mq

hvi2
'q � C

Z
U

f qmq
�
j@t'

q
j C h$�i'

q
�
;

where ˇ WD .2.d C 1//�1 and $ WD $m�1;q is defined in (2.3).

By particularizing the choice of m, we obtain a first boundary penalizing weighted
L1 � Lq estimate which will be convenient for our purpose in the next steps.

Proposition 3.4. For any q 2 ..d C 1/=.d C 2/; 1/, for any nonnegative solution f
to the KFP equation (1.1)–(1.2)–(1.3) and any test function 0 � ' 2 D..0; T //, there
holds Z

U

f q

ıˇ
'q

hvi2C.dC2/q.1�q/
� CT 1�qk'qkW 1;1.0;T /kf k

q

L1.U/
;

with C D C.q; d;�/ > 0 and ˇ D .2.d C 1//�1 defined just above.
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Proof of Proposition 3.4. We choose m WD hvi�.dC2/.1�q/ and we observe that
m

q
1�q hvi 2 L1 and $m�1;q 2 L

1. From Proposition 3.3, we thus getZ
U

f q

ıˇ
'q

hvi2C.dC2/q.1�q/
� Ck'qkW 1;1.0;T /

Z
U

f qhvi�.dC2/.1�q/q:

On the other hand, using the Hölder inequality, we haveZ
U

f qhvi�.dC2/.1�q/q �

�Z
U

f

�q�
T j�j

�1�q�Z
Rd
hvi�.dC2/q

�1�q
;

and the last integral is finite because .d C 2/q > d . We conclude by just gathering the
two estimates.

3.2. A weak weighted L1 � Lp estimate

Taking advantage of a known L1 � Lp estimate available for the KFP equation set
in the whole space and thus in the interior of the domain, we deduce a downgrade
weighted L1 � Lp estimate. We define

(3.8) W3 WD
®
! W Rd ! .0;1/I !0 WD !=hvi 2W; jr!0j!

�1
0 hvi

�1
2 L1.Rd /

¯
:

We may notice that ! WD hvike�hvis 2W3 under the condition (2.4).

Proposition 3.5. Assume that p 2 .1; 1C 1=.2d//, ˛ > p, and ! 2W3. There exists
some constant C D C.�; p; ˛; !/ 2 .0;1/ such that any solution f to the KFP
equation (1.1)–(1.2)–(1.3) satisfies

(3.9)
f ' !hviı˛=p


Lp.U/

� CT 1=pC2d.1�1=p/k'kW 1;1.0;T /kf!kL1.U/;

for any 0 � ' 2 D..0; T // and any T > 0.

Proof of Proposition 3.5. We split the proof into two steps.

Step 1. For � 2 D.�/ such that 0 � � � 1, we define 0 � Nf WD f '�!0, which is a
solution to the equation

@t Nf C v � rx Nf ��v Nf �

�
v C 2

rv!0

!0

�
� rv
Nf D F

set on .0; T / �Rd �Rd , with

F WD f!0.'
0�C 'v � rx�/C Nf

�
d � v �

rv!0

!0
C 2
jrv!0j

2

!20
�
�v!0

!0

�
:

Because !0 2W, we have

FC � f!0hvi
�
j'0j�C 'jrx�j

�
C f '�!0�!0 :
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From [4, Theorem 1.5] for instance and because jr!0j!�10 . hvi, we know that

Nf �

Z t

0

Kt�s ? FCs ds;

where?D ?x;v stands for a convenient convolution operation andK� is the Kolmogorov
kernel defined by

K� .x; v/ WD
C1

�2d
exp

�
�
3C2

�3
jx �

�

2
vj2 �

C2

4�
jvj2

�
; Ci > 0:

We next compute

k Nf k
p

Lp.Œ0;T ��R2d /
�

Z T

0

Z t

0

Kt�s ? FCs

p
Lp.R2d /

dt

� kKk
p

Lp.Œ0;T ��R2d /
kFCk

p

L1.Œ0;T ��R2d /
;

and because 1 � p < 1C 1=.2d/, we find

kKk
p

Lp.Œ0;T ��R2d /
D CK;pT

1�2d.p�1/:

As a consequence, we have

(3.10) kf '!0�kLp.U/ . CT k'kW 1;1k�kW 1;1kf!kL1.U/;

with CT WD T 1=pC2d.1�1=p/.

Step 2. We define �k WD ¹x 2 � j ı.x/ > 2�kº and we choose �k 2 D.�/ such
that 1�kC1 � �k � 1�k and 2�kk�kkW 1;1 . 1 uniformly in k � 1. We also denote
Uk WD .0; T / ��k �Rd . We deduce from (3.10) that

kf '!0kLp.UkC1/ . 2kCT k'kW 1;1.0;T /kf!kL1.U/; 8k � 1:

Summing up, we obtainZ
U

ı˛.'f!0/
p
D

X
k

Z
UkC1nUk

ı˛.'f!0/
p

.
X
k

2�k˛
Z

UkC1

.'f!0/
p

.
X
k

2k.p�˛/C
p
T k'k

p

W 1;1kf!k
p

L1.U/

. C
p
T k'k

p

W 1;1.0;T /
kf!k

p

L1.U/
;

because ˛ > p, which is nothing but (3.9).
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3.3. The L1 � Lr estimate up to the boundary

We start with a classical interpolation result.

Lemma 3.6. For any weight functions �i W U! .0;1/ and any exponents 0 < r0 <
r1 <1, 0 < � < 1, there holds

kgkLr� � kgk
1��

L
r0
�0

kgk�
L
r1
�1

;

with 1=r WD .1 � �/=r0 C �=r1 and � WD �1��0 ��1 .

We include the very classical proof because the statement is usually written assuming
rather 1 � r0 < r1 <1, but that last restriction is not needed.

Proof of Lemma 3.6. We write�Z
f r� r

�1=r
D

�Z
.f �0/

r.1��/.f �1/
r�

�1=r
�

�Z
.f �0/

a0r.1��/

�1=a0r�Z
.f �1/

ar�

�1=ar
thanks to the Hölder inequality with 1

a
WD

�r
r1
D 1 � .1 � �/ r

r0
< 1, from which we

immediately deduce r1 D ar� and r0 D a0r.1 � �/, and thus conclude.

We are now in position of stating our weightedL1 �Lr estimate up to the boundary
which is the well-known cornerstone step in the proof of De Giorgi–Nash–Moser gain
of integrability estimate.

Proposition 3.7. There exist an exponent r > 1 and some constants � > 0, �;q 2 .0;1/
such that any solution f to the KFP equation (1.1)–(1.2) satisfies

(3.11) k'f!]kLr .U/ � CT
�
k'qk

1=q

W 1;1.0;T /
kf!kL1.U/;

for any weight function ! 2W3 and any test function 0 � ' 2 D..0; T //, with !] WD
!� hvi�4 and C D C.d;�; !/. A possible choice is � D �1 WD .2d C 3/�1.

Proof of Proposition 3.7. From Proposition 3.4, we havef ' 1

ıˇ=q
1

hvi2=qC.dC2/.1�q/


Lq.U/

� CT 1=q�1k'qk
1=q

W 1;1.0;T /
kf!kL1.U/;

for some exponent q 2 ..d C 1/=.d C 2/; 1/ and with ˇ WD .2.d C 1//�1. Together
with Proposition 3.5 and Lemma 3.6, we deduce that

kf '�kLr � CT
�
k'qk

1=q

W 1;1kf!kL1.U/;
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for any � 2 .0; 1/ with

1

r
D
1 � �

q
C
�

p
; � WD

ı˛�=p

ı.1��/ˇ=q
!�

hvi�C
�
2=qC.dC2/.1�q/

�
.1��/

;

and
� WD .1 � �/.1=q � 1/C �

�
1=p C 2d.1 � 1=p/

�
;

where we recall here that p 2 .1; 1C 1=.2d// and ˛ > p are arbitrary. We first choose

� WD
ˇ=q

ˇ=q C ˛=p
D

1

1C 2.d C 1/q˛=p
;

in such a way that ı˛�=p�.1��/ˇ=q � 1. In order to track the dependency in both the expo-
nent and the weight function, we choose˛ WDp=q, so that � D �1 WD .1C 2.d C 1//�1,
and because r D rq ! r� as q ! 1 with

1

r�
D 1 � �1 C

�1

p
< 1;

we may choose q 2 ..d C 1/=.d C 2/; 1/ large enough in such a way that r > 1. We
finally observe that 2=q C .d C 2/.1 � q/ � 4 so that � & !].

3.4. The L1 � Lp estimate on the dual problem

We consider the dual backward problem (2.14) for which we establish the same kind
of estimate as for the forward KFP problem (1.1)-(1.2). In all this section, we denote
by q 2 .0; 1/ the exponent chosen during the proof of Proposition 3.7 and we define

(3.12) N1 WD
®
m WD e�� jvj

2

; � 2 .0; 1=2/
¯
:

Proposition 3.8. There exist some exponent r > 1 and some constants � > 0 such
that for any weight function m 2 N1 and any solution g to the dual backward problem
(2.14), there holds

(3.13) k'gm0kLr .U/ . T �1k'qk
1=q

W 1;1.0;T /
kgmkL1.U/;

for any test function 0 � ' 2 D..0; T // and some exponential weight function m0 WD
exp.��0jvj2/, with �0 2 .�; 1=2�.

We emphasize that the exponent r > 1 can be taken identically as in Proposition 3.7,
and for the sake of simplicity, it is what we will do in the sequel.

Proof of Proposition 3.8. The proof follows the same steps as for the proof of
Proposition 3.7 and we thus repeat it without too much details.
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Step 1. Boundary penalizing L1 �Lq estimate. From [21, Lemma 7.7] or a direct
computation, we have

(3.14)
Z
.C�g/ gq�1mq D �

4.q � 1/

q2

Z ˇ̌
rv.gm/

q=2
ˇ̌2
C

Z
gqmq}m;q;

with C� defined in (2.9) and

(3.15) }m;q WD 2

�
1 �

1

q

�
jrvmj

2

m2
C

�
2

q
� 1

�
�vm

m
C
d

q
C v �

rvm

m
:

Considering a solution g to the dual backward problem (2.14) and q 6D 1, we may write

(3.16) T �
gq

q
D gq�1T �g D gq�1C�g;

with T � defined in (3.2). We define the modified weight function M by

M WDM
�
1 �

1

4D1=2
ı.x/1=2nx � Qv

�
:

Multiplying the equation (3.16) by ˆq WD 'qM with ' 2 D.0; T /, and integrating in
all the variables, we obtain

�
1

q

Z
�

.g/qˆqnx � v C
1

q

Z
U

gqT ˆq D

Z
U

gq�1.C�g/ˆq;

with T defined in (3.3). Together with (3.14), we thus deduce

(3.17) 4
1�q

q2

Z
U

ˇ̌
rv.gˆ/

q=2
ˇ̌2
C
1

q

Z
�

.g/qˆqnx � vD
1

q

Z
U

gqT ˆq�

Z
gqˆq};

with } D }M1=q ;q . For the boundary term at the left-hand side, we argue similarly as
during the proof of Lemma 2.2. We observe thatZ

†

.g/qMnx � v �

Z
†C

�.A�gM/qM.nx � v/C �
Z
†�

�.�g/
qM.nx � v/� � 0;

where we have used the concavity of the functionG 7!Gq and removed the contribution
of the specular reflection in the first inequality, and we have used Hölder’s inequalityZ

Rd
�g

qM.nx � v/� � .A�gM/q
�Z

Rd
M.nx � v/�

�1�q
and the normalization condition (1.6) in the second inequality. We may then proceed
exactly as in the proof of Proposition 3.1, and we obtainZ
gqM

.nx � Ov/
2

ı1=2
'q C

Z ˇ̌
rv.g

q=2M1=2/
ˇ̌2
'q �

C�

1 � q

Z
gqM

�
j@t'

q
j C 'qh}�i

�
:
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As in Proposition 3.3 and with the help of the interpolation Lemma 3.2, we deduce

(3.18)
Z
gq

ıˇ
M

hvi2
'q �

C�

1 � q

Z
gqM

�
j@t'

q
j C 'qh}�i

�
;

for the same ˇ WD .2.d C 1//�1. Finally, using that h}�i . hvi2 and arguing similarly
as in the proof of Proposition 3.4 with the help of a last Holder inequality for handling
the RHS term, we get

(3.19)
Z
gq

ıˇ
M

hvi2
'q � CT 1�qk'qkW 1;1

gM1=q
hvi2=qhvi.1�q/.dC1/=q

q
L1.U/

;

for some constant C D C.q;�/ > 0.

Step 2. Weak weightedL1 �Lp estimate, p > 1. Consider a solution g of the dual
problem (2.14), 0 � ' 2 D..0; T //, 0 � � 2 D.�/, and a weight function m 2 N1,
so that m0 WD mhvi�2 satisfies

jrm0j
2

m20
C
j�m0j

m0
. hvi2:

We set Ng WD g'�m0 and we easily compute

�@t Ng � v � rx Ng ��v Ng C

�
2
rvm0

m0
� v

�
� rv Ng D G;

with

G WD Ng

�
2
jrvm0j

2

m20
�
�vm0

m0
C v �

rvm0

m0

�
� gm0.@t C v � rx/.'�/:

Proceeding as in the proof of Proposition 3.5, we get first

k NgkLp.R2dC1/ � CT
�2k'kW 1;1k�kW 1;1kgmkL1.U/;

for any p 2 .1; 1C 1=.2d// and with �2 WD 1=p C 2d.1 � 1=p/. By interpolation,
we then conclude

(3.20) kg'
m

hvi2
ı˛=pkLp.U/ � CT

�2k'kW 1;1kgmkL1.U/;

for any ˛ > p and some constant C D C.˛;�;m/ > 0.

Step 3. Weighted L1 � Lr estimate, r > 1. We consider again a weight function
m 2 N1, and we observe that m �M1=qhvi2=qhvi.1�q/.dC1/=q . From Step 1, we thus
find  g

ıˇ=q
M

hvi2=q
'


Lq.U/

� CT �1k'qk
1=q

W 1;1kgmkL1.U/;
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with �1 WD 1=q � 1. Since m satisfies the requirement of Step 2, we may thus use the
above estimate together with (3.20) and the interpolation Lemma 3.6 as during the
proof of Proposition 3.4. We get

kg'�kLr .U/ � CT
�
k'qk

1=q

W 1;1kgmkL1.U/;

with
1

r
D
1 � �1

q
C
�1

p
; � WD

m�1M1��1

hvi2�1C.2=q/.1��1/
;

and
� WD .1 � �1/.1=q � 1/C �1

�
1=p C 2d.1 � 1=p/

�
;

where we have fixed

p 2
�
1; 1C 1=.2d/

�
; ˛ WD p=q; �1 WD .2d C 3/

�1:

Because of the choice of q (large enough), we have r > 1. On the other hand, we clearly
have � & m0 WD exp.��0jvj2/, for any �0 2 .�1� C .1 � �1/=2; 1=2/, in particular
�0 > �.

3.5. Conclusion of the proof

We now conclude the proof of Theorem 1.1 in several elementary and classical (after
Nash’s work) steps.

Proof of Theorem 1.1. We split the proof into four steps. We denote by r > 1 the
(same) exponent defined in Propositions 3.7 and 3.8. We define

W1 WD
®

exp
�
�0jvj2

�
I �0 2

�
.1 � �1/=2; 1=2

�¯
and we fix ! 2W1.

Step 1. Take !1 WD !, so that !1 2 W0 \W3 and !r WD !] D !� hvi�4 2 W0,
where � 2 .0; 1/ is defined in the statement of Proposition 3.7. We claim that there
exist �1; �1 > 0 such that

(3.21) T �1
SL.T /f0Lr!r .O/ . e�1T kf0kL1!1 .O/

; 8T > 0; 8f0 2 L
1
!1
.O/:

We set ft WD SL.t/f0. On the one hand, from Proposition 2.1 with p D r , we have

T

2
kfT k

r
Lr!r

.
Z T

T=2

er�.T�t/kftk
r
Lr!r

dt . er�T
Z T

0

ft'0.t=T /rLr!r dt;
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with '0 2 C 1c ..0; 2//, 1Œ1=2;1� � '0 � 1, 'q0 2 W 1;1, q 2 ..d C 1/=.d C 2/; 1/. On
the other hand, thanks to Proposition 3.7 applied with '.t/ WD '0.t=T / and next to
Proposition 2.1 with p D 1, we deduce

T

2
kfT k

r
Lr!r

. er�T T r�
�
1C

1

T

�r=q�Z T

0

kftkL1!1
dt

�r
. er�T T r�

�
1C

1

T

�r=q�Z T

0

e�tdt

�r
kf0k

r

L1!1
;

from which (3.21) follows with �1 WD 1=r � � � 1=q and any �1 � 3�.

Step 2. Takem1 WD exp.��jvj2/, � 2 .0; 1=2/, andmr WD exp.��0jvj2/, �0 2 .�1� C
.1� �1/=2; 1=2/ as in the statement of Proposition 3.8. We emphasize thatm�1r 2M0

as defined in (2.6) and m1 2 N0 as defined in (2.18). We now claim that there exist
�2; �2 > 0 such that

(3.22) T �2
S�L.T /g0Lrmr .O/ . e�2T kg0kL1m1 .O/

; 8T > 0; 8g0 2 L
1
m1
.O/:

We repeat the argument presented in Step 1. We set gt WD S�L.t/g0. On the one hand,
from the dual counterpart of Proposition 2.1 with p D r 0 and next from Proposition 3.8,
we have

T

2
kgT k

r
Lrmr

. er�T
Z T

0

gt'0.t=T /rLrmr dt;
� er�T T r�

�
1C

1

T

�r=q�Z T

0

kgtkL1m1
dt

�r
;

where '0 is the same function as above. We conclude to (3.22) thanks to Lemma 2.4.

Step 3. Observing that for ! WD exp.�0jvj2/, �0 2 ..1 � �1/=2; 1=2/, there exists
� 2 .0; 1=2/ such that �0 2 .�1� C .1 � �1/=2; 1=2/, the dual counterpart of (3.22)
writes

(3.23) T �2
SL.T /f0L1!1 .O/ . e�2T kf0kLs!.O/; 8T > 0; 8f0 2 L

s
!.O/;

with !1 WD m�11 D exp.�jvj2/ and s WD r 0 2 .1;1/. Interpolating (3.21) and (3.23),
for any 1 � p < q � 1, we obtainSL.T /f0Lq!q � C1 eC2T

t�.1=p�1=q/
kf0kLp! ; 8T > 0; 8f0 2 L

p
!.O/;

with � WDmax.�1;�2/.1� 1=r/�1,C2 WDmax.�1;�2/, and the appropriate interpolated
weight function !q , in particular !q � !0 WD exp.�00jvj2/, with �00 WDmin.�1�0; �/.
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4. Hypocoercivity: Proof of Theorem 1.2

We adapt the proof of [7, Theorem 1.1]. We start introducing some notations and
recalling some classical results about the Poisson equation. For any convenient function
or distribution � W � ! R, we define u WD .��x/

�1� W � ! R as the associated
solution to the Poisson equation with Neumann condition. More precisely, for any
�i 2 L

2.�/, h�1i D 0, we define u 2 H , with H WD ¹u 2 H 1.�/; hui D 0º, as the
solution of the variational problem

(4.1)
Z
�

rxu � rxw D

Z
�

¹w�1 � rxw � �2º; 8w 2 H;

which is indeed a variational solution to the Poisson equation with Neumann condition

(4.2) ��xu D �1 C divx �2 in �; nx � .rxu � �2/ D 0 on @�:

It is well known that the above variational problem has a unique solution thanks to the
Poincaré–Wirtinger inequality and the Lax–Milgram theorem, that

(4.3) kukH1.�/ .
2X
iD1

k�ikL2.�/

holds true, and that the additional regularity estimate

(4.4) kukH1.@�/ . kukH2.�/ . k�1kL2.�/

holds when �2 D 0. We define

H WD L2.��1dv dx/; H0 WD
®
f 2 H I hhf ii D 0

¯
;

where � is defined in (1.7) and hh�ii in (1.8). We next define the new (twisted) scalar
product ..�; �// on H0 by

..f; g// WD .f; g/H C "
�
rx.��x/

�1%f ; jg
�
L2
C "

�
rx.��x/

�1%g ; jf
�
L2
;

with " > 0 small enough to be fixed later, L2 WD L2x.�/, and where the mass %f and
the momentum jf are defined respectively by

%h.x/ D %Œh�.x/ WD hhi; jh.x/ D j Œh�.x/ WD hhvi; hH i WD

Z
Rd
H.x; v/ dv:

For any f 2 H0, we next decompose

(4.5) f D �f C f ?;
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with the macroscopic part �f given by

�f .x; v/ D %f .x/�.v/;

and we remark that

(4.6) kf k2H D kf
?
k
2
H C k�f k

2
H ; k�f k

2
H D k%f k

2
L2

as well as

(4.7) k%f kL2 � kf kH ; kjf kL2 . kf ?kH � kf kH :

It is worth emphasizing thatˇ̌�
rx.��x/

�1%f ; jf
�
L2

ˇ̌
�
rx.��x/�1%f L2kjf kL2

. k%f kL2kf ?kH . kf k2H ;

from the Cauchy–Schwarz inequality, (4.4), and (4.7). Denoting by jjj � jjj the norm
associated with the scalar product ..�; �//, we in particular deduce that

(4.8) kf kH . jjjf jjj . kf kH ; 8f 2 H0:

We finally define the Dirichlet form associated with the operator L defined in (1.10)
for the twisted scalar product

DŒf � WD ..�Lf; f //; f 2 H0:

More explicitly, we have

DŒf � D D1Œf �CD2Œf �CD3Œf �;

with

D1Œf � WD .�Lf; f /H ;

D2Œf � WD "
�
rx�

�1
x %f ; j ŒLf �

�
L2
;

D3Œf � WD "
�
rx�

�1
x %ŒLf �; jf

�
L2
;

and we estimate each term separately. For simplicity, we introduce the notations D? WD
Id �D, where we recall that D is given by (1.5) and

@HC WD L
2
�
†CI�

�1.v/nx � vdvd�x
�
:

It is worth emphasizing that because f 2 Dom.L/, the trace functions ˙f are well
defined. We refer the interested reader to [12,21,38] and the references therein for a
suitable definition of the trace function for solutions to the KFP equation.

We estimate the first term involved in the Dirichlet form D.
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Lemma 4.1. For any f 2 H , there holds

.�Lf; f /H � kf
?
k
2
H C

1

2

p�.2 � �/D?Cf 2@HC :
Proof of Lemma 4.1. Recalling (1.10) and (2.1), we write

.�Lf; f /H D .�Cf; f /H C .v � rxf; f /H :

On the one hand, we recall the classical Poincaré inequalityh � hh�i
L2.�/

� krvhkL2.�/; 8h 2 L
2.�dv dx/;

from which we classically deduce

.�Cf; f /H D �

Z
O

divv
�
�rv.f =�/

�
f=�dv dx

D

Z
O

ˇ̌
rv.f =�/

ˇ̌2
�dv dx

�

Z
O

ˇ̌
f=� � hf i

ˇ̌2
�dv dx D kf ?k2H :

The second part of the estimate has been proved during the proof of [7, Lemma 3.1].

We recall the identity established in [7, Lemma 3.2].

Lemma 4.2. Let � W Rd ! R. For any x 2 @�, there holdsZ
Rd
�.v/f .x; v/ nx � v dv D

Z
†x
C

�.v/�.x/D?Cf nx � v dv

C

Z
†x
C

®
�.v/ � �.Vxv/

¯�
1 � �.x/

�
D?Cf nx � v dv

C

Z
†x
C

®
�.v/ � �.Vxv/

¯
DCf nx � v dv:

We estimate the second term involved in the Dirichlet form D.

Lemma 4.3. There is a constant C2 > 0, such that�
rx�

�1
x %f ; j ŒLf �

�
L2
�
1

2
k%f k

2
L2
� C2kf

?
k
2
H � C2k�D

?Cf k
2
@HC

; 8f 2 H :

Proof of Lemma 4.3. We repeat the proof of [7, Lemma 3.8]. Writing

j ŒLf � D j Œ�v � rxf � � j Œf
?�
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where we have observed thatC�f D0 and j ŒCg�Dj Œg�, and denotingu WD.��x/�1%f ,
we have�

� rxu; j ŒLf �
�
L2
D

�
@xiu; @xj

Z
Rd
vivjf dv

�
L2
C
�
rxu; j Œf

?�
�
L2
:

On the one hand, using the Green formula, we may write�
@xiu; @xj

Z
Rd
vivjf dv

�
L2
D AC B;

with

A WD�

�
@xj @xiu;

Z
Rd
vivjf dv

�
L2
; B WD

Z
@�

@xiunj .x/

�Z
Rd
vivj f dv

�
d�x :

Thanks to the decomposition (4.5), we getZ
Rd
vivjf dv D ıij%f C

Z
Rd
vivjf

? dv;

and hence

A D .��xu; %f /L2 �

�
@xj @xiu;

Z
Rd
vivjf

? dv

�
L2

D k%k2
L2
�

�
@xj @xiu;

Z
Rd
vivjf

? dv

�
L2
;

since ��xu D % by definition of u. Using (4.4), we haveˇ̌̌̌�
@xj @xiu;

Z
Rd
vivjf

? dv

�
L2

ˇ̌̌̌
. kD2

xukL2kf
?
kH . k%f kL2kf ?kH ;

from which it follows, thanks to Young’s inequality, that

A �
3

4
k%f k

2
L2
� Ckf ?k2H :

We now investigate the boundary term B . Thanks to Lemma 4.2, we have

B D

Z
†

rxu � v f nx � v dv d�x

D

Z
†C

rxu � v�.x/D
?Cf nx � v dv d�x

C

Z
†C

rxu � Œv � Vxv�
�
1 � �.x/

�
D?Cf nx � v dv d�x

C

Z
†C

rxu � Œv � Vxv�DCf nx � v dv d�x

DW B1 C B2 C B3;
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and we remark that
v � Vxv D 2nx.nx � v/;

so that
rxu � Œv � Vxv� D 2rxu � nx .nx � v/:

We therefore obtain B2 D B3 D 0 thanks to the boundary condition satisfied by u
in (4.2). On the other hand, the Cauchy–Schwarz inequality and (4.4) yield

jB1j � krxukL2x.@�/kv�k
1=2

L1
k�D?Cf k@HC . k%f kL2k�D?Cf k@HC :

Similarly as for the term A, we lastly haveˇ̌�
rxu; j Œf

?�
�
L2

ˇ̌
� krxukL2

j Œf ?�
L2

. k%f kL2kf ?kH ;

where we have used the estimate (4.4) and twice the Cauchy–Schwarz inequality. The
proof is then complete by gathering all the previous estimates and by using Young’s
inequality.

We finally estimate the third term involved in the Dirichlet form D.

Lemma 4.4. There is a constant C3 > 0 such that�
rx�

�1
x %ŒLf �; jf

�
L2
� �C3kf

?
k
2
H :

Proof of Lemma 4.4. From (1.10), (2.1), and %ŒCf � D 0, one has

%ŒLf � D %Œ�v � rxf � D � divx
Z

Rd
vf dv D � divx jf :

On the other hand, we also classically observe

jf � nx D

Z
Rd
f v � nxdv

D �

²Z
†x
C

Cf v � nxdv �

Z
†x�

M.v/eCf jv � nxjdv
³

C .1 � �/

²Z
†x
C

Cf v � nxdv �

Z
†x�

Cf ı Vx jv � nxjdv

³
;

and using the very definition of eCf and M in (1.5) and (1.6) in the second integral
and the change of variables v 7! Vxv in the last integral, we see that both contributions
vanish and we thus obtain the zero flux condition

(4.9) jf � nx D 0:
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Now let us define

u WD .��x/
�1%ŒLf � D .��x/

�1.� divx jf /

the unique variational solution to (4.2) with Neumann boundary condition associated
with the source term

� D %ŒLf � D div �2; �2 WD �jf :

From the variational formulation (4.1), we have

krxuk
2
L2
D �

Z
�

.rx � jf / u dx

D

Z
�

jf � rxudx �

Z
@�

jf � nx ud�x

D

Z
�

jf � rxudx;

where we have used the Green formula and finally (4.9) in order to obtain the last
equality. We deduce

krxukL2 . kjf kL2

thanks to the Cauchy–Schwarz inequality, and thusˇ̌
.�rxu; jf /L2

ˇ̌
. krxukL2kjf kL2 . kjf k2L2 :

We conclude thanks to (4.7).

We are now able to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let f satisfy the assumptions of Theorem 1.2. Observing
that

p
�.2 � �/ � � since � takes values in Œ0; 1�, and gathering Lemmas 4.1, 4.3, and 4.4,

one has

..�Lf; f // � kf ?k2H C
1

2

p�.2 � �/D?Cf 2@HC
C "

�
1

2
k%f k

2
L2
� .C2 C C3/kf

?
k
2
H � C2

p�.2 � �/D?Cf 2@HC�:
Choosing 0 < " < 1 small enough, we get

..�Lf; f // � �
�
kf ?k2H C k%f k

2
L2

�
C �0k

p
�.2 � �/D?Cf k

2
@HC

for some constants �; �0 > 0. We thus obtain (1.11) by using the identity (4.6) and the
equivalence (4.8) of the norms k � kH and jjj � jjj.
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5. Asymptotic behavior: Proof of Theorem 1.3

We repeat the proof of [24, Theorem 3.1] and [39, Theorem 1.4], so that we just sketch
the arguments.

Proof of Theorem 1.3. We introduce the splitting

Af WDM�R.v/f; B WD L �A;

with �R.v/ WD �.v=R/, � 2 D.Rd /, 1B1 � � � 1B2 , and some constants M;R > 0
to be fixed below. We denote by SB the semigroup associated with the modified KFP
equation associated with the partial differential operator B and the same reflection
condition (1.2). We define

(5.1) W2 WD

°
! 2W0I sup

p2Œ1;1�

lim sup
jvj!1

$!;p DW �
� < �1

±
;

where we recall that $!;p is defined in (2.3). In particular, ! WD hvike� jvjs 2W2 if
s D 2 and � 2 .0; 1=2/, or if s 2 Œ0; 2/, or if s D 0 and k > d C 1. By repeating the
proof of Proposition 2.1, for any � > ��, we may find M;R > 0 large enough such
that for any ! 2W2, we have

sup
p2Œ1;1�

sup
v2Rd

�
$!;p.v/ �M�R.v/

�
� .�� C �/=2;

and thus there exists a constant C D C.!/ > 0 such that

(5.2)
SB.t/f0


L
p
!
� Ce�tkf0kLp! ; 8t � 0;

for any f0 2 Lp! , 1 � p � 1.
We now fix two weight functions!0D e� jvj

2 and!00D e
� 0jvj2 with 0 < �0 < � < 1=2

satisfying the conditions of Theorem 1.1. By repeating the proof of Theorem 1.1, we
also have

(5.3)
SB.t/f0


L1
!0
0

� C
e�t

t�
kf0kLp!0

; 8t > 0:

Recalling the definition of total mass hh�ii in (1.8), we define

…g WD g � hhgii�

and
xSL WD …SL D SL… D …SL…:

Iterating the Duhamel formulas

SL D SB C SBA � SL; SL D SB C SL �ASB ;
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where � stands for the time convolution between operator defined on R with support
on RC, we deduce that

xSL D V1…CW1 � xSL;(5.4)
xSL D …V1 C xSL �W2;(5.5)

with

V1 WD

n�1X
jD0

.SBA/�j � SB ; W1 WD .SBA/�n; W2 WD .ASB/
�n;

where we use the shorthand U �0 WD Id, U �.jC1/ WD U � U �j . Taking both estimates
(5.4) and (5.5) together, we obtain

(5.6) xSL D V2 CW1 � xSL �W2;

with
V2 WD V1…CW1 �…V1:

For any � > �� and n 2 N, we deduce from (5.2) that

(5.7)
V2.t/f0Lp! � Ce�tkf0kLp! ; 8t � 0:

For any � > ��, we deduce from (5.2) and (5.3) (see [24, 39] as well as [40, Proposi-
tion 2.5]) that we may find n 2 N� such thatW1.t/f0Lp! � Ce�tkf0kL2.�/; 8t � 0;(5.8) W2.t/f0L2

��1=2

� Ce�tkf0kLp! ; 8t � 0:(5.9)

We also recall that from Theorem 1.2, we have

(5.10) k xSLf0kL2
��1=2

� Ce��tkf0kL2
��1=2

; 8t � 0:

We conclude to (1.12) by just writing the representation formula (5.6) and using the
estimates (5.7), (5.8), (5.9), and (5.10).
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