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1. Introduction

In the foreword of the 1972 book [3] by Aldo Bressan, Nuel D. Belnap wrote:

The book in your hands, written by a professor of physics working in Padua in
the very shadow of the chair from which Galileo first preached the marriage of
mathematics and nature, is the most important contribution to date concerning
the introduction of quantifiers into modal logic. It surpasses any article or book
in the generality of its conceptions, the degree of their development, and the
profundity of the attendant analysis. Perhaps one should credit the author’s
near total isolation from the logical community for allowing him to proceed
with the elaboration of his fresh ideas unobstructed by premature criticism, and
doubtless one must credit his uncompromising insistence on ‘usability’ to the
fact that his enterprise arose from and has been continually nourished by the
felt needs of a practicing physicist.

This extraordinary admission of scientific greatness comes from far away, from the
strong unstoppable will of Bressan to weave a rigorous logical tissue around the notion,
properly of physical mathematical nature, of physical possibility. The road traveled by
Bressan from the axiomatic foundations of classical mechanics, according to Mach
and Painlevé, to the book mentioned was long: Mach and Painlevé were exactly first to
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systematically use this notion in a primitive way. That theoretical but also genuinely
physical point of view (see [2]) was next exported by Bressan in the context of the
thermo-mechanics of continuous media, see [5–7]. Among other things, he displayed
his criticism around the fully quantification, or arbitrary possibility of choice, of b (body
force) and r (radiation) in the well-known standard way to obtain constitutive restrictions
from Clausius–Duhem inequality following Coleman–Noll’s line of thought [11, 19].

Bressan spent a lot of energy to clarify in depth the notion of equivalence in the
description of materials in continuum mechanics. His mathematical logical apparatus
was fundamental in this task. Everything is well testified in [4–6].

It is important to note that the search for Bressan and Montanaro (see [7, 16,
17]) headed towards the study of the classes of functions constitutive for the same
material. The use of the physical possibility of being able to have arbitrary body forces
and radiation had led, as is well known, to important constitutive restrictions for the
materials; nevertheless, the problem of the determination of these constitutive functions,
more exactly, of the class of functions representing of the same material, remained open.
Once again, the guiding idea of the physical possibility led towards the introduction of
ideal ‘cuts’ to be carried out in order to isolate and theoretically test the body in the
study of its material characteristics.

In the last decades of the past century, inside a culturally and only apparently far
mathematical environment, symplectic geometry, the possibility of identifying elastic
materials with polarizations was showed through suitable Lagrangian submanifolds
and their generating functions (see below definition) thought of as constitutive energy
functions. This link will be proposed and clarified in the next section. This idea, this
description of materials, gradually spread (see e.g. [1, 8–10, 13]) especially in dealing
with elastic materials with singular and/or multivalued behavior.

The fundamental problem of equivalence remained open, exactly in the sense of
Bressan: when do two generating functions define the same material, that is, the same
Lagrangian submanifold? This question is nowadays exhaustively answered by a series
of theorems that we report and conveniently repurposed here that manage to draw the
whole class of generating functions defining exactly the same Lagrangian submanifold,
that is, the same material.

1.1. Elastic materials with polarizations: The Landau–Ericksen–Pitteri–Zanzotto
experience

There is some experimental evidence that the classical setting for hyperelasticity (e.g.
elastostatics with Dirichlet boundary conditions) is sometimes not adequate: in fact,
multi-valued stress-strain functions with possible singularities (see later, in particular
examples 1, 2, and 3) may appear. In order to investigate these phenomena, it is
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possible to set up a generalized framework strictly analogous to Analytical Mechanics.
Here, as usual, we consider the gradient of deformation matrices F related to motions
x D �.t; X/,

F D FiL D
@�i

@XL
.t; X/:

Set the cone LinC WD ¹F 2 Lin W detF > 0º, where Lin denotes the manifold of real
.3 � 3/-matrices. Then, for some � W LinC ! R, F 7! �.F /, named stored energy
function, the Piola–Kirchhoff stress tensor S of a (standard) hyperelastic material is
given by

(1.1) S D
@�

@F
.F /:

Objectivity is satisfied when � depends on F through C D F TF .
Endow the cotangent bundle T �.LinC/ – to put it roughly, the space of pairs .F;S/ –

with the natural symplectic structure defined by the 2-form given by the exterior
derivative d‚ of ‚, the 1-form ‘mechanical work’ on T �.LinC/:

(1.2) ‚ D SiLdFiL; i; L D 1; 2; 3:

A Lagrangian submanifoldƒ of the symplectic manifold .T �.LinC/;‚/, with inclusion
map j W ƒ ,! T �.LinC/, is a submanifold satisfying

(i) dimƒ D dim LinC,

(ii) the restriction of the work form onƒ, j �‚D‚jƒ is closed, d.j �‚/D 0, where
j � is the pull-back of j .

• Around the points .F; S/ where the Lagrangian submanifold ƒ is transverse to
the fibers of the canonical projection �LinC W T �.LinC/! LinC, that is, where the
composed map

ƒ
� � j

// T �.LinC/
�LinC

// LinC;

�
� //

�
F.�/; S.�/

� � // F.�/
(1.3)

has maximal rank,

(1.4) rank
�
D.�LinC ı j /

�
D 9 D max;

then ƒ is locally described by the pairs .F; S/ 2 T �.LinC/ such that the Piola–
Kirchhoff stress tensor is given by (1.1), for some smooth function �.F /. Such a
Lagrangian submanifold ƒ of T �.LinC/ corresponds (at least locally) to a hyper-
elastic material: S D @�=@F.F / and �.F / takes on the role of its generating
function.
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• Conversely, it is also clear that every graph of the differential of a function �.F /,
¹.F; @�=@F.F //; F 2 LinCº, is a Lagrangian submanifold.

By relaxing the transversality condition (1.4), we obtain a generalized definition of
hyperelastic materials in a natural way; we are led to say that a generalized hyperelastic
material is characterized by a Lagrangian submanifoldƒ of T �.LinC/, not necessarily
everywhere transverse to the fibers of T �LinC (see [8, 9, 13, 21]).

A celebrated theorem arisen inside the symplectic framework of asymptotic wave
propagation, Maslov–Hörmander’s theorem [9], characterizes locally any Lagrangian
submanifold. It was first proven by Maslov [15] in 1965 and refined by Hörmander
[12] in 1971.

It shows that, for any Lagrangian submanifold ƒ, locally there exists always some
real smooth function � (called generating function or Morse family)

(1.5) LinC �Rk 3 .F; p/ 7�! �.F; p/ 2 R;

such that ƒ is described by the pairs .F; S/ 2 T �.LinC/ satisfying

(1.6) S D
@�

@F
.F; p/; 0 D

@�

@p
.F; p/;

for some auxiliary parameters1 p 2 Rk; furthermore, the condition

(1.7) rk
�
@2�

@p@F

@2�

@p@p

�ˇ̌̌̌
@�
@p
.F;p/D0

D k D max

has to be fulfilled. Conversely, given a function �.F; p/ as in (1.7), relations (1.6)
define a Lagrangian submanifold in T �.LinC/.

The above theorem fits perfectly inside the framework of Ericksen, where the
indefinite elastostatic equations become

div
@�

@F
C b D 0;

@�

@p
D 0:

The auxiliary parameters p D .p˛/˛D1;:::;k can be removed if, at least locally, ƒ is
transversal to the fibers of �LinC W T �.LinC/! LinC:
• if det @

2�
@p@p

.F; p/j @�
@p
D0¤0, then, by the implicit function theorem, from @�

@p
.F; p/D0,

we can define a unique localpD Qp.F /, so that, eventually, the new function x�.F / WD
�.F; Qp.F // is an equivalent generating function (without polarizations p) for the

(1) called polarizations in the Landau–Ericksen–Pitteri–Zanzotto theories.
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same material ƒ. In detail,

ƒD
°
.F;S/ W S D

@�

@F
.F;p/ and

@�

@p
.F;p/D 0; F 2 LinC; for some p 2 Rk

±
;

or, equivalently,

ƒ D
°
.F; S/ W S D

@x�

@F
.F /; F 2 LinC

±
:

• But the auxiliary parameters are essential whenever

(1.8) rank
�
D.�LinC ı j /

�
< max

and this happens precisely at the caustics .F �; S�/ of the material surface ƒ:

det
@2�

@p@p
.F �; p/

ˇ̌
@�
@p
D0
D 0:

We briefly recall some crucial examples.

(1) The above definition leads to an intrinsic geometrical understanding of the 2-lattices
of Ericksen, and the �+1-lattices of Pitteri (see [20] and the book [21]), in the sense
that the structure (1.6) is the most general local representation of a generalized
hyperelastic material. In those theories the role of the parameters p is played by the
so-called polarizations or shifts. Phenomenologically, these theories can be thought
of as continuum mechanical versions of underlying discrete lattice theories.

(2) A concrete example of generalized hyperelastic material is given by ˛-quartz and
ˇ-quartz: a generalized density with non-trivial auxiliary parameters is worked
out, thereby exhibiting a structure with multi-branches in (an analogue of) the
above .F; S/-space (see [21]). The phase transition from ˛-quartz to ˇ-quartz is
occurring precisely when the material is locally going through the caustic region

det
@2�

@p@p
j @�
@p
D0 D 0:

(3) Another example is provided by the theory of Phase Transitions and Pseudo-elastic
hysteresis by Ingo Müller, see [18]. In that theory, Müller introduces a new parameter
z 2 Œ0; 1� (the phase fraction) and a free energy function f .d I z/, depending on the
deformation d and z. Furthermore, he points out that the admissible deformation-
load states .d; P / at phase equilibria are given by the pairs .d; P / such that, for
some z,

(1.9) P D
@f

@d
.d I z/; 0 D

@f

@z
.d I z/:
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1.2. The complete classification of the equivalent generalized stored energy density

In the above section, we have seen that the notion of Lagrangian submanifold ƒ into
the space of the strain-stress pairs .F; S/, the cotangent bundle T �LinC, is resuming
in an intrinsic unified way the concept of hyper-elastic and generalized hyper-elastic
material, possibly involving further auxiliary parameters, said polarizations, p. In
this new framework, we are able to draw the full class of all the generating functions
defining the same material ƒ.

First, we point out three operations giving us equivalent generalized stored energy:

(1) Given �1.F; p/, then �2.F; p/ WD �1.F; p/C const. is (obviously) equivalent to
�1 since both ones draw the same set of strain-stress pairs .F; S/, i.e. the same
Lagrangian submanifold.

(2) Given �1.F; p/, and given a non-degenerate quadratic form vTAv, p 2 Rk1 ,
v 2 Rk2 , then �2.F; p; v/ WD �1.F; p/C vTAv is equivalent to �1; again, they
draw the same Lagrangian submanifold.

(3) Given a fibered diffeomorphism

LinC �Rk �! LinC �Rk

.F; Np/ 7�!
�
F; p.F; Np/

�
then, for any �1.F; p/, we have that �2.F; Np/ WD �1.F; p.F; Np// is equivalent in
the above sense.

The very exciting fact, concluding this note, is the following: after a theorem by
Weinstein [22], clearly well exposed also in [14, Appendix 7, Section 1.17, Theo-
rem 3, p. 472], we finally can say that two generating functions �1 W LinC�Rh and
�2 W LinC�Rk , each satisfying the conditions (1.6) and (1.7), are defining the same set
of strain-stress pairs .F; S/, i.e. the same Lagrangian submanifold ƒ, if and only you
get one from the other by means of a suitable sequence of the above three operations.

Acknowledgments. – This document has been realized in the sphere of activities of
the GNFM of INdAM.
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