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Abstract. – We consider a nonlinear, nonhomogeneous Dirichlet problem driven by a nonau-
tonomous .p; 2/-Laplacian with unbalanced growth. The reaction is resonant both at ˙1 and
at zero (double resonance). Using variational tools together with truncation and comparison
techniques and critical groups, we show that the problem has at least three nontrivial bounded
solutions, all with sign information (positive, negative and nodal), which are ordered.

Keywords. – generalized Orlicz spaces, double resonance, extremal constant sign solutions,
nodal solution, critical groups.

Mathematics Subject Classification 2020. – 35J60 (primary); 35J91, 58E05 (secondary).

1. Introduction

Let � � RN be a bounded domain with a C 2-boundary @�. In this paper, we study
the following nonlinear and nonhomogeneous Dirichlet problem:

(1)

´
��˛pu.z/ ��u.z/ D f

�
z; u.z/

�
in �;

u D 0 on @�;

with 2 < p < N . In this problem, �˛p denotes the weighted p-Laplacian with weight
˛.�/ 2 C 0;1.x�/ n ¹0º, ˛.z/ � 0 for a.a z 2 �, defined by

�˛pu D div
�
˛.z/jDujp�2Du

�
:

We observe that if minx� ˛ > 0, then problem (1) is a nonautonomous version of a
.p; 2/-equation. Such equations were studied extensively recently and in the literature
we can find many existence and multiplicity results. We mention the works of Barile–
Figueiredo [2], Benouhiba–Belyacine [4], Bobkov–Tanaka [5], Marano–Mosconi–
Papageorgiou [27], Papageorgiou–Qin–Rădulescu [32], Papageorgiou–Rădulescu [33],
Papageorgiou–Winkert [37], Pei–Zhang [39], Tanaka [41] and for anisotropic problems
Vetro–Vetro [42]. Such equations arise in the physical models. We refer to the works
of Benci–D’Avenia–Fortunato–Pisani [3] (quantum physics) and Cherfils–Il’yasov [7]
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(reaction-diffusion systems). The pleasant feature of these problems is that there is a
global (up to the boundary) regularity theory for the solutions, see Lieberman [22].
This means that the pool of available analytical tools is very rich and makes the analysis
of the problem easier. The operator of (1) is related to the density function

�.z; t/ D ˛.z/tp C t2 for all z 2 �; all t � 0

with 2 < p. When minx� ˛ > 0, then �.z; �/ exhibits balanced growth; namely, we have

c0t
p
� �.z; t/ � c1.1C t

p/;

for all z 2�, all t � 0, some c0; c1 > 0. We see that �.z; �/ is trapped between two same
powers of t � 0. This feature permits the use of the regularity theory of Lieberman [22].
If minx� ˛ D 0, then the situation changes drastically. Now, �.z; �/ exhibits unbalanced
growth; namely, it holds that

t2 � �.z; t/ � c2.1C t
p/;

for all z 2 �, all t � 0, some c2 > 0. So, now �.z; �/ is trapped between two dif-
ferent powers of t � 0. This changes completely the framework of the problem. In
this new setting, the standard Lebesgue and Sobolev spaces are not adequate to study
such equations, and instead we need to use generalized Orlicz spaces. In addition,
for these equations there is no global regularity theory, only local regularity results,
see the survey papers of Marcellini [28], Mingione–Rădulescu [29]. The absence
of a global regularity removes from consideration the powerful tools mentioned ear-
lier and makes unbalanced growth problems more difficult and require new tools
and techniques. Recently, there have been same existence and multiplicity results for
such equations. We mention the works of Derȩgowska–Gasiński–Papageorgiou [10],
Gasiński–Papageorgiou [13], Ho–Winkert [18], Gasiński–Winkert [14], Liu–Dai [23],
Crespo-Blanco–Gasiński–Harjulehto–Winkert [8], Liu–Papageorgiou [24,26], Crespo-
Blanco–Gasiński–Winkert [9] and Papageorgiou–Vetro–Vetro [36]. In all the aforemen-
tioned works, the reaction (the right-hand side of the equation) is .p � 1/-superlinear
and the method of proof is based on the Nehari manifold technique. This approach works
well when the reaction is of power type. Otherwise, it requires restrictive monotonicity
conditions on the quotient function 0¤ x 7! f .z;x/

jxjp�2x
. Recently, Liu–Papageorgiou [25]

proposed an alternative approach based on critical groups (Morse theory). In [25], the
authors considered a “concave-convex” problem. Here instead, we assume that the reac-
tion f .z; x/ is .p � 1/-linear in x, and it can be resonant with respect to the principal
eigenvalue of .��˛p ;W

1;�0
0 .�//, withW 1;�0

0 .�/ being the relevant generalized Orlicz
space. We use the spectral analysis of Papageorgiou–Pudelko–Rădulescu [31]. The
reaction is also resonant at zero with respect to higher eigenvalues of .��;H 1

0 .�//.
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We prove the existence of three nontrivial bounded solutions with sign information
for all of them (positive, negative and nodal (sign changing)). In addition, the three
solutions are ordered.

2. Mathematical background and hypotheses

Let L0.�/ be the space of all measurable functions u W �! R. We identify two such
functions which differ only on a Lebesgue-null set. Let ˛ 2 C 0;1.x�/n¹0ºwith ˛.z/� 0
for all z 2 � and consider the function

�.z; t/ D ˛.z/tp C tq for all z 2 �; all t � 0:

The Lebesgue–Orlicz space L� .�/ is defined by

L� .�/ WD

²
u 2 L0.�/ W �� .u/ D

Z
�

�
�
z; juj

�
dz <1

³
:

The function �� .�/ is known as the modular function corresponding to �.�; �/. We equip
L� .�/ with the so-called “Luxemburg norm” k � k� defined by

kuk� D inf
²
� > 0 W ��

�
u

�

�
� 1

³
:

Then, L� .�/ becomes a Banach space which is separable and uniformly convex (thus
reflexive). Using L� .�/, we can introduce the corresponding Sobolev–Orlicz space
W 1;� .�/

W 1;� .�/ WD
®
u 2 L� .�/ W jDuj 2 L� .�/

¯
:

Here Du denotes the weak gradient of u. The norm k � k1;� on W 1;� .�/ is defined by

kuk1;� D kuk� C kDuk� with kDuk� D


jDuj



�
:

Also, to treat Dirichlet problems, we introduce

W
1;�
0 .�/ D C1c .�/

k�k1;�
:

Both spaces W 1;� .�/ and W 1;�
0 .�/ are Banach spaces which are separable and uni-

formly convex (thus, reflexive). Suppose that p
2
< 1 C 1

N
. Then, on W 1;�

0 .�/, the
Poincaré inequality holds; namely, we have

kuk� � OckDuk� for some Oc > 0; all u 2 W 1;�
0 .�/:

Therefore, on W 1;�
0 .�/, we can consider the equivalent norm

kuk D kDuk� for all u 2 W 1;�
0 .�/:
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Since we study a Dirichlet equation, our main interest is on the spaceW 1;�
0 .�/. We

have some useful embeddings for the spaces L� .�/ andW 1;�
0 .�/. In what follows, by

,! we denote continuous embedding.

Proposition 1. The following statements are valid:

(a) L� .�/ ,! Lr.�/, W 1;�
0 .�/ ,! W

1;r
0 .�/ for all 1 � r � 2;

(b) W
1;�
0 .�/ ,! Lr.�/ for all 1 � r � 2� D 2N

N�2
and the embedding is compact if

1 � r < 2�;

(c) Lp.�/ ,! L� .�/.

The modular function �� .�/ and the norm k � k are closely related.

Proposition 2. Let u 2 W 1;�
0 .�/. The following statements hold:

(a) kuk D �, �� .
Du
�
/ D 1;

(b) kuk < 1 (resp.D 1, > 1), �� .Du/ < 1 (resp.D 1, > 1);

(c) kuk < 1) kukp � �� .Du/ � kuk2;

(d) kuk > 1) kuk2 � �� .Du/ � kukp;

(e) kuk ! 0 (resp.!C1), �� .Du/! 0 (resp.!C1).

For more information about generalized Orlicz spaces, we refer to the book of
Harjulehto–Hästö [16].

Let V WW 1;�
0 .�/! W

1;�
0 .�/� be the nonlinear operator defined by˝

V.u/; h
˛
WD

Z
�

�
˛.z/jDujp�2 C 1

�
.Du;Dh/RN dz for all u; h 2 W 1;�

0 .�/:

This operator has the following properties (see Papageorgiou–Winkert [38, p. 683]).

Proposition 3. V.�/ is bounded (that is, it maps bounded sets to bounded sets),
continuous, strictly monotone (maximal monotone too) and of type .S/C; that is,

“if un
w
�! u in W 1;�

0 .�/ and lim sup
n!1

˝
V.un/; un � u

˛
� 0;

then un ! u in W 1;�
0 .�/”:

In what follows, by j � jN we denote the Lebesgue measure on RN . A function
˛ 2 L1loc.�/ is said to be a “weight” if ˛.z/ > 0 for a.a z 2 �. We will consider a
particular class of weights, the so-called “p-Muckenhoupt weights”. We denote this
class by Ap and we have

˛ 2 Ap implies ˛ 2 L1loc.�/ and ˛
1
1�p 2 L1loc.�/:
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Equivalently, we can say that ˛ 2 Ap if and only if

sup
�

1

jBjN

Z
B

˛.z/ dz

��
1

jBjN

Z
B

˛.z/
1
1�p dz

�p�1
<1;

the supremum taken over all balls B � �. The balls can be replaced by cubes Q with
sides parallel to the coordinate axes (see Harjulehto–Hästö [16, p. 114]). The function
˛.z/ D jzj� with �N < � < N.p � 1/ is in Ap .

Suppose ˛ 2 C 0;1.x�/ \Ap and let

�0.z; t/ WD ˛.z/t
p for all z 2 �; all t � 0:

We introduce the corresponding generalized Orlicz spacesL�0.�/ andW 1;�0
0 .�/which

coincide with the weighted spacesLp.�;�/ andW 1;p
0 .�;�/with�.C/D

R
C
˛.z/dz

for all C � � measurable (see Heinonen–Kilpeläinen–Martio [17]). From Lemma 2
of Papageorgiou–Rădulescu–Zhang [35], we have that

(2) W
1;�0
0 .�/ ,! L1;�0.�/ compactly:

Using (2), Papageorgiou–Pudelko–Rădulescu [31] developed the spectral properties
of��˛p . So, letm 2L1.�/ n ¹0º bem.z/� 0 for a.a z 2�, and consider the following
nonlinear eigenvalue problem:

(3)

´
��˛pu.z/ D

y�m.z/˛.z/
ˇ̌
u.z/

ˇ̌p�2
u.z/ in �;

u D 0 on @�:

This problem has a smallest eigenvalue y�˛1.m/ > 0 which has the following variational
characterization:

(4) y�˛1.m/ WD inf
²

��0.Du/R
�
m.z/˛.z/jujp dz

W u 2 W
1;�0
0 .�/ and u ¤ 0

³
:

Ifm� 1, then we write y�˛1.1/DW y�
˛
1 and the Rayleigh quotient becomes ��0 .Du/

��0 .u/
. This

eigenvalue has the following properties:
• y�˛1.m/ is isolated; that is, if y�˛.p/ denotes the spectrum of (3), then we can find
" > 0 such that �

y�˛1.m/;
y�˛1.m/C "

�
\ y�˛.p/ D ;:

• y�˛1.m/ is simple; that is, if Ou; Ov are eigenfunctions corresponding to y�˛1.m/, then
Ou D � Ov for some � 2 R n ¹0º. So, the eigenspace of y�˛1.m/ is one-dimensional.

• The infimum in (4) is realized on the one-dimensional eigenspace of y�˛1.m/, the
elements of which have fixed sign.

• All eigenvalues y� ¤ y�˛1 have nodal eigenfunctions.
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• All eigenfunctions of (3) belong in W 1;�
0 .�/ \ L1.�/.

• Ifm; Om 2L1.�/ n ¹0º, 0�m.z/� Om.z/ for a.a z 2� andm¤ Om, then y�˛1. Om/ <
y�˛1.m/.

By Ou1 we denote the positive, normalized (that is,
R
�
m.z/˛.z/ Ou

p
1 dz D 1) eigen-

function corresponding to y�˛1.m/ > 0. We have

(5)

´
Ou1 2 W

1;�
0 .�/ \ L1.�/;

for every compact set K � �, 0 < cK � Ou1.z/ for a.a z 2 K:

If a function u 2 L0.�/ satisfies the second part of (5), then we write

0 � u:

Evidently, 0 � u) 0 < u.z/ for a.a z 2 �. Moreover, if u 2 C.�/, then 0 � u. We
write v � 0 if 0 � �v.

We will also need the spectrum of the Dirichlet Laplacian. So, we consider the
following linear eigenvalue problem:

(6)

´
��u.z/ D y�u.z/ in �;
u D 0 on @�:

Using the spectral theorem for compact self-adjoint operators, we have a complete
description of the spectrum of (6), which consists of a sequence ¹y�k WD y�k.2/ºk2N �

.0;C1/ such that y�k ! C1 as k !1. By E.y�k/ we denote the eigenspace for
the eigenvalue y�k , k 2 N. We know that E.y�k/ is finite-dimensional and E.y�k/ �
C 10 .
x�/ D ¹u 2 C 1.x�/ W uj@� D 0º (classical linear regularity theory, see Gilbarg–

Trudinger [15]). We have the following orthogonal direct sum decomposition:

H 1
0 .
x�/ D

M
k2N

E.y�k/:

The eigenspaces have the “Unique Continuation Property” (UCP for short); that is,
if u 2 E.y�k/ and u.�/ vanishes on a set of positive Lebesgue measure, then u � 0.
Moreover, we have the following variational characterizations of the eigenvalues:

y�1 D inf
²
kDuk22
kuk22

W u 2 H 1
0 .�/; u ¤ 0

³
;(7)

y�k D inf
²
kDuk22
kuk22

W u 2
M
i�k

E.y�i /; u ¤ 0

³

D sup
²
kDuk22
kuk22

W u 2

kM
iD1

E.y�i /; u ¤ 0

³
for k � 2:

(8)
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The infimum and the supremum in (7) and (8) are actually attained on the corresponding
eigenspaces. From (7), it is clear that y�1 has eigenfunctions of constant sign, while
every y�k , k � 2 has nodal eigenfunctions.

Let X be a Banach space, ' 2 C 1.X/ and c 2 R. We denote

K' WD
®
u 2 X W '0.u/ D 0

¯
(the critical set of ');

'c D
®
u 2 X W '.u/ � c

¯
:

Let Y2 � Y1 � X and k 2 N0. By Hk.Y1; Y2/ we denote the k-th relative singular
homology group for the pair .Y1; Y2/, with real coefficients. Let u0 2 K' be isolated
and let c D '.u0/. Then, the critical groups of '.�/ at u0 are defined by

Ck.'; u0/ D Hk
�
'c \ U; 'c \ U n ¹u0º

�
for all k 2 N0;

with U being a neighborhood of u0 such that 'c \ U \ K' D ¹u0º. The excision
property of singular homology implies that the above definition is independent of the
isolating neighborhood U .

A function f W R! R is said to be locally Lipschitz if for every K � R compact,
'jK is Lipschitz continuous with Lipschitz constant cK >0. This definition is equivalent
to saying that every x 2R has a neighborhoodU such that f jU is Lipschitz continuous.
We say that f W � � R! R is an L1-locally Lipschitz function if for all x 2 R,
z 7! f .z; x/ is measurable and for a.a z 2 �, x 7! f .z; x/ is locally Lipschitz with
Lipschitz constants cK 2 L1.�/.

For every u 2 L0.�/, we define uC D max¹u; 0º, u� D min¹�u; 0º and we have
u D uC � u�, juj D uC C u�. Moreover, if u 2 W 1;�

0 .�/, then u˙ 2 W 1;�
0 .�/.

Now we introduce the hypotheses on the data of (1).

H0: ˛ 2 C 0;1.x�/ \Ap , 1 < 2 < p < N and p
2
< 1C 1

N
.

Remark 4. Note that the last inequality implies p < 2� D 2N
N�2

and so we can use
the embeddings from Proposition 1.

H1: f W � �R! R is an L1-locally Lipschitz function such that

(i) for every � > 0, there exists y̨� 2 L1.�/ such thatˇ̌
f .z; x/

ˇ̌
� y̨�.z/ for a.a z 2 �; all jxj � �I

(ii) there exist ˇ0 > 0 and a function y̌.z/ 2 L1.�/C such that

�ˇ0 � lim inf
x!˙1

f .z; x/

˛.z/jxjp�2x
� lim sup

x!˙1

f .z; x/

˛.z/jxjp�2x
� y�˛1 ;

uniformly for a.a z 2 �, and if F.z; x/ D
R x
0
f .z; s/ ds, then

� y̌.z/ � f .z; x/x � pF.z; x/ for a.a z 2 �; all x 2 RI
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(iii) there exist ı > 0, an integer m � 2 and � 2 L1.�/C such that

y�m.2/ � �.z/ for a.a z 2 �; � ¤ y�m.2/;

�.z/x2 � f .z; x/x � y�mC1.2/x
2 for a.a z 2 �; all 0 < jxj � ı;

and the second inequality is strict on a set of positive measure;

(iv) for every � > 0, there exists y�� > 0 such that for a.a z 2 �, the function

x 7! f .z; x/C y��jxj
p�2x is nondecreasing on Œ��; ��:

Remark 5. HypothesisH1 (ii) permits resonance with respect to y�˛1 as x!C1. On
the other hand, hypothesisH1 (iii) implies that we can have resonance with respect to a
higher eigenvalue y�mC1.2/ > 0 of the Dirichlet Laplacian since lim supx!0

f .z;x/
x
�

y�mC1.2/ uniformly for a.a z 2�. Therefore, we deal with a double resonance situation.

We conclude this section with a lemma which is an outgrowth of the properties of
the principal eigenvalue y�˛1 > 0 and of the corresponding.

Lemma 6. If hypothesesH0 hold, � 2 L1.�/C, �.z/ � y�˛1 for a.a z 2� and � 6� y�˛1 ,
then there exists Oc > 0 such that

Oc��0.Du/ � ��0.Du/ �

Z
�

�.z/˛.z/jujp dz for all u 2 W 1;�0
0 .�/:

Proof. Arguing by contradiction, suppose that the assertion of the lemma is not true.
Then, we can find ¹unºn2N � W

1;�0
0 .�/ such that

(9) ��0.Dun/ �

Z
�

�.z/˛.z/junj
pdz <

1

n
��0.Dun/ for all n 2 N:

We set yn D un
kunk1;�0

with k � k1;�0 being the norm of the generalized Orlicz space
W
1;�0
0 .�/. Then,

kynk1;�0 D 1 for all n 2 N:

On account of the reflexivity of W 1;�0
0 .�/ and using (2), we may assume that

(10) yn
w
�! y in W 1;�0

0 .�/ and yn ! y in L�0.�/:

From (9), we have

(11)
�
1 �

1

n

�
��0.Dyn/ <

Z
�

�.z/˛.z/jynj
p dz for all n 2 N:

We pass to the limit as n!1 and use (10) and the fact that the modular function ��0.�/
is continuous, convex; therefore, ��0.�/ is sequentially weakly lower semicontinuous.
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So, we obtain

��0.Dy/ �

Z
�

�.z/˛.z/jyjp dz � y�˛1��0.y/ (see (4));

H) ��0.Dy/ D
y�˛1��0.y/;

H) y D 0 or y D ˙Ou˙:

(12)

If y D 0, then from (10) and (11), we see that

��0.Dyn/! 0 H) kynk1;�0 ! 0 (see Proposition 2):

This contradicts the fact that kynk1;�0 D 1 for all n 2N. If y D˙Ou1, then since 0� Ou1,
we see that jy.z/j > 0 for a.a z 2 �. Then, from the first inequality in (12) and the
hypothesis on �.�/, we have

��0.Dy/ <
y�˛1��0.y/

contradicting (4).

Similarly, as a consequence of the UCP property, we have that if � 2L1.�/ satisfies
�.z/ � y�m.z/ withm 2 N for a.a z 2 � and the inequality is strict on a set of positive
Lebesgue measure, then

kD Nuk22 �

Z
�

�.z/ Nu2 dz � �OckD Nuk22 for some Oc > 0; all Nu 2 xHm D
mM
iD1

E.y�i /:

3. Solutions of constant sign

Let 'WW 1;�
0 .�/! R be the energy functional for problem (1) defined by

'.u/ D
1

p
��0.Du/C

1

2
kDuk22 �

Z
�

F.z; u/ dz for all u 2 W 1;�
0 .�/:

Evidently, ' 2 C 1.W 1;�
0 .�//.

To produce constant sign solutions for problem (1), we will use the positive and
negative truncations of '.�/, namely, the C 1-functionals '˙ W W 1;�

0 .�/! R defined
by

'˙.u/ D
1

p
��0.Du/C

1

2
kDuk22 �

Z
�

F.z;˙u˙/ dz for all u 2 W 1;�
0 .�/:

Proposition 7. If hypothesesH0 andH1 hold, then the functionals '˙.�/ are coercive.
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Proof. We do the proof for 'C.�/, the proof for '�.�/ being similar. We argue by
contradiction. So, suppose that 'C.�/ is not coercive. Then, we can find ¹unºn2N �

W
1;�
0 .�/ and M0 > 0 such that

(13) kunk ! 1 and 'C.un/ �M0 for all n 2 N:

On RCC D .0;1/, we have

d

dx

�
F.z; x/

xp

�
D
f .z; x/xp � pxp�1F.z; x/

x2p

D
f .z; x/x � pF.z; x/

xpC1

� �

y̌.z/

xpC1
(see hypothesis H1 (ii));

H)
F.z; x/

xp
�
F.z; y/

yp
�

y̌.z/

p

�
1

xp
�
1

yp

�
for a.a z 2 �; all x � y > 0:(14)

Hypothesis H1 (ii) implies that

(15) lim sup
x!C1

pF.z; x/

˛.z/xp
� y�˛1 uniformly for a.a z 2 �:

If in (14), we let x !C1 and use (15), then

(16) ˛.z/y�˛1y
p
� pF.z; y/ � � y̌.z/ for a.a z 2 �; all y � 0:

Using (13) and (16), we have

1

p
��0.Du

�
n /C

1

2
kDu�n k

2
2 C

1

p

�
��0.Du

C
n / �

y�˛1��0.u
C
n /
�
C
1

2
kDuCn k

2
2

�M0 C k
y̌k1 for all n 2 N;

H)
1

p
�� .Du

�
n / �M0 C k

y̌k1 for all n 2 N (recall 2 < p and see (4));

H) ¹u�n ºn2N � W
1;�
0 .�/ is bounded (see Proposition 2):(17)

From (13) and (17), it follows that

(18) kuCn k ! 1 as n!1:

Let yn D u
C
n

ku
C
n k

for n 2N. Then, kynk D 1, yn � 0 for all n 2N and so we may assume
that

(19) yn
w
�!y in W 1;�

0 .�/; yn!y in Lr.�/ with r2.p;2�/ (see Proposition 1):



dirichlet problems with unbalanced growth and double resonance 691

From (13), we have

1

p
��0.Dyn/C

1

2kuCn kp�2
kDynk

2
2

�
M0

kuCn kp
C

Z
�

F.z; uCn /

kuCn kp
dz for all n 2 N:

(20)

Hypotheses H1 (i) and (ii) imply thatˇ̌
F.z; x/

ˇ̌
� c3.1C x

p/ for a.a z 2 �; some c3 > 0;

H)

²
F
�
�; uCn .�/

�
kuCn kp

³
n2N

� L1.�/ is uniformly integrable:

By the Dunford–Pettis theorem (see Hu–Papageorgiou [19, p. 187]), we have

(21)
F
�
�; uCn .�/

�
kuCn kp

w
�!

1

p
�.�/˛.�/y.�/p in L1.�/;

with � 2 L1.�/, �.z/ � y�˛1 for a.a z 2 � (see [1, proof of Proposition 16]).
We return to (20), pass to the limit as n! 1 and use (18), (19), (21) and the

fact that the modular function ��0.�/ is sequentially weakly lower semicontinuous. We
obtain

(22) ��0.Dy/ �

Z
�

�.z/˛.z/yp dz:

First we assume that
� 6� y�˛1 .see (21)/:

Using Lemma 6 in (22), we have

Oc��0.Dy/ � 0 H) y D 0:

From (20), (2) and (18), we see that

(23) ��0.Dyn/! 0 as n!1:

We know that kynk D 1 for all n 2 N. Hence, from Proposition 2, we have

1 D �� .Dyn/ D ��0.Dyn/C kDynk
2
2 for all n 2 N;

H) kDynk2 ! 1 as n!1 .see (23)/;

H) kDuCn k2 !C1
�
recall yn D

uCn

kuCn k
and see (18)

�
:(24)
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From (13), we have
1

p
��0.Du

C
n / �

Z
�

F.z; uCn / dz C
1

2
kDuCn k

2
2 �M0;

H)

Z
�

�
y�˛1˛.z/.u

C
n /
p
� pF.z; uCn /

�
dz C

p

2
kDuCn k

2
2 � pM0;

H) kDuCn k
2
2 �M1; for some M1 > 0; all n 2 N .see (17)/:(25)

Comparing (24) and (25), we have a contradiction.
Next, we assume that �.z/ D y�˛1 for a.a z 2 � (see (21)). From (4) and (22), we

have
��0.Dy/ D

y�˛1��0.y/ H) y D 0 or y D Ou1 .recall y � 0/:

If y D 0, then as above we reach a contradiction. If y D Ou1, then 0 � y and so we have

(26) uCn .z/!1 for a.a z 2 �:

From (25), we have

(27) y�1.2/

Z
�

.uCn /
2 dz �M1 for all n 2 N:

Using (26) and Fatou’s lemma, we obtainZ
�

.uCn /
2 dz !1;

which contradicts (27). This proves the coercivity of 'C.�/. Similarly, we show the
coercivity of '�.�/.

Remark 8. The above proof reveals that the resonance with respect to y�˛1 > 0 occurs
from the left of the eigenvalue in the sense that for any � > 0, we have

0 � lim sup
x!˙1

pF.z; x/ � y�˛1˛.z/jxj
p

jxj�
uniformly for a.a z 2 �:

Using Proposition 7, we can produce two constant sign solutions for problem (1).

Proposition 9. If hypotheses H0 and H1 hold, then problem (1) has at least two
constant sign solutions

u0; v0 2 W
1;�
0 .�/ \ L1.�/ and v0 � 0 � u0:

Proof. From Proposition 7, we know that 'C.�/ is coercive. Also it is sequentially
weakly lower semicontinuous (see Proposition 1). So, by the Weierstrass–Tonelli
theorem, we can find u0 2 W 1;�

0 .�/ such that

(28) 'C.u0/ D inf
®
'C.u/ W u 2 W

1;�
0 .�/

¯
:
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Recall that the positive, normalized eigenfunction corresponding to y�1.2/ satisfies
Ou1 2 C

1
0 .
x�/ and Ou1.z/ > 0 for all z 2 �. So, we can find t 2 .0; 1/ small such that

(29) 0 � t Ou1.z/ � ı for all z 2 x�;

with ı > 0 as postulated by hypothesis H1 (iii). Then,

'C.t Ou1/ �
tp

p
��0.D Ou1/

C
t2

2

Z
�

�
y�1.2/ � �.z/

�
Ou21 dz .see (29) and hypothesis H1 (iii)/;

D c4t
p
� c5t

2

for some c4; c5 > 0 (since Ou1.z/ > 0 for all z 2 �). Since 2 < p, choosing t 2 .0; 1/
even smaller, we have

'C.t Ou1/ < 0 H) 'C.u0/ < 0 D 'C.0/ .see (28)/ H) u0 ¤ 0:

From (28), we have˝
'0C.u0/; h

˛
D 0 for all h 2 W 1;�

0 .�/;

H)
˝
V.u0/; h

˛
D

Z
�

f .z; uC0 /h dz for all h 2 W 1;�
0 .�/:(30)

In (30), we choose the test function h D �u�0 2 W
1;�
0 .�/ and obtain

�� .Du
�
0 / D 0 H) u0 � 0 and u0 ¤ 0 .see Proposition 2/:

Let k > 1 and define the set

Ek WD
®
z 2 � W u0.z/ > k

¯
:

Let k > 1 be large so that

(31) jEkjN � 1 and


.u0 � k/C

 � 1:

On account of hypothesesH1 (i), (ii), (iii), given r2.p;2�/, we can find c6>0 such that

(32) f .z; x/ � c6Œx C x
r�1� for a.a z 2 �; all x � 0:

In (30), we choose the test function h D .u0 � k/C 2 W 1;�
0 .�/ to get

.u0 � k/C

p � ���D.u0 � k/C� .see (31) and Proposition 2/

D

Z
�

f .z; u0/.u0 � k/
C dz .recall u0 � 0/

� c6

Z
�

.u0 C u
r�1
0 /.u0 � k/

C dz .see (32)/

� c7jEkj
1
r0

N



.u0 � k/C
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by using Hölder’s inequality, (31) and since W 1;�
0 .�/ ,! Lr.�/. This means that

(33)


.u0 � k/C

p�1 � c7jEkj 1r0N :

Let m > k. We have

.m�k/pjEmj
p
r

N �

� Z
Em

.u0 � k/
r dz

�p
r

�

� Z
Ek

.v0 � k/
r dz

�p
r

.since Em�Ek/

� c8


.un�k/C

p for some c8>0

�
recall that W 1;�

0 .�/,!Lr.�/
�
:

Hence, we have

.m � k/p�1jEmj
p�1
r

N � c9k.u0 � k/
C
k
p�1 for some c9 > 0

� c10jEkj
1
r0

N for some c10 > 0 .see (33)/I

namely,
jEmjN �

c11

.m � k/r
jEkj

r
r0
�
p0

p for some c11 > 0:

Note that r
r 0
�
p0

p
D

r�1
p�1

> 1 (recall p < r). So, using Lemma B.1 of Kinderlehrer–
Stampacchia [21, p. 63], we see that there exists M > 1 large such that

jEM jN D 0 H) u0 2 L
1.�/:

Let � D ku0k1 and let y�� > 0 be as postulated by hypothesisH1(iv). Then, from (30),
we have

��˛pu0 ��u0 C
y��u

p�1
0 � 0 in � H) 0 � u0;

see Papageorgiou–Vetro–Vetro [36, Proposition 2.4].
Similarly, working this time with the functional'�.�/, we produce a negative solution

v0 2 W
1;�
0 .�/ \ L1.�/ and v0 � 0 (that is, 0 � �v0).

In fact, we can produce extremal constant sign solutions, that is, a smallest positive
solution and a biggest negative solution.

Given r 2 .p; 2�/, from hypothesesH1 (i), (ii), (iii), we see that we can find c12 > 0
such that

(34) f .z; x/x � �.z/x2 � c12jxj
r for a.a z 2 �; all x 2 R:

This unilateral growth condition on f .z; �/ leads to the following auxiliary Dirichlet
problem:

(35)

´
��˛pu.z/ ��u.z/ D �.z/u.z/ � c12

ˇ̌
u.z/

ˇ̌r�2
u.z/ in �;

u D 0 on @�

with 2 < p < r < 2�.
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Proposition 10. If hypotheses H0 hold and � 2 L1.�/ satisfies

y�m.2/ � �.z/ for a.a z 2 � and � 6� y�m.2/ for m � 2;

then problem (35) has a unique positive solution

Nu 2 W
1;�
0 .�/ \ L1.�/ and 0 � Nu;

and since problem (35) is odd, Nv D �Nu � 0 is the unique negative solution of (35).

Proof. To produce a positive solution for problem (35), we consider theC 1-functional
 C W W

1;�
0 .�/! R defined by

 C.u/ WD
1

p
��0.Du/C

1

2
kDuk22 C

c12

r
kuCkrr

�
1

2

Z
�

�.z/.uC/2 dz for all u 2 W 1;�
0 .�/:

Since r > p > 2, we see that  C.�/ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find Nu 2 W 1;�

0 .�/ such that

(36)  C. Nu/ D inf
®
 C.u/ W u 2 W

1;�
0 .�/

¯
:

Let t 2 .0; 1/ and Ou1 2 C 10 .x�/ as before the positive, normalized eigenfunction for
y�1.2/. Hence,

 C.t Ou1/ D
tp

p
��0.D Ou1/C

t2

2

Z
�

�
y�1.2/ � �.z/

�
Ou21 dz C

c12t
r

r
k Ou1k

r
r

� c13t
p
� c14t

2 for some c13; c14 > 0
�
recall that p < r and t 2 .0; 1/

�
< 0 choosing t 2 .0; 1/ small (since 2 < p):

This leads to
 C. Nu/ < 0 D  0.0/ .see (36)/ H) Nu ¤ 0:

From (36), we have˝
 0C. Nu/; h

˛
D 0 for all h 2 W 1;�

0 .�/

H) hV. Nu/; hi D

Z
�

�
�.z/. NuC/ � c12. Nu

C/r�1
�
h dz for all h 2 W 1;�

0 .�/:

(37)

In (37), we choose the test function h D �Nu� 2 W 1;�
0 .�/ to obtain

�� .D Nu
�/ D 0 H) Nu � 0 and Nu ¤ 0:
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So, Nu 2 W 1;�
0 .�/ is a positive solution of (35). As in the proof of Proposition 9, we

show that
Nu 2 W

1;�
0 .�/ \ L1.�/ and 0 � Nu:

Next we show the uniqueness of this positive solution. To this end, we introduce
the integral functional j WL1.�/! xR D R [ ¹C1º defined by

j.u/ D

8<: 1
p
��0.Du

1=2/C 1
2
kDu1=2k22 if u � 0; u1=2 2 W 1;�

0 .�/;

C1 otherwise:

Let dom j D ¹u 2 L1.�/ W j.u/ <1º (the effective domain of j.�/). From Díaz–
Saá [11] (see also Papageorgiou–Rădulescu [34]), we know that j.�/ is convex. Suppose
that Ny 2 W 1;�

0 .�/ is another positive solution of (35). Again we have

Ny 2 W
1;�
0 .�/ \ L1.�/ and 0 � Ny:

Let " > 0 and set
Nu" D NuC " and Ny" D Ny C ":

Recall thatL1.�/ is an ordered Banach space with positive (order) coneL1.�/C WD
¹u 2 L1.�/ W u.z/ � 0 for a.a z 2 �º. This cone has a nonempty interior given by

intL1.�/C WD
®
u 2 L1.�/C W ess inf� u > 0

¯
:

Evidently, we have

(38) Nu"; Ny" 2 intL1.�/C:

Clearly, we have

(39)
Nu"

Ny"
2 L1.�/ and

Ny"

Nu"
2 L1.�/

(see also Hu–Papageougiou [20, Proposition 2.86, p. 90] and (38)). Let h D Nu2" � Ny2" 2
W
1;�
0 .�/ \ L1.�/. Using (38), we can check that for t 2 .0; 1/ small, we have

Nu2" C th 2 dom j and Ny2" C th 2 dom j:

Exploiting the convexity of j.�/, we can compute the directional derivatives of j.�/
at Nu2" and at Nv2" in the direction h. Using the nonlinear Green’s identity (see Hu–
Papageorgiou [19, p. 216]), we obtain

j 0. Nu2"/.h/ D
1

2

Z
�

��˛p Nu �� Nu

Nu"
h dz D

1

2

Z
�

�.z/ Nu � c12 Nu
r�1

Nu"
h dz;

j 0. Ny2" /.h/ D
1

2

Z
�

��˛p Ny �� Ny

Ny"
h dz D

1

2

Z
�

�.z/ Ny � c12 Ny
r�1

Ny"
h dz:
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On account of the convexity of j.�/, we have

0 �

Z
�

�
�.z/

�
Nu

Nu"
�
Ny

Ny"

�
� c12

�
Nur�1

Nu"
�
Nyr�1

Ny"

��
h dz:

We let "! 0C and use the Lebesgue dominated convergence theorem to get

0 � �c12

Z
�

. Nur�2 � Nyr�2/. Nu2 � Ny2/ dz � 0 H) Nu D Ny:

This proves the uniqueness of the positive solution Nu of problem (35).
The problem is odd and so we infer that

Nv D �Nu 2 W
1;�
0 .�/ \ L1.�/ and Nv � 0

is the unique negative solution of (35).

Let SC be the set of positive solutions of (1) and S� the set of negative solutions
of (1). From Proposition 9, we have that

; ¤ SC � W
1;�
0 .�/ \ L1.�/ and 0 � u for all u 2 SC;

; ¤ S� � W
1;�
0 .�/ \ L1.�/ and v � 0 for all v 2 S�:

We show that the solutions Nu; Nv of (35) (see Proposition 10) provide bounds for SC
and S�, respectively.

Proposition 11. If hypothesesH0;H1 hold, then Nu � u for all u 2 SC and v � Nv for
all v 2 S�.

Proof. Let u 2 S� and introduce the Carathéodory function kC defined by

(40) kC.z; x/ WD

´
�.z/xC � c12.x

C/r�1 if x � u.z/;

�.z/u.z/ � c12
�
u.z/

�r�1 if u.z/ � x:

We setKC.z;x/ WD
R x
0
kC.z; s/ds and consider theC 1-functional y C WW 1;�

0 .�/!R

defined by

y C.u/ WD
1

p
��0.Du/C

1

2
kDuk22 �

Z
�

KC.z; u/ dz for all u 2 W 1;�
0 .�/:

From (40), it is clear that y C.�/ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find Nu� 2 W 1;�

0 .�/ such that

(41) y C. Nu�/ D inf
®
y C.u/ W u 2 W

1;�
0 .�/

¯
:
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For t 2 .0; 1/ and Ou1 the positive normalized eigenfunction for y�1.2/ > 0, we have

y C.t Ou1/ �
tp

p
��0.D Ou1/C c12t

r
k Ou1k

r
r C c12

Z
¹u<t Ou1º

ur�1.t Ou1 � u/ dz

�
t2

2

Z
�

�
�.z/ � y�1.2/

�
Ou21 dz C

Z
¹u<t Ou1º

�.z/u2 dz .see (40)/

� c13t
p
� c14t

2
C t2k� Ou1k1

ˇ̌
¹u < t Ou1º

ˇ̌
N
:

(42)

Since j¹u < t Ou1ºjN ! 0 as t ! 0C (recall 0 � u), from (42), we see that for t 2 .0; 1/
small, we have

y C.t Ou1/ < 0 .recall 2 < p/ H) y C. Nu�/ < 0 D y C.0/ .see (41)/ H) Nu� ¤ 0:

From (41), we have˝
y 0C. Nu�/; h

˛
D 0 for all h 2 W 1;�

0 .�/

H)
˝
V. Nu�/; h

˛
D

Z
�

kC.z; Nu�/h dz for all h 2 W 1;�
0 .�/:(43)

In (43), we choose the test function h D �Nu�� 2 W
1;�
0 .�/ to yield

�� .D Nu
�
� / D 0 H) Nu� � 0 and Nu� ¤ 0 .see Proposition 2/:

Next in (43), we choose the test function h D . Nu� � u/C 2 W 1;�
0 .�/ to find˝

V. Nu�/; . Nu� � u/
C
˛
D

Z
�

�
�.z/u � c12u

r�1
�
. Nu� � u/

C dz .see (40)/

�

Z
�

f .z; u/. Nu� � u/
C dz .see (34)/

D
˝
V.u/; . Nu� � u/

C
˛
.since u 2 SC/

) Nu� � u .see Proposition 3/:

We have proved that

(44) 0 � Nu� � u and Nu� ¤ 0:

From (40), (43), (44) and Proposition 10, it follows that

Nu� D Nu H) Nu � u for all u 2 SC .see (44)/:

Similarly, we show that

v � Nv for all v 2 S�:
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Now we are ready to produce the extremal constant sign solutions for problem (1).

Proposition 12. If hypothesesH0 andH1 hold, then we can find u� 2 SC and v� 2 S�
such that u� � u for all u 2 SC and v � v� for all v 2 S�.

Proof. From Filippakis–Papageorgiou [12], we know that SC is downward directed;
that is, if u1; u2 2 SC, then there exists u 2 SC such that u � u1 and u � u2. Then,
using Theorem 5.109 of Hu–Papageorgiou [19, p. 308], we can find ¹unºn2N � SC

decreasing such that
inf SC D inf

u2N
un:

Also, we have

(45)
˝
V.un/; h

˛
D

Z
�

f .z; un/h dz for all h 2 W 1;�
0 .�/; all n 2 N;

and

(46) Nu � un � u1 for all n 2 N .see Proposition 11/:

In (45), we choose the test function h D un 2 W 1;�
0 .�/. Using (46) and hypothesis

H1 (i), we see that
¹unºn2N � W

1;�
0 .�/ is bounded:

So, we may assume that

(47) un
w
�! u� in W 1;�

0 .�/ and un ! u� in Lp.�/ .see Proposition 1/:

In (45), we choose the test function hD un � u� 2W 1;�
0 .�/ and then pass to the limit

as n!1 and use (47) to obtain

(48) lim
n!1

˝
V.un/; un � u�

˛
D 0 H) un! u� in W 1;�

0 .�/ .see Proposition 3/:

In (45), we pass to the limit as n!1 and use (48) to find˝
V.u�/; h

˛
D

Z
�

f .z; u�/h dz for all h 2 W 1;�
0 .�/:

Moreover, from (46) and (48), we infer that

Nu � u� H) u� 2 SC; u� D inf SC:

In a similar fashion, we produce v� 2 S� such that v � v� for all v 2 S�. We point
out that S� is upward directed; that is, if v1; v2 2 S�, then there exists v 2 S� such
that v1 � v and v2 � v.
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4. Nodal solutions and multiplicity theorem

In this section, we produce a third nontrivial solution which is nodal (sign changing).
To do this, we will use the extremal constant sign solutions produced in Section 3,
truncation and comparison techniques and critical groups.

The idea is to use truncation to focus on the order interval

Œv�; u�� WD
®
u 2 W

1;�
0 .�/ W v�.z/ � u.z/ � u�.z/ for a.a z 2 �

¯
:

On account of the extremality of v� and u�, any nontrivial solution of (1) distinct from
v� and u�, will be nodal. Due to the lack of a global regularity theory for unbalanced
growth problems, to show the nontriviality of the solution in Œv�; u��, we will use
critical groups.

Proposition 13. If hypotheses H0 and H1 hold, then

Ck.'; 0/ D ık;dmR for all k 2 N0 with dm D dim
mM
iD1

E
�
y�i .2/

�
:

Proof. Let y� 2 .y�m.2/; y�mC1.2// and consider the C 2-functional � WH 1
0 .�/! R

defined by

�.u/ WD
1

2
kDuk22 �

y�

2
kuk22 for all u 2 H 1

0 .�/:

Clearly, u D 0 is nondegenerate critical point of �.�/ with Morse index dm. So, by
Proposition 3.100 of Hu–Papageorgiou [20, p. 168], we have

(49) Ck.�; 0/ D ık;dmR for all k 2 N0:

Let '0WH 1
0 .�/! R be the C 1-functional defined by

'0.u/ D
1

2
kDuk22 �

Z
�

F.z; u/ dz for all u 2 H 1
0 .�/:

Consider the homotopy H.t; u/ defined by

h.t; u/ D .1 � t /'0.u/C t�.u/ for all t 2 Œ0; 1�; all u 2 H 1
0 .�/:

For 0< t � 1, letu2C 10 .x�/with kukC1
0
.x�/ � ı, with ı > 0 as postulated by hypothesis

H1 (iii). By h�; �i0 we denote the duality brackets for the pair .H�1.�/ WD H 1
0 .�/

�;

H 1
0 .�//. Then, we have

(50)
˝
h0u.t; u/; h

˛
0
D .1 � t /

˝
'00.u/; h

˛
0
C t

˝
� 0.u/; h

˛
0

for all h 2 H 1
0 .�/:



dirichlet problems with unbalanced growth and double resonance 701

We consider the following orthogonal direct sum decomposition:

H 1
0 .�/ D

xHm ˚ yHmC1

where

xHm D

mM
iD1

�
E
�
y�i .2/

��
and yHmC1 D xH

?
m D

M
i�mC1

E
�
y�i .2/

�
:

If v 2 H 1
0 .�/, it admits the following unique sum decomposition:

v D Nv C Ov with Nv 2 xHm and Ov 2 yHmC1:

In (50), we choose the test function h D Ou � Nu 2 H 1
0 .�/ to yield˝

'00.u/; Ou � Nu
˛
0
D

Z
�

.Du;D Ou �D Nu/RN dz �

Z
�

f .z; u/. Ou � Nu/ dz

D kD Ouk22 � kD Nuk
2
2 �

Z
�

f .z; u/. Ou � Nu/ dz:

(51)

Hypothesis H1 (iii) implies that

(52) �.z/ �
f .z; x/

x
� y�mC1.2/ for a.a z 2 �; all 0 < jxj � ı:

Then, from the choice of u, we have

f .z; u/. Ou � Nu/ D f .z; u/h D
f .z; u/

u
uh

�

´
y�mC1.2/. Ou

2 � Nu2/ if uh > 0;
�.z/. Ou2 � Nu2/ if uh < 0

.see (52)/

� y�mC1.z/ Ou
2
� �.z/ Nu2

(53)

for a.a z 2 �. We return to (51) and use (53) to derive˝
'00.u/; Ou � Nu

˛
0
� kD Ouk22 � kD Nuk

2
2 �
y�mC1.2/k Ouk

2
2 C

Z
�

�.z/ Nu2 dz

D
�
kD Ouk22 �

y�mC1.2/k Ouk
2
2

�
�

�
kD Nuk22 �

Z
�

�.z/ Nu2 dz

�
�0:

(54)

We also have˝
� 0.u/; Ou � Nu

˛
D

Z
�

.Du;D Ou �D Nu/RN dz � y�

Z
�

u. Ou � Nu/ dz

D kD Ouk22 � kD Nuk
2
2 � �k Ouk

2
2 C �k Nuk

2
2

D
�
kD Ouk22 � �k Ouk

2
2

�
�
�
kD Nuk22 � y�k Nuk

2
2

�
� c15kuk

2 for some c15 > 0:

(55)
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Recall that y� 2 .y�m.2/; y�mC1.2//. We return to (50) and choose the test function
y D Ou � Nu 2 H 1

0 .�/ and use (54) and (55) to derive˝
h0u.t; u/; Ou � Nu

˛
0
� tc15kuk

2 > 0 .recall 0 < t � 1/:

For t D 0, we have h.0; �/ D '0.�/. We show that u D 0 2 K'0 is isolated. We argue
by contradiction. So, suppose we can find ¹unºn2N � H

1
0 .�/ such that

(56) un ! 0 in H 1
0 .�/ and '00.un/ D 0 for all n 2 N:

From the equality in (56), we have

(57)

´
��un.z/ D f

�
z; un.z/

�
in �;

un D 0 on @�

for all n 2 N. Standard linear regularity theory (see Gilbarg–Trudinger [15, p. 186]
and Struwe [40, p. 218]) implies that exist � 2 .0; 1/ and c16 > 0 such that

(58) un 2 C
1;�
0 .x�/ and kunkC1;�

0
.x�/
� c16 for all n 2 N:

We know that C 1;�0 .x�/ ,! C 10 .
x�/ (see Arzela–Ascoli theorem). Therefore, from (56)

and (58), it follows that

un ! 0 in C 10 .x�/ H) �.z/un.z/
2
� f

�
z; un.z/

�
un.z/ � y�mC1.2/un.z/

2

for a.a z 2 �, all n � n0 (see hypothesis H1 (iii)). From earlier calculations we know
that

f
�
z;un.z/

�
. Oun � Nun/.z/� y�mC1.2/ Oun.z/

2
� �.z/ Nun.z/ for a.a z 2�; all n� n0:

On (57), we act that with h D Oun � Nun 2 H 1
0 .�/, we obtain

kD Ounk
2
2 � kD Nunk

2
2 D

Z
�

f .z; un/. Oun � Nun/ dz

� y�mC1.2/k Ounk
2
2 �

Z
�

�.z/ Nu2n dz:

Hence, it holds that

0 � kD Ounk
2
2 �
y�mC1.2/k Ounk

2
2 � kD Nunk

2
2 �

Z
�

�.z/ Nu2n dz � �c17k Nunk
2
2

for some c17 > 0 for all n � n0 (see (8)); namely,

Nun D 0 and kD Ounk22 D y�mC1.2/k Ounk
2
2I hence, Oun 2 E

�
y�mC1.2/

�
for n � n0:
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The eigenspace E.y�mC1.2// has the UCP and so Oun.z/ ¤ 0 for a.a z 2 �, all n � n0.
Therefore,

y�mC1.2/kunk
2
2 D kDunk

2
2 D

Z
�

f
�
z; un.z/

�
un.z/ dz < y�mC1.2/kunk

2
2

(see hypothesis H1 (iii)) generates a contradiction.
So, u D 0 is isolated. Then, the homotopy invariance property of critical groups

(see Hu–Papageorgiou [20, Theorem 3.131, p. 179]) implies that

Ck.'0jC1
0
.x�/; 0/ D Ck.� jC1

0
.x�/; 0/ H) Ck.'0; 0/ D Ck.�; 0/

for all k 2 N0 (see Hu–Papageorgiou [20, Theorem 3.128, p. 178]). Hence,

(59) Ck.'0; 0/ D ık;dmR for all k 2 N0 .see (49)/:

Let y'0 D '0jW 1;�
0

.�/
. Since W 1;�

0 .�/ ,! H 1
0 .�/ densely (see Proposition 1), from

Palais [30, Theorem 16], we have

(60) Ck.y'0; 0/ D Ck.'0; 0/ D ık;dmR for all k 2 N0 .see (59)/:

For every u 2 W 1;�
0 .�/, we have

(61)
ˇ̌
'.u/ � y'0.u/

ˇ̌
D
1

p
��0.Du/;

and for all h 2 W 1;�
0 .�/, we obtainˇ̌˝

'0.u/ � y'00.u/; h
˛ˇ̌

D

ˇ̌̌̌ Z
�

˛.z/jDujp�2.Du;Dh/RN dz

ˇ̌̌̌
� c18��0.Du/

1=p0
khk for some c18 > 0

�
since W 1;�

0 .�/ ,! W
1;�0
0 .�/

�
:

This means that

(62)


'0.u/ � y'00.u/

� � c18��0.Du/1=p0 :

From (61), (62), Proposition 2 and the C 1-continuity property of critical groups (see
Hu–Papageorgiou [20, Theorem 3.129, p. 179]), we conclude that

Ck.'; 0/ D Ck.y'0; 0/ D ık;dmR for all k 2 N0 .see (60)/:

Let u�; v� be the two extremal constant sign solutions produced in Proposition 12.
We introduce the Carathéodory function g.z; x/ defined by

(63) g.z; x/ WD

8̂<̂
:
f
�
z; v�.z/

�
if x < v�.z/;

f .z; x/ if v�.z/ � x � u�.z/;
f
�
z; u�.z/

�
if u�.z/ < x:
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In addition, we consider the positive and negative truncations of g.z; �/; namely, the
Carathéodory functions

(64) g˙.z; x/ D g.z;˙x
˙/:

We set
G.z; x/ D

Z x

0

g.z; s/ ds; G˙.z; x/ WD

Z x

0

g˙.z; s/ ds

and consider the C 1-functionals  ; ˙ W W 1;�
0 .�/! R

 .u/ WD
1

p
��0.Du/C

1

2
kDuk22 �

Z
�

G.z; u/ dz;

 ˙.u/ WD
1

p
��0.Du/C

1

2
kDuk22 �

Z
�

G˙.z; u/ dz

for all u 2 W 1;�
0 .�/. Using (63) and (64), we see that

K � Œv�; u�� and K C � Œ0; u�� and K � � Œv�; 0�:

Taking into account the extremality of u� and v�, we conclude that

(65) K � Œv�; u�� and K C D ¹0; u�º and K � D ¹0; v�º:

Proposition 14. If hypotheses H0 and H1 hold, then u� and v� are local minimizers
of  .�/.

Proof. Clearly,  C.�/ is coercive (see (63) and (64)) and sequentially weakly contin-
uous. So, we can find Ou� 2 W 1;�

0 .�/ such that

(66)  C. Ou�/ D inf
®
 C.u/ W u 2 W

1;�
0 .�/

¯
:

As before (see the proof of Proposition 11), using (34), we show that

 C. Ou�/ < 0 D  C.0/ H) Ou� ¤ 0:

Since Ou� 2 K C from (65), it follows that

Ou� D u�:

So, it follows that

(67) Ck. C; u�/ D ık;0R for all k 2 N0:

Claim. Ck. ; u�/ D Ck. C; u�/ for all k 2 N0.
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Let u 2 W 1;�
0 .�/. Then,ˇ̌

 .u/ �  C.u/
ˇ̌
�

Z
�

ˇ̌
G.z; u/ �GC.z; u/

ˇ̌
dz

�

Z
�

ˇ̌
G.z; u/ �GC.z; u�/

ˇ̌
dz

C

Z
�

ˇ̌
GC.z; u�/ �GC.z; u/

ˇ̌
dz .since u� � 0/:

(68)

We estimate the two integrals in the right-hand side of (68). Since F.z; �/ is an L1-
locally Lipschitz function, we haveZ

�

ˇ̌
G.z; u/ �G.z; u�/

ˇ̌
dz

�

Z
¹u<v�º

�ˇ̌
f .z; v�/.v� � u/

ˇ̌
C
ˇ̌
F.z; v�/ � F.z; u�/

ˇ̌�
dz

C

Z
¹v��u�u�º

ˇ̌
F.z; u/ � F.z; u�/

ˇ̌
dz

C

Z
¹u�<uº

ˇ̌
f .z; u�/.u � u�/

ˇ̌
dz .see (63)/

� c19ku � u�k for some c19 > 0

since F.z; �/ is an L1-locally Lipschitz function.
Similarly, we show thatZ

�

ˇ̌
GC.z; u�/ �GC.z; u/

ˇ̌
dz � c20ku � u�k for some c20 > 0:

Therefore, we can say that

(69)
ˇ̌
 .u/ �  C.u/

ˇ̌
� c21ku � u�k with c21 D max¹c20; c21º:

Also, for all u; h 2 W 1;�
0 .�/, we haveˇ̌˝

 0.u/ �  0C.u/; h
˛ˇ̌

�

Z
�

ˇ̌
g.z; u/ � gC.z; u/

ˇ̌
jhj dz

�

Z
�

ˇ̌
g.z; u/ � gC.z; u�/

ˇ̌
jhj dz C

Z
�

ˇ̌
gC.z; u�/ � gC.z; u/

ˇ̌
jhj dz

� c22ku � u�kkhk for some c22 > 0

because g.z; �/, gC.z; �/ are Lispchitz continuous; recall v�; u�2L1.�/. This leads to

(70)


 0.u/ �  0C.u/

� � c22ku � u�k:
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From (69) and (70), we see that given "0 > 0, we can find ı0 > 0 such that

(71) k �  CkC1. xBı0 .u�//
� "0:

We assume that K is finite. Otherwise, on account of (65), we see that we already
have an infinity of bounded nodal solutions and so, we are finished. Then, (71) and the
C 1-continuity property of critical groups (see Hu–Papageorgiou [20, Theorem 3.129,
p. 179]) imply that

Ck. ; u�/ D Ck. C; u�/ for all k 2 N0:

This proves the claim.
From (67) and the claim, we obtain

Ck. ; u�/ D ık;0R for all k 2 N0:

Invoking Theorem 4.6 of Chang [6, p. 43], we conclude that

u� is a local minimizer of  .�/:

Similarly, for v� use this time  �.�/.

Now, we are ready to produce a nodal solution.

Proposition 15. If hypothesesH0 andH1 hold, then problem (1) has a nodal solution
y0 2 W

1;�
0 .�/ such that

v� � y0 � u�:

Proof. We assume that  .v�/ �  .u�/ (the reasoning is the same if the opposite
inequality holds). Also recall that we assume thatK is finite (otherwise, on account of
(65), we already have a sequence of distinct bounded nodal solutions and so we are done).
Then, from Proposition 14 and Proposition 3.132 of Hu–Papageorgiou [20, p. 179]
(see (73)), we can find � 2 .0; 1/ small such that

(72)  .v�/ �  .u�/ < inf
®
 .u/ W kv � u�k D �

¯
D m0:

Clearly,  .�/ is coercive (see (63)). Therefore, from Hu–Papageorgiou [20, p. 123], we
have that

(73)  .�/ satisfies the C -condition:

Then, (72) and (73) permit the use of the Mountain pass theorem. Therefore, we can
find y0 2 W 1;�

0 .�/ such that

(74) y0 2 K and m0 �  .y0/:
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From (65), (72) and (74), we have

(75) y0 2 Œv�; u�� and y0 2 ¹v�; u�º:

Corollary 3.123 of Hu–Papageorgiou [20, p. 178] implies that

(76) C1. ; y0/ ¤ 0:

Let V D W 1;�
0 .�/ \ L1.�/. We have V ,! W

1;�
0 .�/ densely. As above using the

C 1-continuity property of critical groups, we show

Ck. jV ; 0/ D Ck.'jV ; 0/ H) Ck. ; 0/ D Ck.'; 0/ for all k 2 N0;

see Palais [30, Theorem 16]. This indicates that

(77) Ck. ; 0/ D ık;dmR for all k 2 N0 .see Proposition 13/:

Sincedm� 2 (recallm� 2), from (76) and (77), we infer thaty0¤ 0 and soy0 2 Œv�;u��
is a nodal solution of (1).

We can state the following multiplicity theorem for problem (1).

Theorem 16. If hypotheses H0 and H1 hold, then problem (1) has at least three
nontrivial solutions:

u� 2 W
1;�
0 .�/ \ L1.�/ with 0 � u�;

v� 2 W
1;�
0 .�/ \ L1.�/ with v� � 0;

y0 2 W
1;�
0 .�/ is nodal and v� � y0 � u�:

Remark 17. In this multiplicity theorem, we provide sign information for all the
solutions produced and these solutions are ordered.
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