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Abstract. – For a Banach–Lie group G and an embedded Lie subgroup K, we consider the
homogeneous Banach manifold M D G=K. In this context, we establish the most general condi-
tions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map
N W TM ! TM. In particular, our considerations extend all previous settings in the matter
and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that
the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W TM! TM

(defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion
of N having values in Lie.K/. As an application, we consider the question of the integrability of
an almost complex structure J on M induced by an admissible bounded operator J , and we give
a simple characterization of the integrability in terms of certain subspaces of the complexification
of Lie.G/.
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1. Introduction

For a smooth Banach vector bundle map N W TM ! TM (covering identity), its
Nijenhuis torsion is defined as

�N .X; Y / D N ŒNX; Y �CN ŒX;N Y � � ŒNX;N Y � �N 2ŒX; Y �

in terms of vector fields X; Y in M. Here, Œ�; �� is the usual Lie bracket of vector fields.
Sometimes �N is called the Nijenhuis tensor of N in the literature. It was defined
in [33] in order to describe the behavior of distributions spanned by eigenvectors
of N , see [28] for a review of the history around this subject. The Nijenhuis torsion is
closely related to the problem of integrability of almost complex structures solved in
the finite-dimensional real-analytic case by Eckmann and Frölicher in [15, 16] and for
the smooth (or even less regular case) by Newlander and Nirenberg in [32].

https://creativecommons.org/licenses/by/4.0/
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The map N is a Nijenhuis operator if its Nijenhuis torsion vanishes. Nijenhuis
operators are useful in the study of integrable systems, see e.g. [5,28,29,31,35] and the
references therein. For example, the vanishing of the torsion �N is also equivalent to
the Jacobi identity for a new deformed bracket on vector fields of M defined as follows:

ŒX; Y �N D ŒNX; Y �C ŒX;N Y � �N ŒX; Y �

(see [27, 29]), and in fact, N gives rise to a Lie algebra morphism from the new Lie
algebra structure on the vector fields to the old one. It allows one also to deform Poisson
brackets on the manifold via so-called Poisson–Nijenhuis structures [29]. They are also
linked with Poisson–Lie groups and even Poisson groupoids and Lie bialgebroids [13].

There is a recent growing interest in Nijenhuis operators and their applications, as
can be seen in the series of recent papers, for instance, [6, 7] or [10] and references
therein.

To the best of our knowledge, so far Nijenhuis operators were only studied in finite-
dimensional context or formally. The aim of this paper is to generalize known results to
the context of Banach manifolds taking into account (extending and correcting) results
known for the specific case of complex structures from e.g. [2]. Our setting is as follows:
we consider G a Banach–Lie group and K an embedded Banach–Lie subgroup of G,
such that the quotient map � W G ! G=K DM is a smooth submersion. It is well
known that in this setting, the existence of a closed linear complement for Lie.K/ in
Lie.G/ is equivalent to the existence of smooth local cross-sections � for the quotient
map � . In our approach, we assume neither of those (see Remark 5.1 below) and extend
some classical results to that setting.

On M D G=K, a Banach vector bundle map N W TM! TM is homogeneous if
it is equivariant with respect to the natural action of the Lie group G on M. In this
paper, we are interested in homogeneous vector bundle maps that can be described by
operators N 2 B.g/ with certain properties (admissible operators of Definition 2.9),
where g D Lie.G/ is the Banach–Lie algebra of G. The main purpose of this paper is
to prove the following.

Theorem A. Let N W TM ! TM be a homogeneous Banach vector bundle map
induced by an admissible operator N 2 B.g/ and the action of G on M. Then, N is
Nijenhuis if and only if for any v;w 2 g,

NŒv;Nw�CNŒNv;w� � ŒNv;Nw� �N 2Œv; w� 2 k D Lie.K/:

This is Theorem 3.6 below. In the process, we clarify certain aspects of known proofs
of related results. As a corollary of Theorem 3.6, for homogeneous almost complex
structures J defined by an admissible operator J , we give a linear characterization
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in the complexification of g for J to be integrable, invoking the Banach version of
the Newlander–Nirenberg theorem [2, Theorem 7] and our previous theorem. More
precisely, let gC be the complexification of g, and JC the complexification of J . Let

ZC D ¹v 2 gC
W JCv � iv 2 kC

º:

By combining Theorem 4.6 and Corollary 4.7 below, we get the following.

Theorem B. Assuming that G=K has a real-analytic structure, the almost complex
structure J is integrable if and only if ZC is a Banach–Lie subalgebra of gC .

Both theorems giving the characterization on homogeneous spaces are known in
finite-dimensional case, but the existing proofs employ certain properties of vector fields
and almost complex structures that do not always hold in Banach context. In particular,
the proof by Frölicher in the finite-dimensional setting [16, Section 19, Satz 2] involves
the existence of local cross-sections of the quotient map � W G !M D G=K (see
Remark 5.1), which may not exist in general in the Banach setting. On the other hand, in
[2, Theorem 13], which is stated in the Banach setting, there is no mention of Nijenhuis
operators and the discussion concerns only almost complex structures, which involves
the additional constraint J2 D �1 (a particular case of our results). We also note that
there is a problem with the proof of [2, Theorem 13] (see Remarks 2.7 and 2.14): we
show on a very simple example that properties used in that proof do not hold, even in
the finite-dimensional case (Section 6.1). Our approach avoids and clarifies the problem
but at the same time extends the result to the case when k is not complemented in g.

The results of this paper will also be applied in the study of almost Kähler structures
on the coadjoint orbits of the unitary groups [19].

The paper is organized as follows: in Section 2, we introduce the necessary ideas
and objects from the theory of Banach vector bundles and homogeneous spaces, and
we discuss vector fields in the homogeneous space and homogeneous vector bundle
maps. In particular, we comment on some possible pitfalls, which are later illustrated
on an elementary example of the unit sphere of R3 in Section 6.1. In Section 3, we
recall the notion of Nijenhuis torsion for a Banach vector bundle map, and using the
exponential chart of the group G together with what we call projected vector fields
in G=K, we prove the first main Theorem 3.6. In Section 4, we present the almost
complex structures as special cases of the homogeneous maps discussed before, and
we prove the second main result of the paper, Theorem 4.6. In Section 5, the classical
approach to homogeneous operators is presented (when a splitting of the Lie algebra is
at hand), illustrating how our approach is in fact more general and includes that one as
a particular case. We finish the paper discussing some examples and applications of
our main theorems in Section 6. This section also includes cases where our approach
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yields no Nijenhuis operators or complex structures, to point out the limitations. In the
paper [18], more examples related to C �-algebras are presented.

2. Homogeneous structures

In this section, main structures are introduced and the terminology and notations are
fixed. This material does not pretend to be original; however, not all results were
previously explicitly stated in the Banach context. For the sake of self-consistency of
the paper, some proofs are also included.

2.1. Notations and basic properties

Notation 2.1. Let M1;M2 be smooth real manifolds and E a real Banach space.
• For f WM1!M2 a smooth map, we denote with f� W TM1! TM2 its differential,

which at each point m 2M1 will be denoted by f�m W TmM1 ! Tf .m/M2.
• We say that f is an immersion if, for all m 2M1, the map f�m is an injection

with closed range, and we say that f is a submersion if f�m is a surjection for all
m 2M1.

• If X is a vector field in M1 and p 2M1, we sometimes write Xp instead of X.p/
for convenience.

• IfX1;X2 are vector fields in M1, M2, respectively, they aref -related ifX2.f .m//D
f�m.X1.m// for all m 2M1. It is well known that in this case if also a vector field
Y2 is f -related with X2, then

(2.1) ŒX2; Y2�
�
f .m/

�
D f�m

�
ŒX1; Y1�.m/

�
;

where Œ�; �� denotes the Lie bracket of vector fields.
• We use B.E/ to denote the space of bounded linear operators acting on E and we

denote with GL.E/ the group of invertible bounded operators.

Notation 2.2. Let G be a real Banach–Lie group with Banach–Lie algebra g.
• The left and right multiplication by elements g 2 G will be denoted by lg.h/ WD gh

and rg.h/ WD hg, and the conjugation is lgrg�1 , i.e., h 7! ghg�1.
• The differential of lg at the unit element h D 1 will be denoted as Lg , i.e., Lg D
.lg/�1 and likewise Rg D .rg/�1.

• The adjoint map on the Lie algebra (the differential of conjugation at the identity)
is denoted as Adg , i.e., Adg D LgRg�1 .

• The Lie bracket in g will be denoted as Œv; w� D advw, where ad D .Ad/�1 is the
differential at g D 1 of the adjoint representation of the group Ad W G ! GL.g/.
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Definition 2.3 (Homogeneous spaces). LetK be an immersed Banach–Lie subgroup
of G with Banach–Lie subalgebra k � g. We say that G=K is a homogeneous space of
G if the quotient space for the right action of K on G

G=K D ¹gK; g 2 Gº

has a Hausdorff Banach manifold structure such that the quotient map �.g/ D gK is a
submersion.

This is guaranteed for instance when K is a split Banach–Lie subgroup (i.e., the
Lie algebra k is closed in g and has a closed complement), but we do not require it.
Since K D ��1.�.K// is a closed subgroup of G, and since we are imposing � to be
a submersion, then in fact K must be embedded in G, see [1, Corollary 4.3] (however,
it may not be split as mentioned before, see Section 6.2).

Notation 2.4. Let � W G ! G=K be a homogeneous space.
• The base point in G=K will be denoted as p0 D �.K/.
• The action of G will be denoted as ˛ W G �G=K ! G=K, i.e., ˛.g; p/ D �.gh/

for p D �.h/ 2 G=K.
• For a fixed g 2 G, we denote by ˛g 2 Aut.G=K/ the mapping ˛g.p/ D ˛.g; p/.

Similarly, for a fixed p 2 G=K, we denote by ˛p the mapping ˛p.g/ D ˛.g; p/.
• The differential of ˛g will be denoted by .˛g/� W T .G=K/! T .G=K/. The point

at which it is evaluated will be indicated as long as it is relevant or necessary. The
same considerations will apply to .˛p/� W TG ! T .G=K/.

The following lemmas and remarks collect the trivial (but useful for our purposes)
relations among the differentials of the various maps and vector fields on G=K.

Lemma 2.5. Let g 2 G, v 2 g. Then, the following hold:

(1) .˛g/���1 D ��gLg or equivalently ��g D .˛g/���1L�1g .

(2) If p D �.g/ 2 G=K, then .˛p/�1 D ��gRg D .˛g/���1Ad�1g .

(3) For any h 2 G, the action property for derivative of ˛ reads

(2.2) .˛h/�.˛g/� D .˛hg/�:

It also implies that .˛g/� is a diffeomorphism of T .G=K/.

(4) For any k 2 K, we have .˛k/���1 D ��1Adk .

(5) The kernel of the differential ��1 W g! Tp0
.G=K/ Š g=k is equal to k.

(6) ��gLgv D ��hLhw iff there exists k 2 K such that h D gk and v � Adkw 2 k.
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Proof. Differentiating the equality ˛g ı � D � ı lg at the identity 1 2 G, by chain
rule we get the first claim. Similarly, for p D �.g/ differentiating ˛p D � ı rg at the
identity and using the previous identity, we get

��gRg D .˛g/���1L
�1
g Rg D .˛g/���1Ad�1g ;

which proves the second claim. The third claim follows from differentiating the property
˛g˛h D ˛gh and applying chain rule. For the fourth claim, we write �.g/ D �.gk/ D
�.rkg/ and we differentiate with respect to g at g D 1 to get ��1 D ��kRk . Thus,
using the first identity, we get

.˛k/���1 D ��kLk D ��1R
�1
k Lk D ��1Adk :

The fifth assertion follows from

d

dt
�.etv/ D .˛etv /�p0

��1v:

Namely, if v 2 ker��1, then �.etv/ D �.1/ D p0. Thus, ¹etvºt2R � K what implies
v 2 k. The sixth assertion is immediate from the fact that the base point must be the
same (hence, h D gk) and then by the previous identities

.˛g/���1v D ��gLgv D ��hLhw D .˛h/���1w

D .˛gk/���1w D .˛g/���1Adkw:

Since .˛g/� is an isomorphism and ker��1 D k, the conclusion follows.

Definition 2.6 (Projected vector fields in G=K). The right-invariant vector fields
Xv.g/DRgv on the Lie groupG can be pushed down toG=K as follows: forpD�.g/,
consider

(2.3) fXv.p/ D .˛p/�1v D ��gRgv D .˛g/���1Ad�1g v 2 TpG=K;

where the second and third equalities come from Lemma 2.5 (2). Sincep 7! .˛p/�1vD

˛�.1;p/.v; 0/ depends smoothly on p, this defines a vector field in G=K, which is the
vector field generated by the infinitesimal action of v 2 g on G=K, in other words an
infinitesimal generator of the group action ˛.

The vector fields Xv and fXv are �-related, and it is easy to check that for v;w 2 g

we have
ŒfXv;eXw � D �A

X Œv;w�;

where on the left we have the Lie bracket of vector fields on the manifold G=K, and on
the right Œv; w� D advw is the Lie bracket in g.
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Remark 2.7 (A word of caution about invariance). IfpD �.h/, then by Lemma 2.5 (3),
we have

.˛g/�pfXv.p/ D .˛gh/�p0
��1Ad�1h v;

while fXv�˛g.p/� D fXv��.gh/� D .˛gh/�p0
��1Ad�1ghv:

Since .˛gh/�p0
is an isomorphism, the equality .˛g/�pfXv.p/ D fXv.˛g.p// can only

happen if
Ad�1h .Ad�1g v � v/ 2 ker��1 D k:

So the vector fields fXv are not ˛g -related with themselves in general, unlike left-
invariant vector fields on a Lie group.

However, if we fix h 2 G and v 2 g, then it is straightforward to check that AXAdhv

is the unique vector field in G=K which is ˛h-related to the projected vector field fXv .
In other words,

(2.4) .˛h/�
fXv˛�1h D AXAdhv:

2.2. Homogeneous vector bundle maps and admissible operators

In this section, we discuss Banach homogeneous vector bundle maps acting in the
tangent bundle T .G=K/, and then we discuss the ones which come from a linear map
defined “upstairs” in g. All vector bundle maps under consideration in this paper are
understood to be covering identity, i.e., mapping each fiber to the same fiber.

Definition 2.8. A smooth vector bundle map N W T .G=K/! T .G=K/ is called
homogeneous if it is equivariant for the action by the automorphisms ˛g :

.˛g/�Np D N˛g.p/.˛g/� for any p 2 G=K and any g 2 G:

By homogeneity, any such map comes from some Np0
2B.Tp0

.G=K// at the base
point p0.

We now look at the situation from the side of the Lie algebra g of the group G.

Definition 2.9. We will consider the following admissible linear bounded operators
on g:

(2.5) A.G;K/ D
®
N 2 B.g/ W N k � k; Ran.AdkN �NAdk/ � k 8k 2 K

¯
:

The conditions imposed in this definition are necessary to make sure the operator
will give rise to a homogeneous vector bundle map N W T .G=K/! T .G=K/, see
Proposition 2.12 below. In particular, the condition N k � k ensures that N descends
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to an operator on g=k. The other condition ensures that the resulting operator can be
propagated by group action to T .G=K/.

Lemma 2.10. Let N 2 B.g/, and consider the assertions:

(1) Ran.AdkN �NAdk/ � k for all k 2 K.

(2) Ran.N ı adz � adz ıN/ � k for all z 2 k.

Then, (1) implies (2) and if K is connected, then (1) and (2) are equivalent.

Proof. If (1) holds, then writing k D etz with z 2 k and differentiating etadzNv �

Netadzv 2 k we obtain (2). If K is connected, then it is generated by an exponential
neighborhood of the unit element; hence, for any k, we can write Adk D

Q
i Adezi DQ

i e
adzi for a finite number of zi 2 k, and this together with (2) readily implies (1).

Definition 2.11. The homogeneous vector bundle map induced byN 2A.G;K/ is the
smooth vector bundle map N W T .G=K/!T .G=K/ given at each pD�.g/2G=K by

(2.6) Np D .˛g/�Np0
.˛g/

�1
� ;

where Np0
W Tp0

G=K ! Tp0
G=K with p0 D �.K/ is defined as

(2.7) Np0
��1v WD ��1Nv; v 2 g:

Proposition 2.12. For any N 2 A.G;K/, the map N W T .G=K/! T .G=K/ in the
previous definition is a well-defined homogeneous vector bundle map in G=K.

Proof. First let us show that Np0
W Tp0

G=K ! Tp0
G=K is well defined by (2.7).

Since � is a submersion, any tangent vector in Tp0
G=K can be written as ��1X , for

someX 2 g. We need to show that the value of Np0
��1X 2 Tp0

G=K does not depend
on the representative X 2 g. Consider X1; X2 2 g such that ��1.X1/ D ��1.X2/, i.e.,
X1 �X2 2 k. We have ��1N.X1 �X2/ D 0 since N k � k. By linearity, we therefore
have

��1N.X1/ D ��1N.X2/:

Since ��1 is a bounded surjection, the norm in Tp0
.G=K/' g=k must be equivalent to

the quotient norm k�kquot by the open mapping theorem. To show that Np0
is bounded

for the quotient norm in Tp0
.G=K/, note that

Np0

Œv�




quot D inf
z2k
kNv � zk � inf

z2k
kNv �Nzk � kN k inf

z2k
kv � zk D kN kkvkquot:

Now we take an arbitrary vector Xp 2 Tp.G=K/ and we write it as Xp D ��gLgv D
��hLhw for some v; w 2 g. Using Lemma 2.5 (6), it follows that h D gk and v �
Adkw 2 k; hence,

��1v D ��1Adkw:
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Comparing values of N on those two presentations of Xp , we get on one hand

.˛g/�Np0
.˛g/

�1
� Xp D .˛g/�Np0

.˛g/
�1
� ��gLgv D .˛g/�Np0

��1v

D .˛g/�Np0
��1Adkw D .˛g/���1NAdkw

D .˛g/���1AdkNw

since N commutes with Adk modulo ker��1 D k. On the other hand,

.˛h/�Np0
.˛h/

�1
� Xp D .˛h/�Np0

.˛h/
�1
� ��hLhw D .˛h/�Np0

��1w

D .˛h/���1Nw D .˛g/�.˛k/���1Nw

D .˛g/���1AdkNw

by means of Lemma 2.5 (4). This proves that N is well defined by (2.6). By construction,
N is a vector bundle map, and since it is given by the composition of smooth maps, it is
smooth. The ˛g -equivariance is a consequence of the definition Np D .˛g/�N.˛g/

�1
� ,

the definition of .˛g/�, and the chain rule for ˛.

Remark 2.13. In general, not every linear morphism of Tp0
.G=K/ comes from a

linear operator on g. This is related to the so-called quotient lifting property of Banach
spaces, see e.g. [23, 30]. However, when it happens, the linear operator necessarily
belongs to A.G;K/.

Remark 2.14 (Projected vector fields and the homogeneous vector bundle map). The
Banach vector bundle maps can be seen also as maps on vector fields. Let us apply the
map N W T .G=K/! T .G=K/ defined by means ofN 2A.G;K/ as in Definition 2.11
to the projected vector fields on G=K. If we compute N fXv, v 2 g, we note that it
differs from eXNv in general. It can be seen as follows. For p D �.g/, by definition
(2.3), we have

eXNv.p/ D .˛g/���1Ad�1g Nv;

while

NpfXv.p/ D .˛g/�Np0
.˛g/

�1
�
fXv.p/ D .˛g/�Np0

.˛g/
�1
� .˛g/���1Ad�1g v

D .˛g/�Np0
��1Ad�1g v D .˛g/���1NAd�1g v:

Thus, for them to be equal, one must have

Ad�1g .Nv/ �N.Ad�1g v/ 2 k;

for all g 2 G (and not only g 2 K), which is usually not the case. Compare with
Remark 5.1 below.
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3. The Nijenhuis torsion of a vector bundle map N

Definition 3.1. Let M be any smooth manifold and let N W TM! TM be a smooth
Banach vector bundle map. The Nijenhuis torsion of N is defined as

�N .X; Y / D N ŒNX; Y �CN ŒX;N Y � � ŒNX;N Y � �N 2ŒX; Y �

for X; Y vector fields in M. We say that N is a Nijenhuis operator in M if its torsion
vanishes.

Note that�N is anti-symmetric. The following is well known for finite-dimensional
manifolds. We omit the proof since it is an easy modification of [2, Lemma 2] for
almost complex structures in the Banach setting (i.e., vector bundle maps such that
N 2 D �1). Let E denote the Banach space modeling the manifold M.

Theorem 3.2. The Nijenhuis torsion of N at p 2M depends only on the values of the
vector fields at the point p; i.e.,�N is a tensor. In any manifold chart .U; '/, using the
local expression of N W '.U / � E ! B.E/ and the local expressions of the vector
fields X; Y W '.U /! E, one has

�N .X; Y /p D Np
�
.N�pXp/.Yp/ � .N�pYp/.Xp/

�
C
�
N�p.NpYp/

�
.Xp/ �

�
N�p.NpXp/

�
.Yp/:

We now return to the homogeneous structures to give a local/global expression of
the torsion of N .

Remark 3.3 (Exponential map of G). Let V � g be a 0-neighborhood such that
exp jV W V ! U D exp.V / is a diffeomorphism. Recall the formula for the differential
of the exponential map

(3.1) exp�z x D LezF.adz/x D Rezf .adz/x;

whereF.�/D .1� e��/=� and f .�/D e�F.�/. The proof of these formulas for finite-
dimensional Lie groups can be found in Helgason’s book [24, Chapter IV, Theorem 4.1];
for a proof adapted to the Banach setting, see for instance [44, Appendix A].

From now on we denote by Lg the differential .`g/�h at any h 2 G, for short. We
note that

F.�/ D 1 � 1
2
�CO.�2/ while f .�/ D 1C 1

2
�CO.�2/:

Lemma 3.4. For an admissible operator N 2 A.G;K/ and v 2 g, consider the right-
invariant vector fields Xv (Definition 2.6) and the vector fields Xv;N defined as

Xv;N .g/ D LgNAd�1g v:
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Then, one has

(1) L�1g ŒXv;N ; Xw �.g/ D �NŒv0; w0�,

(2) L�1g ŒXv;N ; Xw;N �.g/ D ŒNv0; Nw0� �NŒv0; Nw0� �NŒNv0; w0�,

where v;w 2 g, v0 D Ad�1g v, and w0 D Ad�1g w.

Proof. We use the exponential chart .gU;'/ around g 2G to compute the Lie brackets,
i.e., ' W gU ! V � g and '�1.z/ D gez for z 2 V . Consider the local expressions
xXv;N , xXv of Xv;N , Xv in this chart, i.e.,

xXv.z/ D '�gezXv.gez/; xXv;N .z/ D '�gezXv;N .gez/

for z 2 V . We note that Lgez D LgLez and Rgez D RezReg , and that L commutes
with R. Differentiating the identity '.gez/ D z, we obtain '�gez .lg/�ez exp�z D idg

or equivalently using the formula (3.1)

'�gez D F.adz/�1L�1ez L
�1
g D f .adz/�1R�1ez L

�1
g D f .adz/�1L�1g R

�1
ez

by the previous remark. Then, plugging in the formula from Definition 2.6, we get

xXv.z/ D f .adz/�1L�1g Rgv D f .adz/�1Ad�1g v

or equivalently f .adz/ xXv.z/ D Ad�1g v. Replacing z with tz, we see that

xXv.tz/C 1
2

�
tz; xXv.tz/

�
CO.t2/ D Ad�1g v:

Then, by differentiating at t D 0, we get

xXv�0.z/ D �
1
2

�
z; xXv.0/

�
D �

1
2
Œz;Ad�1g v�:

Applying the same approach to Xv;N , we get

xXv;N .z/ D F.adz/�1N.Ad�1ez Ad�1g v/

or equivalently F.adz/ xXv;N .z/D N.e�adz Ad�1g v/. Then, analogously to the previous
case, we obtain

xXv;N .tz/ � 1
2

�
tz; xXv;N .tz/

�
CO.t2/ D NAd�1g v �NŒtz;Ad�1g v�CO.t

2/:

Thus, again differentiating at t D 0, we arrive at

xX
v;N
�0 .z/ D 1

2
Œz; xXv;N .0/� �NŒz;Ad�1g v� D

1
2
Œz; NAd�1g v� �NŒz;Ad�1g v�:

Now we compute

Œ xXv;N ; xXw �.0/ D xXw�0.
xX
v;N
0 / � xX

v;N
�0 . xXw0 /
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which gives us

Œ xXv;N; xXw �.0/D�1
2
ŒNAd�1g v;Ad�1g w��

1
2
ŒAd�1g w;NAd�1g v�CNŒAd�1g w;Ad�1g v�

DNŒAd�1g w;Ad�1g v� D NŒw0; v0�:

Applying '�1�0 D Lg gives the first formula of the lemma. The other Lie bracket

Œ xXv;N ; xXw;N �.0/ D xX
w;N
�0 . xX

v;N
0 / � xX

v;N
�0 . xX

w;N
0 /

can be computed in a similar fashion in order to arrive at the second formula of the
lemma.

Lemma 3.5. Let v; w 2 g and consider the projected vector fields fXv;eXw in G=K
(Definition 2.6). Then, at p D �.g/, we have

N ŒfXv;N eXw �.p/CN ŒN fXv;eXw �.p/ D �2.˛g/���1N 2Œv0; w0�

and

ŒN fXv;N eXw �.p/ D .˛g/���1
�
ŒNv0; Nw0� �NŒv0; Nw0� �NŒNv0; w0�

�
;

where v0 D Ad�1g v and w0 D Ad�1g w.

Proof. We first note that the vector fields N fXv are �-related to the vector fieldsXv;N

of the previous lemma, i.e., for any g 2 G,

��gX
v;N .g/ D ��gLgNAd�1g v D .˛g/�Np0

��1Ad�1g v

D .˛g/�Np0
.˛g/

�1
�
fXv.p/ D NpfXv.p/

by Lemma 2.5 (1). We also recall that fXv are �-related with Xv. Thus, again by
Lemma 2.5 (1), the previous lemma, and equality (2.1), we obtain

ŒN fXv;eXw �.p/ D ��g ŒXv;N ; Xw �.g/ D .˛g/���1L�1g ŒXv;N ; Xw �.g/
D �.˛g/���1NŒv0; w0�:

By reversing the bracket and exchanging v;w, we also get

ŒfXv;N eXw �.p/ D �.˛g/���1NŒv0; w0�:
Thus, summing and applying Np D .˛g/�Np0

.˛g/
�1
� , with Np0

��1v WD ��1Nv, we
obtain the first formula of the lemma. To compute the second bracket, we use the
previous lemma and the result is straightforward.

The following theorem, albeit in the setting of complemented Banach–Lie algebras
(Section 5), can be found in [2, Theorem 13]. However, the method of proof in that
paper has flaws (see Remarks 2.7, 2.14 and Example 6.1).
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Theorem 3.6. Assume G=K is equipped with a homogeneous vector bundle map N

induced by N 2 A.G;K/. Let X; Y be vector fields on G=K. Let p D �.g/ and take
v;w 2 g such that X.p/ D .˛g/���1v and Y.p/ D .˛g/���1w. Then, the Nijenhuis
torsion of N can be expressed as

�N .X; Y /.p/ D .˛g/���1
�
NŒv;Nw�CNŒNv;w� � ŒNv;Nw� �N 2Œv; w�

�
:

In particular, N is a Nijenhuis operator in G=K, i.e., �N � 0, if and only if

(3.2) NŒv;Nw�CNŒNv;w� � ŒNv;Nw� �N 2Œv; w� 2 k

for all v;w 2 g.

Proof. Since the value of the torsion tensor depends only on the values of the vector
fields at the considered point (Theorem 3.2), we fix g and we replace X; Y with the
projected vector fields with speeds Adgv and Adgw, respectively (i.e., zX.�.h// D
AXAdgv.�.h// D .˛h/���1Ad�1h Adgv and likewise zY DBXAdgw , as in Definition 2.6).

Then, we compute the torsion�N of these two vector fields, and almost all the compu-
tations were done in the previous lemmas. We only need to add that their Lie bracket
is

Œ zX; zY �.p/ D ��gRg ŒAdgw;Adgv� D ���gRgAdg Œv; w� D �.˛g/���1Œv; w�

by means of Lemma 2.5(2). Therefore,

N 2Œ zX; zY �.p/ D �.˛g/���1N
2Œv; w�;

which then cancels out one of the brackets in Lemma 3.5.

Remark 3.7. The expression in (3.2) is actually the value at the identity of the Nijenhuis
torsion of the left-invariant bundle map TG ! TG defined by N .

Corollary 3.8. If either v or w belong to k, then (3.2) is automatically fulfilled for
admissible N . If there exists a linear complement m of k, it suffices to check (3.2) for
v;w 2 m.

Proof. By the anti-symmetry in v;w of (3.2), it suffices to verify the first claim for
v 2 k. By Lemma (2.10),N commutes with the adjoint action by elements in k modulo
k and we have

NŒv;Nw� D N 2Œv; w�C k1;

for some k1 2 k; hence, the first term in equation (3.2) cancels with the fourth. Since
Nv 2 k also, we have

NŒNv;w� D ŒNv;Nw�C k2
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for some k2 2 k, and the second term cancels with the third one. Now if gDm˚ k, by
the bilinearity of the torsion �N and the previous claim, the second claim follows.

Corollary 3.9. In the case when N is defined as add for some d 2 g, it is an
admissible operator (see Definition 2.9) if and only if for all v 2 g and k 2 k,

Œk; d � 2 k

and �
v; Œk; d �

�
2 k:

The condition (3.2) in this case simplifies to�
Œd; v�; Œd; w�

�
2 k

for all v;w 2 g.

Proof. Simply expand (3.2) and apply the Jacobi identity.

4. Almost complex structures

Let us recall that by almost complex structure J on a manifold M, we mean a Banach
vector bundle map J W TM ! TM such that J2 D �1. Its Nijenhuis torsion defined
in Definition 3.1 is

(4.1) �J.X; Y / D J
�
ŒJX; Y �C ŒX;JY �

�
� ŒJX;JY �C ŒX; Y �;

whereX and Y are vector fields in M, and the bracket Œ�; �� denotes the bracket of vector
fields.

Remark 4.1. For finite-dimensional manifolds, the vanishing of this tensor is equiva-
lent to the integrability of the almost complex structure by the Newlander–Nirenberg
theorem [15,32]. In the infinite-dimensional setting, this is not always true. An example
of an infinite-dimensional smooth almost complex Banach manifold with a vanishing
Nijenhuis tensor, which is not integrable, was given by Patyi in [36]. However, as
it was shown in [2] and in the appendix of [39], for real-analytic Banach manifolds
endowed with real-analytic almost complex structures, the Newlander–Nirenberg the-
orem reduces to the Frobenius theorem for the eigenspaces of the complex linear
extension JC of J to the complex analytic extension of the tangent bundle TMC by
the same argument as employed in [15]. It is therefore true in this context.

The example in [36] shows that the construction of the complex analytic extension
of the tangent bundle T CM may not be possible when the structure is only smooth
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and not real-analytic. The obstruction is the lack of certain properties of PDEs which
hold in finite-dimensional vector spaces, but are not available in the Banach setting.
For context and better explanation of these remarks, see the proof of Malgrange in
Nirenberg’s lecture notes [34, Theorem 4].

Definition 4.2. A homogeneous almost complex structure is a homogeneous Banach
vector bundle map J in G=K (Definition 2.8) with the additional requirement that
J2 D �1.

In our homogeneous setting, we are interested in those J that are induced by
admissible linear bounded operators via Definition 2.11.

Definition 4.3. Consider the following subset of admissible operators on g:

AC.G;K/ D
®
J 2 A.G;K/ j Ran.J 2 C 1/ � k

¯
:

Note that if J is induced by J 2AC.G;K/, one has J2p0
D�1 in Tp0

.G=K/; therefore,
J2 D �1 in the whole tangent bundle T .G=K/.

Notation 4.4 (Complexification). Let gC D g˚ ig be the complexification of the
Banach–Lie algebra g, and denote by kC the complexification of k. Relative to the
splitting gC D g˚ ig, the complex conjugation maps an element x D aC ib 2 g to
its complex conjugate defined by Nx D a � ib. For the complexified Lie-bracket, it is
plain that

(4.2) Œx; y� D Œ Nx; Ny�:

We will denote by JC the complex linear extension of J 2 B.g/ to gC , i.e.,
JC.aC ib/ D JaC iJ b. Note that JC is a bounded operator on gC , which satisfies
the following:
• JC. Nx/ D JC.x/ for any x 2 gC;
• for J 2 A.G;K/, its complexification JC preserves kC and we have

(4.3) JCŒk; v� D Œk; JCv�

for any k 2 kC and v 2 gC;
• for J 2 AC.G;K/, Ran..JC/2 C 1/ � kC holds.

Definition 4.5. Define the following two subspaces:

Z˙ D
®
v 2 gC

W .JC
� i/v 2 kC

¯
;

that is, v 2 ZC if Jv D iv C k for some k 2 kC and likewise with Z�. Note that
ZC D Z� and that ZC and Z� are closed as preimages of the closed subalgebra kC

by a continuous map.
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Theorem 4.6. A homogeneous almost complex structure J in G=K induced by J 2
AC.G;K/ is Nijenhuis (i.e., the condition �J � 0 holds) if and only if Œv; w� 2 ZC
for all v;w 2 ZC.

Proof. We use the formula (3.2) from Theorem 3.6, with the addition that for v;w 2 g,

(4.4) J 2Œv; w�C Œv; w� 2 k:

Let us define an anti-symmetric bilinear form ˇ on g by

(4.5) ˇ.v;w/ WD J Œv; Jw�C J ŒJ v;w� � ŒJ v; Jw� � J 2Œv; w�:

In this setting, the vanishing of the torsion is therefore equivalent to ˇ taking values
in k:

�J � 0 ” ˇ.v;w/ 2 k; 8v;w 2 g:

• Suppose that�J vanishes. By complexifying the bilinear formˇ defined by equation
(4.5) and using equation (4.4), we have for v;w 2 gC

JCŒv; JCw�C JCŒJCv;w� � ŒJCv; JCw�C Œv; w� 2 kC:

Let us prove that if v;w 2 ZC, then the bracket Œv; w� belongs to ZC as well. For
v;w 2 ZC, we have JCv D iv C k1 and JCw D iw C k2. Therefore,

2iJCŒv; w�C JCŒv; k2�C J
CŒk1; w�C 2Œv; w� � i Œv; k2� � i Œk1; w� 2 kC:

By equation (4.3), we have

JCŒv; k2� D �J
CŒk2; v� D �Œk2; J

Cv� D �Œk2; iv C k1� D i Œv; k2�C k3

and likewise JCŒk1; w� D i Œk1; w�C k4; therefore,

2iJCŒv; w� D �2Œv; w�C k5;

which proves that Œv; w� 2 ZC.
• Now we prove the implication in reverse direction. Suppose that for v;w 2 ZC, the

bracket Œv; w� belongs to ZC. Let us prove that ˇ takes values in k.
Let v;w 2 g. Then,

.JC
� i/.JC

C i/v D .J 2 C 1/v 2 kI

therefore, .JC C i/v 2 ZC, and likewise .JC C i/w 2 ZC. Then, the hypothesis
of the theorem tells us that

JC
�
.JC
C i/v; .JC

C i/w
�
D i

�
.JC
C i/v; .JC

C i/w
�
C k
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for some k 2 kC . After expanding, we get that

(4.6) J ŒJ v; Jw�C iJ Œv; Jw�C iJ ŒJ v;w� � J Œv; w�

equals
i ŒJ v; Jw� � ŒJ v; w� � Œv; Jw� � i Œv; w�C k:

Note that by using the hypothesis, conjugating, using equation (4.2) and the fact that
ZC D Z�, we also have JCŒx; y�C i Œx; y� 2 kC for all x; y 2 Z�. Since we also
have .JC � i/v 2 Z� and .JC � i/w 2 Z�, with a similar reasoning we obtain
that

(4.7) J ŒJ v; Jw� � iJ Œv; Jw� � iJ ŒJ v;w� � J Œv; w�

equals
�i ŒJ v; Jw� � ŒJ v; w� � Œv; Jw�C i Œv; w�C k0:

Adding equations (4.6) and (4.7) (and halving) and canceling out, we arrive at

Œv; Jw�C ŒJ v; w�C J ŒJ v; Jw� � J Œv; w� 2 k:

If we apply J , we get

J Œv; Jw�C J ŒJ v;w�C J 2ŒJ v; Jw� � J 2Œv; w� 2 k:

Finally, using equation (4.4),

J 2ŒJ v; Jw� D �ŒJ v; Jw�C k2 for k2 2 kI

hence, ˇ.v;w/ 2 k.

Combining Definitions 2.3, 2.9, 4.5, Theorem 4.6 and the Newlander–Nirenberg
theorem in real-analytic Banach context [2, Theorem 7], we obtain the following.

Corollary 4.7. Let G=K be a real-analytic homogeneous space equipped with a
real-analytic homogeneous almost complex structure J given by J 2AC.G;K/. Then,
J is integrable (i.e., G=K admits complex charts compatible with J) if and only if it is
Nijenhuis, i.e., if and only if

ZC D
®
v 2 gC

W .JC
� i/v 2 kC

¯
is a complex Lie subalgebra of gC .

Remark 4.8. By conjugation, ZC is a complex Lie subalgebra of gC if and only if
Z� is.
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5. A brief look at the split case

In this section, we discuss the situation when K is split in G, i.e., if k has a closed
complement m in g, g D k ˚m.

Under this condition one can consider the following subset of admissible linear
bounded operators on g:

B.G;K/D
®
N 2B.g/ W k � kerN I Nm�mI Ran.AdkN �NAdk/� k 8k 2K

¯
:

Similarly, one can consider the following subset of AC.G;K/:

	m.G;K/ D
®
N 2 AC.G;K/ W k � kerN I Nm � mI N 2

jm D �1jm
¯
:

Note that B.G;K/ is strictly contained in A.G;K/ and 	m.G;K/ is strictly contained
in AC.G;K/. By [2, Proposition 12], any almost complex structure on M D G=K

is induced by a linear map in 	m.G;K/. A similar construction was used in [12] to
define Riemannian metrics on the manifold of non-linear flags.

Remark 5.1. If K is split in G, then around each p 2 G=K there exists a smooth
local cross-section � W U � G=K ! G for the quotient map (i.e., � ı � D idU , see
[3, Theorem 4.19]). Then, the proof of Theorem 3.6 can be simplified (following
Frölicher [16, Satz 2, Section 19] for almost complex structures) by considering the
local vector fields on the homogeneous space

Ovp D ���.p/L�.p/v; p 2 U; v 2 g:

It is plain that Ov is �-related to the restriction of the left-invariant vector field generated
by v to the submanifold �.U /, and also that

.N Ov/p D Np Ovp D ���.p/L�.p/Nv D .bNv/pI

i.e., N exchanges the field induced by v 2 g with the one induced by Nv 2 g.

Remark 5.2. One can consider J 2 	m.G;K/. In this case, the spaces Z˙ defined
in Definition 4.5 are given by

Z˙ D kC
˚ Eig˙i .J

C
jmC /;

where Eig˙i .JC
jmC / is the eigenspace with eigenvalue˙i of the complex linear exten-

sion JC restricted to mC . Note that in this case, we have
• gC D ZC CZ�,
• ZC \Z� D kC ,
• AdkZ˙ � Z˙.
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By [2, Theorem 15] (see also [16]), in this complemented case, any homogeneous
complex structure on M D G=K comes from this kind of decomposition of gC . In
particular, in the complemented case, Corollary 4.7 reduces to [2, Theorem 13].

6. Examples

We end this paper with some examples that illustrate the definitions, applications, and
possible pitfalls.

6.1. Example: spheres

Identify the sphere S2 with the homogeneous space SO.3/=SO.2/ in such a way that the
base point corresponds to the north pole p0 D .0; 0; 1/T . The action ˛ of G D SO.3/
(and g D so.3/ as well) is given by left matrix multiplication. Consider the basis of
so.3/:

k0 D

0B@ 0 1 0

�1 0 0

0 0 0

1CA ; e1 D

0B@ 0 0 1

0 0 0

�1 0 0

1CA ; e2 D

0B@0 0 0

0 0 1

0 �1 0

1CA :
Note that k0 spans the Lie algebra k Š so.2/ and that ¹e1p0; e2p0º spans the tangent
space to the sphere S2 at p0. The infinitesimal generator v 2 so.3/ gives usfXv.p/ D .˛p/�1v D vp; for p 2 S2:

The diffeomorphism ˛g W S2 ! S2 transforms fXv in the following manner (see equa-
tion (2.4)):

gvp D gfXv.p/ D .˛g/�.fXv/.p/ D .˛g/�.fXv/�.˛g/�1.˛gp/� D AXAdgv.gp/;

while fXv.gp/ D vgp; thus, in general, gfXv.p/ ¤ fXv.gp/ (Remark 2.7).
Now considerN D adk0

on so.3/. It preserves kDRk0. To show that it is admissible,
we verify the claim Ran.AdkN �NAdk/ � k for k 2 K (Definition 2.9): since K is
a connected group, by Lemma 2.10, it is enough to verify it on the level of the Lie
algebra, which is trivial. Therefore,N descends to a linear operator Np0

on the tangent
space to the sphere at p0 of the following form:

(6.1) Np0
.vp0/ D .Nv/.p0/; v 2 so.3/:

With this we define the vector bundle map N on S2 using the homogeneous action of
the group, following Definition 2.11:

Ngp0
z WD gNp0

.g�1z/; z 2 Tgp0
S2 � R3:
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Regarding Remark 2.14, we have

.N fXv/.gp0/ D Ngp0
fXv.gp0/ D gNp0

g�1fXv.gp0/ D gNp0
.g�1vgp0/

D gN.g�1vg/p0 D gN.Ad�1g v/p0;

and on the other hand, eXNv.gp0/ D .Nv/gp0, which are far from being equal unless
g 2 K.

Note that from the definition of N , it follows directly that Ran.N 2 C 1/ D ¹0º � k.
Therefore, N induces an almost complex structure N on S2 ' SO.3/= SO.2/. By
Remark 5.2, the vanishing of its torsion is equivalent toZC D ¹E1 C iE2º being a Lie
subalgebra of so.3/, which is trivial because it is (complex) one-dimensional. Therefore,
this particular complex structure is integrable, giving the usual complex structure on
the sphere S2. We remark here that it is known that the real sphere Sn admits an almost
complex structure if and only if n D 2 or n D 6 (see [8] or the survey [26] for further
details). The known almost complex structure on S6 is also homogeneous and can
be constructed by considering S6 inside the subspace of purely imaginary octonions;
however, this almost complex structure is not integrable (see [26]).

For the infinite-dimensional sphere � (the unit sphere of a real Hilbert space H ), it
is known that � is real-analytic isomorphic to H , see [14]; therefore, � admits an almost
complex structure, being a complex manifold (an infinite-dimensional real Hilbert
space H is also a complex Hilbert space, halving the basis).

6.2. Example: non-complemented setting—left and right multiplication

Let H be an infinite-dimensional separable Hilbert space, and denote with B.H / the
bounded linear operators acting in H , with K.H / the ideal of compact operators. Note
that B.H /=K.H / is known as the Calkin algebra, see [18] for more details. Consider
the group of invertible operators G D GL.H / � B.H /. For the Lie subgroup K,
consider the group of invertible operators which differ from the identity by a compact
operator K D GL.H / \ .1CK.H //. Note that since K.H / is a closed subspace
of B.H /, then K is an immersed subgroup of G (moreover, it is embedded since the
topology ofK is the norm topology). ButK is not split inG since the compact operators
are not complemented in the bounded operators. Now, since compact operators are a
closed ideal in the algebra of bounded operators, the group K is a normal subgroup
of G; therefore, the quotient has a structure of Banach–Lie group, which makes of the
quotient map � W G ! G=K a smooth submersion (see [17, Theorem II.2]).

Consider an operatorN given by right and left multiplication by bounded operators:

(6.2) N.X/ D AXB;

for A;B;X 2 B.H /. In this case, the condition NK.H / �K.H / is automatically
satisfied since K.H / is a two-sided ideal in B.H/.
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The other condition for N to be admissible (see Lemma 2.10) is

Œk; AXB� � AŒk;X�B 2K.H /;

for k 2K.H /. It is also automatically satisfied for the same reason.

Proposition 6.1. The operator N defined by (6.2) descends to the operator N on the
homogeneous space. If we choose A and B such that A2 and B2 are multiples of 1
and A2B2 D �1, we get an almost complex structure on G=K.

Let us verify using Theorem 3.6 and Corollary 4.7 if N is a Nijenhuis operator
and integrable complex structure. Note that it is known that G=K has a real analytic
manifold structure. The condition (3.2) does not hold in general; however, in a simpler
case when either A D 1 or B D 1, it is always satisfied.

Proposition 6.2. If N is left (or right) multiplication by a bounded operator from
B.H /, then N is a Nijenhuis operator onG=K. Moreover, if the square of this operator
is �1, we obtain an integrable complex structure on G=K.

6.3. Example: non-complemented setting—rank one case

Consider G and K as in previous example. Let us look for another simple case of the
operator N . First, consider the linear functional ` on S D C1CK.H / defined as
`.K.H // D 0 and `.1/ D 1. Since

kt1C kk D jt jk1C k0k � jt j D
ˇ̌
`.t1C k/

ˇ̌
;

it follows that ` is bounded in S D C1 CK.H /. By means of the Hahn–Banach
theorem, one extends it to a bounded functional on the whole B.H /, also denoted by
`. Now consider N 2 B.B.H // given by

(6.3) N.X/ D `.X/ � 1:

Proposition 6.3. N defined by (6.3) gives rise to a homogeneous vector bundle map
N on G=K. However, by Theorem 3.6, it is never a Nijenhuis operator.

Proof. Let us verify that indeed N 2 A.G;K/. By definition, it vanishes on K.H /,
so it preserves it in a trivial manner. The other condition is equivalent to

(6.4) Ad1CkN.X/ �N.Ad1CkX/ 2K.H /

for all k 2 K.H / such that 1 C k 2 GL.H /, X 2 B.H /. Since N.X/ lies in the
center of B.H /, condition (6.4) can be written as

N.X/ �N
�
.1C k/X.1C Qk/

�
2K.H /;

where 1C Qk D .1C k/�1 with Qk compact. Since kX , X Qk, and kX Qk are all compact
and hence in the kernel of N , the identity holds.
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For the second claim, note that in the condition (3.2), the first three terms vanish
identically since the image of N lies inside the center of the Lie algebra B.H /. Thus,
the condition for N to be Nijenhuis is

N 2
�
Œv; w�

�
2K.H / for all v;w 2 B.H /:

Note that by definition, N is idempotent and never takes value in K.H / n ¹0º. Thus,
for N to be Nijenhuis, the following identity should be satisfied:

(6.5) N
�
Œv; w�

�
D 0 for all v;w 2 B.H /:

It was demonstrated in [22] that every operator in B.H / is the sum of four commutators;
thus, the linear span of all commutators is equal to the whole B.H /. Thus, the condition
(6.5) never holds, as it would imply N D 0.

Let us also mention that vector bundle maps N of the discussed form never give
rise to an almost complex structure since they are idempotent N 2 D N .

By replacing identity operator 1 in the definition (6.3) of the map N by another
operator, it is possible to obtain examples of Nijenhuis operators, see [18, Section 4.1.2].

6.4. Example: the restricted Grassmannian

Consider a separable infinite-dimensional complex Hilbert space H endowed with the
orthogonal decomposition

H D H� ˚HC

onto two infinite-dimensional closed subspaces. Denote byP˙ an orthogonal projection
onto H˙ and by d D i.PC � P�/.

Consider the Banach–Lie group G D Ures defined as follows (see e.g. [37]):

Ures D ¹U 2 B.H / j U �U D UU � D 1; ŒU; d � 2 L2.H /º;

where L2.H / is the ideal of Hilbert–Schmidt operators. Its Banach–Lie algebra is

g D ures D ¹u 2 B.H / j u� D �u; Œu; d � 2 L2.H /º:

One verifies readily that d 2 ures.
The group Ures acts on the Hilbert space H in the natural way and in consequence

it also acts on the Grassmannian of H , i.e., the set of all closed subspaces of H . The
action on the Grassmannian is not transitive. The orbit of the closed infinite-dimensional
subspace HC is known as the restricted Grassmannian Grres [37]. The stabilizer of HC

is a product of two unitary groupsKDU.HC/�U.H�/. The restricted Grassmannian
Grres possesses a manifold structure and the quotient map is a submersion. It is thus a
homogeneous space G=K D Ures=.U.HC/ �U.H�//.
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We can construct Nijenhuis operators on Grres by considering bounded operators
on the Banach–Lie algebra ures of the form N D ad Qd , where Qd belongs to the center
of k D u.HC/ � u.H�/.

Proposition 6.4. The operator ad Qd descends to a vector bundle map N on TGrres.
Moreover, N is a Nijenhuis operator.

Proof. From Corollary 3.9, it follows that ad Qd belongs to A.G; K/, and thus by
Proposition 2.12, it descends to a vector bundle map N .

By Theorem 3.6 and again Corollary 3.9, N is a Nijenhuis operator if and only if�
Œ Qd; v�; Œ Qd;w�

�
2 u.HC/ � u.H�/ for all v;w 2 ures:

That this condition holds can be checked by direct computation, or else by noticing
that it is equivalent to the fact that the restricted Grassmannian is a (locally) symmetric
space [42].

The restricted Grassmannian Grres is a Kähler manifold, which means among others
that it possesses a complex structure. It is induced by N D ad Qd with Qd D 1

2
d D

1
2
i.PC � P�/. Direct computation shows that Ran..ad Qd /

2 C 1/ � u.HC/ � u.H�/;
thus, we obtain an almost complex structure. Previous considerations prove that it is
indeed integrable (since this homogeneous space has a real analytic manifold structure).
Let us note that the restricted Grassmannian is also a symplectic leaf in a certain
Banach Lie–Poisson space (central extension of the predual space of ures, see [4]) and
a Poisson homogeneous space of a Banach Poisson–Lie group [43]. It is related to
numerous hierarchies of integrable systems [20, 21], in particular to the Korteweg–de
Vries hierarchy [38, 43]. As Hermitian-symmetric space, the restricted Grassmannian
admits a hyperkähler extension which can be identified with its cotangent space or with
the coadjoint orbit of the complexification of Ures [39–41].

Remark 6.5. More examples of Nijenhuis operators and complex structures can be
found in the paper [18], where the constructions mentioned above are applied to several
classes of C �-algebras.

Remark 6.6. In finite dimensions, there is a well-known method of obtaining an
almost complex structure on coadjoint orbits of Lie groups, see e.g. [11, Section 1.2,
Theorem 2], [9, Part V, Section 12.2], and [45]. It goes by considering a polar decompo-
sition of the add operator. In the paper [19], the generalization of this approach will be
applied to the study of unitary orbits of trace-class operators, in the spirit of Kirillov’s
orbit method [25]. The results of the present paper will be used to address the question
of integrability of these structures.
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