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ABsTRACT. — Motivated by the paper [Ann. Sc. Norm. Super. Pisa CI. Sci. (5) 23 (2022), no. 2,
837-875], we provide a simplified and robust proof of the dimension-free Maz’ya—Shaposhnikova
limiting formula for seminorms associated with the Baouendi—Grushin operator. This operator,
which is generally non-hypoelliptic, arises frequently in the study of Carnot—Carathéodory spaces.
Our approach not only streamlines the original argument but also extends a recent result from
[arXiv:2401.03409].

Keyworbs. — Besov seminorm, fractional Sobolev space, Grushin space, heat kernel,
Maz’ya—Shaposhnikova formula.

MATHEMATICS SUBJECT CLASSIFICATION 2020. — 46E30 (primary); 53C17, 46E35,
35R11 (secondary).

1. INTRODUCTION

Let p € [1,00) and s € (0, 1). Let R? be the Euclidean space endowed with the standard
inner product (-, ) and the induced norm || - ||. Consider the fractional Sobolev space
WP (R4):

WoPRY) = {f € LPRY) : || fllws.r < o0},

where || - ||ws.» stands for the Gagliardo seminorm given by

[f@) = Fo|” lr
”f”W”‘(/Rd /R =yl dydx) '

For more information on fractional Sobolev spaces, see for instance [8].
On the one hand, in [2, 3], J. Bourgain et al. explored the limiting behavior of the
Gagliardo seminorm || - ||ws.» as s /' 1, and in particular, they proved that

(1.1) lim(1 =) s = cd. DIV, feWhPRY,

where || - ||L» denotes the LP-norm on the standard L?-space L?(R?), V f is under-
stood in the distribution sense, and

od,p) =227" r(”l)/r(”;d).
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Here and below, I" stands for the Gamma function. Indeed,

Y R CIE St}
P Jsd-1

where e € S~ is arbitrary and #¢ 1 is the (d — 1)-dimensional Hausdorff measure.

On the other hand, as a complement to (1.1), it is natural to consider the limiting

behavior of || - ||ws.» as s N\ 0. V. Maz’ya et al. provided a response and proved in

[23] that, for every f € Use(o.1) WsP(RY),

2dwg
1.2 lims| 2., = L
(1.2) Jm I/ s » /N7 »

where wg = n%/2/T(d/2 + 1) is the Lebesgue measure of the unit ball in R?. We
refer to (1.2) as the Maz’ya—Shaposhnikova (MS) limiting formula. See for instance
[1,4-6,9,19,21,22,24] for intensive studies on (1.2) in various settings. Additionally,
we briefly mention that fractional Orlicz—Sobolev spaces, along with their magnetic
counterparts, have been investigated in detail in recent works [10, 11].

It is well known that (1.2) can be formulated in a dimension-free version. Let
(Pr)r>0 be the standard heat semigroup generated by the Laplacian A, i.e., for any
bounded measurable function f on R?, Py f := f and

_lx=y)2

1
Ptf()C) = W/Rd f(y)e 4t dy, t>0, xe Rd.

Lets € (0,1) and p € [1, 00). Consider the Besov seminorm associated with the heat
semigroup (P;);>o:

0o 1/p
N = ([ Pr = reolnmansTe)

Then, it is easy to calculate that (see e.g. [4, (1.4)])

2ps d + ps »
nd/zr( . )IIfIIWy,p.

Combining (1.2) with (1.3), we can easily derive the following dimension-free MS
limiting formula:

(1.3) Ns,p(f)? =

. 4
(14) lim 5N p (/)" = /o, fe {J WPRY.
N p s€(0,1)

Recently, analogous formulas to (1.4) have been established in various settings. For
instance, [4] established such results for Besov seminorms associated with the Kol-
mogorov operator on R4, while [16] extended them to the sub-Laplacian on Carnot
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groups. Similar findings were also obtained recently in [20] for Dunkl heat semigroup
associated Besov seminorms. In addition, a partial formula for Besov seminorms related
to the sub-Laplacian on Grushin spaces was recently proved in [29], which can be
regarded as one of the motivations for our work.

In the present note, we further develop the ideas behind (1.4) by investigating the
same phenomenon in the setting of Grushin spaces. Section 2 begins by introducing the
necessary notation, key concepts, and known results about Grushin spaces, culminating
in the statement of our main result (Theorem 2.3). The proof of this theorem is then
detailed in Section 3.

2. PRELIMINARIES AND MAIN RESULTS

Leta > 0, and let k, m be positive integers such that n = k 4 m. Consider the following
system of vector fields on R® = R¥ x R™:

Xi =0y, i=1,...k Y =|x||*d,,, j=1,....m,

where || x||? = Zle x? is the Euclidean norm of x € R¥. Let # denote the subbundle
spanned by {X;,Y; :i =1,...,k, j =1,....,m}.

A curve y : [0, 1] — R" is called horizontal with respect to (w.r.t.) # if it is
absolutely continuous and satisfies y(t) € #, ) fora.e. t € [0, 1], where y(¢) stands
for the time derivative of y(¢). The length of y is given by

1 k k —a m 1/2

L= [ [Z o + (Z 9 <z)2) S [ (r)|2] a,
0 Limy i=1 j=1

where we denoted y(t) = (y1(z), ..., yu(t)). For every two points g, g’ € R", let

€(g, g’) be the class of all horizontal curves y : [0, 1] — R™ w.r.t. ¢ suchthat y(0) = g

and y(1) = g’. The Carnot—Carathéodory distance p, induced by J is given by

pa(g.8) =inf{Ly(y):y € €(g.8)}, g.&" €R™

The pair (R¥ x R™, py) defines the Grushin space, denoted as G- Itis well known
that G is a locally compact geodesic metric space. In the special case k = m =1,
G reduces to the Grushin plane, which can be identified as the metric completion
of the (open) Riemannian manifold (M, g), where M = {(x, y) € R? : x # 0} and
g = dx? + [|x[7>*dy>.

The sub-Laplacian (or Baouendi—Grushin operator) on G is defined as

k m
Ay = ZXIZ + Zij =A, + ||X||2aAy,
j=1

i=1
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where A, (resp. Ay) is the standard Laplace operator acting on the variable x € R*
(resp. y € R™). Indeed, if we introduce the a-gradient operator

Vo= (X1, X, Yio o, V) = (Vs [1X]9),

and the «-divergence

k m
divg = Y Xi + Y _¥;,
i=1 j=1

then we may express A, in divergence form as Ay = divy 0 Vg, where V (resp. V,,)
is the standard gradient operator acting on the variable x € R¥ (resp. y € R™). It is
important to note that, unlike the hypoelliptic operators studied in [4, 16], the operator
A, may fail to be hypoelliptic except that « is a positive integer. In this special case,
Ay becomes a sum of squares of smooth vector fields satisfying Hormander’s finite
rank condition [17, 18]. Two noteworthy special cases are when o = 0, A boils down
to the standard Laplacian on R™; when o« = 1 with m = 1 and k even, A4 is closely
related to the Kohn—Laplacian on the Heisenberg group H% [14,15].

The family of anisotropic dilations associated with the Baouendi—Grushin operator
Ag is given by

8%(x,y) = (Ax,2%T1y),  (x,y) € GE, A >0.
It is well known that py is 1-homogeneous w.r.t. (6%)1>0:
Pe(852.858") = Aoa(g. &), g.8 €Gy. A >0.
The homogeneous dimension of Gy w.r.t. (§%)>¢ is denoted by
Q=u+am.

Consider the n-dimensional Lebesgue measure dg = dx dy on G, where dx
(resp. dy) denotes the Lebesgue measure on R¥ (resp. R™). It is well known that

dé%(x,y) = A%xdy, A >0.

For every measurable subset £ of GJ, we write | E| as the n-dimensional Lebesgue
measure of E. For every p € [1, oo, let L?(GZ)) indicate the standard L?-space over
Gy endowed with the L?-norm || - || G2).

Let Bo(g.7r) ={g" € G} : pa(g.8’) < r} be the open ball with center g € G, and
radius r > 0 in the metric p,. According to [13, Proposition 2.2] and [12, Theorem 2.3],
there is a constant b € (0, 1) such that

Cu(g.br) C By(g.r) C Cu(g.b7lr), ge Gy, r >0,
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where for any g = (x,y) € GZ and any r > 0, the set € (g, ) is the product of closed
intervals:

k m
Calg.r) = [0 = xi +r1x [ [y = (Il + 1) 5 + r (Il + 7))
i=1 j=1

This geometric control implies the following volume asymptotics: there exists a constant
¢ > 1 such that

@D (el +r)™ < [Balg. )| < er™(Ixl+r)™,  g=(x,»)€Gg, r>0.
Consequently, the space (G, dg) satisfies the volume doubling property, i.e., there
exists a constant D > 0 such that

\Ba(g,2r)| < D|Ba(g,r)|, geGy, r>0,

and the volume comparison property, i.e., there exists a constant C > 0 such that

n B R Q
(2.2) c-1( R §M§C§ ., 2eG" 0<r<R<oo.
r \Ba(g,r)| r & o

These properties establish that (G, dg) is a space of homogeneous type in the sense
of [7, p. 66]. However, we note that (G, dg) is not generally Ahlfors regular.

Let (H;);>0 be the Grushin heat semigroup generated by A,. For every bounded
measurable function f on G, the semigroup is defined by Hy /' := f and

Hef(@) = [ (s )f(&)dg g Clt>0

where /1, is the Grushin heat kernel associated with H, for every ¢ > 0. It is well known
that H, is essentially self-adjoint on L?(Gp) for any ¢ > 0, and (H,);>0 extends to
a strongly continuous contraction semigroup on L?(GZ) for any p € [1, oo), while
acting as a contraction semigroup on L*°(Gg). Moreover, (H;);>¢ is conservative
(or stochastically complete), i.e., H;1 = 1 for every ¢t > 0, and sub-Markovian, i.e.,
0 < H;f <1 for every t > 0 and every measurable function f on G, satistying
0 < f < 1. The kernel (h;);=0 is symmetric, i.e., h,;(g, g’) = h:(g’, g) for every
g.g' € G} and every ¢ > 0, and satisfies the following Gaussian upper bound:

pal(g.8)?

, ,g' eGr >0,
L) ey

Ne 1 _
(2.3) 0<ht(g,g)§‘Ba(g,ﬂ)|eXp(

for some constants ¢y, ¢, > 0. A comparable Gaussian lower bound also holds though
we do not require it in our subsequent analysis. Refer to [25,26] for details.
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Equivalently, (H;);>0 corresponds to the diffusion process (U;, V;)>o solving the
following stochastic differential equations:

U, = v2dBY,
av: = V2||U,|* dBP,
where (B(l)) >0 and (B(z)),>0 are independent standard Brownian motions in R¥
and R™, respectively, defined on a filtered probability space (2, ¥, (¥1):>0, P). The

semigroup admits the probabilistic representation: for any bounded measurable function
fonGg,

Hi f(x,y) = Eay[fU, V)], (x,y) €GE, t >0,

where [E(y ;) stands for expectation for the process (U;, V;);>0 starting at (x, y) € Gg.
For studies including the Bismut formula and the log-Harnack inequalities for general-
ized Grushin-type operators, we refer to [27,28].

An important consequence of the Gaussian upper bound (2.3) combined with (2.1),
(2.2) and the Riesz—Thorin interpolation theorem is that the semigroup (H;);>0 is
ultra-contractive. We refer to [29, Propositions 2.4 and 2.5] for complete details on
this derivation.

Lemma 2.1. (1) Let p € [1, 00]. There exists a constant c; > 0 such that
[Hef(@)] = ert™ 5 | oy, g €Glt >0, f € LPGY.
(2) Let 1 < p < g < oo. There exists a constant ¢y > 0 such that
|Hi fllraey < e2t™ 7000 oy, >0, f € LP(GY).

Let p € [1,00) and s € (0, 00). Define the Besov space associated with the Grushin
heat semigroup (H;);>0 as

By p(Gg) = {f € L7 (Gg) : N§ ,(f) < oo},

where NY () is the Besov seminorm given by

1/p
N =( [, 17 = 1)) ag )

RemARrk 2.2. For every (p,s) € [1,00) x (0,00) and every f € L?(Gp), it holds
that NY ,(f) < oo if and only if

1+"’

N(f) = / / Hi(lf — £(9)1P)(g)dg—2 < ox.
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Indeed, the necessity is clear. For the sufficiency, assuming that N( f ) < 0o, we have

« (f)? =N(f) + / / H(1f — f()]7)(g) dg—

1+"’

dr
1+

<N(f)+2”1f / [Hf17(9) + | f(9)|] dg

o0
— Sp
SN2 Wy [ O

2p+1
=N+ I ey <o

The main result of this note is the following dimension-free MS limiting formula
for the seminorm NY' ,.

TueorEM 2.3. Let p € [1,00). Then, for every f € Use(o.1) Bs.p(Gg),

h\zn SNa (f)p = ”f”{p((gg)-

RemArk 2.4. (1) Let p € [1,00) and s € (0, 1). In their recent work [29], the authors
introduced an alternative Besov space B, ,(Gg), which is defined as the completion
of C°(GY) (the space of compactly supported and infinitely differentiable functions
on Gg) w.r.t. the norm | - |, ,(Gz) given by

£ B, ¢y = I.f lLremy + N§. , ().

Following methods similar to those in the paper [4], they proved that (see [29, Theo-
rem 3.21])

Jim 5N, ()" = ||u||L,,(Gn), ue | Bsp(GY).
s€(0,1)

While [29, Proposition 3.4] shows the inclusion
B;5,p(Gy) S By p(Gy),

the converse inclusion remains an open question (see [29, Remark 3.5]). This situation
differs notably from the settings in both [4, Proposition 3.2] and [16, Lemma 3.4],
where such inclusions were established. This distinction necessitates a novel approach
to prove Theorem 2.3, as existing methods from these references cannot be directly
applied.

(2) The key point in the proof of Theorem 2.3 relies on approximating the L?-
function using simple functions, in contrast to the Besov norm approximation method
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central to [4,29]. It turns out that our approach is simple and robust, which can be
employed to establish similar formulas in more general settings—such as conservative,
symmetric Markov semigroups with the ultra-contractive property as demonstrated in
Lemma 2.1 (1). A detailed treatment of this extension will be presented in a work in
preparation.

3. Proors

In this section, we present the complete proof for Theorem 2.3. The main contribution
is Lemma 3.1. We emphasize that Lemma 3.1 holds for all /' € L?(Gg) and all
p € (1,00) and Lemma 3.2 holds for all f € L!(GZ), improving [29, Lemma 3.20]
which is shown only for f € C°(Gy).

Let $(Gg) be the class of all finitely simple functions defined on G . Recall that
a simple function on G} is called finitely simple if it is supported in a set with finite
n-dimensional Lebesgue measure. Recall also the well-known fact that § (G() is dense
in L?(Gy) for every p € (1, 00).

Lemma 3.1. Let p € (1,00). Then, forany f € L?(G}),

& dr 4
. _ p _ Turyr
tims | [G 11 = @) ) de S = SIS iy

Proor. Let p € (1, 00). The proof is divided into four parts.
Part 1. Let f € $(GJ). By the elementary inequality
|la—b|P —lal? —[b|?| < Cp(lal?~ |b] + lal|b|”7"), a.b R,

for some positive constant C, depending only on p, we derive that
s = r@n@ae= [ [ e (761 + 7@ agas
Gy G /Gy
5/ / he(g. )| f g — f@|° —|f@&)|” —|f(9)|"|dg'dg
cs Jgy
< / p—1 / NP1 /
_Cp[GE [Gatht(g,g)[|f(g)| | f(ED] + | (@] f(gH]" ]dg'dg

=26 [G 1@ Hil fI(g)dg. >0,

where we used the symmetry of (4;);~¢ in the equality. Then, by Holder’s inequality
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and the ulta-contractivity in Lemma 2.1 (2), we have

G I(f):=

[ / Hi(1f = F@)I7)(©) dg e

+”

[T el + o) agas e

=26 [ [ ()@

dr
1 Lo prEn s

<26 [ 17155y

00
s Q
= C ”f”L/’(G“)”f”Ll(G})})S/; [_[1""[)7"'7(1_%)] dr

N
= oI Wi @5 o1 >0
2

Q 1
2 (1 p)
for some constant CI; > 0.

Part 2. Let f € L?(Gy). By the density of $(Gy) in L?(G,), we may choose a
sequence ( fx)k>1 C S(Gy) suchthat | fx| < |f|a.e.foreveryk > 1and fy — f ae.
as k /" oo. Then, by the symmetry and the conservativeness of /,, we have

6 1= [ [ e ) (SN + | fe)) ' de
[ L e (A + ) dg'de

=[Gn[Gnht(g,g/)[(|f(g/)|p—|fk(g/)|p)+(|f(g)}p—|fk(g)|”)] dg’ dg

=2(1£17 gz = 1l piey)s k=1, 1>0.
For a given function u on G, let
®,(u)(g, ") = hi(g.8)"/P[u(g) —ug)], 1>0 g4g €Gg.

It is easy to see that, for any fixed elements g, g’ € G and any fixed ¢ > 0, the mapping
u > ®;(u)(g, g’) is a linear functional. Applying the elementary inequality

la? —bP| < pmax{a?~!, b»"YWa —b|, a,b>0,

together with the triangle inequality for the L”-norm | - ||»Guxgy) on the L?-space
LP(Gg x G}) over the product space G, x G7 endowed with the Lebesgue measure,
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we obtain

R / A V4 /
I = UG [Gght(g,g)lf(g) (g)|” dg'dg

- / / ht(g’g’)|fk(g’)—fk(gﬂ”dg’dg'
G& Gg

=@ s @axez — 12U @y

< PmaX{HCD (f)”LP(G“ Gy’ q>;(fk)”€;(ngng)}
X ”q)t(f) - th(fk)”Lp(ng(;g), k>1,t>0.

By the symmetry and the conservativeness of /1, along with the triangle inequality, we
have the following estimates:

||q)t(f) - q)t(fk)”ip(GEng)
= / / he(g.8)( /(&) — fi@] + | f(©) — fi(®)])” dg'dg
Gy /G

<27 / / he(g. (| £(&) — fil&))” + | £(e) — fi(e)|”) dg'dg
G§ JG§
= 2p||f - fk”ip(@(lxl)’ k>1,1t>0,
and
|90 pucn =27 [ [ it ) (7 + [ eto]”) ds'ds

=271 fil? pory < 270 W peny K2 1,10,

|27 »guxen <277 / ) fG (g (| £ @] + [ £(9)]7) dg’ dg
=< 2p||f”{p(@3)’ > O,

where we also used the elementary inequality (a + b)? < 2971 (a9 + b9) for any
a,b > 0and any g > 1. As a consequence, we arrive at

(3.3) L < 2plf I p@mlf = fillLr@y, k=1, 1>0.

Part 3. Let f € L?(GJ). By the conservativeness and the symmetry of /; again, it
is easy to see that

(3.4) [//h(gg)|f<g)|”+|f(g>| ) dg'dg

1+“

o0
=25 12, gn 0+ g = —||f||{pGn <oo, s>0.
@D J| G
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Part 4. Let f and (fx)k>1 be the same as in Part 2. Combining (3.1), (3.2), (3.3),
and (3.4) together, we have

[ (s - f(g)i‘”)(g) T e

+ Js(fk)

1+”

<S/ (I + L) —

4
<2 N Wi~ oy + 1 Moy~ 110y

-1 S
+ C1;||fk”£p(Gn)||fk”L (Ga)m, k>1,5>0.
p

Itis clear that || fx — f'||Lr(Gxn) — Oask /" oo, by the dominated convergence theorem.
Therefore, letting s \ O first and then sending k oo in (3.5), we immediately obtain
the desired result. u

The proof for the next lemma, which we include the details here for the sake of
completeness, follows the same argument as in [4, Lemma 4.4].

LeEmMA 3.2. Forevery f € L1(GD),
6o tms [T [ H(7 - @)@ty =41
: ) S t 8)|)(g gt1+% = LU(GY)
Prookr. (1) By the symmetry and the conservativeness of /;, we see that
s [T s - e
. ))& dg
oo / / / dt
<s he(g. )| f(N] +|f(®)]) dg’' dg—~
1 2 JGy t1t2

o0 1 B
=250 ey [ P
=4 fllL1cyy. feLYGY).s>0,

which clearly implies that

o0 d
3.7) hmsups// H(|f - f(®)|)(g)dg 1£;§4||f||L1(Gg), feL'(Gy).
sN\O0 1 JG§ T2

(2) Let f € LY(GY) and & > 0. Then, there exists a compact set D € G such
that

(3.8) I/ vpy = 1 i@y — &
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For convenience, we write CD, instead of G} \ D,. Then, for every ¢ >0, we deduce that

6o [ H(f - 1@l e
[ [ el 1) - s dg'ae
D, JG§
[ el re) - £yt
CD: JG§
z/ / hi(g.8)|f(g") — f(g)|dg'dg
D. JeD,
[ e - o] dg'te
eD: /D,
= [ [ (@] - 7)) aga
D; JeD,
[ men (1160 - @) dg'ae
eD: JD,
—2[ @l [ meragas-2[ [ hieg)]re)]ds s
D, eD; D: JCD;
—2[ Jr@lag-2[ 1r@| [ hieg)agae
D Dy D
—2/ |f(g’)|[ hi(g.g") dgdg’
€D De
=21 e =) =2 [ 17@)] [ hiieg)ag de
—2/ |f(g’)|/ hi(g.g')dgdg’,
€D D
where we applied the symmetry of /;, in the first equality, the conservativeness and
Fubini’s theorem in the second equality, and (3.8) in the last inequality.
By Fubini’s theorem, (3.8), and the fact that H;1g < 1 for any measurable set

E C Gg and any ¢t > 0, we have

(3.10) / |f(g’)|/ ht(g,g’)dgdg’ff |f(g)|dg <& >0,
CD¢ D CD,

where 14 denotes the indicator function of the set A € GJ. Applying Lemma 2.1 (1),
we find some constant ¢ > 0 such that

G.11) /D /()] /D he(g.¢') dg'dg = [D | f(9)| Help, (g) dg

_Q _Q
=4 ipd [ 1f@]dg e DI ey >0,
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Thus, combining (3.9), (3.10), and (3.11) together, we arrive at

dr
13

s[1 [G Hi(|f — /(2)]”)(e) dg

e 0 dr
> 2s 1 (IS 1 @my — 26 —ct 2|Da|||f||L1(GE))t1T%

=4(1f L1y —2¢) —4clDell f L1 ey

= 4 fllrcm —2¢), ass \0,

s+Q

where c is a positive constant. By the arbitrariness of ¢ > 0, we obtain

dr
REs >4 fllr @y

(3.12) 11&131“/1 [«;g H(|f = f(®)])(g)dg

(3) Therefore, putting (3.7) and (3.12) together, we immediately complete the proof
of (3.6). ]

Now we are ready to prove our main result.

Proor or THEOREM 2.3. Let p € [1, 00). Take f € By, ,(Gy) for some o € (0, 1).
Then,

! dt
| #05 = @)@ de o
0 JG§ t 2
= [l - )@
“Jo Jez ! 1+
<Ng ()P <00, 5€(0,0]
Hence, multiplying s and taking the limit as s \ 0, we obtain
(3.13) I flf Hi(|f - f@©®])(g)d & =0
. m s — —F = U.
s | fo T D7) @) de s
Note that

4
(3.14) ‘SN?,p(f)p - ;”f“{p(c,g)

s ~ fo)l? _a
<o [ s @l @y

_|_

- a4
[ [GEHt(|f—f(g)|p)<g)dgm—;||f||{p(Gg) . se@.1).
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Therefore, combining (3.14) and (3.13) with Lemma 3.1 and Lemma 3.2, we have
4
i o P _ p —
i [sNE ()7 = 1 1| = 0

which implies the desired result. |
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