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Front location determines convergence rate to traveling
waves

Jing An, Christopher Henderson, and Lenya Ryzhik

Abstract. We propose a novel method for establishing the convergence rates of solutions to
reaction—diffusion equations to traveling waves. The analysis is based on the study of the traveling
wave shape defect function introduced in An et. al. [Arch. Ration. Mech. Anal. 247 (2023), no. 5,
article no. 88]. It turns out that the convergence rate is controlled by the distance between the phan-
tom front location for the shape defect function and the true front location of the solution. Curiously,
the convergence to a traveling wave has a pulled nature, regardless of whether the traveling wave
itself is of pushed, pulled, or pushmi-pullyu type. In addition to providing new results, this approach
dramatically simplifies the proof in the Fisher—KPP case and gives a unified, succinct explanation
for the known algebraic rates of convergence in the Fisher—KPP case and the exponential rates in
the pushed case.

1. Introduction

We consider the long-time behavior of solutions to reaction—diffusion equations of the
form
Uy = Uxx + f(u), t>0, x€eR, (1.1)

with a nonlinearity f € C2([0, 1]) that satisfies

FO) = f(1)=0, f'(0)>0, f@)>0 forue(0,1). (1.2)

In addition, we normalize the nonlinearity so that

f10) =1 (1.3)

This condition can be achieved by a simple space-time rescaling and is not an extra
assumption on f(u). Reaction—diffusion equations of the form (1.1) are used in a wide
variety of settings to understand how the interplay of diffusive spreading and growth gives
rise to front propagation and invasions. Our interest is in precisely quantifying this behav-
ior.
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Convergence in shape to a traveling wave

Traveling waves are solutions to (1.1) of the form u(¢, x) = U.(x — ct), with a profile
U, (x) such that
—cU; = U + f(Ue), (1.4)

and
0<Ux)<1 forallx e R, U,(—o0) =1, U (+o0)=0. (1.5)

Solutions to (1.4)—(1.5) are only unique up to translation, so we often fix the choice of the

wave by the normalization
1

Uc(0) = > (1.6)
Another natural normalization is mentioned in Section 2; see (2.7) below. For nonlineari-
ties satisfying (1.2), there exists a minimal speed c, > 0 such that traveling waves exist if
and only if ¢ > ¢4 [23]. The normalization (1.3) implies that c.« > 2. We denote the profile
of the wave corresponding to the minimal front speed ¢, as Ux(x).

The study of the long-time behavior of the solutions to (1.1) with initial conditions that
decay rapidly as x — 400 goes back to the original papers [18,26]. To be concrete and
avoid some additional technicalities, we momentarily consider the case where the initial
condition for (1.1) is a step function:

Uup(x) = u(0,x) = 1(x <0). .7

It is well known that this assumption may be greatly relaxed, as long as u¢(x) is suffi-
ciently rapidly decaying as x — +o00; see [9, 13] for a recent detailed analysis of this
issue. It was shown in the original KPP paper [26] that the solution u(z, x) to (1.1) con-
verges to U, (x) in shape. That is, there exists a reference frame m(¢) such that

u(t,x + m()) — Us(x) =0(1), ast — +oo. (1.8)

We will refer to m(¢) as the front location. Note that, strictly speaking, it is only defined
up to an o(1) term as ¢t — +o00. Moreover, the KPP paper showed that the front location
m(t) has the asymptotics

m(t) = c«t +0(t), ast — 4oo. (1.9)

The extraordinarily innovative proof in [26] relies on, in modern terminology, an inter-
section number argument and can be extended not only to all Lipschitz f(u) that satisfy
(1.2), but to much larger classes of nonlinearities. In that sense, both (1.8) and (1.9) are
fairly universal results.

Front location and convergence rates in the pushed and pulled cases. On the other
hand, both the precise character of the o(¢) correction to the front location in (1.9) and the
rate of the “convergence in shape” in (1.8) depend heavily on the profile of the nonlinear-
ity f(u), as neither can be easily obtained from the intersection number arguments.
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The results quantifying these convergence rates and making the asymptotics of the
front location m(¢) more precise than (1.9) are more modern and are very different in what
are known as the “pushed” and “pulled” regimes. Recall that, informally, front propagation
is pushed if it is “bulk dominated” and is pulled if it is “tail dominated”. For positive
nonlinearities that satisfy (1.2)—(1.3) the spreading speed for the linearized problem

U = Uxx + U (1.10)

is cjin = 2. We will give a more refined definition below, but for the moment the reader
can think that propagation is pushed if ¢« > ¢}, = 2 and pulled if ¢« = ¢};, = 2. Contem-
porary arguments to establish convergence rates in the pushed case are spectral in nature,
while for pulled fronts are motivated in great part by the connection to branching Brow-
nian motion and other log-correlated random fields, and typically use entirely different
techniques.

When the front is pushed, so that ¢, > 2, its location has the asymptotics

m(t) = c«t + x9 + 0o(1), ast — 4o0, (1.11)
with some xo € R. Moreover, the convergence rate in (1.8) is exponential [16,36,37]:
lu(t, x +m(t)) — Us(x)| < ce™®", (1.12)

with some @ > 0. The proofs of (1.11)—(1.12) in [16,36], as well as the later extensions to
other “pushed front” problems, are based on spectral gap arguments and provide implicit
estimates on the exponential rate @ > 0 of convergence in (1.12).
On the other hand, when f(u) is of Fisher—KPP type, so that, in addition to (1.2), it
satisfies
fw) < f'(Ou forall0 <u <1, (1.13)

the propagation is pulled and spreading is dominated by the region far ahead of the front.
Under this assumption, when the normalization (1.3) is adopted, the minimal speed ¢, =
clin = 2 and the front location has the asymptotics

3
m(t) =2t — Elogt + xo +0(1), ast — +o0o, (1.14)

with some xo € R, first established in the pioneering works by Bramson [11, 12] via the
connection with branching Brownian motion. The Bramson asymptotics were revisited
in [1,2,4,7,21,24,27,31, 34, 38], including in some more general pulled settings, and
also refined in [8,9,21,22,32]. However, unlike in the pushed case, where the front loca-
tion asymptotics (1.11) was sufficient for the convergence rate estimate (1.12), obtaining a
convergence rate in (1.8) for the Fisher—KPP nonlinearities required a much finer asymp-
totics than given by the Bramson result (1.14). To this end, Graham [22] has improved the
Bramson asymptotics for the Fisher—KPP nonlinearities to show that

3T

NG
1

+0(;), ast — +oo, (1.15)

9 log!
+ §(5—6log2)% + 2

3
t) =2t — —logt —
m(t) 2og + xo ;
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with some xg, x; € R. This confirmed a series of formal predictions in [8, 14], partly
proved in [25,32]. The “very fine” asymptotics in (1.15) leads to a convergence bound of
the form {
u(t, x + m(t)) — Uy (x)] = 0(;)

after using an asymptotic expansion based on (1.15) that approximately solves (1.1). It was
also shown in [22] that this rate cannot be improved for the Fisher—KPP nonlinearities. We
note that, with different assumptions on the initial data that rule out (1.7) and its compact
perturbations, faster convergence rates were proven by Gallay [19]; see also later work by
Faye and Holzer [15] for a simpler proof and Avery and Scheel [6] for an extension to
systems.

While the Bramson asymptotics (1.14) holds for all Fisher—KPP reactions, it does
not hold for all nonlinearities that satisfy (1.2)-(1.3) for which c. = 2. As was shown
in [2,21], there is a class of nonlinearities f (1) such that the front location asymptotics is
not (1.14) but

1
m(t) =2t — 3 logt + xo +0(1), ast — +oo.

Informally, this happens when f(u) is exactly at the pushed—pulled transition. We refer
to these as pushmi-pullyu fronts. Thus, the distinction between various regimes of prop-
agation cannot be made based solely on whenever the propagation speed is predicted by
the linearization (1.10) or not. It turns out that it should be made based both on the prop-
agation speed and the asymptotics behavior of the traveling wave as x — +oo. Let us,
therefore, define terminology for the three classes roughly discussed above. We remind
the reader that f(u) satisfies (1.2)—(1.3).

* A traveling wave is pushed if ¢, > 2.

* A traveling wave is pulled if ¢, = 2 and there is some Ay > 0 such that
Ui(x) = Agxe™ + O(e™™), asx — oo. (1.16)
* A traveling wave is pushmi-pullyu if c, = 2 and there is A; > 0 such that
Ue(x) = A1e™ +0(e™™), asx — oo. (1.17)

We refer the reader to [2,5,8,9,14,20,21,39] for more in depth discussion. We often abuse
terminology and refer to the nonlinearity itself as being pushed, pulled, or pushmi-pullyu.

A simple linearization argument shows that the two asymptotics in (1.16)—(1.17) are
the only possibilities when ¢, = 2, so the cases above are exhaustive. Intuitively, once the
normalization (1.3) is fixed, “large” nonlinearities f correspond to pushed fronts, “small”
ones correspond to pulled fronts, and the boundary case corresponds to pushmi-pullyu
fronts.

There are two important points to make before discussing our results. First, while
convergence rates have been established in the Fisher—-KPP and pushed cases, nothing
quantitative is known for the intermediate cases, that is, pushmi-pullyu nonlinearities and
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pulled nonlinearities not satisfying the Fisher—KPP condition (1.13). Second, the argu-
ments used to establish convergence rates in the Fisher—KPP and pushed regimes are
quite different. This indicates the difficulty in closing the gap: establishing sharp rates
in the transitional cases and developing a cohesive understanding of convergence rates in
all cases.

An informal statement of the results. Our interest here is to complete and unify the
separate pictures for the pulled, pushed, and pushmi-pullyu cases described above. Despite
very different approaches to the proof of convergence to the traveling wave in the pushed
and pulled cases, one can see one common feature in the original KPP results (1.8)-(1.9)
and in the pushed case (1.11)—(1.12). Namely, the obtained rate of convergence of u(z, x)
to Ux(x) is much finer than the corresponding obtained rate of convergence for the front
location. To see this, one needs only to compare (1.8) to (1.9) in the pulled case and (1.11)
to (1.12) in the pushed case.

Here we recover and explain this philosophy that “rough front location asymptotics
gives a finer rate of convergence to a traveling wave”. We introduce a novel approach to
quantifying the convergence rate in (1.8) that provides one simple explanation both for the
exponential and algebraic rates in the pushed and pulled cases, respectively. Roughly, we
prove the following (cf. Theorem 2.1), under some technical assumptions:

o™ ifex =2,

0(exp(~E2MY) e, 52

As we have mentioned, in the case ¢, = 2, the convergence rate in (1.18) has been estab-
lished in [22] for the Fisher—KPP nonlinearities based on the very fine asymptotics (1.15).
The proof here is completely different and avoids (1.15) altogether. For the other pulled
and pushmi-pullyu cases the rate in (1.18) is, to the best of our knowledge, new, as is the

lu(t,m@) +-) —Us()| = (1.18)

explicit rate in the pushed case. See [28] for a formal derivation of similar rates based on
impressive matched asymptotic expansions.

To explain the approach to the proof of the convergence rates in (1.18), we need to
recall the notion of the shape defect function introduced in [2]. It is well known that the
traveling wave solutions to (1.1) are monotonically decreasing. Thus, there is a C1(0, 1)
function n(u) so that

~U; = n(Us). (1.19)

It is easy to see that
n(u) >0 forallu € (0,1) and n(0) =n(l) =0. (1.20)
We call n(u) the traveling wave profile function. We define the shape defect function to be
w(t, x) = —ux(t,x) —nu(t, x)). (1.21)

This, in a sense, represents how close the solution u (¢, x) is to solving (1.19) and is a mea-
sure of the “distance in shape” between u(¢, x) and the profile U, (x). A major advantage
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here is that we do not a priori need to know which shift of U is the closest one in order to
use w to obtain bounds on u(¢, x) — U, (x). Imprecisely, one finds that

w = O(¢) ifand only if u = Ux + O(e), (1.22)

where the second inequality holds up to the appropriate shift. We note that related quanti-
ties were used in [17,29, 33, 38]; see [2] for a more detailed discussion.
The main idea of this work is to estimate w (¢, x) directly through its evolution equation

wr — Wxx = w(QW) + 1" (Ww), (1.23)
where, by [2, equation (4.1)],
O) = n'(u)(cx —n'(w)) +n()n" () forallu € (0,1), (1.24)

and use that information to read off the rate of convergence of u(z, x) to the traveling wave
profile U (x). As we see below, the nonlinearity Q (u) satisfies

000) = f'(0) =1 (1.25)
and, for a large class of nonlinearities, we also have
Q) <1 forallu €]0,1]; (1.26)

see Lemma 5.1.

A key informal observation is that if u(¢, x) is a solution to (1.1), there is a phantom
front location my, (¢) that is far behind the true front m(z) and is where the shape defect
function w(¢, x) “wants” to have its front. The phantom front location of w can be read off
its equation (1.23). Surprisingly, the evolution of w(¢, x) in (1.23) turns out to be Fisher—
KPP-like, regardless of whether the solution u(¢, x) to (1.1) itself is of pushed, pulled,
or pushmi-pullyu nature. This is the main and, to us, unexpected unifying element of all
three cases. The simple reason behind this pulled nature of w(z, x) is that, because of
(1.25)—(1.26), ahead of the front it satisfies

Wy < Wxx + W, (1.27)

which is exactly the same linearized problem as for the Fisher—KPP equation.
The second new key point is that the distance

D(t) = m(t) — mw(t) (1.28)

between the true and the phantom fronts controls the rate of convergence in (1.18), once
again, regardless of whether the front is pushed or pulled. More precisely, at an informal
level, the main result of this paper is that the convergence rate in (1.18) comes from the
estimate

lu(t.m(@) + ) = U ()| ~ [w(t, m() + )|

2
= [w(t, D(t) + my(t) + )| ~ exp(—D(t) - DM(I)), (1.29)
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where the first approximation follows from (1.22) and the second comes from the Fisher—
KPP-like nature of (1.27); see also (2.18) below. In particular, this explains why one needs
only “rough” asymptotics for m(¢) and m,, (¢) to get an “exponentially finer” convergence
rate in (1.18). In order to pass from (1.29) to (1.18), we show that, as long as f (1) satisfies
(1.2)—(1.3) and some additional technical assumptions, the front location and the phantom
front location have the following behavior as ¢ — 4o00: up to O(1),

3
m(t) = c«l, my () = 2t — 2 log ¢ (pushed case),
1 3
m(t) =2t — 5 log ¢, my(t) =2t — 3 logt (pushmi-pullyu case),  (1.30)
3 5
m(t) =2t — 5 logz, My (1) = 2t — 3 logt (pulled case).

Using (1.29) and (1.30) leads directly to (1.18).

The asymptotics for m(¢) in (1.30) in all three cases is already known and to a bet-
ter precision than stated in (1.30), with the pushmi-pullyu case analyzed recently in [2]
and formally predicted in [9, 14, 28]. Our main goal here is to explain what the phantom
front location my, (¢) is, how (1.29) comes about, and how the asymptotics of m., (¢) in
(1.30) can be computed. We emphasize that, unlike [22,32] that analyzed the Fisher—KPP
case, we only use the O(1)-precise asymptotics for m(¢) and not anything finer to get the
convergence rates in (1.18).

In all three cases in (1.30), the analysis of the phantom front location m,,(¢) for the
shape defect function is based on typical techniques for the Fisher—KPP equations (pulled
fronts). This leads to the surprising conclusion that, for a large class of nonlinearities,
the convergence of the shifted solution u (¢, x + m(t)) to U (x) is a pulled phenomenon,
regardless of the pushed, pulled, or pushmi-pullyu character of the spreading of u(z, x)
itself. The reader may notice that the phantom front asymptotics 1y, (¢) in (1.30) has the
Bramson form (1.14), which is a signature of the pulled fronts, precisely when m(¢) is
not pulled. On the other hand, in the pulled case it is the front asymptotics m () itself
that has the Bramson asymptotics (1.14), while the phantom front position m,, (z) has an
extra log ¢ delay relative to this location. This will be explained below. Of course, without
such a delay between m(t) and m, (), we would have D(¢) = O(1) and (1.29) would be
useless!

‘We hope to convince the reader that the scheme outlined above is exceedingly simple
to put into practice, beyond the situations we consider in the present paper. Once one starts
to work directly with the shape defect function w(z, x) and has the intuition (1.29), the
convergence proof is straightforward. In particular, the sometimes heavy computations,
such as in the proof of Lemma 4.3 below, should not obfuscate this basic fact. We do
not consider more general problems here because our interest is in the simplest possible
presentation to illustrate the meaning behind the convergence rates. We again point to [2]
for a more in-depth discussion of the generality of the shape defect function.
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Organization of the paper. To better illustrate the method, we first focus on the
Hadeler—Rothe family of nonlinearities f given by (2.1) below. In Section 2 we give a
statement of our main result, Theorem 2.1, which establishes (1.18) in this context. This
section also contains an expanded discussion both of the proof and of the sharpness of our
bounds. The proof of Theorem 2.1, given in Section 3, relies on estimates of the shape
defect function in Theorem 3.3, which are proved in Section 4.

In order to analyze the evolution equation (1.23) for w, we require some properties of
the traveling wave profile function n(u) and the nonlinearity Q(u) that appears in (1.23).
They are established in Section 5 in some generality, not just for the Hadeler—Rothe non-
linearities. Following this, Section 6 contains an extension of the convergence rates (1.18)
to the general case. The key observation is that the proof of Theorem 2.1 uses the partic-
ular form of the Hadeler—Rothe nonlinearities essentially only through these properties of
Q and 7. General versions of Theorem 2.1 are formulated there, in Theorems 6.1 and 6.2.

Notation. Throughout the paper, we use the convention that C denotes a constant that
may change line by line. While C may depend on the initial data ¢ and the nonlinearity
f, it will always be independent of time . When we wish to emphasize dependence on a
particular constant, we use a subscript to show this. For example, if ¢ is a parameter, then
C; is a constant depending on ¢, and similarly for Cr,, Cp, etc.

2. Convergence rates for the Hadeler—Rothe nonlinearities

To fix the ideas in a simple setting, we look in detail at the special class of the so-called
Hadeler—Rothe nonlinearities. They have the form

fu) = @—u")(1 + xnu"), (2.1)

with some n > 2 and y > 0. The traveling waves for such nonlinearities were discussed
in detail in [23,30] for n = 2 and in [14] for n > 2. The classical Fisher—KPP nonlinear-
ity f(u) = u — u? is a special case of (2.1) with y = O and n = 2.

It was shown in [14,23, 30] for nonlinearities of the form (2.1) that there is a pushed-
to-pulled transition at y = 1:

. 2 if0<y<1, 22)
c = .
O vr+ 7 ifxzl.
Moreover, the traveling wave profile function is explicit for y > 1 and is given by

n() = /X —u"); (2.3)

see [2, Proposition A.2]. Hence, when y > 1, the traveling waves have the following purely
exponential asymptotics (cf. (1.17)): there exist ¢, A; > 0 so that

Ui (x) ~ A1e 0% 4+ O(e~Po+9%) a5 x — +o0. 2.4
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When 0 < y < 1, no such explicit expression is possible for n(u) because U, has the
following pulled asymptotics: there exist some ¢ > 0 and Ag > 0 so that

Us(x) ~ (Aox + Bo)e 20 + O(e~*09%) 45 x — +00. (2.5)
The decay rate A9 > 0 in (2.4) and (2.5) is the largest root of
cxho = A5 + f1(0). (2.6)

Recalling (1.3), if ¢, = 2, then Lo = 1. Let us mention that, after a spatial shift, we may
assume that By = 0, so that (2.5) becomes

Use(x) ~ Agxe A% 4+ O(e_(x"“)x), as x — +o00. 2.7

This is another natural normalization that we will sometimes use below as an alternative
to (1.6).

The corresponding front location asymptotics for the solutions to (1.1) with a rapidly
decaying initial condition was established in [2]: there exists x¢ that depends on the initial
condition ug, so that, as 1 — oo,

3
m(t) =2t — 3 logt + xo, for0 <y <1 (pulled case),

1
m(t) =2t — 3 logt + xo, fory =1 (pushmi-pullyu case), 2.8)

m(t) = cx ()t + Xo, forl < x (pushed case).

It is convenient to recall the asymptotic behavior of U, as x — —oo as well: there are
A1, &> 0so that

1 — U(x) ~ A1e?M* + 0P 9% asx — —o0. (2.9)
Here, A is the nonnegative root of
—cxd = A3+ (D). (2.10)
Notice that, due to (2.1), we have
A1 >0 since f/(1) = —(n — 1)(1 + yn) <O.

2.1. The main result for the Hadeler—Rothe nonlinearities

In this section we state the convergence rates in (1.18) for Hadeler—Rothe nonlinearities of
the form (2.1). For simplicity, we take an initial condition u(0, x) = ug(x) such that 0 <
ug(x) < 1forall x € R, and there exists some L¢y € R, so that

up(x) =0 if x > Ly, and wo(x) = w(0,x) >0 forall x € R. (2.11)
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The nonnegativity assumption on w(0, x) simply encodes that the initial condition ¢ (x)
is “steeper” than U, (x). In particular, it follows from (2.11) that 1 (x) is monotonically
decreasing and uo(x) — 1 as x — —oo. The comparison principle and (1.23) yield that
then u (¢, x) remains steeper than U, (x) for all # > 0, in the sense that

w(t,x) >0 forallt >0,x € R. (2.12)

A typical example of such an initial condition is ©¢(x) = 1(x < 0). We believe that the
nonnegativity assumption on w(0, x) can be relaxed by using results such as Angenent [3]
or Roquejoffre [35] to show that w(z, x) “eventually” becomes nonnegative, at least on
every compact set. We adopt this assumption to avoid the related technicalities.

Our main result for the Hadeler—Rothe nonlinearities is as follows.

Theorem 2.1. Suppose that u solves (1.1) with nonnegative initial condition ug satisfy-
ing (2.11). Assume that f(u) is given by (2.1) with some y > 0 and n > 2. Let ¢« be given
by (2.2). Then there is 0: [0, 00) — R so that

(i) if0 <y <1, then

C
u(@, -+ 0(t)) = Us()llLe = e (2.13)
@ii) if x > 1, then for any A > 0,
Cp _(32-9
fu(t, -+ 0(t) = U)o (=A,00) = 7126 . (2.14)

As will be seen from the proof, convergence occurs in a (stronger) weighted L°°-norm,
but we opt for the simpler statement here.

The main ingredients in Theorem 2.1 are knowledge of the true front location m ()
and the behavior of Q and 7 in (1.26). In this sense, we use the form (2.1) in a rather weak
way. We provide a full discussion of the general case in Section 6 and formulate broader
versions of Theorem 2.1 there; see Theorems 6.1 and 6.2.

Interestingly, unlike the classical results in [16, 17, 36] for pushed waves, estimate
(2.14) does not depend on f’(1). Actually, a similar argument using our methods yields a
messier global estimate:

Z

. —4 ,
u(t, x 4 0(t)) = Us(x)||poo < Ce™ ™I/ WDr+o@)

However, the f/(1) term in the exponential merely reflects the “slowness” with which
U converges to 1 on the left. We choose to present the “at and beyond the front” esti-
mate (2.14) above because it is a better representation of the mechanism that pulls u(z, x)
towards U (x). In particular, it reflects the aforementioned pulled nature of the conver-
gence of the solution to the wave in shape, regardless of whether the wave itself is pushed
or pulled.
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2.2. Discussion of the proof

A very useful observation is that, for the Hadeler—Rothe nonlinearities, (1.26) holds and
the traveling wave profile function 7(u) is concave.

Proposition 2.2. Assume that f(u) has the form (2.1). Then, for any y > 0 and n > 2,
Q) <1 and n"(u) <0 foralluc (0,1).

A more precise version is stated in Lemma 4.1. Proposition 2.2 follows immedi-
ately from the explicit expression (2.3) for n(u) when y > 1. Otherwise, it is proved
in Lemma 4.1. Its generality, beyond the Hadeler—Rothe class, is discussed in Section 6.

Proposition 2.2 is nearly enough to understand the phantom front m,, (¢) as we have,
at highest order,

Wy & Wxy + W (2.15)

ahead of the front. Remarkably, this is exactly the same as the linearization for the classical
Fisher—KPP equation
Uy = Uy +u —u?.

This would suggest that m,, (¢) should be given by the standard Bramson asymptotics
(1.14) for the Fisher—KPP case. However, it has been observed that the Bramson shift may
be sensitive to lower-order terms ahead of the front for nonlinearities that are not better
than Lipschitz near u = 0 [10]. In that case, (2.15) may not be a faithful approximation to
(1.23). It is, thus, crucial to understand the regularity of n near u = 0. As a consequence,
we consider two cases depending on this regularity.

The pushed and pushmi-pullyu cases: y > 1. Consider first the pushed and pushmi-
pullyu cases, where 7 is given explicitly by (2.3) and is smooth at ¥ = 0. In this case,

Ow)=1—n(1 =2+ ymu" ' —ynu®>" 2 =14+ 0w""Y), asu—0. (2.16)

Recall that n > 2. Hence we expect that, ahead of the front of u(¢, x), the shape defect
function w(z, x) does behave approximately as a solution to

Wy = Wxx + W, (2.17)

when y > 1. An informal consequence of [24] is that w(¢, x), being bounded and approx-
imately satisfying (2.17) where it is small, “wants to have a front” at the location

3
my(t) =2t — Elogt,

and should have the approximate form

2
w(t,x + my(t)) ~ exp{—x — Z_t + (lower-order terms)}, for x > 1. (2.18)
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On the other hand, w(z, x) is governed by u(¢, x), which has its front at the position
m(t) = cxt in the pushed case y > 1, and at m(t) = 2t — %logt in the pushmi-pullyu
case y = 1 [2]. Hence, we have, up to lower-order terms

log? ify=1,

D@y =m(1) =mu(t) { (v —2)t ify>1.

According to (2.18), this produces

2
b (’)}, (2.19)

w(t, m(t)) = w(t, D(t) + my (1)) ~ exp{—D(l) -
which, along with (1.22), yields Theorem 2.1.

Let us note that the explicit form of 1, beyond the two properties proved in Proposi-
tion 2.2, is not needed here, because the key estimate used above, that is, the right-hand
side of (2.16), follows directly from the traveling wave asymptotics (2.4) and (2.20) below.

Indeed, we can see that, whenever (2.4) holds, we have, for some o > 0,
n() ~u+ O'™®).
See Lemma 3.5.

The pulled case: 0 < y < 1. For 0 < y < 1, we do not have an explicit expression for
n(u) or Q(u). To understand the behavior of Q(u) for u < 1 in this range of y, we can,
at least informally, deduce the behavior of 7 and its derivatives from (2.5).

Using (1.19), we can write two useful identities involving 7:

f) =n@)(cs —n'(w)) and nu) = —U. o U " (u). (2.20)
From these, we immediately observe that
neCx(0,1), n(0) =Xy, and n'(1) = —A1. (2.21)

Both (2.20) and (2.21) hold for any f satisfying (1.2)—(1.3). The endpoint regularity is
more subtle and is affected by the additional linear factor in (2.5) that is present in the
pulled case. Indeed, from (2.5), it is straightforward to see that

u
nwu) ~u+ ——, asu—0,
logu

from which we formally deduce that

1
"w)~14+—— and 71"(u)~— , asu—0T. (2.22)

logu

ulog?u

These are made precise in Lemma 3.4 below. Therefore, when 0 < y < 1, the function
QO (u) defined in (1.24) has the asymptotics

Ou) ~1~— asu — 0.

log? u '
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Thus, a good approximation to w(#, x) is by a solution to a modification of (2.17):

2
Wy — Wy ~w(1— . (2.23)
log? u

Using, once again very informally, the main result of [10], we see that the shape defect
function w(t, x) “wants to have its front” at the location
5
my(t) =2t — Elogt,
while the front of u(¢, x) is at the Bramson position
3
m(t) =2t — 3 logt,

as follows from [2]. Thus, for 0 < y < 1, we have D(¢) = logt and (2.19) again yields
the 0(%) convergence rate in (1.18).

The above informal arguments indicate that, as we have already mentioned, the behav-
ior of the shape defect function w(¢, x) is always a pulled phenomenon regardless of the
pushed, pulled, or pushmi-pullyu spreading of u(¢, x) itself.

2.3. Sharpness of Theorem 2.1

It appears that this approach leads to matching lower bounds. This is easiest to see in the
pushed case. Indeed, fixing ¢, < 1, R > 1, and T > 1, it is straightforward to check
that

72 _c2 cxte X
w(t, x + (cx + &)1) = 8’1 3R=4=CD 2 cos(%)ﬂ[_R,R](x)

is a subsolution to (1.23) for + > T. The additional ¢t shift in the moving frame allows
us to use the approximation Q = 1 because it puts us in the regime where u < 1. Up to
further adjusting 8, it is easy to check that w(l,-) < w(1,-). It follows that

1 2 C% R R

—e!—ir—3-C0 < w(t,x + (cx« +e)t) forallx € [—5, 3]
From this, a simple ODE argument, along the lines of what is presented in the proof of
Theorem 2.1, shows that

1
et ) = Us( = 0Ol Loo (- & 4 (crtorr. B+ cater) = @

Hence, "
cx—4)

(
lu(t, -+ 0 (1) = Us()||poo = ™ & 1Ho®),

The arguments in the pulled and pushmi-pullyu cases will be more involved. We,
nonetheless, expect them to proceed in a fairly straightforward manner using the shape
defect function.
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3. Estimates on the shape defect function

One of the main technical points of this paper is that the proof of Theorem 2.1 requires
understanding the front location asymptotics for u(¢, x) only up to O(1) as t — +o0. For
the Hadeler—Rothe nonlinearities we have the following.

Proposition 3.1 ([2]). Under the assumptions of Theorem 2.1, let the function m(t) be
given by (2.8). Then we have

lim limsup sup u(t,x)=0 and lim liminf inf wu(f,x)=1. (3.1)
L—00 t—00 x>m(t)+L L—oo0 100 x<m(t)—L

This claim holds, of course, for a much wider class of nonlinearities — see [2,21] for a
discussion. The next lemma gives preliminary control on how quickly u(z, x) tends to its
limits as x — $o00.

Lemma 3.2. With m(t) as in Proposition 3.1 and w(t, x) satisfying (2.12), there is C > 0
so that

u(t,x + m(t)) > Ue(x + C) forall x <0,
and
ut,x +m(t)) <Us(x —C) forallx > 0.

By a simple ODE comparison argument using (1.19), (1.21), and (2.12), we see that,
for any x1, x»,
. <U(xp+x) ifx >0,
ifu(t,x;) = Ux(x2) then u(t, x; + x) (x2 ) ) (3.2)
>U(xy +x) ifx <.
Then Lemma 3.2 follows directly from Proposition 3.1. The proof is omitted.
The main step allowing us to deduce the bounds in Theorem 2.1 is the following
estimate on the shape defect function at the front location m(t).

Theorem 3.3. Suppose the assumptions of Theorem 2.1 hold. Let m(t) and A1 > 0 be as
in (2.8) and (2.10), respectively, and let ¢ > 0.

(i) If0<y <1, then

a

52 C
w(t, x +m(t)) < —((1 +x)%e 7)1 (x > 0) + Tse(h—s)xn(x <0).

t
(i) Ify =1 then
c 52 C
w(t, x +m(t)) < 7((1 +x)e” ) 1(x > 0) + Tee@ﬂ)xn(x <0).

@Gii) If x > 1 and x > Lo — m(t) (recall Lo from (2.11)) then

C c§—4 Cex X2
t, 1) < —expy———nt — — — 1,
wit.x+mio) ﬁeXp{ 4 2 4t}

with cx = cx()) given by (2.2).
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We note that the ¢ in cases (i) and (ii) can almost certainly be removed with a more
careful proof. Our focus in this paper, however, is not on the sharpest possible behavior
on the left, as x — —oo.

While the statements in Theorem 3.3 (i)—(ii) for the pulled and pushmi-pullyu cases
are slightly different, the proofs, postponed until Section 4, are nearly identical. They are
based on the intuition discussed in Section 2.2: the equation for w(¢, x) wants to spread
slower than the equation for u(, x). The statement of Theorem 3.3 (iii) in the pushed case
and its proof, presented in Section 4.1, are different because we can use an elementary
estimate “out of the box”.

3.1. Deducing Theorem 2.1 from Theorem 3.3

3.1.1. Preliminary bounds on 7. We now make the behavior of 1(u) near u = 0, stated
informally in (2.22), precise.

Lemma 3.4 (Asymptotics of 1(u) in the pulled case). Assume that f € C?([0, 1]) and
satisfies (1.2)—(1.3). Suppose that the profile Ux(x) has the asymptotics (2.5) as x — +0o0.
Then there exists C > 0 so that, for u € (0, W%o)’

. u ulog log(i)
M |ne)— (u+ logu)‘ = o)
L 1 loglog(1)
(11) n (u) - (1 + logz,{)‘ = logz(l) ’
1" -1 log log(%)
(i) |(n(u)n”(u) — (logz u)} = m.

We note that this lemma does not require the specific form (2.1) of f. Parts (i)—(ii)
will be used to deduce Theorem 2.1 from Theorem 3.3. Property (iii) is not required for
that proof but will be needed in the proof of Theorem 3.3 itself.

Proof of 3.4. We use the normalization of U (x) in which By = 0 in (2.5). Consider claim
(1) first. Fix u € (0, ﬁ) and x,, such that U, (x,) = u. We deduce from (2.5) with By =0
that

1 1
Xy =log — + O(loglog —), asu — 0T, 3.3)
u u
Using this in the definition of 1(u), we find
nu) = n(Us(xy)) = =UL(xy) = Agxye ™ — Age ™ + O (e~ (1+9)xu)
1
_ U*(xu)<1 - —+ O(x,;le—m)), (3.4)
Xu
Claim (i) follows then from inserting (3.3) into (3.4) and using a straightforward expan-

sion.
We omit the proofs of (ii) and (iii) as they proceed by similar arguments. ]
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Lemma 3.5 (Asymptotics of 7 in the pushed and pushmi-pullyu cases). Assume that f €
C2([0, 1]) and satisfies (1.2)~(1.3). Suppose that the profile U, has the asymptotics (2.4)
as x — +o00. Then there exist « > 0 and C > 0 such that, for all u > 0,

I’ (u) — Aol < Cu.

The proof is omitted as it is a simpler version of the proof of Lemma 3.4.

3.1.2. Proof of Theorem 2.1. The first steps of the proof for both cases (i) and (ii) can
be handled simultaneously. As u(z, x) is monotonic in x, we may define o (¢) by

u(t,o(r)) = Uk (0). (3.5)
We shift to the corresponding moving frame: let
u(t,x) =u(t,x +o()) and w(t,x)=w,x+o()).
It follows from Proposition 3.1 that

sup |o'(1) —m(1)] < C.

t>1

We may then apply Theorem 3.3 with o (¢) in place of m(t), at the expense of changing
the constants.
To use Theorem 3.3, we need to bound the smallness of the difference

s(t,x) =u(t,x) — Us(x)

in terms of the smallness of the shape defect function w(z, x). Note that, by the choice of
o(t) in (3.5),
s(,0)=0 forallz > 0. (3.6)

We also point out that by the steepness comparison (3.2), we have
s(,x) <0 whenx >0, and s(f,x) >0 whenx <0. 3.7

In order to relate s(z, x) to w(z, x), note that, for each fixed ¢, s(¢, x) satisfies the
following ODE in x:

sz = =W — (@) + n(Ux) = =B — 1/ (E(2, x))s. (3.8)

Here, £ (z, x) is an intermediate point between (¢, x) and Ux(x) given by the mean value
theorem. From (3.8), we obtain

(exp{ /0 n’@(r,y))dy}s(t,x)) =—exp{ /0 n’(&(r,y))dy}wa,x).
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Using the boundary condition (3.6) and integrating gives

X X y
—exp{— /0 n’(é(z,z»dz} /0 exp{ /0 n’@(r,z))dz}w(z,y)dy

- / exp{— / W (E2) dz}wa,y) dy. (3.9)
0 y

s(t, x)

From here, the main points of the proof are exactly the same in each case (i)-(ii);
however, due to the difference in the precise asymptotics in Theorem 3.3 in these two
cases, we have no choice but to write up each case separately.

Proof of Theorem 2.1 (i). We analyze the cases y € [0, 1) and y = 1, as in parts (i) and
(ii) of Theorem 3.3, separately.

Fix y € [0, 1). We consider first x > 0, so that s(¢, x) < 0 due to (3.7). Thus, we only
have to obtain a lower bound on s(z, x). In view of (3.9), we seek control on the 1/ (£ (¢, x))
term. We have

(t,x) <€, x) < Us(x) < C(x + 1)e™. (3.10)

Using (3.10) and the asymptotics in Lemma 3.4 (ii), gives, if x is sufficiently large,

1 Cloglog 1
7 (E@x) = 1+ :

logé  log?é
1 C
>1+ — 3
(=x) +1logx +10gC (x4 1)2
1 C
>14 —_ - (3.1
(=x)  (x+1)2
Hence, for all x > 0, we have, after increasing the constant C > 0 in (3.11),
, C
nE@E x) =1~ (3.12)

Using (3.12) and Theorem 3.3 (i) in (3.9), with m(t) replaced by o (¢), yields

P

1

s(t.x) = —C / X By dy
oy + 1

Clx + e [* 2
0

t
—(x+1)2,1}.
t

v

—C(x+ 1)e™ min{

This concludes the proof of (2.13) in the pulled case 0 < y < 1 for x > 0.
Next, consider the pushmi-pullyu case y = 1, corresponding to Theorem 3.3 (ii), still
for x > 0. Here, we can replace (3.10) and (3.12) by, respectively,

E(t,x) <Us(x) <Ce™ and 7'(E(t.x)>1- —a
X
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due to the asymptotics in Lemma 3.5. Arguing similarly to above, we obtain

X C —X
s(t.x) = —C / N, y) dy 2 -
0

> _—Ce™™* min{l, (Xt—l)z}

X 2
/ (y+ l)e_% dy
0

This concludes the proof of Theorem 2.1 (i) on the domain x > O for 0 < y < 1.

We now consider the case x < 0. Due to (3.7), we need only obtain an upper bound on
s(t, x). The argument is essentially the same as for x > 0. The main differences are the
asymptotics of 7' (u) near u &~ 1 and U« (x) and w(¢, x) as x — —oo. Unlike before, we
need not separate into two cases, as the behavior at the back is the same both for0 < y < 1
and y = 1.

First, notice that

1 — CeM* < Us(x) <E@,x) forx <0,
and, forall u > 1/2,
() =—A; + O((1 —u)?) forsome p > 1.
The combination of these two inequalities leads to
n'(§(t,x)) = —A — Cee™,  forx <0, (3.13)

where ¢ is as in (2.9).
We use (3.9) and then (3.13) and Theorem 3.3 (i)—(ii) to find
C. [°

s(t,x) <
t Jx

0
M) =0y gy < %eW/ e~ dy
X
= %(e(kl_e)x _ e}le) S %e(/ll_é‘)x, for.x E 0.
&

Here ¢ € (0, A1) is arbitrary. This completes the proof of Theorem 2.1 (i). |

Proof of Theorem 2.1 (i1). We proceed as above. By the Harnack inequality, it suffices to
consider the case A = 0, so that x > 0. Again, due to (3.7), we need only establish a lower
bound on s(z, x). Next, note that, due to Lemma 3.5, we have, for some p > 1,

C
! t, >Alg— —.
70 2 ho~ s
We find, from (3.9) and Theorem 3.3 (iii), once again, with m(t) = c«t + X,
x C -4 x yex _ y2
s(t.x) = —C / eI G(t, ) dy = ——e” / L R
0 NG 0

C c2-4 X ye C c2-4 xe.
> e *4 t g_AO(x_y)_T* dy > e >|F4 te_T*.
0

The second-to-last equality uses that exp{ —X—j} < 1 and the last inequality uses that Ay >
¢x/2, which follows from (2.6). This concludes the proof. ]
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4. Proof of Theorem 3.3

Before we begin, we state one final lemma about the behavior of n and Q, defined in (1.19)
and (1.24), respectively. This is the key and essentially only place in this manuscript where
we use form (2.1) of the Hadeler—Rothe nonlinearities f(u).

Lemma 4.1. Suppose the assumptions of Theorem 2.1 hold. Then
') <0 and Q) <1 forallu e (0,1). 4.1
Further, we have the refined bounds: letting
R(u) =1—Q(u(t. x)).

for any 8y, 81 € (0, ﬁ) with 81 sufficiently small, there are ry > 0 and ry > 0 such that

Ru) > To iféo <u<1-20, 42)
“\l+r fu>=1-6;. .

Alsory — —f'(1) > 0as 8; — 0. If, additionally, y € [0, 1), then we have

2 Cloglog L
R(u) > B8 <5, 4.3)

log? u log? %

The constant C depends only on y and n. The constants ro and ry depend on x, n, 8,
and 8.

Let us make two comments. First, the term 2/ log? u in (4.3) is crucial for the coeffi-
cient % in the phantom front location

5
my(t) =2t — 3 log ¢ 4.4)

that appears in (1.30) in the pulled case. Second, form (2.1) of f is mainly used to prove
the bound (4.1). Indeed, estimate (4.3) follows directly from Lemma 3.4 and the defini-
tion (1.24) of Q. The proof of Lemma 4.1 is found in Section 5.

4.1. The pushed case: Proof of Theorem 3.3 (iii)

We begin with the pushed case as it is simplest. From (1.23), Lemma 4.1, and (2.12), we
find
Wy — Wxx = W.

Hence, e " w is a subsolution of the heat equation and we find, by (2.11),

N

hd

(l ) =< ! / ( ) “
wll, X e WolX dy.
0 Yy /—t Yy
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Asug(x) = 0forx > Lo, we also have wo(x) = 0 for x > L, and we can assume without
loss of generality that Lo = 0. We obtain, for x > 0,

2

00 e—’f‘—t
wen) e [t - = ay
x 0 4t
[ = 3 = Sy
=e —up(x —y) —nuo(x — y))|—=dy
x 0 0 VAt
y2 2
e [T -y = [T a1
e —Up(X — R =e Uo(x — -
R VT
- e .
=e’/ wox — )L gy < &%,
x ol y)21 VAt Y= At
The result follows by changing variables x > x + m(t) = x + c«t + Xo. L]

4.2. The pushmi-pullyu case: Proof of Theorem 3.3 (ii)

We begin with the pushmi-pullyu case y = 1. In that case, the front location is
1
m(t) =2t — Elogt.

We recall the following estimate to the right of m(¢) when y = 1.

Lemma 4.2. For any t sufficiently large and any L, we have

C 3
wt,x +m()—L) < TL(x+ + l)e_er_C%.

We omit this proof as it is essentially the same as [2, Lemma 6.6]. In view of Lemma
4.2, we need only consider the behavior of w(¢, x) behind the position m(¢) — L. We do
this via the construction of a supersolution. Changing to the moving frame

w(t,x) =w(,x+m()—L) and u(t,x)=u(t,x +m(t)—L),

and applying Lemma 4.1 to (1.23), we find, for any ¢ > 0,
1
Wy — (2— Z)wx < Wex + (f(1) + &) forx <O0.

Above, we have potentially increased L so that, by Proposition 3.1, u > 1 — §; with §; as
in Lemma 4.1 for x < 0.
We next remove an integrating factor. Let A1, be the positive root of

24 =A%+ f(1) + 2¢ 4.5)

(cf. (2.10)), and let
Z(t,x) = e A 50 (1, x).
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We obtain the differential inequality

1 A
Zr — (2(1 + A1) — Z)Zx < Zxx — 21:2 —¢z forx <O. (4.6)

Before constructing a supersolution for (4.6), we note the following boundary condi-
tions. First, due to Lemma 4.2, we have

w(t,0) < t’ .

Second, due to Lemma 3.2 and parabolic regularity theory, we have, for any x < 0,

W(t, x) = —iix(t, x) =@, x) <C  sup (1 —idi(s,y)) < CeM™.  (4.7)
(s,y)€lt—1,]

x[x—1,x+1]
As a result, if we can produce a supersolution z(¢, x) for (4.6) defined for + > T and
x € [—6t, 0] that satisfies the boundary conditions

C
Z(t,0) >

n and Z(t,—6t) > Ce~Mi=h18t - fors > T, (4.8)

and the initial condition att = T,

inf  zZ(t,x) > C, 4.9
x€[-6T,0] ( ) - ( )
then we would conclude, via the comparison principle, that Z(¢, x) < zZ(¢, x) fort > T and
x € [—6¢,0]. Let us note that A1 . < A; due to (4.5).
We define the function Z(¢, x) by

A
Z(t,x) = i forx <Oandft > T.

It is clearly possible to choose A, depending on L, §, and T > 0, so that the conditions
in (4.8)—(4.9) are satisfied. It remains to check that Z is a supersolution of (4.6). A direct
computation yields, for any x € (—4t,0),
_ 1\_ _ A 1A
Zy — (2(1 + A1) — Z)Zx — Zyx + (2—: + 8)2 = Z(—; + 2—; + 8) > 0,
as long as we increase T if necessary. Hence, Z is a super-solution for (4.6). We deduce
that

A
w(t,x) < Te’ll’gx, fort > T and =6t < x < 0.

In view of (4.5), A1, /" A1 as & — 0. Hence, the above is the desired bound for x €
[—8¢, 0]. On the other hand, the bounds on w for x < —§¢ follow directly from (4.7). This
completes the proof of Theorem 3.3 (ii). ]
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4.3. The pulled case: Proof of Theorem 3.3 (i)

When 0 < y < 1 the front is located at the position
3
m(t) = 2t — 3 logt. (4.10)

Exactly the same argument as in the proof of Theorem 3.3 (ii) to control the behavior of
w(t, x) for x < m(t) can be applied. Thus, we only need to control w(t, x 4+ m(t)) for
x > 0. This is done by the following.

Lemma 4.3. Under the assumptions of Theorem 3.3 (i), we have

C(x2+1) i

x2
; ¢t forall x > 0.

w(t, x +m()) <

Before starting the proof, let us make the following comment. As discussed in the
introduction, the convergence rate of w(z, x) is controlled by the lag D(¢) of the phantom
front my, (¢) behind the true front m(z), as in (1.28)—(1.29). When 0 < y < 1, the phantom
front my, (¢) is given by (4.4) and m(t) in (4.10). On the other hand, the use of the naive
linearization such as (2.17),

W X Wxx + W,

would produce an incorrect estimate my, (t) ~ 2t — (3/2)logt which would lead to D(t) ~
O(1), and a bound in the spirit of (2.19) on the convergence rate would be useless. Thus,
the lag comes solely from the nonzero term R(u) in (4.3). We have to use this estimate
in an essential way to obtain any convergence rate in (1.18) in the pulled case, let alone a
sharp one.

Proof of Lemma 4.3. First, for L and T > 0 to be determined, we let
~ 3
w(t,x) =w(,x+m@)—L) = w(t,x + 2t — 3 log(t +T) — L), 4.11)

and define # similarly. Then, recalling Lemma 4.1, since " (1) < 0, we find

W, — (2 — ﬁ)@ < Wex + (1 — R(0)) . (4.12)
We remove an exponential,
z(t,x) = e*w(t, x), (4.13)
to obtain 3
zZ; + m(zx —2) < zyx — ZR(W). (4.14)

We now define a supersolution to (4.12) for # > 1 and x € R as follows. For B > 1
and 7" > 1 to be chosen, let

(t,x) = e(z)(x —;B>zexp{4—2 (1) — %(1 - %\/W))} 4.15)
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where we have defined T
0@) = .
@ t+T

Let us set
o(t) ifx <1,

min{6(¢),e *z(¢t,x)} ifx>1.

w(t,x) = {

The proof of Lemma 4.3 will be finished if we show that w(z, x) < Aw(t, x), with
some A > 0.

Before we proceed, let us explain where (4.15) comes from. First, from (2.23), we
expect w to “look like” the solution of

= 1 2 4.16
¢t—¢xx+¢( —@) (4.16)

The traveling wave solution of this equation has the asymptotics x2e™* as x — +oo [10],

which motivates a multiplicative factor x2 in (4.15), as we have already removed an expo-
nential factor in (4.13). On the other hand, “far to the right”, we should have a Gaussian
behavior, which motivates the exp —ﬁ—j}-type term in (4.15). In addition, as we have men-
tioned above, we expect the phantom front location my, (¢) to be near the front location
for (4.16), which is known to be at the position given by (4.4). Thus, the lag between the
true and the phantom fronts is D(¢) ~ log¢. Because of that, we expect w ~ O(%). This
explains the multiplicative factor 6(¢) in (4.15). The other terms in (4.15) are simply tech-
nical; in particular, the B and T factors allow us to verify the supersolution condition and
to “fit” w above w initially.

By the comparison principle applied to the differential linear inequality (4.14) for
z(t, x), we will have shown that

w(t,x) < Aw(t,x), fort > 1landx € R,

with some A > 0, if we show the following:

(1) the initial comparison holds:
w(l,x) < Aw(l,x) forall x € R; 4.17)
(ii) the function w(¢, x) has the form
w(t,x) =e *Z(t,x) fort > 1andx > 10; (4.18)

or, equivalently, we have 6(¢) > e~ Z(¢, x) in the above region;

(iii) at x = 1 we have the opposite comparison:
e 1Z(t,1) = 0(t) forallt > 1; (4.19)

(iv) the function 6(¢) is a supersolution to (4.12) for > 1 and x < 10, and
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(v) the function z(¢, x) is a supersolution to (4.14) fort > 1 and x > 1.

In particular, (4.18)—(4.19) are important because they allow us to make the matching
between 6(¢) and e *Z (¢, x) somewhere in the interval (1, 10) as the minimum of two
supersolutions. This is crucial because, as Z(z, x) vanishes at x = —B, it cannot be a
supersolution for x < 0, and, as we will see, 6(¢) is not a supersolution for x > 10. This
is depicted in Figure 1.

We now check conditions (i)—(v). The initial comparison (4.17) is easy to check using
well-known bounds on parabolic equations. In particular, w(z, x) is bounded, up to a large
multiplicative constant, by a Gaussian in x, for each # > 0 fixed. Hence, after increasing
T, independent of all parameters, and increasing A, depending on L and B, the bound
(4.17) must hold. Recall that L appears in the change of variables (4.11).

Next we notice that (ii) is clear by observation if B is sufficiently large. Similarly, after
increasing 7' (depending only on B), (iii) is also clear by observation.

To see that (iv) is satisfied requires us to increase L (independent of all parameters)
and apply Proposition 3.1 with any §; sufficiently small to find that

u(,x)>1-4; forallt >1,x <10.
Then, from Lemma 4.1, we have
1—R®) <-rg foralt>1,x <10.

Thus, up to increasing 7', depending only on §; > 0, we have

T T

— > 0.
EN T,

3 -
0 — (2 - 2(t—+T))9x —Oxx — (1= R(i1))0 >

Therefore, (iv) holds.

(iii) e ¥Z(t,)

 /

[ 4

w(t, )

1 10

A

N
4
X

Figure 1. A depiction of conditions (ii) and (iii) and their relationship to w.
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We now check (v), which is a computationally tedious condition to verify, even though

the computations are completely elementary. First, we compute

Zt + ﬁ(zx - E) - Zxx + ER(ﬁ)
z
_é_i+ﬂ(l_l 7) 16 «+8)y
0 Vo 4t +T)? 8 820 4t +T)
3 2 x+ B 1
— 1—-v0) -1
+2(I+T)<x+B 2(t+T)< 8 ) )
2 5 1 (x + B)? 1 2 .
— — 1—-+6 — (1 -=v0 R().
((x+ BY 20+ T)< V0)+ 40+ T)2< sV0) )+ R@
Noticing that 6 /0 =—1/(t + T) and 6 /v60 = —/0/(t + T), cancelling the obvious
terms, and then grouping terms by the growth in x yields

Zt — sy Gx — ) — Zax + ZR(0)

z
_ (VP 31 (x + B)> 1 S
_(l+T_2(t+T)§\/5)+4(t+—T)2(<1_§\/5)_2(t+T)>§\/§
3 2 x+ B 1 2 _
+2(z+T)<x+B_2(z+T)(1_§“/5))—m+R(u).

Since 6 < 1, we have, up to increasing 7' (independent of all parameters),

Zt = 5y Gx — 2) = Zax + ZR(0)

z
. NG (x+ B)> Vo 3 2 x+B 2
20 +T) Tac+T2 16 2(t+T)(x+B_2(t+T))_(x+B)2

+ R(ii).

Using Young’s inequality and then increasing 7' (independent of all parameters), we arrive

at

Zt — sy Bx — 2) = Zax + ZR(0)

V4
L V8 4BV 302 7240 2
T20+T) 8«+T)2 16 2+ T)x+B Te+T) (x+B)
+ R()
Vo (x+B)?2 Vo 3 b ) ]
24(I+T) 8(Z+T)2¥+2(I+T)x+B_(X+B)2+R(“)- (4.20)

At this point, we can see why the right-hand side of (4.20) should be positive. Recall
that, according to Lemma 4.1 (equation (4.2)), the term R(i) > ro > 0 when # is not
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too small. Hence, it should dominate the next-to-last term on the right-hand side of (4.20)
in that region if B is large. On the other hand, for # small, the term R(#) looks like
2/1log?(it), according to (4.3). Moreover, as ii(t, x) &~ Uy (x) and Uy (x) has the asymp-
totics (2.5), we have log?(ii) ~ x2. Thus, once again, R(ii) dominates the next-to-last
term on the right-hand side of (4.20).

We make the discussion above more precise. Let us fix §; > 0 as in Lemma 4.1. We
claim that, up to increasing L (depending on §;), we have

1—6; ifx <L/2,

u(t,x) > 1 C <2 4.21)
X+ Xk ifx > L/2,
CL

for all > 1, with a constant C;, > 1 that depends on L. The first alternative above is due
to Proposition 3.1. The second alternative follows from [24, Proposition 3.1] and its proof,
as well as an application of the comparison principle.
We first consider the “large” u regime (and, thus, x “not too far on the right”). If
i > 8p, then R(11) > rg due to (4.2) and we find
2 + R(u1) > 2 +ro>0
I U)y>—————+r ,
(x + B)? BECEN I
up to increasing B further if necessary so that 2/B? < ro. In particular, then we have,
from (4.20),

Zt — sy Gx — ) — Zax + ZR(0)

z

>0, ifa,x) > S,

as desired.
Next we consider the “small” % regime (and, thus, “large” x regime). Note that,
by (4.21), if u < 8¢, then

1 1 t 1 1 1
> min| = log ———, /[ =—lo > . /—log———. 4.22
r=m (2 & Créo 2CL & CL50) —\2CL & Créo ( )

In particular, this case is restricted to x that is very large, after possibly decreasing &.

We begin by estimating R () using (4.3). For the quadratic term, we apply (4.21) to

find
2 2 1

2 2 |
(log(i)? = x? (1 4 Gx — leex 4 foeey2

Then, using that (1 + z)72 > 1—2zforall z > —1, we obtain

2 2 C 1 log C
—NZ—<1—2< Lx _logx  log L))
(log(i1))? — x2 t X x

2 4CL + 4logx 4logCr

x2 xt x3 x3
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A similar argument, using the inequality
(1 —z)_3 <14+Cz, for0<z<1/2,
yields a bound for the second term in R(it):
C C 1 C 1

—T—— =3 23 >___
[log(@)PP —  x% (1 4 Gt _lex 4 G303 (] - 123

%(1_‘_6,1()%)_ C Clogx‘

2_

x3 x4

Using these in (4.20), we find

Zt = sy Gx — 2) = Zxx — ZR(1)

z
. NG (x+ B)* Vo 3
T4(t4+T) 8t +T)>216 (t+T)(x+ B)
2 2 4Cr 4logx 4logC;, C Clogx
~ (x+B)? e e

After decreasing 8o (which, by (4.22), increases the lower bound for x), we find

zt—ﬁ(zx—z)—zxx—zle(ﬁ)> N (x + B)? V6

z 4t +T) 8t +T) 16
. 3 4Cyp,  2logx
(t+T)(x+B) xt x3

There is only one negative term above. Applying Young’s inequality with p = % andg =3
yields

da V8, VB 51
xt = 4+ F\\oe+n) x
Vo (t+T)> 1 Vo T2
- > — —CL—-
4t +T) T  x33 4t +T) x3
Hence, we have
Z; — _2(,3_7') (Zx —Z) —Zxx —ZR(1) - (x + B)2 ﬁ 3 2
z “8t+T7)16 20+T)x+ B
T? logx
— CL—3 + 713

which is positive after further decreasing §y (which, by (4.22), increases x). This con-
cludes the proof of (v) and, thus, the proof of the lemma. [
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5. Proofs of the bounds on 5 and Q

5.1. Concavity of 75: Proposition 2.2

We make two observations. First, arguing as in Lemma 3.4, it is easy to check that, for
any f, its traveling wave profile function 7 satisfies

)y’ (u) -0, asu— 1. (5.1)

Second, Proposition 2.2 follows from the following more general result.

Lemma 5.1. Assume that (1.1)—(1.3) hold. Suppose that either
(1) (pulled case) the asymptotics (2.5) hold and f” < 0 on (0, 1);

(ii) (pulled case) the asymprotics (2.5) hold and there is ug € [0, 1] such that f”' > 0
on (0,ug) and " < 0 on (ug, 1);

(iii) (pushed and pushmi-pullyu cases) there are y > 1 and A satisfying A(0) =
A'(0) = 0 and A(1) = 1 such that

f) = (u—Aw)(1 + yA'(w)) and A", A" >0. (5.2)

If x = 1, the condition A" > 0 is not necessary.

Thenn” <0and Q < 1.

Proof in cases (i) and (ii). First, note that, case (i) is really the subcase of (ii) where uy =
0. Hence, we only consider case (ii). Let us also recall that f'(0) = 1, according to
assumption (1.3). If the asymptotics (2.5) holds and ¢ > 2 is the speed of the wave, then,
by linearization as x — 00, it is easy to see that Ao must be a double root of the equation

cA =A%+ 1.

It follows that ¢ = ¢ = 2 and Ao = 1.
Observe that it is thus enough to show that n” < 0. Indeed,

Q=nQ-n)+nn=1+n"n=<1L
By Lemma 3.4 (iii), there exists u; > 0 so that
n' () <0 forall0 <u < uj.
Thus, the following is well defined and positive:
u = sup{ui € (0,1) : n”"(u) < 0on (0,u]}. (5.3)

Our goal is to prove that u = 1.
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Suppose, for the sake of a contradiction, that u < 1. Writing (2.20) as

r_ S(u)
n()’

we find n?n” = n' f — f'n and hence

0"y =@ f—f'n =u"f—nf" (5:4)
It follows that, at u, we have

0 < (n") (@) = n"(@) f (@) — n(a) f" @) = —n@) f" @)
The first inequality follows from the fact that n?n” crosses zero at i due to (5.3). As
n(#) > 0 (recall (1.20)), it follows that f” (i) < 0, which in turn implies that
i > ug. (5.5)
We deduce that
f"(u) <0 forallu > .

We now claim that 5" > 0 on (i1, 1). Definition (5.3) of # implies that if i < 1 then for
every ¢ > 0 sufficiently small, there is u, € (i1, + &) such that n” (u.) > 0. Suppose that
there is U € (ug, 1) such that n” (u) > 0 for u € (ug, vs) and " (vg) = 0. Then, integrating
(5.4) gives

0> —n?(ue)n"(us) = / W' f = nf"ydu > o, (5.6)

which is a contradiction. The second inequality in (5.6) follows from the fact that, on the
domain of integration, 1, f,n” > 0and f” < 0. We conclude that " («) > 0 for u € (u,, 1).
By the arbitrariness of ¢ > 0, it follows that ”” > 0 on (i, 1), as claimed.

Finally, we conclude by obtaining a contradiction at ¥ = 1. Going back to (5.4) and
recalling (5.5), we deduce that

0" =0"f —nf" >0, fori<u < 1. (5.7)
Recall that (1) = 0, by construction. As a consequence, we obtain, for any u > i,
u u
P ) = @@+ [ = nfdu= [ o' = du o,
u u
Taking the limit ¥ " 1 and using (5.1), we obtain
1
0= tim 20" = [ " f =y >0,

u/'1 i

Here, the last inequality follows from (5.7). This contradiction shows that it is impossible
that % < 1. It follows that % = 1 and n”(u) < O for all u € (0, 1). This concludes the
proof. ]
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Proof in case (iii). Here, we have the explicit form of 7, due to [2, Proposition A.2],

1
nw) = /x(u—Aw)) and cx =)+ —. (5.8)
NE
It is immediate that n” < 0; hence we need only show that Q < 1. A direct computation
yields

O =1+ (DA =4~ yu— A" <1+ y(A4' — |4 — (u— A)A").

The inequality above follows from the convexity of A and the fact that A’(0) = 0, which
imply that A’ > 0. It is, hence, enough to show that

A — AP —u—-A)A" <0.
Note that, at u = 0, the expression above vanishes On the other hand,
(A/—|A/|2—(M—A)A//)/=—A/AN—(U—A)A/NEO,

sinceu — A, A’, A”, A”” > 0. We conclude that Q < 1. This completes the proof.
Finally, we consider the last statement for y = 1. We have already observed that n” <

0. We conclude by noting that, from (5.8), cx = 2 and then arguing as in the second

paragraph of the proof for cases (i) and (ii). ]

5.2. Refined bounds on Q: Proof of Lemma 4.1

First, we note that the bounds in (4.1) follow from Lemma 5.1. Second, the bounds (4.3)
follow directly from Lemma 3.4.

‘We now address the bounds in (4.2) for the remainder of the proof. We first investigate
the first alternative in (4.2). In the case y > 1, the proof of Lemma 5.1 clearly shows that if
A", A" < 0, then Q is bounded away from 1 on compact subsets of (0, 1]. This is exactly
the first alternative in (4.2) for the case y > 1.

When 0 < y < 1, the first inequality in (4.2) is deduced using only the concavity of
7 (4.1) and the asymptotics Lemma 3.4. Indeed, these imply that ' (1) < 1'(8¢) < 1 for
all u € (8o, 1). Hence,

Ru)=1-=0(w)=1-n"()2—n"w)—nG)n"(u)
> 1—n')2—n'w)>1-17)2—1')) > 0. (59

This yields the first alternative in (4.2) in the pulled case.
We now investigate the second alternative in (4.2). Notice that

o) ='W (ex —n' (M) + (D" (1) = =A1(ex + A1) = f'(1) <O. (5.10)

The second equality above follows from (1.19) and (2.9), while the third is due to (2.10).
The inequality uses the particular form of f. This concludes the proof. ]
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6. The general case

In this section we discuss the convergence rate when f satisfies (1.2) and the normaliza-
tion (1.3) but does not necessarily have the Hadeler—Rothe form (2.1).

Let us begin by recalling the proof of the convergence rates in the Hadeler—Rothe case
(Theorem 2.1). The main lemma is the estimate on w (Theorem 3.3). The argument to
deduce Theorem 2.1 from Theorem 3.3 relies only on the behavior of 1 near u = 0, which
is established in full generality in Lemmas 3.4 and 3.5.

In the proof of Theorem 3.3, there are exactly two places where we use assumption
(2.1) on the form of f rather than just assumptions (1.2)—(1.3): the O(1) asymptotics for
the front location of u(¢, x) (Proposition 3.1) and the bounds on Q (Lemma 4.1). The
final conclusion of Lemma 4.1, that is, the expansion (4.3), holds for any pulled front as it
merely reflects the linear factor in (1.16). Hence, the supersolutions for w constructed in
each case in the proof of Theorem 3.3 hold in generality if we take the front asymptotics of
u and behavior of 1 as assumptions. Hence, the exact arguments above yield the following:

Theorem 6.1. Suppose that u solves (1.1) with f satisfying (1.2)—(1.3) and initial data
ug satisfying (2.11). Assume further that the traveling wave profile function n and the
associated quantity Q, respectively defined in (1.19) and (1.24), satisfy (4.1)—(4.2). (Here,
we are only assuming the positivity of r1, not necessarily the limiting behavior as §; — 0
stated below (4.2).) Finally, suppose the front asymptotics of u are given by

3
2t — > logt + O(1) if Uy is pulled,

- 1
m(t) = 2t — 3 logt + O(1) if Uk is pushmi-pullyu type, (6.1)

cxt + 0(1) if Uy is pushed,

in the sense of (3.1), with the definition of pushed, pulled, and pushmi-pullyu given in
(1.16)—(1.17). Then there is 0 [0, 00) — R such that, whenever c, = 2,

C
et + o) = UsOllLe = —.

and, for any A > 0, whenever cx > 2,

34

Ca
lu(, -+ o0(t) = Us()llLoo((=A,00)) = We S

6.1. The assumptions in Theorem 6.1

In this section we discuss the three main assumptions in Theorem 6.1: (6.1), (4.1), and
(4.2). Briefly, the front asymptotics (6.1) of u is nearly known in complete generality, so
it is a quite weak assumption and the refined bounds (4.2) on O may be sidestepped by
alternate arguments at the expense of a slightly less precise convergence rate. Thus, the
main assumption to be checked in practice is (4.1), that is, that n”” <0 and Q < 1. We
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formulate a version of Theorem 6.1 that assumes only (4.1) in Theorem 6.2 below. We
also discuss here the feasibility of (4.1).

Assumption (6.1). In fact, (6.1) is nearly established in full generality. The pulled and
pushed asymptotics in (6.1) are completely proved: see [38, Lemma 5.2] for the pushed
case and [21] for the pulled case. The statement in [21] additionally requires f'(1) < 0,
although this can likely be removed via a comparison argument with solutions to (1.1)
with appropriately chosen f and f in place of f. We do not pursue this further here.

The pushmi-pullyu case is more delicate. If f has the particular form (5.2), this is
established in [2], but it is otherwise still open. The most general result is [21], in which
the asymptotics

1
m(t) = 2t — 3 logt + o(logt) (6.2)

is established with no assumptions on f beyond (1.2)—(1.3), that U, is pushmi-pullyu
type, and that f/(1) < 0. Using (6.2) in our arguments, we get

D(r) = m(t) —my (1) = logt + o(log?).

It is not hard to track the effect of the o(log¢) term in our computations to see that the
informally derived convergence rate (1.29) holds: for every ¢ > 0,

&

u(,- +0@) = Us()L> = (6.3)

t 1—¢°
Another argument leading to (6.3) is sketched in greater detail below; see (6.5) and its
discussion.

Assumption (4.1). The main purpose of this assumption is to guarantee that (1.27) holds;
that is,
Wy < Wyy + W. (6.4)

We were unable to obtain more general assumptions on f guaranteeing (4.1) than those
stated in Lemma 5.1. Further, it is not difficult to construct nonlinearities f for which
0 £ 1 (see Section 6.2), although these examples appear fairly pathological. Numerical
experiments indicate that (4.1) is “often” true. For example, consider generalizations of
the Hadeler—Rothe nonlinearities of the form

fu) = (u—A@)(1 + yA'(w)) with x =0, 4(0) = A'(0) = 0, A(1) = 1,

analyzed in [2]. Then numerics indicates that (4.1) holds as long as A(u) is increasing,
convex, and A”'(u) > 0. For y > 1 this follows immediately from Lemma 5.1.

We expect that, in many applications, either the assumptions of Lemma 5.1 would
hold, or the inequalities in (4.1) are checkable or can be sidestepped using ad hoc adjust-
ments to our approach here. It is easy to derive several differential equations relating n
and Q to f that are useful for understanding 1 and Q, although we do not discuss this
further here.
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Assumption (4.2). This assumption is not used in the argument of the pushed setting (see
Section 4.1). Hence, we need only address the pulled and pushmi-pullyu cases.

In the pushmi-pullyu case, we outline an argument below that yields nearly the same
conclusion, albeit without either inequality in assumption (4.2). Hence, we focus our dis-
cussion mainly on the pulled case, where (4.2) plays a greater role.

In the pulled setting, the first inequality in (4.2) holds automatically due to the concav-
ity of n (4.1) (see (5.9) and the arguments surrounding it). The second inequality in (4.2)
is equivalent to Q(1) < 0, which holds if and only if (1) < 0 (see (5.10)).

We outline a slightly less precise argument that proceeds without the assumption (4.2).
If (4.1) holds, then (1.23) yields (6.4). Consider first the pushmi-pullyu case. The argu-
ments in [24] readily yield that any bounded subsolution of (6.4) satisfies

3 22
w(t,x +my(t)) = w(t,x + 2t — Elogt) <Cxe ™ ¢ forallx > 1,

which implies the nearly sharp bound

C(x +logt) e_x_éjt.
t

It appears likely that the log ¢ error term may be avoided by using the traveling wave

“trace-back’ arguments of [24] (see the proof of Proposition 3.1 therein); however, we do

not pursue that here.

Note that the above estimate is assuming that m(¢) = 2¢ — % logt + O(1). If we only
have (6.2) available, the above changes only by a multiplicative factor of ¢°, for any ¢ > 0,
due to a spatial shift of elogz.

The bound (6.5) matches the estimate in Theorem 3.3 (ii) up to an extra log # multi-
plicative factor. Thus, the argument deducing Theorem 2.1 from Theorem 3.3 proceeds in
the exact same manner and gives an error bound between u and U, of the form O(t~!logt)
at and beyond the front.

The pulled case follows similarly, using the work of [10] in place of [24], and leads to
an error bound of the form O(t ! log? ¢) at and beyond the front.

From the above, we deduce the following more general, slightly less precise result.
Given that the proof follows that of Theorem 2.1 exactly up to the modifications outlined
above, we omit it.

w(t,x + D(t) + my (1)) = w(t,x + 2t — %logl) < (6.5)

Theorem 6.2. Suppose that u solves (1.1) with f satisfying (1.2)—(1.3) and initial data
ug satisfying (2.11). Assume further that the traveling wave profile function n and the
associated quantity Q, defined in (1.19) and (1.24) respectively, satisfy (4.1). Then there
is 0:[0, 00) — R such that, forany A > 0, e > 0, andt > e,

Ch log(t
Calos® ot is pulled.
t
CA,s . . .
lut,- 4+ 0(t)) = U ()|l Loo([=A,00)) = e if Uy is pushmi-pullyu type,
C 0574

—e "7 ' jfUy is pushed.
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If Uy is pushmi-pullyu type and we additionally assume that m(t) = 2t — % logt + O(1),
then the improved estimate with rate Cpt " log? t holds.

6.2. An example where Q £ 1

Lemma 4.1 is a crucial aspect of the proof of Theorem 2.1. As discussed above, its main
component is that Q < 1, which is true for the Hadeler—Rothe nonlinearities (2.1), as
well as many other nonlinearities. We show here that it is not true for some f satisfying

(1.2)=(1.3).
Proposition 6.3. There is a nonlinearity f € C2([0, 1]) satisfying (1.2)—(1.3) such that

sup Q(u) > 1.
ue(0,1)

Proof. Let npxpp be the traveling wave profile function associated to the classical Fisher—
KPP nonlinearity frxpp(#) = u(1 — u). Note that nggpp is concave by Lemma 5.1. Define

M = sup nrxep(u),
u€l0,1]

andlet 0 < u; < up < u3z < ug4 < 1 be such that

2M M
nekpp(U) > = forall u € [up,u3] and 7npgpp(u) < 3 forall u € [0, uq] U [ug, 1].

This definition is illustrated in Figure 2.

)FKPP
2M
3
M
3
0 U1 u2 u3z ug | u
Y o NFKPP
2M
H am
M \ 9
3
()‘ up up uz Uugq4 1 u

Figure 2. An illustration of the definitions of 11, u2, u3, and u4, as well as the shape of ¥ o nrxpp.

Let ¥ be a smooth, nondecreasing, concave function such that

_ M
X ifx < 3
VO =34y oM
— ifx > —.
9 3
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Then, note that

)
and
nekep(u)  ifu € [0,u1] U [ug, 1],
¥ (mexep(u)) = 4 4M
9
See Figure 2 for an illustration of this.
Let ¢ be a nonnegative, C 3-function such that ¢ (1) > 0 for u € (12, u3) and vanishes
outside this interval, and

ifu € [uy,us].

S U2 U3\ , iy U2 + U3
¢( . )_1, sup |¢'| < 2, ¢( . )>0. (6.6)
We note that
supp((¥ o nekep)’) N supp(¢’) = B. (6.7)

We now define the nonlinearity. Inspired by (2.20), we let

f@) =n@)2—n'w),

where
n(u) = ¥ (nexep(u)) + ¢ (u).

Let us first check that £ € C?2([0, 1]). This is clear away from u = 0 and u = 1. On
the other hand, for u € [0, u1] U [ug4, 1],

n(u) = nrxpp(u)

and ¢ (1) = 0, hence, for all u € [0, u1] U [uq, 1],

S @) =n@)2—n'(w)) = nexep ()2 — Ngpp()) = frxep(u) = u(l —u).

Thus, f € C2([0, 1]). It also follows that £(0) = f(1) =0and f’(0) = I, so that condi-
tions (1.2)—(1.3) hold. We also note that, by construction, n > 0 and ' < 2, so that f* > 0.
Here we used the concavity of ¥, (6.6), and (6.7) to guarantee that ' < 2.

We note that, by construction, 7 is the traveling wave profile function for f. Indeed,
defining U to be the solution of

1
—U"=n(U) suchthat U(0) = >

then U is a speed 2 traveling wave solution of (1.1). As n(u) > 0 for u € (0, 1) and
n(0) = n(1) = 0, we also know that U(—o0) = 1 and U(+400) = 0. Additionally, since
f'(0) = 1, the minimal speed is ¢« = 2. Hence, U is the minimal speed traveling wave
of (1.1), and 7 is the minimal speed traveling wave profile function associated to f.
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The proof is then complete by noting that ’ = ¢’ near

("zzﬂ and, hence,

Q(uz+u3> :¢,(u2+u3><2_¢,<u2+u3>) +n(u2+u3)¢/,<uz+u3>

2 2

Uz + U3 ,,(u2+u3>
>
—1+¢( 2 )¢ > )7t

2 2 2

where we used (6.6). ]

Funding. CH was supported by NSF grants DMS-2003110 and DMS-2204615. LR was
supported by NSF grants DMS-1910023 and DMS-2205497 and by ONR grant NO0O14-
22-1-2174. JA and CH acknowledge support of the Institut Henri Poincaré (UAR 839
CNRS-Sorbonne Université), and LabEx CARMIN (ANR-10-LABX-59-01).

References

(1]

(2]

(3]
(4]

(3]

(6]

(7]
(8]

(9]

(10]
(11]
(12]

[13]

J. An, C. Henderson, and L. Ryzhik, Pushed, pulled and pushmi-pullyu fronts of the Burgers-
FKPP equation. J. Eur: Math. Soc. (JEMS) (2023) DOI 10.4171/JEMS/1407

J. An, C. Henderson, and L. Ryzhik, Quantitative steepness, semi-FKPP reactions, and
pushmi-pullyu fronts. Arch. Ration. Mech. Anal. 247 (2023), no. 5, article no. 88

Zbl 07754928 MR 4631022

S. Angenent, The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390
(1988), 79-96 Zbl 0644.35050 MR 0953678

M. Avery, Front selection in reaction-diffusion systems via diffusive normal forms. Arch.
Ration. Mech. Anal. 248 (2024), no. 2, article no. 16 Zbl 07804745 MR 4705215

M. Avery, M. Holzer, and A. Scheel, Pushed-to-pulled front transitions: Continuation, speed
scalings, and hidden monotonicity. J. Nonlinear Sci. 33 (2023), no. 6, article no. 102

7Zbl 1526.35037 MR 4641115

M. Avery and A. Scheel, Asymptotic stability of critical pulled fronts via resolvent expansions
near the essential spectrum. SIAM J. Math. Anal. 53 (2021), no. 2, 2206-2242

Zbl 1462.35058 MR 4244535

M. Avery and A. Scheel, Universal selection of pulled fronts. Comm. Amer. Math. Soc. 2
(2022), 172231 Zbl 07750992 MR 4452778

J. Berestycki, E. Brunet, and B. Derrida, A new approach to computing the asymptotics of the
position of Fisher-KPP fronts. EPL (Europhys. Lett.) 122 (2018), article no. 10001

J. Berestycki, E. Brunet, and B. Derrida, Exact solution and precise asymptotics of a Fisher-
KPP type front. J. Phys. A 51 (2018), no. 3, article no. 035204 Zbl 1382.35065

MR 3741997

E. Bouin and C. Henderson, The Bramson delay in a Fisher-KPP equation with log-singular
nonlinearity. Nonlinear Anal. 213 (2021), article no. 112508 Zbl 1473.35090 MR 4299102
M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves. Mem.
Amer. Math. Soc. 44 (1983), no. 285 Zbl 0517.60083 MR 0705746

M. D. Bramson, Maximal displacement of branching Brownian motion. Comm. Pure Appl.
Math. 31 (1978), no. 5, 531-581 Zbl 0361.60052 MR 0494541

E. Brunet and B. Derrida, An exactly solvable travelling wave equation in the Fisher-KPP
class. J. Stat. Phys. 161 (2015), no. 4, 801-820 Zbl 1329.35318 MR 3413633


https://doi.org/10.4171/JEMS/1407
https://doi.org/10.1007/s00205-023-01924-2
https://doi.org/10.1007/s00205-023-01924-2
https://zbmath.org/?q=an:07754928
https://mathscinet.ams.org/mathscinet-getitem?mr=4631022
https://doi.org/10.1515/crll.1988.390.79
https://zbmath.org/?q=an:0644.35050
https://mathscinet.ams.org/mathscinet-getitem?mr=0953678
https://doi.org/10.1007/s00205-024-01961-5
https://zbmath.org/?q=an:07804745
https://mathscinet.ams.org/mathscinet-getitem?mr=4705215
https://doi.org/10.1007/s00332-023-09957-3
https://doi.org/10.1007/s00332-023-09957-3
https://zbmath.org/?q=an:1526.35037
https://mathscinet.ams.org/mathscinet-getitem?mr=4641115
https://doi.org/10.1137/20M1343476
https://doi.org/10.1137/20M1343476
https://zbmath.org/?q=an:1462.35058
https://mathscinet.ams.org/mathscinet-getitem?mr=4244535
https://doi.org/10.1090/cams/8
https://zbmath.org/?q=an:07750992
https://mathscinet.ams.org/mathscinet-getitem?mr=4452778
https://doi.org/10.1209/0295-5075/122/10001
https://doi.org/10.1209/0295-5075/122/10001
https://doi.org/10.1088/1751-8121/aa899f
https://doi.org/10.1088/1751-8121/aa899f
https://zbmath.org/?q=an:1382.35065
https://mathscinet.ams.org/mathscinet-getitem?mr=3741997
https://doi.org/10.1016/j.na.2021.112508
https://doi.org/10.1016/j.na.2021.112508
https://zbmath.org/?q=an:1473.35090
https://mathscinet.ams.org/mathscinet-getitem?mr=4299102
https://doi.org/10.1090/memo/0285
https://zbmath.org/?q=an:0517.60083
https://mathscinet.ams.org/mathscinet-getitem?mr=0705746
https://doi.org/10.1002/cpa.3160310502
https://zbmath.org/?q=an:0361.60052
https://mathscinet.ams.org/mathscinet-getitem?mr=0494541
https://doi.org/10.1007/s10955-015-1350-6
https://doi.org/10.1007/s10955-015-1350-6
https://zbmath.org/?q=an:1329.35318
https://mathscinet.ams.org/mathscinet-getitem?mr=3413633

(14]

(15]

(16]

(7]

(18]
(19]
[20]
(21]
(22]
(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

(32]

Front location determines convergence rate to traveling waves 931

U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic con-
vergence towards uniformly translating pulled fronts. Phys. D 146 (2000), no. 1-4, 1-99

Zbl 0984.35030 MR 1787406

G. Faye and M. Holzer, Asymptotic stability of the critical Fisher-KPP front using pointwise
estimates. Z. Angew. Math. Phys. 70 (2019), no. 1, article no. 13 Zbl 1404.35252

MR 3881827

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to
travelling front solutions. Arch. Rational Mech. Anal. 65 (1977), no. 4, 335-361

Zbl 0361.35035 MR 0442480

P. C. Fife and J. B. McLeod, A phase plane discussion of convergence to travelling fronts for
nonlinear diffusion. Arch. Rational Mech. Anal. 75 (1980/81), no. 4, 281-314

Zbl 0459.35044 MR 0607901

R. A. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7 (1937), 355-369
Zbl 63.1111.04

T. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations.
Nonlinearity 7 (1994), no. 3, 741-764 Zbl 0801.35046 MR 1275528

J. Garnier, T. Giletti, F. Hamel, and L. Roques, Inside dynamics of pulled and pushed fronts.
J. Math. Pures Appl. (9) 98 (2012), no. 4, 428-449 Zbl 1255.35073 MR 2968163

T. Giletti, Monostable pulled fronts and logarithmic drifts. NoDEA Nonlinear Differential
Equations Appl. 29 (2022), no. 4, article no. 35 Zbl 1491.35112 MR 4412555

C. Graham, Precise asymptotics for Fisher-KPP fronts. Nonlinearity 32 (2019), no. 6, 1967—
1998 Zbl 1411.35158 MR 3947215

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2
(1975), no. 3, 251-263 Zbl 0343.92009 MR 0411693

F. Hamel, J. Nolen, J.-M. Roquejoffre, and L. Ryzhik, A short proof of the logarithmic Bram-
son correction in Fisher-KPP equations. Netw. Heterog. Media 8 (2013), no. 1, 275-289

Zbl 1275.35067 MR 3043938

C. Henderson, Population stabilization in branching Brownian motion with absorption and
drift. Commun. Math. Sci. 14 (2016), no. 4, 973-985 Zbl 1344.92133 MR 3491812

A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Etude de I’équation de la diffusion
avec croissance de la quantité de matiere et son application a un probleme biologique. Bull.
Univ. Etat Moscou, Sér. Int., Sect. A: Math. et Mécan. 1 (1937), no. 6, 1-25 Zbl 0018.32106
K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov.
J. Differential Equations 59 (1985), no. 1, 44-70 Zbl 0584.35091 MR 0803086

J. A. Leach and D. J. Needham, Matched asymptotic expansions in reaction-diffusion theory.
Springer Monogr. Math., Springer, London, 2004 Zbl 1061.35002 MR 2013330

H. Matano and P. Pol4cik, Dynamics of nonnegative solutions of one-dimensional reaction-
diffusion equations with localized initial data. Part II: Generic nonlinearities. Comm. Partial
Differential Equations 45 (2020), no. 6, 483-524 Zbl 1439.35200 MR 4106997

J. D. Murray, Mathematical biology. 1. 3rd edn., Interdiscip. Appl. Math. 17, Springer, New
York, 2002 Zbl 1006.92001 MR 1908418

J. Nolen, J.-M. Roquejoffre, and L. Ryzhik, Convergence to a single wave in the Fisher-KPP
equation. Chinese Ann. Math. Ser. B 38 (2017), no. 2, 629-646 Zbl 1365.35074

MR 3615508

J. Nolen, J.-M. Roquejoffre, and L. Ryzhik, Refined long-time asymptotics for Fisher-KPP
fronts. Commun. Contemp. Math. 21 (2019), no. 7, article no. 1850072 Zbl 1423.35208

MR 4017787


https://doi.org/10.1016/S0167-2789(00)00068-3
https://doi.org/10.1016/S0167-2789(00)00068-3
https://zbmath.org/?q=an:0984.35030
https://mathscinet.ams.org/mathscinet-getitem?mr=1787406
https://doi.org/10.1007/s00033-018-1048-0
https://doi.org/10.1007/s00033-018-1048-0
https://zbmath.org/?q=an:1404.35252
https://mathscinet.ams.org/mathscinet-getitem?mr=3881827
https://doi.org/10.1007/BF00250432
https://doi.org/10.1007/BF00250432
https://zbmath.org/?q=an:0361.35035
https://mathscinet.ams.org/mathscinet-getitem?mr=0442480
https://doi.org/10.1007/BF00256381
https://doi.org/10.1007/BF00256381
https://zbmath.org/?q=an:0459.35044
https://mathscinet.ams.org/mathscinet-getitem?mr=0607901
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://zbmath.org/?q=an:63.1111.04
https://doi.org/10.1088/0951-7715/7/3/003
https://zbmath.org/?q=an:0801.35046
https://mathscinet.ams.org/mathscinet-getitem?mr=1275528
https://doi.org/10.1016/j.matpur.2012.02.005
https://zbmath.org/?q=an:1255.35073
https://mathscinet.ams.org/mathscinet-getitem?mr=2968163
https://doi.org/10.1007/s00030-022-00766-3
https://zbmath.org/?q=an:1491.35112
https://mathscinet.ams.org/mathscinet-getitem?mr=4412555
https://doi.org/10.1088/1361-6544/aaffe8
https://zbmath.org/?q=an:1411.35158
https://mathscinet.ams.org/mathscinet-getitem?mr=3947215
https://doi.org/10.1007/BF00277154
https://zbmath.org/?q=an:0343.92009
https://mathscinet.ams.org/mathscinet-getitem?mr=0411693
https://doi.org/10.3934/nhm.2013.8.275
https://doi.org/10.3934/nhm.2013.8.275
https://zbmath.org/?q=an:1275.35067
https://mathscinet.ams.org/mathscinet-getitem?mr=3043938
https://doi.org/10.4310/CMS.2016.v14.n4.a5
https://doi.org/10.4310/CMS.2016.v14.n4.a5
https://zbmath.org/?q=an:1344.92133
https://mathscinet.ams.org/mathscinet-getitem?mr=3491812
https://zbmath.org/?q=an:0018.32106
https://doi.org/10.1016/0022-0396(85)90137-8
https://zbmath.org/?q=an:0584.35091
https://mathscinet.ams.org/mathscinet-getitem?mr=0803086
https://doi.org/10.1007/978-0-85729-396-1
https://zbmath.org/?q=an:1061.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=2013330
https://doi.org/10.1080/03605302.2019.1700273
https://doi.org/10.1080/03605302.2019.1700273
https://zbmath.org/?q=an:1439.35200
https://mathscinet.ams.org/mathscinet-getitem?mr=4106997
https://doi.org/10.1086/421587
https://zbmath.org/?q=an:1006.92001
https://mathscinet.ams.org/mathscinet-getitem?mr=1908418
https://doi.org/10.1007/s11401-017-1087-4
https://doi.org/10.1007/s11401-017-1087-4
https://zbmath.org/?q=an:1365.35074
https://mathscinet.ams.org/mathscinet-getitem?mr=3615508
https://doi.org/10.1142/S0219199718500724
https://doi.org/10.1142/S0219199718500724
https://zbmath.org/?q=an:1423.35208
https://mathscinet.ams.org/mathscinet-getitem?mr=4017787

J. An, C. Henderson, and L. Ryzhik 932

[33] P. Polacik, Propagating terraces and the dynamics of front-like solutions of reaction-diffusion
equations on R. Mem. Amer. Math. Soc. 264 (2020), no. 1278 Zbl 1450.35002 MR 4078110

[34] M. I. Roberts, A simple path to asymptotics for the frontier of a branching Brownian motion.
Ann. Probab. 41 (2013), no. 5, 3518-3541 Zbl 1287.60104 MR 3127890

[35] J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling fronts for the solu-
tions of parabolic equations in cylinders. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14
(1997), no. 4, 499-552 Zbl 0884.35013 MR 1464532

[36] E. Rothe, Convergence to pushed fronts. Rocky Mountain J. Math. 11 (1981), no. 4, 617-633
Zbl 0516.35013 MR 0639447

[37] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems. Advances in Math.
22 (1976), no. 3, 312-355 Zbl 0344.35051 MR 0435602

[38] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time.
J. Math. Kyoto Univ. 18 (1978), no. 3, 453-508 Zbl 0408.35053 MR 0509494

[39] W. van Saarlos, Front propagation into unstable states. Phys. Rep. 386 (2003), no. 2-6, 29-222
Zbl 1042.74029

Received 18 July 2023; revised 11 January 2024; accepted 18 January 2024.

Jing An
Department of Mathematics, Duke University, 120 Science Drive, Durham, NC 27708, USA;
jing.an@duke.edu

Christopher Henderson
Department of Mathematics, The University of Arizona, 617 N Santa Rita Ave, Tucson, AZ 85721,
USA,; ckhenderson @math.arizona.edu

Lenya Ryzhik
Department of Mathematics, Stanford University, Building 380, Stanford, CA 94305, USA;
ryzhik @math.stanford.edu


https://doi.org/10.1090/memo/1278
https://doi.org/10.1090/memo/1278
https://zbmath.org/?q=an:1450.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=4078110
https://doi.org/10.1214/12-AOP753
https://zbmath.org/?q=an:1287.60104
https://mathscinet.ams.org/mathscinet-getitem?mr=3127890
https://doi.org/10.1016/S0294-1449(97)80137-0
https://doi.org/10.1016/S0294-1449(97)80137-0
https://zbmath.org/?q=an:0884.35013
https://mathscinet.ams.org/mathscinet-getitem?mr=1464532
https://doi.org/10.1216/RMJ-1981-11-4-617
https://zbmath.org/?q=an:0516.35013
https://mathscinet.ams.org/mathscinet-getitem?mr=0639447
https://doi.org/10.1016/0001-8708(76)90098-0
https://zbmath.org/?q=an:0344.35051
https://mathscinet.ams.org/mathscinet-getitem?mr=0435602
https://doi.org/10.1215/kjm/1250522506
https://zbmath.org/?q=an:0408.35053
https://mathscinet.ams.org/mathscinet-getitem?mr=0509494
https://doi.org/10.1016/j.physrep.2003.08.001
https://zbmath.org/?q=an:1042.74029
mailto:jing.an@duke.edu
mailto:ckhenderson@math.arizona.edu
mailto:ryzhik@math.stanford.edu

	1. Introduction
	Convergence in shape to a traveling wave
	Front location and convergence rates in the pushed and pulled cases
	An informal statement of the results
	Organization of the paper
	Notation


	2. Convergence rates for the Hadeler–Rothe nonlinearities
	2.1. The main result for the Hadeler–Rothe nonlinearities
	2.2. Discussion of the proof
	The pushed and pushmi-pullyu cases: χ ≥ 1
	The pulled case: 0 ≤ χ < 1

	2.3. Sharpness of Theorem 2.1

	3. Estimates on the shape defect function
	3.1. Deducing Theorem 2.1 from Theorem 3.3
	3.1.1 Preliminary bounds on η
	3.1.2 Proof of Theorem 2.1


	4. Proof of Theorem 3.3
	4.1. The pushed case: Proof of Theorem 3.3 (iii)
	4.2. The pushmi-pullyu case: Proof of Theorem 3.3 (ii)
	4.3. The pulled case: Proof of Theorem 3.3 (i)

	5. Proofs of the bounds on η and Q
	5.1. Concavity of η: Proposition 2.2
	5.2. Refined bounds on Q: Proof of Lemma 4.1

	6. The general case
	6.1. The assumptions in Theorem 6.1
	6.2. An example where Q not < 1

	References

