
Ann. Inst. H. Poincaré C
Anal. Non Linéaire 42 (2025), 933–970
DOI 10.4171/AIHPC/121

© 2024 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Sharp regularization effect for the non-cutoff Boltzmann
equation with hard potentials

Jun-Ling Chen, Wei-Xi Li, and Chao-Jiang Xu

Abstract. For the Maxwellian molecules or hard potentials case, we verify the smoothing effect for
the spatially inhomogeneous Boltzmann equation without angular cutoff. Given initial data with low
regularity, we prove solutions at any positive time are analytic for strong angular singularity, and in
the Gevrey class with optimal index for mild angular singularity. To overcome the degeneracy in the
spatial variable, a family of well-chosen vector fields with time-dependent coefficients will play a
crucial role, and the sharp regularization effect of weak solutions relies on a quantitative estimate
on directional derivatives in these vector fields.

1. Introduction and main result

Due to the diffusion property, the regularization effect is well explored for parabolic-type
equations. As a typical example, solutions to the Cauchy problem of the heat equation
will become analytic at positive times for given initial data with low regularity. This
kind of parabolic regularization effect has been observed in several classical equations
which describe the motion of dilute gas and fluid dynamics in different physical scales.
For instance, at macroscopic scales, the motion of fluid may be described by the clas-
sical Navier–Stokes equations, which indeed enjoy the analytic smoothing effect (cf.,
e.g., Foias–Temam [23]). Meanwhile, in mesoscopic kinetic theory, the Boltzmann equa-
tion plays a fundamental role, and the regularization properties of weak solutions were
observed in Lions [37] and further verified by Desvillettes [18]. Since then there have
been extensive works on the C1-smoothing effect for the non-cutoff Boltzmann equation
and related models, most of which are concerned with the spatially homogeneous case;
the breakthrough for the inhomogeneous counterpart was achieved in the very recent work
of Imbert–Silvestre [32]. In this work, we aim to explore the analytic and sharp Gevrey
class regularization effect for the spatially inhomogeneous Boltzmann equation without
angular cutoff. Different from the heat or the Navier–Stokes equations, the spatially inho-
mogeneous Boltzmann equation is a degenerate parabolic equation. Although sometimes
we may expect C1-smoothness for general degenerate equations, it is highly non-trivial
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to get the analytic regularity. In fact, for the inhomogeneous Boltzmann equations, so far
very few analytic solutions are available.

To understand the transport properties of a dilute gas described by the Boltzmann
equation, explicit solutions would be useful to capture the non-equilibrium phenomena.
Due to the high non-linearity of the Boltzmann collision operator, it is usually not easy
to find an explicit solution and in this case, it would be more convenient to solve the
Boltzmann equation via analytic approximation with the help of numerical methods. In
this paper we will theoretically verify analyticity at positive time of mild solutions to
the spatially inhomogeneous Boltzmann equation with strong angular singularity. On the
other hand, for mild angular singularity, the sharp regularization that we may expect will
be in the Gevrey class rather than in analytic space. To investigate the sharp regularity, the
main difficulty arises from the degeneracy in the spatial direction coupled with the highly
non-linear feature in the Boltzmann collision operator. For the spatial homogeneous case,
the regularity issue reduces to a parabolic problem, and motivated by the heat equation,
analytic solutions to the Boltzmann equation and related models have been proven for
rather weak initial data; cf. [9, 15, 38] for instance and also [6, 13, 19, 20, 24, 39, 40, 42]
for regularity in other function spaces. However, analytic solutions are much less known
for the spatially inhomogeneous counterpart, and well-posedness in analytic space was
obtained by Ukai [45], where the author required analytic regularity for initial data so
that the Cauchy–Kovalevskaya theorem may apply, and to the best of our knowledge, no
analytic solution is known for non-analytic initial data. Motivated by diffusive models
such as the hypoelliptic Fokker–Planck and Landau equations, it is natural to expect a
smoothing effect for the spatially inhomogeneous Boltzmann equation in analytic space
or sharp Gevrey class rather than in the C1 setting.

The spatially inhomogeneous Boltzmann equation in a torus reads

@tF C v � @xF D Q.F; F /; F jtD0 D F0; (1.1)

where F.t; x; v/ stands for the probability density function at position x 2 T3, time t � 0
with velocity v 2 R3. If F D F.t; v/ is independent of x, then equation (1.1) reduces to
the spatial homogeneous Boltzmann equation. The Boltzmann collision operator on the
right-hand side of (1.1) is a bilinear operator defined by

Q.G;F /.t; x; v/ D

Z
R3

Z
S2
B.v � v�; �/.G

0
�F
0
�G�F / dv� d�; (1.2)

where, as throughout the paper, we use the standard shorthand F 0 D F.t; x; v0/, F D
F.t; x; v/, G0� D G.t; x; v

0
�/ and G� D G.t; x; v�/, and the pairs .v; v�/ and .v0; v0�/ are

the velocities of particles after and before collisions, with the following momentum and
energy conservation rules fulfilled:

v0 C v0� D v C v�; jv
0
j
2
C jv0�j

2
D jvj2 C jv�j

2:
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From the above relations we have the so-called � -representation, with � 2 S2,8̂̂<̂
:̂
v0 D

v C v�

2
C
jv � v�j

2
�;

v0� D
v C v�

2
�
jv � v�j

2
�:

The cross-section B.v � v�; �/ in (1.2) depends on the relative velocity jv � v�j and the
deviation angle � with

cos � D
v � v�

jv � v�j
� �:

Without loss of generality, we may assume that B.v � v�; �/ is supported on 0 � � � �
2

such that cos � � 0 and also assume that it takes the following specific form:

B.v � v�; �/ D jv � v�j
b.cos �/; (1.3)

where jv � v�j is called the kinetic part with �3 <  � 1, and b.cos �/ is called the
angular part satisfying

0 � sin �b.cos �/ � ��1�2s (1.4)

for 0 < s < 1, where here and throughout the paper, p � q means C�1q � p � Cq for
some generic constant C � 1. So the angular part b.cos �/ has a singularity near 0 in the
sense that Z �

2

0

sin �b.cos �/ d� D C1:

In the following discussion, by strong angular singularity we mean that 1
2
� s < 1, and

mild angular singularity means that 0 < s < 1
2

. Recall that  D 0 is the Maxwellian
molecules case, while the cases �3 <  < 0 and 0 <  correspond respectively to the
soft potential and the hard potential. In this text, we will restrict our attention to the cases
of Maxwellian molecules and hard potential, i.e.,  � 0.

We are concerned with the solution to the Boltzmann equation (1.1) around the nor-
malized global Maxwellian � D �.v/ D .2�/�3=2e�jvj

2=2. Thus, let F.t; x; v/ D � C
p
�f .t; x; v/ and similarly for the initial datum F0. Then the reformulated unknown

f D f .t; x; v/ satisfies

@tf C v � rxf CLf D �.f; f /; f jtD0 D f0; (1.5)

with the linearized collision operator L and the non-linear collision operator �.�; �/ given
respectively by

Lf D ���
1
2Q.�;

p
�f / � ��

1
2Q.
p
�f;�/; (1.6)

and
�.g; h/ D ��

1
2Q.
p
�g;
p
�h/: (1.7)
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Initiated by [18, 37], so far it is well understood that an angular singularity will lead to
fractional diffusion in velocity, so that it is a natural conjecture that the Boltzmann colli-
sion operator without cutoff should behave essentially as the fractional Laplacian:

�Q.g; f / � Cg.��v/
s
C l.o.t.; (1.8)

where l.o.t. refers to lower-order terms that are easier to control. Note that(1.8) is
rigorously verified by Alexandre–Desvillettes–Villani–Wennberg [1], where the velocity
should vary in a bounded region. For the global counterpart of (1.8), an accurate character-
ization by fractional Laplacian .��v/s and fractional Laplacian on a sphere .v ^ @v/2s is
given by [2] with the help of pseudo-differential calculus. Moreover, fractional diffusion
in the spatial variable x may also be archived due to the non-trivial interaction between
the diffusion in velocity and the transport part. Thus, even though the spatially inhomo-
geneous Boltzmann equation is degenerate in the spatial direction, it admits an intrinsic
hypoelliptic structure just like the diffusive variants such as the Fokker–Planck equation
or the Landau equation. Inspired by the analytic regularization effect observed by [11,41]
for these specific diffusive models, it is natural to require the same phenomena for the
Boltzmann equation with strong angular singularity, and in this work, we will confirm it
by virtue of a family of well-chosen vector fields. Moreover, for the remaining case of
mild angular singularity, we verify the Gevrey smoothing effect with sharp index.

Before stating the main result, we first recall the extensive studies on the regulariza-
tion properties of weak solutions to the spatially inhomogeneous Boltzmann equation.
The mathematical verification of the regularization phenomena may go back to Desvil-
lettes [18] for a one-dimensional model of the Boltzmann equation. Later on, the intrinsic
diffusion structure in velocity was proven by Alexandre–Desvillettes–Villani–Wennberg
[1]. Since then substantial developments have been achieved, and here we only men-
tion the works [3, 4, 17, 25, 26, 28] for the C1 or Sobolev regularization effect. The
smoothing effect in more regular Gevrey classes with Gevrey index 1C 1

2s
was proven

by [12, 21, 33, 35], based on the hypoelliptic structure explored in [2, 10, 14, 16, 27, 34,
36]. Another effective tool refers to De Giorgi–Nash–Moser theory, with the help of a
strong averaging lemma that plays a crucial role in capturing the regularizing effect; this
approach was recently applied to study conditional regularity for the spatially inhomoge-
neous Boltzmann equation with general initial data (cf. [29–32, 43, 44] for instance) and
well-posedness for the close-to-equilibrium problem with polynomial tails (cf. [7, 8, 44]).

1.1. Notation and function spaces

Given two operators P1 and P2 we denote by ŒP1; P2� the commutator between P1 and
P2, that is, ŒP1; P2� D P1P2 � P2P1.

We denote by Of or Fxf the partial Fourier transform of f .t; x; v/ with respect to the
spatial variable x 2 T3, that is,

Of .t;m; v/ D Fxf .t;m; v/ D

Z
T3

e�im�xf .t; x; v/ dx; m 2 Z3;
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where here and below we use m 2 Z3 to stand for the Fourier dual variable of x 2 T3.
Similarly, Fx;vf represents the full Fourier transform of f .t; x; v/ with respect to .x; v/
and we will denote by .m; �/ the Fourier dual variable of .x; v/. For the sake of conve-
nience, we will denote by y�. Of ; Og/ the partial Fourier transform of �.f;g/ defined in (1.7),
meaning that

y�. Of ; Og/.t;m; v/

WD Fx.�.f; g//.t;m; v/

D

Z
R3

Z
S2
B.v � v�; �/�

1
2 .v�/

�
Œ Of .v0�/ � Og.v

0/�.m/ � Œ Of .v�/ � Og.v/�.m/
�
d� dv�;

where the convolutions are taken with respect to the Fourier variable m 2 Z3:

Œ Of .u/ � Og.v/�.m/ WD

Z
Z3
`

Of .t;m � `; u/ Og.t; `; v/ d†.`/; (1.9)

for any velocities u; v 2 R3. Here and below d†.m/ stands for the discrete measure on
Z3, i.e., Z

Z3
g.m/ d†.m/ WD

X
m2Z3

g.m/

for any summable function g D g.m/ on Z3. When applying Leibniz’s formula, it will be
convenient to work with the trilinear operator T defined by

T .g; h; !/ D

“
B.v � v�; �/!�.g

0
�h
0
� g�h/ dv� d�; (1.10)

where B is given in (1.3), and ! is a function of the variable v only. The bilinear operator
� in (1.7) and the above T are linked by

�.g; h/ D T .g; h; �
1
2 /: (1.11)

Similarly to above we denote by yT . Og; Oh; !/ the partial Fourier transform of T .g; h; !/

with respect to x, that is, for any functions ! D !.v/ of the variable v only,

yT . Og; Oh; !/.m; v/

D Fx.T .g; h; !//.m; v/

D

“
B.v � v�; �/!.v�/

�
Œ Og.v0�/ �

Oh.v0/�.m/ � Œ Og.v�/ � Oh.v/�.m/
�
dv� d�; (1.12)

where the conclusions are taken with respect to the Fourier variable m 2 Z3, seeing defi-
nition (1.9).

Throughout the paper, without confusion we will use L2v to stand for the classical
Lebesgue space L2 consisting of functions of the specified variable v, and similarly for
L2x;v . We denote by Hp

v the classical Sobolev space Hp in the variable v, and similarly
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for Hp
x;v . We recall the mixed Lebesgue spaces LpmL

q
TL

r
v introduced in [22], which are

defined by
LpmL

q
TL

r
v D

®
g D g.t; x; v/I kgkLpmL

q
TL

r
v
< C1

¯
;

where

kgkLpmL
q
TL

r
v
WD

8̂̂̂̂
<̂
ˆ̂̂:
�Z

Z3

�Z T

0

k Og.t;m; �/k
q

Lrv
dt

� p
q

d†.m/

� 1
p

; q <1;�Z
Z3

�
sup
0<t<T

k Og.t;m; �/kLrv
�p
d†.m/

� 1
p

; q D1;

for 1 � p; r <1 and 1 � q � 1. In particular,

LpmL
r
v D

®
g D g.x; v/I kgkLpmLrv WD

�R
Z3k Og.m; �/k

p

Lrv
d†.m/

� 1
p < C1

¯
and

L1m D
®
g D g.x/I kgkL1m WD

R
Z3 j Og.m/j d†.m/ < C1

¯
:

Finally, we recall the triple norm jjj � jjj introduced by Alexandre–Morimoto–Ukai–Xu–
Yang [5], defined as

jjjf jjj2 WD

Z
R3

Z
R3

Z
S2
B.v � v�; �/��.f � f

0/2 d� dv dv�

C

Z
R3

Z
R3

Z
S2
B.v � v�; �/f

2
� .
p
�0 �

p
�/2 d� dv dv�: (1.13)

Note that the triple norm is indeed equivalent to the anisotropic norm j � jN ;s intro-
duced in Gressman–Strain [25]. Both norms can be characterized by an explicit norm
k.a

1
2 /wf kL2v , with .a

1
2 /w standing for the Weyl quantization of symbol a

1
2 (cf. [2] for

detail). In this text, we will use the above triple norm to avoid the need for pseudo-
differential calculus.

1.2. Statement of the main result

Let L1mL
2
v and L1mL

1
T L

2
v be the spaces defined in the previous part. We first recall the

existence and uniqueness of solutions to (1.5) established by Duan–Liu–Sakamoto–Strain
[22] in the setting of L1mL

2
v . Assume that the cross-section satisfies (1.3) and (1.4) with

0�  and 0< s < 1. It is proven in [22] that for a given initial datum f0 2L
1
mL

2
v satisfying

kf0kL1mL2v � �

for some sufficiently small constant � > 0, the non-linear Boltzmann equation (1.5) admits
a unique global solution in L1mL

1
T L

2
v for any T > 0. Moreover, the higher-order regu-

larity of the mild solution f is obtained in [21], which says that f is in Gevrey class
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G1C
1
2s .T3

x �R3v/ for t > 0. Recall that f D f .x; v/ 2 Gr .T3
x �R3v/ with index r > 0 if

f 2 C1.T3
x �R3v/, and there exists a constant C > 0 such that

8˛; ˇ 2 Z3C; k@
˛
x@
ˇ
v f kL2x;v � C

j˛jCjˇ jC1Œ.j˛j C jˇj/Š�r :

Here, r is called the Gevrey index. In particular,G1.T3
x �R3v/ is just the space of analytic

functions, and that Gr .T3
x �R3v/ with 0 < r < 1 is the space of ultra-analytic functions.

We have an equivalent expression of the Gevrey class Gr .Z3x � R3v/ by virtue of the
Fourier multiplier ec.��x��v/

1
2r , with c > 0 a constant, that is, we say f 2 Gr .Z3x �R3v/

if
ec.��x��v/

1
2r
f 2 L2x;v: (1.14)

Here, ec.��x��v/
1
2r f is defined by

Fx;v.e
c.��x��v/

1
2r
f /.m; �/ D ec.jmj

2Cj�j2/
1
2r

Fx;vf .m; �/;

recalling that Fx;v represents the full Fourier transform with respect to .x; v/, and that
.m; �/ are the Fourier dual variables of .x; v/.

This work aims to prove the sharp Gevrey class smoothing effect, improving the pre-
vious Gevrey regularity index 1C 1

2s
in [21]. The main result can be stated as follows.

Theorem 1.1. Let Gr .T3
x � R3v/ be the Gevrey space defined above. Assume that the

cross-section satisfies (1.3) and (1.4) with  � 0 and 0 < s < 1. There exists a sufficiently
small constant � > 0 such that if

kf0kL1mL2v � �; (1.15)

then the Boltzmann equation (1.5) admits a global-in-time solution f satisfying that f 2
G� .T3

x �R3v/ for all t > 0, where

� D max
° 1
2s
; 1
±
: (1.16)

Moreover, for any T � 1 and any number � satisfying � > 1C 1
2s

, there exists a constant
C > 0 depending on T and �, such that

8˛;ˇ 2Z3C; sup
0<t�T

t .�C1/j˛jC�jˇ jk@˛x@
ˇ
v f .t/kL2x;v � C

j˛jCjˇ jC1Œ.j˛j C jˇj/Š�� : (1.17)

Remark 1.2. As will be seen below, our argument relies on the restriction that  � 0. It
is interesting to extend the result above to the case of soft potentials, which would require
some new ideas. We hope the method in this text may give insights into the regularity of
the soft potentials case and other related topics for more general spatially inhomogeneous
Boltzmann equations.
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1.3. Sharpness of the Gevrey index

In view of (1.16), we have an analytic regularization effect for the strong angular singular-
ity case (i.e., 1

2
� s < 1). For the mild angular singularity case of 0 < s < 1

2
, only Gevrey

class regularization with index 1
2s

can be expected. In this part, we will confirm the sharp-
ness of the Gevrey index through the some toy models of the Boltzmann equation. To do
so, we first consider the following fractional Fokker–Planck equation in T3

x �R3v:´
@tg C v � @xg C .��v/

sg D 0; 0 < s < 1;

gjtD0 D g0 2 L
2
x;v;

(1.18)

which is a toy model of the Boltzmann equation with Maxwellian molecules (i.e.,  D 0
in (1.3)). By performing the full Fourier transform, we could reformulate (1.18) as the
following transport equation:´

@tFx;vg �m � @�Fx;vg C j�j
2sFx;vg D 0;

Fx;vgjtD0 D Fx;vg0;

recalling that .m;�/ are the Fourier dual variables of .x;v/. By solving the above transport
equation we get an explicit solution g to (1.18) satisfying

.Fx;vg/.t;m; �/ D e
�
R t
0 j�C�mj

2s d�.Fx;vg0/.m; �C tm/: (1.19)

Moreover, observe that (cf. [41, Lemma 3.1] for instance)

�t .j�j2 C t2jmj2/s=cs � �

Z t

0

j�C �mj2s d� � �cst .j�j
2
C t2jmj2/s;

and thus, for any t > 0,

�.jmj2 C j�j2/s=cs;t � �

Z t

0

j�C �mj2s d� � �cs;t .jmj
2
C j�j2/s; (1.20)

where cs > 0 is a small constant depending only on s, and cs;t > 0 is a small constant
depending only on s and t . Then combining (1.19) and (1.20) yields that, for any t > 0,

kecs;t .��x��v/
s

g.t/k2
L2x;v

D

Z
Z3�R3

e2cs;t .jmj
2Cj�j2/se�2

R t
0 j�C�mj

2s d�
j.Fx;vg0/.m; �C tm/j

2 d†.m/ d�

� kg0k
2
L2x;v

:

Then, in view of the equivalent definition (1.14) of Gevrey space,

8t > 0; g.t; �; �/ 2 G
1
2s .T3

x �R3v/:
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Next we will show that the Gevrey index 1
2s

is sharp. To do so, let r be any given number
satisfying 0 < r < 1

2s
, and we choose an initial datum g0 in (1.18) such that

8" > 0; ke".��x��v/
1
2r
g0kL2x;v D C1; (1.21)

which means g0 … Gr .T3
x �R3v/. Moreover, for any constant c� > 0, we can find a con-

stant R depending only on c� and the constant cs;t in (1.20), such that

.jmj2 C j�j2/s=cs;t �
c�

2
.jmj2 C j�j2/

1
2r CR;

due to the fact that 0 < r < 1
2s

. Thus, with (1.20), it follows that

e2c�.jmj
2Cj�j2/

1
2r
e�2

R t
0 j�C�mj

2s d�
� e�2Rec�.jmj

2Cj�j2/
1
2r
:

As a result, we use (1.19) to conclude that, for any given t > 0,

kec�.��x��v/
1
2r
g.t/k2

L2x;v

D

Z
Z3�R3

e2c�.jmj
2Cj�j2/

1
2r
e�2

R t
0 j�C�mj

2s d�
j.Fx;vg0/.m; �C tm/j

2 d†.m/ d�

� e�2R
Z

Z3�R3

ec�.jmj
2Cj�j2/

1
2r
j.Fx;vg0/.m; �C tm/j

2 d†.m/ d�;

which, with (1.21) and the fact that

jmj2 C j�j2 �
jmj2 C j�C tmj2

2.t2 C 1/
;

implies, for any given t > 0,

8c� > 0; ke
c�.��x��v/

1
2r
g.t/kL2x;v D C1:

Thus g.t/ …Gr .T3
x �R3v/ for t > 0, and we have proven that 1

2s
is the sharp Gevrey index

we may expect when investigating the regularization effect for the toy model (1.18) of the
Boltzmann equation.

(i) Mild angular singularity case. For 0 < s < 1
2

, in Theorem 1.1 we get the regularization
effect in the sharp Gevrey class 1

2s
, coinciding with the index for the toy model (1.18).

(ii) Strong angular singularity and hard potentials. For the Boltzmann equation with
strong angular singularity and hard potentials, a more approximate model than (1.18) is´

@tg C v � @xg C hvi
 .��v/

sg D 0;

gjtD0 D g0 2 L
2
x;v;

(1.22)

where hvi WD .1 C v2/
1
2 , and 0 <  � 1, 1

2
� s < 1. Note that the coefficient hvi D

.1C jvj2/

2 in (1.22) is only (locally) analytic but not ultra-analytic for 0 <  � 1. Then
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heuristically it seems reasonable that ultra-analyticity is not achievable and analyticity
is the best regularity setting we may expect for the toy model (1.22), and so too for the
original Boltzmann equation. In Theorem 1.1, the analytic smoothing effect is indeed
confirmed by observing that � D 1 in (1.16) for 1

2
� s < 1.

(iii) Strong angular singularity and Maxwellian molecules. For  D 0, we model the
Boltzmann equation by (1.18). As shown above, if 1

2
� s < 1, then the toy model (1.18)

will admit the smoothing effect in the ultra-analytic class G
1
2s .T3

x � R3v/ rather than in
the analytic setting. Naturally, we may expect a similar ultra-analytic smoothing effect
for the Boltzmann equation when  D 0 and 1

2
� s < 1, and this remains unknown at

moment. Here we mention Barbaroux–Hundertmark–Ried–Vugalter [9], who considered
the spatially homogeneous Boltzmann equation (i.e., F D F.t; v/ is independent of x)
and established the regularization effect in the Gevrey class with sharp index 1

2s
for the

case of Maxwellian molecules.

1.4. Difficulties and methodologies

When exploring the analyticity of the spatially inhomogeneous Boltzmann equation, the
main difficulty arises from the degeneracy in the spatial direction. Compared with elliptic
equations that usually admit analytic regularity, we may only expect Gevrey regularity for
general hypoelliptic equations. For the specific hypoelliptic Boltzmann equation, when
performing the standard energy, the key part is the treatment of the commutator between
@v and the transport operator @t C v � @x , since the spatial derivative @x will be involved
in the commutator. To overcome the degeneracy in the spatial direction, we may apply a
global pseudo-differential calculus to derive the intrinsic hypoelliptic structure induced by
the non-trivial interaction between the diffusion part and the transport part. This hypoel-
lipticity enables us to conclude the smoothing effect in Gevrey space of index 1 C 1

2s
;

interested readers may refer to [2, 21] and the references therein.
Inspired by the regularization effect for the toy model (1.18), we would expect similar

regularity properties for the Boltzmann equation. Recently in [11], the last two authors
and Cao verified the analytic smoothing effect for the Landau equation. This equation can
be regarded as a diffusive model of the Boltzmann equation, obtained as a grazing limit
of the latter. Note that the linear Landau collision behaves as the differential operator �v ,
rather than the fractional Laplacian in the Boltzmann counterpart, so the treatment of the
Landau equation is usually simpler than that of the Boltzmann equation. Although less
technicality is involved in the Landau collision case than the Boltzmann counterpart, the
methods developed for the Landau equation may usually apply to the Boltzmann equation
with technical modifications. However, the situation could be quite different if we investi-
gate the analytic or more general Gevrey class regularity of the two equations. In fact, to
obtain the Gevrey class regularity, the key and subtle part is to derive quantitative estimates
with respect to the orders of derivatives, which is usually hard for the highly non-linear
collision terms. To explore the analytic smoothing effect of the Landau equation, the argu-
ment therein relies crucially on some differential calculus so that Leibniz’s formula may
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apply when handling the non-linear Landau collision part. However, there will be essential
difficulties for the Boltzmann collision term if we apply a similar argument to that in the
case of the Landau equation with modifications, since the Boltzmann collision behaves
as a pseudo-differential rather than a differential operator; hence we have to work with
pseudo-differential calculus, which prevents us applying Leibniz’s formula. Precisely, the
analytic smoothing effect of the Landau equation, obtained in [11], relies on the following
second-order differential operator:

M D �

Z t

0

j@v C �@xj
2 d� D �t�v � t

2@x � @v �
t3

3
�x ;

which is elliptic in the x and v variables. The introduction ofM is inspired by the explicit
solution to the Fokker–Planck equation (i.e., a specific form of equation (1.18) with sD 1).
We could take advantage of the strong diffusion property (i.e., the heat diffusion ��v) of
the Landau collision part to control the commutator betweenM and the transport operator
@t C v � @x , which is

ŒM; @t C v � @x � D �v; (1.23)

recalling that Œ�; �� stands for the commutator between two operators. Moreover, the quan-
titative estimates on the commutators between M k , k 2 ZC, and the non-linear Landau
collision part is hard, but achievable with the help of a Leibniz-type formula (see [11,
Lemma 4.2]). This enables us to perform quantitative estimates on M kf with k 2 ZC
and then derive, with the help of the ellipticity of M , the analytic regularization effect
of the Landau equation. Note that we cannot apply the above operator M directly to the
Boltzmann equation, since the Boltzmann collision part behaves as a fractional Lapla-
cian .��v/s , 0 < s < 1, and the diffusion is too weak to control the commutator (1.23)
between M and the transport operator. Inspired by the explicit representation (1.19), a
natural attempt is to modify M as follows to save the game:

Ms WD �

Z t

0

.1C jDv C �Dxj
2/s d�; Dx D

@x

i
and Dv D

@v

i
;

where Ms is a Fourier multiplier defined by

Fx;v.Msf /.t;m; �/ D �

Z t

0

.1C j�C �mj2/s d�.Fx;vf /.t;m; �/:

Observe thatZ t

0

m � @�.1C j�C �mj
2/s d� D

Z t

0

d

d�
.1C j�C �mj2/s d�

D .1C j�C tmj2/s � .1C j�j2/s;

which implies

Œ .t;m; �/; @t �m � @�� D .1C j�j
2/s;  .t;m; �/ WD �

Z t

0

.1C j�C �mj2/s d�:
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Thus the commutator
ŒMs; @t C v � @x � D .1 ��v/

s

could be controlled by the diffusive part of the Boltzmann collision. Moreover, we need
to handle the commutator

M k
s �.f; f / � �.f;M

k
s f /; k 2 ZC;

where � is the non-linear Boltzmann collision operator defined by (1.7). It is not hard
to control the above commutator by constants Ck depending on k. However, it is quite
difficult and seems not possible to get a quantitative upper bound with respect to k 2 ZC,
say

C kC1.kŠ/r ;

with C a constant independent of k, since Ms is a pseudo-differential rather than a dif-
ferential operator, so that Leibniz’s formula cannot apply. Thus, to handle the non-linear
Boltzmann collision part, it seems reasonable to work with differential rather than pseudo-
differential operators, so that we can take advantage of Leibniz’s formula, as well as an
induction argument, to derive quantitative estimates with respect to derivatives. On the
other hand, the classical first-order differential operator @v or @x is not a good choice,
since the Boltzmann equation is degenerate in the spatial variable x and the spatial deriva-
tive @x will appear in the commutator between @v and the transport operator.

The new idea in this text is that instead of the sole @x or @v , we work with the following
combination of @x and @v with time-dependent coefficients:

�.t/@xj C �.t/@vj ; 1 � j � 3;

such that, denoting by �0.t/ the time derivative of the function �.t/,

Œ�.t/@xj C �.t/@vj ; @t C v � @x � D ��
0.t/@xj � �

0.t/@vj C �.t/@xj D ��
0.t/@vj : (1.24)

As will be seen in the last two sections, the commutator above indeed can be controlled
by the diffusive Boltzmann operator. The choice of �.t/ and �.t/ is flexible, provided
� 0.t/ D �.t/. For the sake of simplicity, we choose � D .1C ı/�1tıC1 and � D tı and
consider a family of first-order differential operators Hı defined by

Hı D
1

ı C 1
tıC1@x1 C t

ı@v1 ; (1.25)

where ı satisfies
1C

1

2s
< ı: (1.26)

In view of (1.24), the spatial derivatives are not involved in the commutator between Hı
and the transport operator, that is,

ŒHı ; @t C v � @x � D �ıt
ı�1@v1 : (1.27)
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More generally, we have

8k � 1; ŒH k
ı ; @t C v � @x � D �ıkt

ı�1@v1H
k�1
ı ; (1.28)

which can be derived by using induction on k. In fact, the validity of (1.28) for k D 1

follows from (1.27). Now, supposing that

8` � k � 1; ŒH `
ı ; @t C v � @x � D �ı`t

ı�1@v1H
`�1
ı ; (1.29)

we will prove the validity of (1.29) for ` D k � 2. To do so, we use (1.27) and (1.28), as
well as the fact that

ŒT1T2; T3� D T1T2T3 � T3T1T2 D T1ŒT2; T3�C ŒT1; T3�T2;

to compute

ŒH k
ı ; @t C v � @x � D ŒHıH

k�1
ı ; @t C v � @x �

D Hı ŒH
k�1
ı ; @t C v � @x �C ŒHı ; @t C v � @x �H

k�1
ı

D Hı.�ı.k � 1/t
ı�1@v1H

k�2
ı / � ıtı�1@v1H

k�1
ı

D �ı.k � 1/tı�1@v1H
k�1
ı � ıtı�1@v1H

k�1
ı D �ıktı�1@v1H

k�1
ı :

This gives the validity of (1.29) for ` D k. Thus (1.28) holds true for all k � 1. This
enables us to apply the diffusion in the velocity direction to obtain a crucial estimate of the
directional derivativesH k

ı
f for the solution f . Moreover, the classical derivatives can be

generated by a linear combination of Hı for suitable ı with time-dependent coefficients,
so that the desired quantitative estimate on the classical derivatives is available (see (1.32)
below for the explicit formulation).

In this text let � be an arbitrary given number satisfying (1.26), that is, � > 1C 1
2s

.
We define ı1 and ı2 in terms of � by setting

ı1 D �; ı2 D

8̂<̂
:
1C 2s C .1 � 2s/� if 0 < s <

1

2
;

1

2

�
�C 1C

1

2s

�
if
1

2
� s < 1:

(1.30)

By virtue of the fact that � > 1C 1
2s

, direct computation yields that

ı1 > ı2 > 1C
1

2s
: (1.31)

So both ı1 and ı2 satisfy (1.26). With ı1 and ı2 given above, let Hı1 and Hı2 be defined
by (1.25):

Hı1 D
1

ı1 C 1
tı1C1@x1 C t

ı1@v1 ; Hı2 D
1

ı2 C 1
tı2C1@x1 C t

ı2@v1 :
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Then @x1 and @v1 can be generated by a linear combination of Hıj ; j D 1; 2, that is,8̂̂<̂
:̂
t�C1@x1 D t

ı1C1@x1 D
.ı2 C 1/.ı1 C 1/

ı2 � ı1
Hı1 �

.ı2 C 1/.ı1 C 1/

ı2 � ı1
tı1�ı2Hı2 ;

t�@v1 D t
ı1@v1 D �

ı1 C 1

ı2 � ı1
Hı1 C

ı2 C 1

ı2 � ı1
tı1�ı2Hı2 :

(1.32)

This enables us to control the classical derivatives in terms of the directional derivatives
in Hı1 and Hı2 .

1.5. Arrangement of the paper

The rest of this paper is arranged as follows. In Section 2 we recall a few preliminary
estimates that will be used throughout the argument. Section 3 is devoted to estimating
the commutator between directional derivatives and the collision operator. The proof of
the main result is presented in Sections 4 and 5, where we treat, respectively, the strong
angular singularity case and the mild one.

2. Preliminaries

In this section we will recall some estimates to be used later. Let L be the linearized
Boltzmann operator in (1.6) and let jjj � jjj be the triple norm defined by (1.13). Then by the
coercive estimate and identification of the triple norm (cf.[5, Propositions 2.1 and 2.2] for
instance), it follows that

8f 2 �.R3v/; c0jjjf jjj
2
� .Lf; f /L2v C kf k

2
L2v
; (2.1)

and that, for Maxwellian molecules and hard potential cases with  � 0,

8f 2 �.R3v/; c0kf kH s
v
� jjjf jjj; (2.2)

where s is the number in (1.4), c0 > 0 is a small constant and �.R3v/ stands for the
Schwartz space in R3v . Note that the above estimates still hold true for any f such that
jjjf jjj < C1.

For simplicity of notation, in the following argument we will use C0 to denote a
generic constant which may vary from line to line by enlarging C0 if necessary. Now
we recall the trilinear estimate of the collision operator, which says that (cf. [25, Theorem
2.1]), for any f; g; h 2 �.R3v/,

j.T .f; g; �
1
2 /; h/L2v j D j.�.f; g/; h/L2v j � C0kf kL2v � jjjgjjj � jjjhjjj; (2.3)

recalling that T is defined in (1.10). Furthermore, we mainly employ the counterpart of
the above estimate after performing a partial Fourier transform in the x variable. Then, by
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[22, Lemma 3.2], the estimate

j. yT . Of ; Og; �
1
2 /; Oh/L2v j D j.

y�. Of .m/; Og.m//; Oh.m//L2v j

� C0jjj Oh.m/jjj

Z
Z3
k Of .m � `/kL2v jjj Og.`/jjj d†.`/ (2.4)

holds true for anym 2 Z3 and for any f; g; h 2 L1m.�.R
3
v//. More generally, if ! D !.v/

is a given function of the variable v satisfying the condition that there exists a constant
zC > 0 such that

8v 2 R3; j!.v/j � zC�.v/
1
4 ; (2.5)

then following the same argument for proving (2.3), with �
1
2 therein replaced by !, gives

that
8f; g; h 2 �.R3v/; j.T .f; g; !/; h/L2v j � C0

zCkf kL2v � jjjgjjj � jjjhjjj:

As a result, similarly to (2.4), we perform a partial Fourier transform in the x variable to
conclude

j. yT . Of ; Og; !/; Oh.m//L2v j � C0
zC jjj Oh.m/jjj

Z
Z3
k Of .m � `/kL2v jjj Og.`/jjj d†.`/; (2.6)

with zC the constant in (2.5). In particular, if g in (2.6) is a function of the variable v only,
then (2.6) reduces to

j. yT . Of ; g; !/; Oh.m//L2v j � C0
zCk Of .m/kL2v jjjgjjj � jjj

Oh.m/jjj:

This, with the fact that (cf. [5, Proposition 2.2])

jjjgjjj � Qck.1C jvj2C ��v/gkL2v

for some constant Qc > 0, yields that, enlarging C0 if necessary,

j. yT . Of ; g; !/; Oh.m//L2v j � C0
zCk Of .m/kL2vk.1C jvj

2C
��v/gkL2v jjj

Oh.m/jjj:

As a result, if g D g.v/ 2 �.R3
v/ is any function of the variable v only, satisfying the

condition that there exists a constant zC > 0, depending only on the number  in (1.3),
such that

8v 2 R3; 8k 2 ZC; j.1C jvj
2C
��v/@

k
vg.v/j �

zCLk�.v/
1
8 ; (2.7)

with Lk constants depending only on k, then

8k 2 ZC; j. yT . Of ; @
k
vg; !/;

Oh.m//L2v j � C0
zCLkk Of .m/kL2v jjj

Oh.m/jjj (2.8)

by enlarging C0 if necessary, recalling that zC is the constant given in (2.5). Similarly, for
any functions ! D !.v/ and g D g.v/ of the variable v only, satisfying (2.5) and (2.7),
respectively, we have

8k 2 ZC; j. yT .@
k
vg;
Of ; !/; Oh.m//L2v j � C0

zCLkjjj Of .m/jjj � jjj Oh.m/jjj: (2.9)
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Finally, we recall an estimate (cf. [21, Lemma 2.5]) that will be frequently used to control
the non-linear term �.f; g/. For an arbitrary given integer j0 � 1, it holds thatZ

Z3

�Z T

0

�Z
Z3

X
1�j�j0

k Ofj .t; m � `/kL2v jjj Ogj .t; `/jjj d†.`/

�2
dt

� 1
2

d†.m/

�

j0X
jD1

�Z
Z3

sup
0<t�T

k Ofj .t; m/kL2v d†.m/

�Z
Z3

�Z T

0

jjj Ogj .t; m/jjj
2 dt

� 1
2

d†.m/; (2.10)

for any fj 2 L1mL
1
T L

2
v and any gj such that jjjgj jjj 2 L1mL

2
T with 1 � j � j0. It can be

derived directly by Minkowski’s inequality and Fubini’s theorem; cf. [21, Lemma 2.5] for
detail.

3. Commutator estimates

This section is devoted to dealing with the commutator between the directional derivative
H k
ı

and the collision part �.g;h/, recalling thatHı is defined by (1.25). With the notation
in Section 1.1, the results on commutator estimates can be stated as follows.

Proposition 3.1. Assume that the cross-section satisfies (1.3) and (1.4) with  � 0 and
0 < s < 1. Recall thatHı is defined by (1.25), with ı an arbitrary given number satisfying
(1.26). Let k � 1 and T � 1 be given, and let f 2L1mL

1
T L

2
v be any solution to the Cauchy

problem (1.5) satisfyingZ
Z3

sup
0<t�T

k
1
H k
ı f .t;m/kL2v d†.m/C

Z
Z3

�Z T

0

jjj
1
H k
ı f .t;m/jjj

2

dt

� 1
2

d†.m/

< C1: (3.1)

Suppose that for any j � k � 1 we haveZ
Z3

sup
0<t�T

k
1
H
j

ı
f .t;m/kL2v d†.m/C

Z
Z3

�Z T

0

jjj
1
H
j

ı
f .t;m/jjj

2

dt

� 1
2

d†.m/

�
"0C

j
� .j Š/

�

.j C 1/2
; (3.2)

where � � 1 is given in (1.16), and "0; C� > 0 are constants. If C� � 4T ı , then there
exists a constant C , depending only on the number C0 in (2.6) but independent of k, such
that for any " > 0 we haveZ

Z3

�Z T

0

j.Fx.H
k
ı �.f; f //;

1
H k
ı f /L2v j dt

� 1
2

d†.m/

� C"�1"0

Z
Z3

sup
0<t�T

k
1
H k
ı f .t;m/kL2v d†.m/
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C ."C C"�1"0/

Z
Z3

�Z T

0

jjj
1
H k
ı f .t;m/jjj

2

dt

� 1
2

d†.m/

C C"�1"20
C k� .kŠ/

�

.k C 1/2
:

Remark 3.2. We impose assumption (3.1) to ensure rigorous rather than formal computa-
tions in the proof of Proposition 3.1 when performing estimates involving the term H k

ı
f .

Proof of Proposition 3.1. If no confusion occurs, in the proof we will write H D Hı for
short, omitting the subscript ı. To simplify the notation, we denote by C some generic
constants, which may vary from line to line and which depend only on the number C0 in
(2.3). Note that these generic constants C as below are independent of k.

In view of (1.11), it follows from the Leibniz formula that

H k�.f; f / D

kX
jD0

jX
pD0

�
k

j

��
j

p

�
T .H k�jf;H j�pf;Hp�

1
2 /:

As a result, taking a partial Fourier transform for the x variable on both sides and using
the notation (1.12), we conclude thatZ

Z3

�Z T

0

j.Fx.H
k�.f; f //;

1
H kf /L2v j dt

� 1
2

d†.m/ � J1 C J2 C J3; (3.3)

with8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

J1 D
Z

Z3

� X
0�p�k

�
k

p

�Z T

0

j. yT . Of ;
2
H k�pf ;Hp�

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/;

J2 D
Z

Z3

� k�1X
jD1

jX
pD0

�
k

j

��
j

p

�Z T

0

j. yT .
2
H k�jf ; 2H j�pf ;Hp�

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/;

J3 D
Z

Z3

�Z T

0

j. yT .
1
H kf ; Of ; �

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/:

(3.4)

We proceed to estimate J1, J2 and J3 as follows.

Estimate on J1. We first control the term J1 by dividing it into two terms. That is,

J1 �

Z
Z3

�Z T

0

j. yT . Of ;
1
H kf ; �

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/

C

Z
Z3

� X
1�p�k

�
k

p

�Z T

0

j. yT . Of ;
2
H k�pf ;Hp�

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/

WD J1;1 C J1;2: (3.5)

Direct verification shows that

8p � 0; 8t 2 Œ0; T �; jHp�
1
2 j D jtıp@pv1�

1
2 j � .2T ı/ppŠ�

1
4 : (3.6)
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Then we apply (2.6) with ! D Hp�
1
2 to control J1;2 in (3.5) as follows: for any " > 0,

J1;2 D

Z
Z3

� X
1�p�k

�
k

p

�Z T

0

j. yT . Of ;
2
H k�pf ;Hp�

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/

� C

Z
Z3

� kX
pD1

�
k

p

�
.2T ı/ppŠ

Z T

0

�Z
Z3
`

k Of .m � `/kL2v jjj
2
H k�pf .`/jjj d†.`/

�
� jjj

1
H kf .m/jjj dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C
C

"

Z
Z3

�Z T

0

² kX
pD1

�
k

p

�
.2T ı/ppŠ

Z
Z3
k Of .m � `/kL2v jjj

2
H k�pf .`/jjj

� d†.`/

³2
dt

� 1
2

d†.m/: (3.7)

Moreover, in order to treat the last term in (3.7) we apply (2.10) to getZ
Z3

�Z T

0

² kX
pD1

�
k

p

�
.2T ı/ppŠ

Z
Z3
`

k Of .m � `/kL2v jjj
2
H k�pf .`/jjj d†.`/

³2
dt

� 1
2

d†.m/

� C

kX
pD1

�
k

p

�
.2T ı/ppŠ

Z
Z3

sup
0<t�T

k Of .t;m/kL2v d†.m/

�

Z
Z3

�Z T

0

jjj
2
H k�pf .t;m/jjj

2

dt

� 1
2

d†.m/

� C"20

kX
pD1

kŠ

.k � p/Š
.2T ı/p

C
k�p
� Œ.k � p/Š��

.k � p C 1/2

� C"20C
k
� .kŠ/

�

kX
pD1

2�p

.k � p C 1/2
; (3.8)

where in the last line we used condition (3.2), as well as the fact that C� > 4T ı . For the
last term in (3.8) we have, denoting by Œk

2
� the largest integer less than or equal to k

2
,

kX
pD1

2�p

.k � p C 1/2

�

Œ k2 �X
pD1

1

.k � p C 1/2
2�p C

kX
pDŒ k2 �C1

1

.k � p C 1/2
2�p
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� C

² Œ k2 �X
pD1

1

.k C 1/2
2�p C

kX
pDŒ k2 �C1

1

.k C 1/2
.k C 1/22�p

³
�

C

.k C 1/2
; (3.9)

the last inequality using the fact that

kX
pDŒ k2 �C1

.k C 1/22�p �

kX
pDŒ k2 �C1

.k C 1/22�
k
2 � .k C 1/32�

k
2 � C:

As a result, we substitute (3.9) into (3.8) to conclude thatZ
Z3

�Z T

0

² kX
pD1

�
k

p

�
.2T ı/ppŠ

Z
Z3
`

k Of .m � `/kL2v jjj
2
H k�pf .`/jjj d†.`/

³2
dt

� 1
2

d†.m/

� C"20
C k� .kŠ/

�

.k C 1/2
;

which with (3.7) yields

J1;2 � "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/C C"�1"20
C k� .kŠ/

�

.k C 1/2
: (3.10)

Moreover, following a similar argument to above with a slight modification, we conclude
that

J1;1 D

Z
Z3

�Z T

0

j. yT . Of ;
1
H kf ; �

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C C"�1
�Z

Z3
sup
0<t�T

k Of .t;m/kL2v d†.m/

�Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

� ."C C"�1"0/

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/:

Here we used assumption (3.1) to ensure the right-hand side is finite. Substituting the
above estimate and (3.10) into (3.5) yields that, for any " > 0,

J1 � ."CC"
�1"0/

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/CC"�1"20
C k� .kŠ/

�

.kC1/2
: (3.11)
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Estimate on J2. Recall that J2 is given in (3.4). Following a similar argument to that in
(3.7) and (3.8) yields that, for any " > 0,

J2 � "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C C"�1
k�1X
jD1

jX
pD0

�
k

j

��
j

p

�
.2T ı/ppŠ

Z
Z3

sup
0<t�T

k
2
H k�jf .t;m/kL2v d†.m/

�

Z
Z3

�Z T

0

jjj
2H j�pf .t;m/jjj

2

dt

� 1
2

d†.m/: (3.12)

Moreover, we use assumption (3.2) and then repeat the computation in (3.9), to conclude
that, for any 1 � j � k � 1,

jX
pD0

�
j

p

�
.2T ı/ppŠ

Z
Z3

�Z T

0

jjj
2H j�pf .t;m/jjj

2

dt

� 1
2

d†.m/

� "0C
j
� .j Š/

�

jX
pD0

2�p

.j � p C 1/2

� C"0
C
j
� .j Š/

�

.j C 1/2
:

Substituting the above estimate into the last term on the right-hand side of (3.12) and using
condition (3.2) again, we compute

k�1X
jD1

jX
pD0

�
k

j

��
j

p

�
.2T ı/

p
pŠ

Z
Z3

sup
0<t�T

k
2
H k�jf .t;m/kL2v d†.m/

�

Z
Z3

�Z T

0

jjj
2H j�pf .t;m/jjj

2

dt

� 1
2

d†.m/

� C"0

k�1X
jD1

kŠ

j Š.k � j /Š

C
j
� .j Š/

�

.j C 1/2

Z
Z3

sup
0<t�T

k
2
H k�jf .t;m/kL2v d†.m/

� C"20

k�1X
jD1

kŠ

j Š.k � j /Š

C
j
� .j Š/

�

.j C 1/2
C
k�j
� Œ.k � j /Š��

.k � j C 1/2

� C"20C
k
�

k�1X
jD1

kŠ.j Š/��1Œ.k � j /Š���1

.k � j C 1/2.j C 1/2

� C"20
C k� .kŠ/

�

.k C 1/2
;
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the last inequality using the facts that pŠqŠ � .p C q/Š and that � � 1. This, together with
(3.12), yields

J2 � "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/C C"�1"20
C k� .kŠ/

�

.k C 1/2
: (3.13)

Estimate on J3. It remains to deal with J3, recalling that J3 is given in (3.4). We repeat
the computation in (3.7) and (3.8) to conclude that

J3 D

Z
Z3

�Z T

0

j. yT .
1
H kf ; Of ; �

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C C"�1
�Z

Z3
sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/

�Z
Z3

�Z T

0

jjj Of .t;m/jjj
2
dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C C"�1"0

Z
Z3

sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/:

Combining the upper bound of J3 above and estimates (3.11) and (3.13) with (3.3), we
obtain the assertion in Proposition 3.1. The proof is completed.

Proposition 3.3. Under the same assumption as in Proposition 3.1, we can find a constant
C , depending only on T , ı and the number C0 in (2.8) and (2.9) but independent of k,
such that for any " > 0,Z

Z3

�Z T

0

j.Fx.ŒH
k
ı ;L�f /;

1
H k
ı f /L2v j dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H k
ı f .t;m/jjj

2

dt

� 1
2

d†.m/C C"�1
"0C

k�1
� .kŠ/�

.k C 1/2
:

Proof. This is just a specific case of Proposition 3.1. Recall that L is defined in (1.6), that
is,

Lf D ��.�
1
2 ; f / � �.f; �

1
2 / D �T .�

1
2 ; f; �

1
2 / � T .f; �

1
2 ; �

1
2 /:

Then, denoting H D Hı , using Leibniz’s formula again gives

ŒH k ;L�f D �

kX
jD1

jX
pD0

�
k

j

��
j

p

�
T .H j�p�

1
2 ;H k�jf;Hp�

1
2 /

�

kX
jD1

jX
pD0

�
k

j

��
j

p

�
T .H k�jf;H j�p�

1
2 ;Hp�

1
2 /

def
D R1.f /CR2.f /: (3.14)
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Moreover, we may write, as in (3.3),Z
Z3

�Z T

0

j.Fx.R2.f //;
1
H kf /L2v j dt

� 1
2

d†.m/

�

Z
Z3

� kX
jD1

jX
pD0

�
k

j

��
j

p

�

�

Z T

0

j. yT .
2
H k�jf ;H j�p�

1
2 ;Hp�

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/: (3.15)

By direct verification, it follows that, for any p � 0 and any t 2 Œ0; T �,

j.1C jvj2C ��v/H
p�

1
2 j D j.1C jvj2C ��v/t

ıp@pv1�
1
2 j

� C.2T ı/ppŠ�
1
8 :

This, with (3.6), enables us to use (2.8) with g D �
1
2 and ! D Hp�

1
2 to compute

kX
jD1

jX
pD0

�
k

j

��
j

p

�
j. yT .

2
H k�jf ;H j�p�

1
2 ;Hp�

1
2 /;

1
H kf /L2v j

� C

kX
jD1

jX
pD0

�
k

j

��
j

p

�
.2T ı/ppŠ � Œ.2T ı/j�p.j �p/Š�k

2
H k�jf .m/kL2v jjj

1
H kf .m/jjj

� C

kX
jD1

kŠ

.k � j /Š
.j C 1/.2T ı/j k

2
H k�jf .m/kL2v jjj

1
H kf .m/jjj:

Thus, for any " > 0,Z
Z3

� kX
jD1

jX
pD0

�
k

j

��
j

p

�Z T

0

j. yT .
2
H k�jf ;H j�p�

1
2 ;Hp�

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/

� C

Z
Z3

�Z T

0

kX
jD1

kŠ

.k�j /Š
.jC1/.2T ı/j k

2
H k�jf .m/kL2v jjj

1
H kf .m/jjj dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C
C

"

Z
Z3

�Z T

0

² kX
jD1

kŠ

.k�j /Š
.jC1/.2T ı/j k

2
H k�jf .m/kL2v

³2
dt

� 1
2

d†.m/:
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As for the last term, recalling that C� > 4T ı , we use the triangle inequality for norms to
getZ

Z3

�Z T

0

² kX
jD1

kŠ

.k � j /Š
.j C 1/.2T ı/j k

2
H k�jf .m/kL2v

³2
dt

� 1
2

d†.m/

�

Z
Z3

kX
jD1

kŠ

.k � j /Š
.j C 1/.2T ı/j

�Z T

0

k
2
H k�jf .m/k2

L2v
dt

� 1
2

d†.m/

� T
1
2

kX
jD1

kŠ

.k � j /Š
.j C 1/.2T ı/j

Z
Z3

sup
0<t�T

k
2
H k�jf .t;m/kL2v d†.m/

� 2"0T
1
2T ı

kX
jD1

kŠ

.k � j /Š
.j C 1/.2T ı/j�1

C
k�j
� Œ.k � j /Š��

.k � j C 1/2
� C"0

C k�1� .kŠ/�

.k C 1/2
;

the last line using inductive assumption (3.2) and the last inequality following from a
similar argument to that in (3.8) and (3.9). Combining the above estimates we conclude
thatZ

Z3

� kX
jD1

jX
pD0

�
k

j

��
j

p

�Z T

0

j. yT .
2
H k�jf ;H j�p�

1
2 ;Hp�

1
2 /;

1
H kf /L2v j dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/C C"�1
"0C

k�1
� .kŠ/�

.k C 1/2
;

which with (3.15) yieldsZ
Z3

�Z T

0

j.Fx.R2.f //;
1
H kf /L2v j dt

� 1
2

d†.m/

� "

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/C C"�1
"0C

k�1
� .kŠ/�

.k C 1/2
:

Similarly, using (2.9) instead of (2.8), we can verify that the above estimate still holds
true with R2.f / replaced by R1.f /. Thus the assertion in Proposition 3.3 follows by
observing Z

Z3

�Z T

0

j.Fx.ŒH
k
ı ;L�f /;

1
H k
ı f /L2v j dt

� 1
2

d†.m/

�

2X
jD1

Z
Z3

�Z T

0

j.Fx.Rj .f //;
1
H kf /L2v j dt

� 1
2

d†.m/

due to (3.14). The proof is thus completed.
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4. Analytic smoothing effect for strong angular singularity

In this section we consider the case when the cross-section has strong angular singularity,
that is, the number s in (1.4) satisfies that 1

2
� s < 1. This will yield the analytic regularity

of weak solutions to the Boltzmann equation (1.5) at any positive time.

4.1. Quantitative estimate for directional derivatives

To get the analyticity of solutions at positive times, it relies on a crucial estimate on the
derivatives in the directionHı defined in (1.25), with ı therein satisfying condition (1.26).
In this section we will perform an energy estimate on the directional derivatives of regu-
lar solutions, and the treatment for the classical derivatives will be presented in the next
subsection.

Theorem 4.1. Assume that the cross-section satisfies (1.3) and (1.4) with  � 0 and 1
2
�

s < 1. Let T � 1 be arbitrarily given, and let f 2L1mL
1
T L

2
v be any solution to the Cauchy

problem (1.5) satisfying that, for any N 2 ZC and any ˇ 2 Z3C,Z
Z3

�
sup
0<t�T

t
1C2s
2s .NCjˇ j/

jmjN k@ˇv
Of .t;m; �/kL2v

�
d†.m/

C

Z
Z3

�Z T

0

t
1C2s
s .NCjˇ j/

jmj2N jjj@ˇv
Of .t;m; �/jjj

2
dt

� 1
2

d†.m/ < C1: (4.1)

Moreover, let Hı be defined by (1.25) with ı an arbitrary given number satisfying (1.26).
Then there exists a sufficiently small constant "0 > 0 and a large constant L � 1, with L
depending only on T , ı and the numbers c0, C0 in Section 2, such that ifZ

Z3

�
sup
0<t�T

k Of .t;m/kL2v

�
d†.m/C

Z
Z3

�Z T

0

jjj Of .t;m/jjj
2
dt

� 1
2

d†.m/ � "0; (4.2)

then the estimateZ
Z3

sup
0<t�T

k
1
H k
ı f .t;m/kL2v d†.m/

C

Z
Z3

�Z T

0

jjj
1
H k
ı f .t;m/jjj

2

dt

� 1
2

d†.m/ �
"0L

kkŠ

.k C 1/2
(4.3)

holds true for any k 2 ZC. Moreover, the above estimate (4.3) is still true if we replace
Hı by

1

1C ı
tıC1@xi C t

ı@vi

with i D 2 or 3.

Proof. To simplify the notation we will use the capital letter C to denote some generic
constants, which may vary from line to line and which depend only on T , ı and the
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numbers c0, C0 in Section 2. Note that these generic constants C as below are independent
of the derivative order denoted by k. If there is no confusion, in the following argument
we will write H D Hı for short, omitting the subscript ı.

We use induction on k to prove the quantitative estimate (4.3). The validity of (4.3) for
k D 0 follows from (4.2) if we choose L � 1. Using the notationH WDHı and supposing
the estimate Z

Z3
sup
0<t�T

k
1H jf .t;m/kL2v d†.m/

C

Z
Z3

�Z T

0

jjj
1H jf .t;m/jjj

2

dt

� 1
2

d†.m/ �
"0L

j j Š

.j C 1/2
(4.4)

holds true for any j � k � 1 with given k � 1, we will prove in the following argument
that estimate (4.4) still holds true for j D k provided L � 4T ı .

To do so we begin with the claim that the estimateZ
Z3

sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/

C

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/ < C1 (4.5)

holds true for any k 2 ZC. In fact, by Leibniz’s formula we compute, for any 0 < t � T
and for any m 2 Z3,

jjj
1
H kf .t;m/jjj � Cı;k

X
j�k

t .1Cı/jCı.k�j /jm1j
j
jjj@k�jv1

Of .t;m/jjj

� Cı;k
X
j�k

tıkCj jmjj jjj@k�jv1
Of .t;m/jjj

� Cı;k.1C T /
kt .ı�

1C2s
2s /k

X
j�k

t
1C2s
2s k
jmjj jjj@k�jv1

Of .t;m/jjj;

and similarly,

k
1
H kf .t;m/kL2v � Cı;k.1C T /

kt .ı�
1C2s
2s /k

X
j�k

t
1C2s
2s k
jmjj k@k�jv1

Of .t;m/kL2v ; (4.6)

where Cı;k is a constant depending only on k and ı. Then assertion (4.5) follows from
assumption (4.1) by observing the fact that ı > 1C2s

2s
.

Step .1/ Applying H k to equation (1.5) yields

.@t C v � @x CL/H kf D �ŒH k ; @t C v � @x �f � ŒH
k ;L�f CH k�.f; f /

D ıktı�1@v1H
k�1f � ŒH k ;L�f CH k�.f; f /;
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the last equality using (1.28). Furthermore, we perform a partial Fourier transform in x

and then consider the real part after taking the inner product of L2v with 1H kf , to obtain

1

2

d

dt
k
1
H kf k2

L2v
C .L

1
H kf ;

1
H kf /L2v

� ıktı�1j.@v1
2
H k�1f ;

1
H kf /L2v j C j.Fx.ŒH

k ;L�f /;
1
H kf /L2v j

C j.Fx.H
k�.f; f //;

1
H kf /L2v j:

This with (2.1) yields that

1

2

d

dt
k
1
H kf k2

L2v
C c0jjj

1
H kf jjj

2

� k
1
H kf k2

L2v
C ıktı�1j.@v1

2
H k�1f ;

1
H kf /L2v j

C j.Fx.ŒH
k ;L�f /;

1
H kf /L2v j C j.Fx.H

k�.f; f //;
1
H kf /L2v j: (4.7)

For the second term on the right-hand side of (4.7), recalling that 1
2
� s < 1, it follows

from (2.2) that

ıktı�1j.@v1
2
H k�1f ;

1
H kf /L2v j � Ckk

2
H k�1f kH s

v
k
1
H kf kH s

v

�
c0

2
jjj
1
H kf jjj

2

C Ck2jjj
2
H k�1f jjj

2

:

Thus,

1

2

d

dt
k
1
H kf k2

L2v
C
c0

2
jjj
1
H kf jjj

2

� k
1
H kf k2

L2v
C Ck2jjj

2
H k�1f jjj

2

C j.Fx.ŒH
k ;L�f /;

1
H kf /L2v j

C j.Fx.H
k�.f; f //;

1
H kf /L2v j: (4.8)

Together with Grönwall’s inequality, we integrate the above estimate over Œ0; t � for any
0 < t � T ; this implies that

sup
0<t�T

k
1
H kf .t/k2

L2v
C

Z T

0

jjj
1
H kf .t/jjj

2

dt

� C lim
t!0
k
1
H kf .t/k2

L2v
C Ck2

Z T

0

jjj
2
H k�1f jjj

2

dt

C C

Z T

0

j.Fx.ŒH
k ;L�f /;

1
H kf /L2v j dt

C C

Z T

0

j.Fx.H
k�.f; f //;

1
H kf /L2v j dt;
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and thusZ
Z3

sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/C

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

� C

Z
Z3

�
lim
t!0
k
1
H kf .t;m/k2

L2v

� 1
2 d†.m/

C Ck

Z
Z3

�Z T

0

jjj
2
H k�1f .t;m/jjj

2

dt

� 1
2

d†.m/

C C

Z
Z3

�Z T

0

j.Fx.ŒH
k ;L�f /;

1
H kf /L2v j dt

� 1
2

d†.m/

C C

Z
Z3

�Z T

0

j.Fx.H
k�.f; f //;

1
H kf /L2v j dt

� 1
2

d†.m/: (4.9)

We will proceed to deal with the terms on the right-hand side of (4.9).

Step .2/ For the first term on the right-hand side of (4.9), we claimZ
Z3

�
lim
t!0
k
1
H kf .t;m/k2

L2v

� 1
2 d†.m/ D 0: (4.10)

In fact, by (4.1), we see that for each j 2 ZC,

sup
0<t�T

t
1C2s
2s k
jmjj k@k�jv1

Of .t;m/kL2v 2 L
1
m;

which implies

sup
m2Z3

�
sup
0<t�T

t
1C2s
2s k
jmjj k@k�jv1

Of .t;m/kL2v

�
� Ck;j < C1;

where Ck;j are constants depending only on k and j . As a result, combining the above
estimate with (4.6) yields that, for any 0 < t � T and any m 2 Z3,

k
1
H kf .t;m/kL2v � Cı;k.1C T /

kt .ı�
1C2s
2s /k

X
j�k

Ck;j ;

recalling that Cı;k is a constant depending only on k and ı. This with condition (1.26)
yields

8m 2 Z3; lim
t!0
k
1
H kf .t;m/kL2v D 0;

and thus assertion (4.10) follows.

Step .3/ For the second term on the right-hand side of (4.9), it follows from inductive
assumption (4.4) that

k

Z
Z3

�Z T

0

jjj
2
H k�1f .t;m/jjj

2

dt

� 1
2

d†.m/ �
"0L

k�1kŠ

k2
� C

"0L
k�1kŠ

.k C 1/2
(4.11)



J.-L. Chen, W.-X. Li, and C.-J. Xu 960

for k � 1. By assertion (4.5), which holds true for any k 2 ZC, we see that condition
(3.1) in Proposition 3.1 is fulfilled. Moreover, it follows from inductive assumption (4.4)
that condition (3.2) holds with C� D L therein. This enables us to apply Propositions 3.1
and 3.3 to control the remaining terms on the right-hand side of (4.9); this gives that the
estimate Z

Z3

�Z T

0

j.Fx.ŒH
k ;L�f /;

1
H kf /L2v j dt

� 1
2

d†.m/

C

Z
Z3

�Z T

0

j.Fx.H
k�.f; f //;

1
H kf /L2v j dt

� 1
2

d†.m/

� C"�1"0

Z
Z3

sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/

C ."C C"�1"0/

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C C"�1"20
LkkŠ

.k C 1/2
C C"�1

"0L
k�1kŠ

.k C 1/2
(4.12)

holds true for any " > 0.

Step .4/ Substituting estimates (4.10), (4.11) and (4.12) into (4.9), we obtain that, for any
" > 0,Z

Z3
sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/C

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

� C"�1"0

Z
Z3

sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/

C ."C C"�1"0/

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

C C"�1"20
LkkŠ

.k C 1/2
C C"�1

"0L
k�1kŠ

.k C 1/2
: (4.13)

Note that "0 is a sufficiently small number, so we may assume without loss of generality
that

C"0 �
1

16
; (4.14)

withC > 0 the constant in (4.13). Consequently, if we choose in particular "D 1
4

in (4.13),
then in view of (4.14) we haveZ

Z3
sup
0<t�T

k
1
H kf .t;m/kL2v d†.m/C

Z
Z3

�Z T

0

jjj
1
H kf .t;m/jjj

2

dt

� 1
2

d†.m/

�
1

2

"0L
kkŠ

.k C 1/2
C 8C

"0L
k�1kŠ

.k C 1/2
�

"0L
kkŠ

.k C 1/2
;
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provided L is large enough such that L � 16C . This yields the validity of (4.4) for j D k.
Thus assertion (4.3) follows. The treatment for

1

1C ı
tıC1@xi C t

ı@vi ; i D 2 or 3;

is just the same. The proof of Theorem 4.1 is completed.

4.2. Proof of Theorem 1.1: Analytic regularization effect for 1
2

� s < 1

Here we prove Theorem 1.1 for the case 1
2
� s < 1, and it suffices to prove that for any

T � 1 and any � > 1C 1
2s

, there exists a constant C , depending only on T , � and the
numbers c0, C0 in (2.1) and (2.3), such that

8˛; ˇ 2 Z3C; sup
0<t�T

t .�C1/j˛jC�jˇ jk@˛x@
ˇ
v f .t/kL2x;v � C

j˛jCjˇ jC1.j˛j C jˇj/Š: (4.15)

The key part to proving (4.15) is the quantitative estimate (4.3). In the following discus-
sion, let ıj ; j D 1;2, be defined in terms of � by (1.30). Accordingly, defineHıj , j D 1;2,
by (1.25).

Under the smallness condition (1.15), Duan–Liu–Sakamoto–Strain [22] obtained the
global existence and uniqueness of the mild solution f 2 L1mL

1
T L

2
v to the Boltzmann

equation (1.5), which satisfies that there exists a constant C1 > 0 such that for any T � 1,Z
Z3

�
sup
0<t�T

k Of .t;m/kL2v

�
d†.m/C

Z
Z3

�Z T

0

jjj Of .t;m/jjj
2
dt

� 1
2

d†.m/ � C1�: (4.16)

Moreover, it is shown in [21] that the above mild solution admits Gevrey regularity at
t > 0, that is, there exists a constant C2 > 0 such that the estimateZ

Z3

�
sup
0<t�T

�.t/
1C2s
2s .NCjˇ j/

jmjN k@ˇv
Of .t;m/kL2v

�
d†.m/

C

Z
Z3

�Z T

0

�.t/
1C2s
s .NCjˇ j/

jmj2N jjj@ˇv
Of .t;m/jjj

2
dt

� 1
2

d†.m/

� C
NCjˇ jC1
2 .N C jˇj/

1C2s
2s

holds true for anyN 2ZC and any ˇ 2Z3C, where �.t/Dmin¹t; 1º. Note that the constant
C1 in (4.16) is independent of T and the fact that

8k 2 ZC; 80 < t � T; t
1C2s
2s k
� T

1C2s
2s k�.t/

1C2s
2s k ;

and thus conditions (4.1) and (4.2) are fulfilled by the above mild solution f , provided �
is small enough. This enables us to apply Theorem 4.1 to Hıj , j D 1; 2, given above, to
conclude that for any T � 1, there exists a constant L, depending only on T , ı1, ı2 and
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the numbers c0, C0 in (2.1) and (2.3), such that for each j D 1; 2, the estimateZ
Z3

sup
0<t�T

k
1
H k
ıj
f .t;m/kL2v d†.m/

C

Z
Z3

�Z T

0

jjj
1
H k
ıj
f .t;m/jjj

2

dt

� 1
2

d†.m/ �
"0L

kkŠ

.k C 1/2
(4.17)

holds true for any k 2ZC, where "0DC1� withC1 the constant in (4.16). Observe that the
discrete Lebesgue spaces `p are increasing in p 2 Œ1;C1�, so that in particular L1m � L

2
m

for m 2 Z3. Then it follows from (4.17) that, for any k 2 ZC and each j D 1; 2,

sup
0<t�T

kH k
ıj
f .t/kL2x;v D sup

0<t�T

k
1
H k
ıj
f .t/kL2mL2v

�

Z
Z3

sup
0<t�T

k
1
H k
ıj
f .t;m/kL2v d†.m/ �

"0L
kkŠ

.k C 1/2
: (4.18)

Next we will deduce the estimate on classical derivatives. As a preliminary step, we first
prove that, for any k 2 ZC,

k.A1 C A2/
kf kL2x;v � 2

k
kAk1f kL2x;v C 2

k
kAk2f kL2x;v ; (4.19)

where Aj , j D 1; 2, are two Fourier multipliers with symbols aj D aj .m; �/, that is,

Fx;v.Ajf /.m; �/ D aj .m; �/Fx;vf .m; �/;

with Fx;vf the full Fourier transform in .x; v/ 2 T �R3. To prove (4.19) we compute

jFx;v..A1 C A2/
kf /.m; �/j2

D j.a1.m; �/C a2.m; �//
kFx;vf .m; �/j

2

� .ja1.m; �/j C ja2.m; �/j/
2k
� jFx;vf .m; �/j

2

� 22kja1.m; �/
kFx;vf .m; �/j

2
C 22kja2.m; �/

kFx;vf .m; �/j
2

� 22kjFx;v.A
k
1f /.m; �/j

2
C 22kjFx;v.A

k
2f /.m; �/j

2;

the second inequality using the fact that .p C q/2k � .2p/2k C .2q/2k for any numbers
p; q � 0 and any k 2 ZC. As a result, we combine the above estimate with the Parseval
equality, to conclude that

k.A1 C A2/
kf k2

L2x;v
D

Z
Z3�R3

jFx;v..A1 C A2/
kf /.m; �/j2 d†.m/ d�

� 22k
Z

Z3�R3

jFx;v.A
k
1f /.m; �/j

2 d†.m/ d�

C 22k
Z

Z3�R3

jFx;v.A
k
2f /.m; �/j

2 d†.m/ d�

� 22kkAk1f k
2
L2x;v
C 22kkAk2f k

2
L2x;v

:
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This gives (4.19). Now we use (1.32) and then apply (4.19) with

A1 D
.ı2 C 1/.ı1 C 1/

ı2 � ı1
Hı1 ;

A2 D �
.ı2 C 1/.ı1 C 1/

ı2 � ı1
tı1�ı2Hı2 ;

to compute that, observing ı1 > ı2,

sup
0<t�T

t .�C1/kk@kx1f .t/kL2x;v D sup
0<t�T

k.A1 C A2/
kf .t/kL2x;v

� 2k sup
0<t�T

kAk1f .t/kL2x;v C 2
k sup
0<t�T

kAk2f .t/kL2x;v

� C k3 sup
0<t�T

.kH k
ı1
f kL2x;v C kH

k
ı2
f kL2x;v /;

where C3 is a constant depending only on T , ı1, ı2. Combining the above estimate with
(4.18), we conclude that

sup
0<t�T

t .�C1/kk@kx1f .t/kL2x;v � "0.2C3L/
kkŠ:

Similarly, the above estimate is also true with @x1 replaced by @x2 or @x3 . This, with the
fact that

8˛ 2 Z3C; k@
˛
xf kL2x;v �

X
1�j�3

k@j˛jxj f kL2x;v ;

gives
8˛ 2 Z3C; sup

0<t�T

t .�C1/j˛jk@˛xf .t/kL2x;v � "0.6C3L/
j˛j
j˛jŠ:

In the same way we have

8ˇ 2 Z3C; sup
0<t�T

t�jˇ jk@ˇv f .t/kL2x;v � "0.6C3L/
jˇ j
jˇjŠ:

Consequently, for any ˛; ˇ 2 Z3C,

sup
0<t�T

t .�C1/j˛jC�jˇ jk@˛x@
ˇ
v f .t/kL2x;v

� sup
0<t�T

.t2.�C1/j˛jk@2˛x f .t/kL2x;v /
1
2 .t2�jˇ jk@2ˇv f .t/kL2x;v /

1
2

� "0.6C3L/
j˛jCjˇ j.j2˛jŠj2ˇjŠ/

1
2 � "0.12C3L/

j˛jCjˇ j.j˛j C jˇj/Š; (4.20)

the last inequality using the fact that pŠqŠ � .p C q/Š � 2pCqpŠqŠ for any p; q 2 Z.
Thus the desired estimate (4.15) follows from (4.20) by choosing C large enough such
that C > 12C3L C 1. We have proven Theorem 1.1 for the strong angular singularity
condition that 1

2
� s < 1.
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5. Optimal Gevrey smoothing effect for mild angular singularity

This section focuses on the mild angular singularity case, i.e., 0 < s < 1
2

in (1.4). In this
case, we can expect Gevrey class regularity with optimal Gevrey index 1

2s
.

Theorem 5.1. Assume that the cross-section satisfies (1.3) and (1.4) with  � 0 and 0 <
s < 1

2
. Let T � 1 be arbitrarily given, and let f 2L1mL

1
T L

2
v be any solution to the Cauchy

problem (1.5) satisfying (4.1). Moreover, let � be an arbitrary given number satisfying
(1.26) and let Hı1 and Hı2 be two vector fields defined by (1.25), with ıj defined in terms
of � by (1.30). Then there exists a sufficiently small constant "0 > 0 and a large constant
L � 1, with L depending only on T , � and the numbers c0 and C0 in Section 2, such that
if Z

Z3

�
sup
0<t�T

k Of .t;m/kL2v

�
d†.m/C

Z
Z3

�Z T

0

jjj Of .t;m/jjj
2
dt

� 1
2

d†.m/ � "0;

then the estimateX
1�j�2

Z
Z3

sup
0<t�T

k
1
H k
ıj
f .t;m/kL2v d†.m/

C

X
1�j�2

Z
Z3

�Z T

0

jjj
1
H k
ıj
f .t;m/jjj

2

dt

� 1
2

d†.m/ �
"0L

k.kŠ/
1
2s

.k C 1/2
(5.1)

holds true for any k 2 ZC.

Sketch of the proof of Theorem 5.1. The proof is similar to that of Theorem 4.1. So for
brevity we only sketch the proof, emphasizing the difference. In the following argument,
we always assume that 0 < s < 1

2
, and denote by C different generic constants, depending

only on T , � and the numbers c0, C0 in Section 2.
As in the previous section we use induction on k to prove (5.1). Suppose that for given

k � 1, the estimateX
1�j�2

Z
Z3

sup
0<t�T

k
1
H `
ıj
f .t;m/kL2v d†.m/

C

X
1�j�2

Z
Z3

�Z T

0

jjj
1
H `
ıj
f .t;m/jjj

2

dt

� 1
2

d†.m/ �
"0L

`.`Š/
1
2s

.`C 1/2
(5.2)

holds true for any ` � k � 1. We will prove the above estimate is still valid for ` D k.
Repeating the argument before (4.7), we have the following estimate similar to (4.7):

1

2

d

dt

X
1�j�2

k
1
H k
ıj
f k2

L2v
C c0

X
1�j�2

jjj
1
H k
ıj
f jjj

2

�

X
1�j�2

k
1
H k
ıj
f k2

L2v
C

X
1�j�2

ıjkt
ıj�1j.@v1

2
H k�1
ıj

f ;
1
H k
ıj
f /L2v j
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C

X
1�j�2

j.Fx.ŒH
k
ıj
;L�f /;

1
H k
ıj
f /L2v j

C

X
1�j�2

j.Fx.H
k
ıj
�.f; f //;

1
H k
ıj
f /L2v j: (5.3)

It suffices to deal with the second term on the right-hand side, since the other terms can
be treated in the same way as in the previous case of 1

2
� s < 1.

For each j D 1; 2, and for any " > 0, we have

ktıj�1j.@v1
2
H k�1
ıj

f ;
1
H k
ıj
f /L2v j

� ktıj�1k@v1
2
H k�1
ıj

f kH�sv k
1
H k
ıj
f kH s

v

� "jjj
1
H k
ıj
f jjj

2

C C"�1k2t2.ıj�1/k@v1
2
H k�1
ıj

f k2H�sv ; (5.4)

the last inequality using (2.2). Moreover, recalling that 0< 2s < 1, we use the interpolation
inequality

8Q" > 0; kgk2H�sv � Q"kgk
2
H s
v
C Q"�

1�2s
2s kgk2

H s�1
v
;

with Q" D "2t2ı1k�2t�2.ıj�1/ and g D @v1
2H k�1
ıj

f ; this gives

"�1k2t2.ıj�1/k@v1
2
H k�1
ıj

f k2H�sv

� "t2ı1k@v1
2
H k�1
ıj

f k2H s
v
C "

s�1
s k

1
s t

1
s .ıj�1/t�

1�2s
s ı1k@v1

2
H k�1
ıj

f k2
H s�1
v

� "ktı1@v1
2
H k�1
ıj

f k2H s
v
C C"

s�1
s k

1
s t

1
s .ıj�1�.1�2s/ı1/jjj

2
H k�1
ıj

f jjj
2

; (5.5)

the last inequality using (2.2) again. As for the last term on the right-hand side of (5.5),
we use definition (1.30) of ıj and the fact that ı1 > ı2 in view of (1.31), to compute, for
j D 1; 2,

ıj � 1 � .1 � 2s/ı1 � ı2 � 1 � .1 � 2s/ı1 � 2s C .1 � 2s/� � .1 � 2s/� � 0;

which yields

80 < t � T; "
s�1
s k

1
s t

1
s .ıj�1�.1�2s/ı1/jjj

2
H k�1
ıj

f jjj
2

� C"
s�1
s k

1
s jjj

2
H k�1
ıj

f jjj
2

;

and thus, substituting the above inequality into (5.5),

"�1k2t2.ıj�1/k@v1
2
H k�1
ıj

f k2H�sv � "kt
ı1@v1

2
H k�1
ıj

f k2H s
v
C C"

s�1
s k

1
s jjj

2
H k�1
ıj

f jjj
2

:

Consequently, we combine the above estimate with (5.4) to obtain that, for any " > 0 and
any t 2 �0; T �,

ktıj�1j.@v1
2
H k�1
ıj

f ;
1
H k
ıj
f /L2v j

� "jjj
1
H k
ıj
f jjj

2

C "ktı1@v1
2
H k�1
ıj

f k2H s
v
C C"

s�1
s k

1
s jjj

2
H k�1
ıj

f jjj
2

: (5.6)
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As for the second term on the right-hand side of (5.6), we first use the second equation in
(1.32) and then the fact that

8.m; �/ 2 Z3 �R3; ja.m; �/b.m; �/k�1j2 � ja.m; �/j2k C jb.m; �/j2k ;

to compute

ktı1@v1
2
H k�1
ıj

f k2H s
v
D kFx.t

ı1@v1H
k�1
ıj

f /k2H s
v

� CkFx.Hı1H
k�1
ıj

f /k2H s
v
C CkFx.Hı2H

k�1
ıj

f /k2H s
v

� Ck
1
H k
ı1
f k2H s

v
C Ck

1
H k
ı2
f k2H s

v
� C

X
1�j�2

jjj
1
H k
ıj
f jjj

2

;

the last inequality following from (2.2). Substituting the above estimate into (5.6) we
conclude that, for any " > 0 and for each j D 1; 2,

ktıj�1j.@v1
2
H k�1
ıj

f ;
1
H k
ıj
f /L2v j � C"

X
1�j�2

jjj
1
H k
ıj
f jjj

2

C C"
s�1
s k

1
s jjj

2
H k�1
ıj

f jjj
2

;

which with (5.3) yields that, for any " > 0,

1

2

d

dt

X
1�j�2

k
1
H k
ıj
f k2

L2v
C c0

X
1�j�2

jjj
1
H k
ıj
f jjj

2

�

X
1�j�2

k
1
H k
ıj
f k2

L2v
C C"

X
1�j�2

jjj
1
H k
ıj
f jjj

2

C C"
s�1
s k

1
s

X
1�j�2

jjj
2
H k�1
ıj

f jjj
2

C

X
1�j�2

j.Fx.ŒH
k
ıj
;L�f /;

1
H k
ıj
f /L2v j C

X
1�j�2

j.Fx.H
k
ıj
�.f; f //;

1
H k
ıj
f /L2v j:

Letting " above be sufficiently small, we get that

1

2

d

dt

X
1�j�2

k
1
H k
ıj
f k2

L2v
C
c0

2

X
1�j�2

jjj
1
H k
ıj
f jjj

2

�

X
1�j�2

k
1
H k
ıj
f k2

L2v
C Ck

1
s

X
1�j�2

jjj
2
H k�1
ıj

f jjj
2

C

X
1�j�2

j.Fx.ŒH
k
ıj
;L�f /;

1
H k
ıj
f /L2v j C

X
1�j�2

j.Fx.H
k
ıj
�.f; f //;

1
H k
ıj
f /L2v j:

Note that the above estimate is quite similar to (4.8), with the factor k2 therein replaced
by k

1
s here. Moreover, observe that

k
1
2s

X
1�j�2

Z
Z3

�Z T

0

jjj
2
H k�1
ıj

f .t;m/jjj
2

dt

� 1
2

d†.m/

� k
1
2s
"0L

k�1Œ.k � 1/Š�
1
2s

k2
� C

"0L
k�1.kŠ/

1
2s

.k C 1/2
;
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which just follows from inductive assumption (5.2). Thus we may repeat the argument
after (4.8) and use the above estimate instead of (4.11), to conclude thatX

1�j�2

� Z
Z3

sup
0<t�T

k
1
H k
ıj
f .t;m/kL2v d†.m/

C

Z
Z3

�Z T

0

jjj
1
H k
ıj
f .t;m/jjj

2

dt

� 1
2

d†.m/

�
�
"0L

k.kŠ/
1
2s

.k C 1/2
:

Then (5.2) holds for `D k, and thus (5.1) follows. The proof of Theorem 5.1 is completed.

Completing the proof of Theorem 1.1: Gevrey smoothing effect for 0 < s < 1
2

. With the
help of (5.1), the Gevrey estimate (1.17) for 0< s < 1

2
just follows from the same argument

as that in Section 4.2. So we omit it for brevity.
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