Ann. Inst. H. Poincaré C © 2024 Association Publications de 1’Institut Henri Poincaré
Anal. Non Linéaire 42 (2025), 971-1036 Published by EMS Press
DOI 10.4171/ATHPC/133 This work is licensed under a CC BY 4.0 license

Linear and nonlinear transport equations
with coordinate-wise increasing velocity fields

Pierre-Louis Lions and Benjamin Seeger

Abstract. We consider linear and nonlinear transport equations with irregular velocity fields, moti-
vated by models coming from mean field games. The velocity fields are assumed to increase in
each coordinate, and the divergence therefore fails to be absolutely continuous with respect to the
Lebesgue measure in general. For such velocity fields, the well-posedness of first- and second-order
linear transport equations in Lebesgue spaces is established, as well as the existence and uniqueness
of regular ODE and SDE Lagrangian flows. These results are then applied to the study of certain
nonconservative, nonlinear systems of transport type, which are used to model mean field games in
a finite state space. A notion of weak solution is identified for which unique minimal and maximal
solutions exist, which do not coincide in general. A selection-by-noise result is established for a rel-
evant example to demonstrate that different types of noise can select any of the admissible solutions
in the vanishing noise limit.
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1. Introduction

This paper has two main purposes. First we develop a well-posedness theory for first- and
second-order linear transport equations for a new class of irregular velocity fields, as well
as the corresponding ODE and SDE regular Lagrangian flows. We then apply the results
to the study of certain nonlinear transport systems, motivated in particular by applications
to mean field games on a finite state space.
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For a fixed, finite time horizon 7" > 0, we study both the terminal value problem (TVP)
for the nonconservative equation

—du—b(t,x)-Vu=0 in(0,T)xR%, u(T,-) = uo, (1.1)
as well as the dual, initial value problem (IVP) for the conservative equation

3, f +divib(t,x)f) =0 in(0,T)xR%, £(0,") = fo, 1.2)
under the assumption that b is coordinate-by-coordinate (semi)-increasing:

On; b (1) = —C(1)8;; forallt €[0,T),i,j =1,2,....d,
and some C € L1 ([0, T]). (1.3)

The divergence of such a vector field is bounded from below, which means that, formally,
the flow defined by

at¢t,s(x) = b(t»¢t,s(x))v re [S, T], ¢s,s(x) =X (1.4)

will not concentrate at null sets. This indicates that the two problems (1.1) and (1.2) are
amenable to a solution theory in Lebesgue spaces.

On the other hand, the measure div b is not in general absolutely continuous with
respect to Lebesgue measure, and this leads to the formation of vacuum for ¢ > s. It is
therefore the case that the existing theory of renormalized solutions, initiated by DiPerna
and the first author [30] for Sobolev velocity fields and extended to the case b € BV, and
divb € L°° by Ambrosio [2], does not apply to our present situation. In particular, the two
problems (1.1) and (1.2) cannot be covered with a unified theory, due to the fact that (1.1)
cannot be understood in the distributional sense if div b is not absolutely continuous with
respect to Lebesgue measure and u € Llloc' Nevertheless, we exploit the dual relationship
between the two problems, and provide a link to the forward, regular Lagrangian flow
(1.4). Analogous results are also proved for the degenerate, second-order equations

—du —b(t,x)-Vu—trfa(t, x)VZu] =0 in(0,7) xR?, w(T,)=ur (1.5)
and
3 f +divib(t,x) f)=V?-(a(t,x)f) =0 in(0,T)xR?, f(0,)) = fo. (1.6)

where b satisfies (1.3), a(t,x) = %o(t, x)o (¢, x)" is a nonnegative, symmetric matrix, and
o € R4*™: and the SDE flow

di @ 5(x) = b(t, P 5(x))dt +0(t, P 5(x)) d Wy, (1.7

where W is an m-dimensional Brownian motion.
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We then turn to the study of nonlinear, nonconservative systems of transport type that
take the form

—du— ft,x,u)-Vu =g, x,u) in(0T)xR? w(T,-)=ur. (1.8)

Here, u, f, and g are vector valued, with' f € R and g, u € R™ for some integers
m,d > 1, f and g are local functions of (¢, x,u) € [0, T] x R? x R™, and the equation
reads, for each coordinate i = 1,2,...,m,

d
—du’ — ij(t,x,u)axjui =gl (t,x,u).

j=1

The primary motivation for the consideration of (1.8) comes from the study of mean field
games (MFG). These are models for large populations of interacting rational agents, which
strategize in order to optimize an outcome, based on the collective behavior of the remain-
ing population, while subject to environmental influences. The master equation for mean
field games with a (finite) discrete state space takes the general form of system (1.8) with
d = m, as described in [47]; see also [10, 35]. Alternatively, systems of the form (1.8)
arise upon exploiting dimension reduction techniques for continuum-state MFG models
in which the various data depend on the probability distribution of players through a finite

number of observables, that is,
= u(l, / @du)

for probability measures 4 and some given continuous R¢-valued function ®. This con-
nection is explored by the authors and Lasry in [44]. We note also that the special case
where d = m, f(t,x,u) = —u, and g(¢, x,u) = 0 leads to the system

—0;u+u-Vu =0, (1.9

which arises in certain models describing the flow of compressible gasses at low density
with negligible pressure [38,49].

The nonlinear equation (1.8) can formally be connected to a system of characteristic
ODEs on R? x R™. In order to draw the analogy to MFG PDE systems and the master
equation in a continuum state space (see for instance [17]), it is convenient to represent
the characteristics as the forward backward system

{ —05Us1 (x) = (5, X5 (), Uss (), Ury(x) = ur(Xr,0(x)), (1.10)

05 X5 (X) = f(5, X5t (X), Uss ()., Xp4(x) = x.

'Note that the nonlinearity f in equation (1.8) is different from the solutions f of the conservative
equations (1.2) or (1.6).
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If f, g, and ur are smooth and the interval [¢, T'] is sufficiently small, then (1.10) can be
uniquely solved, and the unique, smooth solution u of (1.8) is given by u(t, x) := Uy ;(x).
The argument fails for arbitrarily long time intervals, in view of the coupling between X
and the terminal condition for U.”

The monotone regime is explored in [10,47], thatis, d = m and (—g, f):]Rd x RY —
R? x R4 and u7: R4 — R are smooth and monotone (one of which is strictly mono-
tone). In that case, (1.10), and therefore (1.8), can be uniquely solved on any time interval.
This regime is exactly analogous to the monotonicity condition of Lasry and the first
author for MFG systems with continuum state space [41-43], and, as in that setting, strong
regularity and stability results can be established for (1.8). The monotone regime also
allows for a well-posed notion of global weak continuous solutions of (1.8), even when
f, g, and ur fail to be smooth [8].

If there exist functions H: R4 x RY — R and vy: R¢ — R such that (g, f) =
(Vx, Vp)H and ur = Vur (the so-called potential regime), then, formally, one expects
u(t,-) = Vu(t,-), where v solves the Hamilton—Jacobi equation

d;v+ H(t,x,Vyv) =0 in(0,T) x RY, u(T,-) = vr,

for which global, weak continuous solutions can be understood with the theory of viscos-
ity solutions [24]. Possibly discontinuous weak solutions of (1.8) can then be indirectly
understood as the distributional derivative of v, an approach which is taken in [21]. In the
special case where d = m = 1, (1.8) can be studied with the theory of entropy solutions
of scalar conservation laws [40].

In this paper, using the theory developed here for linear equations, we identify new
regimes of assumptions on f, g, and ur for which the notion of a weak, possibly discon-
tinuous, solution can be identified for any dimensions d,m > 1. Under a certain ordering
structure, the existence of unique maximal and minimal solutions, which do not coincide
in general, is established. This nonuniqueness is further explored from the viewpoint of
stochastic selection, and we prove, for a specific but informative example, that any of
the family of solutions can be distinguished by a certain vanishing noise limit, indicating
that the choice of a mean field game equilibrium is very sensitive to the manner in which
low-level, systemic noise is introduced into the model.

1.1. Summary of main results

We list the main results of the paper here, in an informal setting. More precise statements
and discussions can be found within the body of the paper.

The (semi)-increasing condition (1.3) implies that b € BV,.. We emphasize again,
however, that the measure divb will in general have a singular part with respect to

2When written in forward form, the breakdown manifests as a failure to invert the characteristics
describing the state variable x € R4, which may cross in finite time.
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Lebesgue measure, and we therefore cannot appeal to the existing results on renormal-
ized solutions to transport equations with irregular velocity fields. We do not give a full
account of the vast literature for such problems, but refer the reader to the thorough sur-
veys [3—6] and the references therein.

Our approach to the first-order transport problem is to study the well-posedness of the
regular Lagrangian flow for (1.4) directly, rather than using PDE methods. The assumption
(1.3) on b allows for a comparison principle with respect to the partial order

x,ye]R{d, x<y & x;<y; foralli =1,2,...,d. (1.11)

A careful regularization procedure then leads to the existence of minimal and maximal
flows, which coincide a.e., and we have the following result (see Section 3 below for more
precise statements):

Theorem 1.1. Assume b satisfies (1.3). Then, for a.e. x € R, there exists a unique abso-
lutely continuous solution of (1.4), and there exists a constant C > 0 such that, for all
0<s<t<T,

|<,15t_s1 (A)| < C|A| for all measurable A C R4,

If (b%)¢>0 is a family of smooth approximations of b and (¢%)¢~¢ are the corresponding
flows, then, as e — 0, ¢* — ¢ in C,LY, and L? th’lfor all p € [1, 00).

x,loc x,loc

We also obtain analogous results for the SDE (1.7). Degenerate linear parabolic equa-
tions and SDEs with irregular data have been studied in a number of works that generalize
the DiPerna—Lions theory and the Ambrosio superposition principle; see [22,31, 45, 46,
58]. A common source of difficulty involves the dependence of o on the spatial variable,
even if it is smooth. This is the case, for instance, when b € BV, and divb € L™ treated
by Figalli [31], or when b satisfies a one-sided Lipschitz condition from below, as consid-
ered by the authors in [48]; in both settings, the results are constrained to o (¢, x) = o (t)
constant in R?. In our present setting, we can relax the spatial dependence, and we assume
that o is Lipschitz and satisfies

o'k (1, x) = o'*(t,x;) forall (,x) € [0,T] x R¥,
i=12,....d k=1,....m.

Then, in Section 4, we turn to the study of the linear transport equations (1.1)—(1.2),
as well as the second-order equations (1.5)—(1.6), which can be related to the ODE and
SDE flows in Section 3.

Theorem 1.2. Assume b satisfies (1.3). Then the flow (1.4) (resp. (1.7)) gives rise to
continuous solution operators on Lf:m (resp. LP), p € (1, 00) for the dual problems
(1.1)—(1.2) (resp. (1.5)—(1.6)). The resulting solutions are stable under regularizations
of b or vanishing viscosity limits in the spaces C; L, with the convergence being strong

for the nonconservative equations (1.1)/(1.5) and weak for the conservative equations
(1.2)/(1.6).
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The solution operator for the nonconservative equation (1.1) cannot be made sense
of in the sense of distributions, because the measure div b can have a singular part. We
nevertheless provide a PDE-based characterization for solutions that are increasing or
decreasing with respect to the partial order (1.11). In order to give meaning to the ill-
defined product b - Vu in this context, we introduce mollifications of a one-sided nature
that lead to commutator errors which are shown to possess a sign; this is to be com-
pared with the renormalization theory initiated in [30], in which the commutator errors
are shown to converge to zero with the convolution parameter. This leads to the notions
of sub- and supersolution for (1.1), which are proved to satisfy a comparison principle.
The solution operator for (1.1) can thus be alternatively characterized in terms of these
regularizations, and, moreover, the regular Lagrangian flow (1.4) can be recovered as the
(vector)-valued solution of the terminal value problem (1.1) with u7(x) = x. These two
viewpoints on the transport equation and ODE flow are instrumental in our understanding
of the nonlinear equations to follow.

The continuity equation (1.2) (or the Fokker—Planck equation (1.6) in the second-order
case) can then be related to the nonconservative equation through duality. Importantly,
arbitrary distributional solutions of (1.2) are not unique in general. We prove that, if
fo > 0, then there exist unique distributional solutions of (1.2) and (1.6) which coincide
with the duality solution. Moreover, this result is proved independently of the super-
position principle; instead, we use the duality with the nonconservative equation, and the
characterization of its solutions in terms of one-sided regularizations.

A consequence of the uniqueness of nonnegative distributional solutions of (1.2) is
that, if f and | f| satisfy (1.2) in the sense of distributions, then f is the “good” (duality)
solution (see Corollary 4.1 below). We do not know whether this property characterizes
the duality solution, or, in other words, whether the duality solution satisfies the renormal-
ization property in general. This should be compared with [48], where the authors resolve
the same questions for half-Lipschitz velocity fields.

The paper concludes in Section 5 with the study of the nonlinear equation (1.8) and
the associated system (1.10). We operate under the assumption that the discontinuous
nonlinearities f and g satisfy, for some C € L1+([0, 7)),

foralli,j =1,2,...,d, k,£=1,2,...,m,
andae.f € [0,7T], on R4 x R™,

O £ (1) = —C0835, D 84(0,2) = —C(D)Ske,
Z)xig(Z <0, and aukf-i <0.

(1.12)

Observe that (1.12) is satisfied with C = 0 by the particular example of the Burgers-like
equation (1.9).

We develop a theory for solutions of (1.8) that are decreasing with respect to the partial
order (1.11). The first observation is that the decreasing property is propagated, formally,
by the solution operator. On the other hand, shocks form in finite time, and so, even if
ur, f,and g are smooth, u(¢,-) will develop discontinuities for some # < T in general,
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requiring a notion of weak solution. We next note that, under the above assumptions, if u
is decreasing, then the velocity field b(¢, x) := f(¢, x, u(t, x)) satisfies (1.3). Solutions of
the nonlinear equation (1.8) can then be understood as fixed points for the linear problem
(1.1), and at the same time through the system of forward-backward characteristics (1.10),
using the theory for the regular Lagrangian flows in Section 3.

Theorem 1.3. Assume [ and g satisfy (1.12) and ut is decreasing. Then there exist
maximal and minimal decreasing solutions u™ and u™ of (1.8) in the fixed-point sense. If

u is any other such solution, thenu™ <u <u™.

Continuous decreasing solutions of (1.8) satisfy a comparison principle, which in par-
ticular implies that u™ is below every continuous supersolution and u~ is above every
continuous subsolution. In general, ¥~ and ut do not coincide, which must then be
a consequence of the formation of discontinuities. This nonuniqueness of solutions is
closely related to the question of multiplying distributions of limited regularity. Indeed,
in equation (1.8), the product f(¢, x, u) - Vu cannot be defined in a stable (with respect
to regularizations) way in view of the fact that, in general, u € BV, and Vu is a locally
finite measure.

The well-posedness of both strong and weak solutions of MFG master equations in
the continuum state space setting has been explored under various sets of monotonic-
ity assumptions [1,9, 11,17, 18,20, 33,34,36,37,50]. The approach in our setting, which
involves appealing to Tarski’s fixed-point theorem for increasing functions on lattices [57],
has also been taken in the continuum state space setting, where maximal and minimal solu-
tions were found under related assumptions; see for instance [27-29,51]. The partial order
used in [51] comes from the notion of stochastic dominance for probability measures. We
note that, for equation (1.8) posed on an infinite-dimensional Hilbert space of L? random
variables, the partial order (1.11) is related to the analogous notion of stochastic domi-
nance for random variables, and we aim to study the infinite-dimensional version of (1.8)
in future work.

We explore the nonuniqueness issue in more detail for the Burgers equation (1.9) in
one dimension, where the decreasing terminal value has a single discontinuity at O:

—d;u+udyu=0 in(0,7) xR, u(T,x)=1{x <O0}. (1.13)

It turns out that (1.13) admits infinitely many fixed-point solutions, consisting of a shock
traveling with variable speed between 0 and 1. Of course, (1.13) can be reframed as a
scalar conservation law, whose unique entropy solution is the shock-wave solution with
speed 1/2. We note that the notion of entropy solution does not extend to the nonconser-
vative equations (1.8) or (1.9).

We characterize the family of fixed-point solutions (1.13) as limits under distinct types
of regularizations of equation (1.13).

Theorem 1.4. For any c € W*1([0, T) satisfying c(T) = 0 and —c’ € (0, 1), there exists

0
0. € L'([0, T)) such that, if u%, is smooth, us, e 1(—c0,0) in L}, and u is the unique
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classical solution of
—0:u® + uf0 ut = e(2u + 60.(1)|0xu?), us(T,") = uf, (1.14)

then, forall 1 < p < 0o, as & — 0, u® — 1{x < c(t)} strongly in C([0, T], L? )

loc/*

We interpret Theorem 1.4 as a selection-by-noise result for the nonunique problem
(1.13). Indeed, the result can be reformulated on the level of system (1.10), which, for
(1.14), becomes the forward-backward system of SDEs

1
—d;Ug (x) = Z5 ,(x) d W — EQC(S)Zf’, (x)%ds, Uz, (x) = uz(X7,(x)),
dsXE,(x) = —UE,(x)ds + ~2e d W, X (x) = x.

Various selection methods have been proposed to study mean field game models that
do not admit unique solutions, and we refer in particular to [21,26] for problems involving
stochastic selection. Our result is distinguished by the consideration of several different
descriptions of small noise, each of which selects a different solution for the deterministic
problem in the vanishing noise limit.

1.2. A note on velocity fields with a one-sided Lipschitz condition

Let us remark that the regime in which b satisfies (1.3) shares many similarities with the
setting in which b is half-Lipschitz from below, that is,

(b(t.x) = b(t.y)) - (x —y) = =C(t)|x — y|* for (t,x,y) € [0,T] x R*?
and some C € L1 ([0, T]).  (1.15)

A key commonality in both settings is that div b is bounded from below, but not neces-
sarily absolutely continuous with respect to Lebesgue measure. Transport equations and
flows for velocity fields satisfying (1.15) have been studied from a variety of different
viewpoints [12, 13, 19,23,53-55], and in [48], the authors obtain very similar results to
those described above regarding the existence, uniqueness, and stability of the regular
Lagrangian flow forward in time, as well as proving well-posedness and studying proper-
ties and characterizations of solutions nto problems (1.1) and (1.2) in Lebesgue spaces.
A key difference between the two regimes is the behavior of the flow for (1.4) in
the compressive direction, that is, backward in time. For velocity fields satisfying the
half-Lipschitz condition (1.15), the backward ODE is uniquely solvable for all x € R.
Moreover, the resulting backward flow is Lipschitz continuous, and it can be identified as
the left-inverse to the forward, regular Lagrangian flow; see [48] for more precise state-
ments, as well as new characterizations of the time-reversed versions of (1.1) and (1.2).
On the other hand, when b satisfies (1.3), the backward problem (1.4) is not in gen-
eral unique for every x € R?, nor is it true that a globally Lipschitz flow can always be
found. We note that, even for examples where the backward flow has a unique solution
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for Lebesgue-a.e. x € R?, neither the stability nor the solvability of the time-reversed ver-
sions of (1.1)—(1.2) in Lebesgue spaces can be expected to hold, because, in general, any
backward flow solution to (1.4) will concentrate on sets of Lebesgue-measure zero. For a
detailed discussion and examples, see Sections 3.4 and 4.3 below.

We remark that, when d = 1, assumption (1.3) coincides exactly with the one-sided
Lipschitz bound, and so, in the one-dimensional setting, this paper presents a counterpart
to the approaches taken in [12, 13,48]. In particular, in those works, the analysis is based
primarily on the properties of the (well-defined) backward flow and the adjoint conserva-
tive continuity equation, whereas here we begin with establishing the well-posedness of
the forward Lagrangian flow, an approach which generalizes well to multiple dimensions
under assumption (1.3).

1.3. Notation

Given a bounded function ¢: R — R, ¢, and ¢* denote the lower- and upper-semi-
continuous envelopes, and, if ¢ is R-valued, the same notation is used coordinate by
coordinate.

We often denote arbitrary functions spaces on R¢ as X(R?) = X when there is no
ambiguity over the domain. We denote the space of bounded, Lipschitz continuous func-
tions by C%!. For p € [1, 0], L% and L¥_, denote the spaces of p-integrable functions
with respectively the weak and weak-* topologies. The space of locally p-integrable func-
tions with the topology of local L?-convergence is denoted by LY , and Lf;c’w and Lf;c,wﬁ
are understood accordingly.

The notation 1 denotes the vector (1, 1,..., 1) in Euclidean space, the dimension being
clear from the context. Given two sets 4 and B, A
operatorname/AB = (A\B) U (B\A).

2. Preliminary results

This section contains a collection of results regarding vector-valued notions of increas-
ing/decreasing, as well as a vector-valued maximum principle.

2.1. Properties of increasing functions
We first introduce a partial order on R that is used throughout the paper.
Definition 2.1. For x,y € R4 , we will write
x <y ifx; <y;foralli =1,2,...,d. 2.1)

Givena,b € R?, a < b, we denote by [a, b] the cube ]_[?zl[ai, b;]. A function ¢: RY —
R™, d,m € N, is said to be increasing if ¢ (x) < ¢(y) whenever x < y. Equivalently, ¢
is increasing if, for each i = 1,2,...,m, ¢>i is increasing in the x;-coordinate for each
j=12,....d.
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Lemma 2.1. Assume that ¢:R¢ — R™ is increasing. Then ¢ € BVoc(R?), and, for each
i=12....m
liminf¢'(y) = liminf ¢'(y) and limsupg'(y) = limsup ¢’ (y).
y—=x Y—=X,yEX y—>Xx yoX,yZX

Proof. Forall j =1,2,...,d andi = 1,2,...,m, the distribution 8j¢i is nonnegative,
and is therefore a locally finite measure.

For any sequence y, — x, if y, £ x, then y, may be replaced with a value y;, such
that y/, < x, ¥, < yn, Y # X, ' (y) < ¢'(x), and lim, o ¥}, = x. A similar statement
holds if y,, # x for all n, and the claim follows. ]

Lemma 2.1 implies that each component of an increasing function ¢: R — R™ has
limits from both the “left” and “right”. We will call an increasing function ¢ cadlag if

¢’ (x) = limsup g’ (y) = limsup ¢'(y) fori =1,2,...,m. 2.2)
y—oXx

YoX,yZX

Remark 2.1. Given a nonnegative measure (, the repartition function

(—00,x1) J(—00,x2) (—00,x4)

is an example of a cadlag increasing function, but such functions do not cover the full
range of increasing functions if d > 2; indeed, they are distinguished by the fact that mixed
derivatives 3x41 axez e axlk ¢ for any distinct set (@)};1 C{1,2,...,d} are measures even
if k > 2.

Consider a smooth surface I' C R¥ that partitions R¢ into two open sets, that is,
RY =U_UTUUL, T =9dUy =9dU_, Uy NU_ = @. Let n be the normal vector to I’
that, at all points of I', points inward to Uy. If n > 0 everywhere on I', in the sense of
(2.1), then ¢ = 1y, ur is a cadlag increasing function that is not a repartition function.

2.2. ABY functions

In one dimension, functions of bounded variation can be written as a difference of nonde-
creasing functions. With respect to the partial order (2.1), the generalization of this notion
is a strict subspace of BV.

Definition 2.2. Given —oco < a; < b; < oo fori = 1,2,....,d and a function

d
¢: Q = [ [lai.b:i] > R.

i=1

we say ¢ € ABV(Q) if

¢l aBv(o) = supll¢ o ¥llBv(o,1) < 0°,
y
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where the supremum is taken over all curves y: [0, 114 — Q such that y;: [0, 1] — [a;, b;]
is increasing foralli = 1,2,...,d. We will say ¢ € ABV = ABV(R?) if l#llaBv(o) < o0
for all boxes Q C R?.

For example, C%! C ABV. It is straightforward to see that ABV = BV whend = 1.

Remark 2.2. Several generalizations of the notion of finite variation to multiple dimen-
sions, besides the space BV, exist in the literature, and the one in Definition 2.2 is due to
Arzela [7]. It is a strictly smaller subspace than BV (indeed, unlike general BV functions,
ABYV functions are differentiable almost everywhere, as shown in Lemma 2.3 below).
This notion of variation, along with several others, seems not to have had the same ubiq-
uity in the theory of PDEs as the usual notion of BV, but is particularly relevant in this
paper. More details about ABV functions, and many other notions of variation in multiple
dimensions, can be found in [14].

Lemma2.2. Let p:R? — R. Then ¢ € ABV ifand only if = 1 — ¢» for two increasing
functions ¢1, ¢po: RY — R.

Proof. Leta,b € R?, a < b. If p: R¢ — R and y:[0, 1] — [a, b] are increasing, then
¢ oy is increasing, and thus [|¢ o y||v(0,1]) = ¢(b) — ¢(a). It follows that ¢ € ABV,
and, by linearity, differences of increasing functions belong to ABV.

Now assume ¢ € ABV([a, b]), and, for x € [a, b], set

1 1
$1(x) = 5(”¢”ABV([a,x]) +¢(x)) and ¢a(x) = §(||¢||ABV([a,x]) - ¢(x)).

Then ¢ = ¢ — ¢, and ¢ and ¢, are increasing. ]
Lemma 2.3. [f¢ € ABV, then ¢ is almost everywhere continuous and differentiable.

Proof. 1t suffices to prove the claim about differentiability, and, by Lemma 2.2, we may
assume without loss of generality that ¢ is increasing.

We argue using the characterization by Stepanoff [56] of a.e.-differentiability, that is,
we prove that, for almost every x € R4 s

P =@l ___

lim sup ,
y—>x ly — x|
or, equivalently,
lim sup —¢(y) —9) <oo and liminf —¢(y) — o) > —00
y—ox |y —x| y=x |y — x|

Denote Q, := [0, r]¢, and note that, because ¢ is increasing,

$() = () $0) = () _ @+ D) = p(x)

lim sup =inf sup ———= =i
y—ox ly — x| r>0,ext0, |y —x| r>0 Jdr
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The function [0, 00) > r — ¢(x + r1) is increasing, and, thus, is differentiable almost
everywhere in [0, c0). The finiteness of the above expression for almost every x € R¢ is
then a consequence of Fubini’s theorem. The argument for the lim inf is analogous. ]

Remark 2.3. In view of Lemmas 2.1 and 2.3, an increasing function is equal almost
everywhere to a cadlag function (that is, a function for which (2.2) holds), and we assume
for the rest of the paper that increasing functions are cadlag.

2.3. One-sided regularizations

It will be convenient at several times in the paper to specify regularizations of discontinu-
ous functions that enjoy certain ordering properties. We describe two such regularization
procedures here, each of which has merit in different situations.

We first discuss the inf- and sup-convolutions given, for some measurable function ¢,
by

|y

Colpl(x) = sup {p(x =) = 2} and Clplx) = inf {p0x—y) + ) @23)
yeRd &

]
yeR4 €

The following properties, which are either well known or easy to check, establish in
particular the regularity of C¢[¢] and of C,[¢] and their convergence to the appropriate
semicontinuous envelopes ¢* and ¢, of ¢.

Lemma 2.4. Assume that ¢ is measurable and, for some M > 0 and all x € R?, |¢(x)| <
M1 + |x]|), and let C¢[¢p] and CE[P] be defined by (2.3), which are finite as long as
&< M™Y. Then,

(@) for all ¢ € (0, M™Y), Ce[p] and C¢[¢p] are Lipschitz with constant e, and
Celp] = ¢ = C¥[p];

(b) forallx e R?, ase — 0, C¥[p](x) \\ ¢*(x) and Cs[p](x) / Px(x);

(¢) if, moreover, ¢ is increasing, then so are C¢[p] and CE[@].

Remark 2.4. If ¢ is increasing, then the sup or inf can be restricted to “one side” of x.
More precisely, given y € R?, define

V==l vzl lyalD.
Then y < y and |y| = |y|, and so, because ¢ is increasing,
|| |71

Plx—y) =2 < plx - )— =
It follows that Iy
C[g)0) = supp(x + ) — =,

y=0
and similarly

Clglo) = int o+ )+ 1)
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The second example involves convolving with mollifying functions that are weighted
to one side. Let p be a smooth, positive function with support contained in [—1, 1]¢ and
J p =1, and define

pe(z) = id (2_881) and p'?(z)=8idp(”8l). 2.4)

Lemma 2.5. Assume ¢:R¢ — R is measurable and locally bounded, and set ¢° = p® * ¢
and ¢g = pg * ¢. Then, as ¢ — 0, ¢p° and ¢, converge to ¢ in LP _ for any p € [1, 00).
Moreover, if ¢ is increasing, then

(@) ¢° and ¢, are increasing, and ¢ < ¢ < ¢°;

(b) ase — 0, ¢\, ¢* and ¢ " ¢,
(c) foralle > 0andx € RY, ¢f(x — 2el) = ¢o(x).

loc

Proof. The convergence in L is standard. For the rest of the proof, we assume ¢ is

increasing. We see immediately that ¢¢ and ¢, are increasing. Observe that
supp pe C (0, 28)d and supp p® C (—2e, O)d.

As a consequence, because ¢ is increasing,

#w= [ se-nemd = [ pe=-nr0)dy = 7.

(—2¢,0

and similarly ¢ (x) < ¢«(x), so that part (a) is established.
Now assume that 0 < ¢ < §. Using again that ¢ is increasing, we find

P =g (5 )

8 IS L C RIS
= Sid ) d(x — y),o(% + 1) dy = ¢°(x),

(—2¢,0)

and similarly ¢ < ¢.. The convergence statements in part (b) then easily follow.
Finally, part (c) is seen upon computing

¢ (x —2¢el) = / ¢(y)p ) dy = ¢e(x).

Remark 2.5. An analogue of part (c) in Lemma 2.5 can also be seen for the sup- and
inf-convolutions C?[¢] and C,[¢] in (2.3), namely, for all R > 0, there exists Cg > 0
depending on the linear growth of ¢ such that, for all x € Bp,

C*[g](x — Cr1) = Ce[@](x).
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The advantage of the one-sided mollifications ¢ * p°® and ¢ * p, is that the constant Cg
can be replaced by a uniform constant that does not depend on the growth of ¢, which
will be convenient when we consider ¢ depending on an additional time parameter in
an L' way. On the other hand, the sup- and inf-convolutions are very flexible one-sided
regularizations even when ¢ is not itself increasing.

2.4. A maximum principle

At various points in the paper, we apply a multi-dimensional maximum principle. For
completeness, we provide a full proof, and we mention here the similarity in our methods
with those used by Busca and Sirakov [15] and Capuzzo Dolcetta and Vitolo [16] to study
nonlinear elliptic systems.

Lemma 2.6. For some M € N, assume that

(@M, cc(o,TIxR4,s9), (b)M, c (0, T]x R4, RY), and

i=1
(€M, @)™, QM (M, < C(0.T] xR R)
are uniformly bounded
{a’(l,x) >0,d" (t,x) >0, A}(t,x) >0, andu}d(t,x) <0

forall (t,x) € [0,T) xR? and i, j. kL €{1,2,... M}
Let (V")f‘i1 c C'([0, T] x R?) be bounded on [0, T] x R? and satisfy the system
Vi —tld D2V + b - DV + 'V + d!
=Y MV Y ui VEVE in (0.T) x RY. (2.5)
J#i kL#i
Suppose that, for all x € RY andi =1,2,..., M, Vi(O, x) < 0. Then, for all (t, x) €
0, T)xR%andi =1,2,....M, Vi(t,x) <O.

Proof. We prove the result first under the additional assumption that

inf di >0, sup Vi(O,x) <0,
(¢,x)€[0,TIxR4 xeR4

and, forallz € [0,T]andi € {1,2,..., M}, x — Vi (¢, x) attains a global maximum on
R4 In that case, define

ty == inf{t € (0,T] : max max Vi(t,x) = 0},

xeRd i€{1,2,..M}

sothat g > 0. Let xg € RY andi € {1,2,..., M} be such that the maximum is achieved.
Note then that DV (ty, xo) = 0, D?V(to, xo) < 0, 3,V (to, x0) > 0, and, for all j €
{1,2,....MYand x € R?, V7 (t9,x) < V(to, x0) < 0. We thus obtain

d' (o, x0) < D AV (0, x0) + D tieeV*(t0, x0) V' (k0. x0) <0,
i kLt
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which is a contradiction in view of the assumption on @’ . In this case, we indeed conclude
that Vi(¢,x) < Oforall (t,x,i) € [0,T] x R x {1,2,...,M}.

We now turn to the general case. For x € R, define v(x) := /I + |x|2, and note
that Dv and D?v are globally bounded on R¢. Then standard arguments yield that, for all
ie{l,2,....M},B >0,andt € [0, T], if Sg is the set of maximum points of

x = Vi, x) — pu(x),

then limg .o B sup,s, v(x) = 0. It follows that there exists a smooth bounded function
vg: R? — R such that
sup (|| Dvgllos + 1D?vgllec) < 00, lim Blvgllec = 0,
B>0 B—0
and
max  (V'(t,x) — Bv(x))

(t,x,i)€[0,T1xR?
x{1,2,....M}

= max  (Vi(t,x) — Bug(x)).
(t,x,i)€[0,T1xR4
x{1,2,....,M}

Fix § > 0 and a constant C > 0 to be determined. For (¢, x) € [0, T'] xR4,i ¢ {1,2,...,.M},
set

Vi(t,x) = Vit,x)— Bug(x) —8eC".
Then, forall i € {1,2,..., M}, Vi(0,-) < =8, and, for all € [0, T], V(z,-) attains a
global maximum over R?. Moreover, in (0, T') x R¥, (Vi)il‘i 1 solves the system
A Vi— tr[aiDZVi] +bi(t,x)-DVit,x)+ Vi + dl = ZA; V4 Z u};gﬁkﬁl,

J# kL

where

di(t.x) = d'(t.x) + C8e" — Btrfa’ D?vg] + Bb* - D
+ (e =4 - 1 M{(V") T 5e0(ci DIYED IRL
J#Fi k4F#i J#i ki
From the boundedness of the coefficients and the V¥, and from the nonnegativity of d?, it

follows that there exists C > 0 depending only on the bounds of the coefficients and the
Vi such that, as B — 0,

di(t,x) = (C = C)8e€" —o(1).

Taking C > C and letting B be sufficiently small in relation to &, we then see that di > 0.
From the first step, we conclude that, if g is sufficiently small, then, for all (¢, x) € [0, T] x
R andi € {1,2,..., M},

Vi, x) < Bug(x) + 8.

Sending B — O first and then § — O yields the result. ]
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3. The regular Lagrangian flow

The object of this section is to study the forward-in-time flow

0:drs(x) =b(t,pr5(x)) fors €[0,T], t €[s,T], ¢ss(x)=x, 3.1

for a vector field b: [0, T] x R — R satisfying

for some Co, Cy € L1 ([0, 7)),
|b(t, y)| < Co(t)(1 + |y|) forace. (t,y) € [0, T] x R?, and (3.2)
X b b(t,x) + C1(t)x is increasing for a.e. t € [0, T].

The second condition reads equivalently as 8ij"(t, ) > —=Ci(t)§;; foralli,j =1,2,
..., d. Moving forward, for convenience, we define the positive, increasing, absolutely
continuous functions

t t
w(1) =/0 Co(s)ds, wi(t) =/0 Ci(s)ds, te€][0,T]. 3.3)

Remark 3.1. Implicit in assumption (3.2) is a choice of basis on R . Indeed, the results of
the paper continue to hold if b is replaced by Ab (¢, ATx) for a d x d orthogonal matrix A.

The precise interpretation of problem (3.1), wherein b is discontinuous, is made sense
of as a differential inclusion. Namely, at every discontinuity x of b(,-), we have b4 (¢,x) <
b*(t, x), and so the natural formulation is for the absolutely continuous function ¢
@:,5(x) to satisfy

s .s(x) € [balt, ), b (t,)(Prs(x)) fors e[0,T],ae.t>s, ¢ss(x)=2x. (3.4

Remark 3.2. In order to make notation less cumbersome, for a function ¢: [0, 7] x R? —
R, we will always denote by ¢, and ¢* the lower- and upper-semicontinuous envelopes
of ¢ in the space variable only; that is, for (r,x) € [0, T] x R?, ¢ (t,x) = ¢ (¢, -)+(x) and
P (1. x) = p(1,)* (x).

If : RY — R™ form > 1, then ¢* and ¢, are taken to be the coordinate-by-coordinate
lower- and upper-semicontinuous envelopes, so, for instance, ¢, = (¢i, d)f, e, ¢f );
equivalently,

$x(x) = sup inf ()

r>0|x

with respect to the partial order (2.1) on R™.

Remark 3.3. The differential inclusion (3.4), wherein b(t, x) is replaced with the small-
est box [a, B] = Hid=1 [, Bi] containing all limit points of b(¢, y) as y — x, is a slightly
weaker formulation than the standard Filippov regularization [32], where boxes are

replaced with general convex sets.
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Before developing the general theory, it is useful to record the following a priori ODE
bounds, which follow easily from Gronwall’s lemma.

Lemma 3.1. Assume, for some Cy € Lﬂr([O, T)), that b:[0, T] x R¢ — R? satisfies

|b(t, x)|
ess sup

xeR4 |x]

< Co(t) forae tel0,T]

and X is an absolutely continuous solution of X (t) = b(t, X(¢)) in [0, T] with X (to) = x
for some ty € [0, T]. Then there exists a constant C > 0, depending only on T > 0, such
that

|X(#)— X(s)| =CA + |x|)[t Co(r)ydr for0<s<t<T.

3.1. A comparison principle

The following comparison result for ODEs is at the heart of much of the analysis in this
paper. It leads to the existence and uniqueness of the regular Lagrangian flow, as well as
stable notions of solutions to the transport and continuity equations with velocity fields
satisfying (3.2).

Lemma 3.2. Assume that B: [0, T] x R? — R¥ satisfies

{t — |VB(t, ')”Loo(BR)} € LY([0,T]) forall R >0, and
dx, B >0 foralli # j.

Let X, Y € C%'([0, T], R?) be such that, with respect to the partial order (2.1), X(0) <
Y(0) and

X(t) < B(t,X(t)) and Y(t)> B(t,Y(t)) forae t€[0,T].
Then X(t) < Y(t) forallt € [0,T].

Proof. The continuity of X and Y implies that there exists R > 0 such that | X(¢)| v
|Y(¢t)| < Rforallt € [0, T]. We may thus assume without loss of generality that

T
/ IVB(t,)|loo dt < o0.
0

Define A = X — Y and, fori,j =1,2,...,d,
1
aij(t) :/ Ox B (1. TX(1) + (1 — )Y (1)) d .
0

Observe that fOT |aij (t)| dt < oo for all i, j, and a;; > 0 whenever i # j. Then, for
i=1,2,....,d,

A'(0) <0 and A1) <a;i()A (1) + Y a;j()AI (1) fort €[0,T].
i#j
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Fix § > 0, set

and define
to == inf{t € (0,T] : there exists i € {1,2,...,d} such that e VO Al (1) > 8}.

Since e V@ A7(0) < 0 < 8, we must have 7y > 0. Assume by contradiction that fy < co.
Then, by continuity, there exists i such that, for all j and s € [0, 7],

eVEON (5) < e VI A (19) = .

We compute

d .
0< —e VO
- dte @) t=tg

<~ (to)e VI Al () 4 V) (aii(lo)Ai(to) + Zaij (to) A/ (lo))
J#i

N R (SISO SIS )
J#i

d
= —8(1/'/00) - ay (ro))
j=1

< -4,

which is a contradiction. It follows that A’ (z) < §e¥® forallz € [0, T] andi =1,2,....d.
Sending § — 0 yields the result. |

3.2. Maximal and minimal flows

The comparison principle from the previous subsection is now used to establish the exis-
tence of maximal and minimal (with respect to the order (2.1)) semicontinuous solutions
of the differential inclusion (3.4) for vector fields satisfying dx, 57 > 0 fori # j.

Proposition 3.1. Assume that b:[0, T] x R — R¥ satisfies

r b(t :

esssupMdt <00 and 0y b’ >0 foralli # j.
1 1

0 ye]Rd + |y|

Then there exist solutions ¢ and ¢~ of (3.4) that are absolutely continuous in time such
that
(@ forall0<s<t<T, ¢,‘fs and ¢,  are increasing in the sense of (2.1), 4’:} is
right-continuous, and ¢,  is left-continuous;
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(b) if ¢ is any other solution of (3.4), then g~ < ¢ < ¢p;
© f0<r<s<t<T theng} opS, =¢) andd; o¢;, =¢;,;
@) forall0<s<t<T, (@$ )« > or

Remark 3.4. When d = 1, the condition on the derivatives of b becomes vacuous, and we
recover the existence of unique minimal and maximal solutions under the sole assumption
that b is locally bounded.

Proof of Proposition 3.1. Define M € L1 ([0. T]) by M = esssup,cga 2621 and, for
e € (0, 1), define b® and b, component by component by

be(t,) = CMOT bir, )] and bL(t,-) = Copgeyr [0 (2, )],

where C,; and C? are the sup- and inf-convolution operators as in (2.3). By Lemma 2.4,
b® and b, are well defined, and, for a.e. t, |Vb(¢,-)| V |Vbe(t,-)| < e~ M(¢), so that, for
all (s, x) € [0, T] x R¥, there exist unique solutions ¢+ of

ey 3 (x) = bE(t, ;5 ()

and

05 (x) = be(t. ¢, 5 (x))

in [s, T], with ¢;3°(x) = ¢57(x) = x. By Lemma 3.1, for every (s, x) € [0, T] x R¥,
¢j}’€ (x) and ¢_;* are bounded and continuous uniformly in .
The comparison result Lemma 3.2 immediately gives ¢ ¢ < ¢™¢, and, if x < y,

brs (¥) < .57 (y) and 6,57 (x) < .55 (7).
Fix 0 < & < §. Then Lemma 2.4 (b) implies that b* < b3 and be > bg. It follows that
0t < b°(1.4/5),

and so Lemma 3.2 yields ¢1¢ < ¢%. A similar argument gives ¢~ > . It now
follows that there exist bounded and Lipschitz functions qﬁf; (x) and @7 (x) on [s, T],
which are increasing in x, such that, as ¢ — 0,

¢:fs’€(x) \ gb;fs(x) and ¢, ;" (x) /" ¢, (x) uniformly forz € [s, T].

Moreover, for0 <s <t <tb <T,x € ]Rd, and 0 < ¢ < §, we have
+ + 2o
siie0 <9ts + [P e an
51
and so, sending ¢ — 0 and using that V5% € L}‘_([O, T], L®(R%)), we find

%)
b7 (0) < dit () + / b (r. gt (x)) dr.
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We may replace b® by b* upon sending § — 0 and appealing to the monotone convergence
theorem, and so, because 71 and ¢, were arbitrary, this yields 8,¢:f (x) < b*(t, ¢,Jf L (x)).
Arguing similarly establishes that 8,(;5,": L(x) = b2, ¢,T .(x)), and we conclude that ¢ is
a solution of (3.4). An analogous argument proves that ¢~ solves (3.4) as well.

FixO0<s <t <Tandx € R? again. If 1 > 0, then, for arbitrary & > 0,

¢ (x) < ¢ (x + h) < ¢ (x + D).

Sending & ™\ O first and then ¢ — 0 gives limp\ o ¢Z‘S(x + h) = q),""s(x), so that qb,":s
is right-continuous. A similar argument shows that ¢; ((x) is left-continuous, and this
completes the proof of part (a).

We next prove part (b). If ¢ is any other solution of (3.4), then, for all ¢ > 0,

be(t, d1,s(x)) < 0sr,s(x) < b°(1, pr,s(x)) fort € [s,T]and gs,s(x) = x.

Appealing once more to Lemma 3.2 gives qb,_,;g(x) < ¢rs(x) < ¢: 2%(x), and sending
& — 0 gives the result.

We now prove the flow property stated in part (c). Suppose x € R¢ and 0 < r < s <
t < T. Then, for ¢ > 0, because d)tf S’s is increasing,

O (o (1) < ¢ (B () = 65 (x).

Taking ¢ — 0 yields (ﬁ: R (qbs'f L(x)) < qb,"" +(x). For the opposite inequality, observe that
[s,T]>t ¢Z‘r (x) solves (3.4) with value qbs'f, (x) at time ¢t = s. It follows from part (b)
that ¢Z‘ L(x) < ¢Z‘ B (¢sf +(x)). The argument for the flow property for ¢~ is analogous.

Let x € R4. Sending y /' x in the inequality ¢rs(y) < qb,":s(y), using the fact that
¢~ and ¢ are increasing and ¢~ is left-continuous, yields ¢ s(x) < (qb,"’: )% (x). This
concludes the proof of part (d). ]

3.3. Uniqueness and stability of the regular Lagrangian flow

We now use the full assumption (3.2), and in particular, the lower bounds on 8xibi for
i =1,2,...,d that were not needed to prove the existence of the maximal and minimal
solution of (3.4). In particular, we prove that ¢+ and ¢~ are equal almost everywhere,
giving rise to a unique regular Lagrangian flow.

Proposition 3.2. Assume that b satisfies (3.2). If ¢+ and ¢~ are the maximal and minimal
flow from Proposition 3.1, then, forall0 <s <t < T, (d’tfs)* = ¢, - Moreover, for all
(5,x) €[0,T] xR? and a.e. t € [s,T],

31, (x) = b*(1.¢;(x)) and B, (x) = ba(t. ;5 (x)).

Proof. Let
Pins(x) = e g (™ Ox)
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and
b(t,x) = e®Op(r, e Ox) + Cy(1)x,

where wq is as in (3.3). Then b satisfies (3.2) with C; = 0 and with a possibly different
Co € L1, and ¢ are the corresponding maximal and minimal flows. We may therefore
assume without loss of generality that b(¢, -) is increasing for ¢ € [0, T].

We first prove the statement involving the lower-semicontinuous envelope of d),J,r 5. and
in view of Proposition 3.1 (d), we need only prove the opposite inequality (¢,J,r )x < g
Fort € [0, T, define

bo(t.-) = b(t.) % p° and  be(t,) = b(1.-) * pe,

where the one-sided mollifiers p? and p, are defined in (2.4), and let ¢ 1€ and ¢ ¢ be
the corresponding flows. Arguing exactly as in the proof of Proposition 3.1, appealing to
Lemma 2.5, as € — 0, 5% (x) \ ¢ (x) and ¢_3°(x) /" ¢ (x) uniformly on [s, T, for
any s € [0, 7] and x € R?.

Fix 0 < ¢ < § and define X%(¢) = ¢:,rs’€(x — 261) + 261. Then, in view of Lemma
2.5(c), X 8¢ satisfies

X%(t) = bo(t, X%°(t) — 281) < be(r, X**(t)) in[s,T] and X%°(s) = x.
We may thus appeal to Lemma 3.2, and find that, for all ¢ € [s, T'],
¢:7(x — 261) < ¢, 7 (x) — 261.

Sending ¢ — O first and then § — 0 gives (¢:fs)* < ¢;5 as desired.
We now prove the final statement. For 0 < ¢ < §, we have the inequalities, for ¢ € [s, T']
and x € RY,

DXt ¢ (x)) < 0¥ (0.9 (1) < 0°(1. /57 (0) < (1. ¢/ ().
Since b? is Lipschitz continuous in the space variable,
lim 5% (1., (x)) = b° (1. 1, (x).
e—>0 ’ ’
Therefore,

b*(t. ¢ (x)) = liminfb®(r. ¢, " (x)) < limsupb*(r. ¢, (x)) = b° (1. (x)).

e—>0

and so, sending § — 0, it follows that
lim b° (1, ¢,75° () = b* (1. ¢ (x)).
e—0 ’ ’

For arbitrary e > 0,0 <s <t < T,and x eRd,

t
6o () = x + / bE(r, g2t (x)) dr.
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Sending ¢ — 0 and appealing to dominated convergence gives

t
G700 = x + / (., ()) dr.

and a similar argument gives

t
Gri() = x + / ba(r. 67 () dr. .

Recalling that increasing functions are continuous almost everywhere, it now follows
from Proposition 3.2 that (])t"’r s and ¢,  are equal almost everywhere, given0 <s <7 <T.
We thus finally arrive at the almost-everywhere unique solvability of ODE (3.1), and the
identification of the unique regular Lagrangian flow.

Theorem 3.1. For every s € [0, T| and for almost every x € R?, there exists a unique
absolutely continuous solution [s, T] > t — ¢;s(x) of the differential inclusion (3.4).
Moreover, ¢, s satisfies the regular Lagrangian property: the map C, R¥) > f> fo Dt
extends continuously to f € LL (R%), and there exists C > 0 depending only on T such

loc

that, forall R >0, f e LL t € [s, T],

loc?

d —
If °¢t,s||L1(BR) se (@ ® wl(s»”f”Ll(BR+C(1+R)(wo(t)—wo(s)))‘ (3.5)

In particular,

{[s, TIx R? > (1, x) > b(t, ¢r5(x)) € LE(R?, L1([s, T]))},

loc

and for a.e. x € R?, [s,T] 5t — ¢s.:(x) is the unique absolutely continuous solution of
the integral equation

t
¢rs(x) =x +/ b(r, ¢rs(x))dr.

Finally, if 0 <r <s <t < T, then the composition ¢; s © ¢ , is well defined a.e. and is
equal to ¢y .
Remark 3.5. Taking f = 1,4 in the estimate above, for some A C R¢ of finite measure,
we find the regular Lagrange property
15 (A)] < e O 4]
8 - .

Proof of Theorem 3.1. Let s € [0, T] be fixed and, for N € N, define £} = s + “T=9
n=20,1,2,..., N. Then, by Lemma 2.3 and Proposition 3.2, there exist sets B,JlV Cc R4
of full measure such that ¢;§V = ¢,_N ,on B,Ilv . Now define the full measure set

B=) ﬁB,I,V.

NeNn=0
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Let (t,x) € [s,T] x B, and, forany N € N, letn(t) = 0,1,2,..., N be such that |t} —¢]
is minimized. Then, in view of the uniform continuity in time of ¢+ and ¢, for some
wy > 0 withlimy o oy =0,

[9255(0) =@ < 1oy (1) =@+ g () =5 ()] < o,

and, since N was arbitrary, we find that ¢,"" 5(X) = ¢, (x). It follows that, up to a full
measure set, ¢,jrs and ¢ may be identified as absolutely continuous functions on [s, T].

For f € L'(R%) N C.(R%), let ¢ > 0 and let b and ¢ be as in the proof of Propo-
sition 3.1. Then

3 det(Dx ;3" (x)) = divh®(t, ¢, (x)) det(Dx ;3 (x)) > —d C1 (¢) det(Dx ;% (x)),

from which it follows that det(Dx¢;f§8(x)) > exp(—d f; C1(r) dr). The change of vari-
ables formula then gives

/ |f<¢,+,f<x>>|dxsexp(d / cl(r)dr) [ s
R4 s R4

The set ((]5;’r E9)) xesupp f,e>0 18 uniformly bounded in view of Lemma 3.1, and so the
bounded convergence theorem implies, upon taking ¢ — 0, that

[ ecmar zen(a [‘emar) [ ireonas

This implies that the map f +— f o ¢, s extends continuously to L' (R¢). The local state-
ment follows from the finite speed of propagation implied by the a priori estimates in
Lemma 3.1.

It now follows easily that b(-, ¢.5) belongs to L ([0, T] x R%), and the uniqueness
statement for absolutely continuous solutions of the integral equation follows from Propo-
sition 3.2 and the fact that ¢ = ¢ = ¢~ a.e.

Finally, the composition ¢; s o ¢ , is justified because ¢; s € Llloc, and its equality to
¢:,r a.e. is a consequence of the a.e. uniqueness of the ODE and the flow properties in
Proposition 3.1 (c). u

We now demonstrate that any regularizations of b lead to the flow ¢ in the limit, not
only the one-sided regularizations used above.

Theorem 3.2. Assume (b®)q~¢ is a family satisfying (3.2) uniformly in &; for every ¢,

T
/ IVB (1. )l oo dif < o0,
0

and, as ¢ — 0, b® converges a.e. to b. If ¢° is the unique flow corresponding to b,
then, for all s € [0, T] and p € [1,00), as ¢ - 0, ¢* — ¢ in C([s, T}, Lf;c(]Rd)) and
in L? (RE, Wl1([s, T))).

loc
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Proof. The a priori bounds in Lemma 3.1 imply that (¢°;)e>0 is bounded uniformly in
L¥([s, T] x R9), and in particular, for all p € [1, 00) and R > 0,

sup sup / p7 s ()7 dx < oo.
e>0t€[s,T] /Br

Moreover, for all 7 € [s, T, ¢7 ; is increasing, and so, for all R > 0, there exist C and C’
depending on d and R such that

d
[ vetseonay = Y [ 06t,00dx = Cll e = €
R R

i=1

Using the uniform L{° bound once more, this implies that, forall0 < h < 1,¢ €[5, T],
and some C” > 0 depending on R and p,

/ 162, (x + h) — ¢, (x)|” dx < C"h,
BRr

from which we conclude that there exists a common compact subset K C L#_ such that

¢ s € Kforalle >0and? € [s, T]. Finally, the a priori estimates in Lemma 3.1 also give
(for C as in the statement of that lemma)

12
/B 162 () — 5, (0|7 dx < CP(1 + R)?|Bp| / Colr) dr.
R 51

The Arzela—Ascoli theorem thus implies that (¢f)e>0 is precompact in C([s, T,

1oc R%)), and therefore, for some subsequence &, —— 0,

¢%n converges as n — oo in C([s, T], L (R?)) to some ¥,

and then V. 5 also satisfies the regular Lagrangian property (3.5).
We now use (3.5) to deduce that, for any R > 0, there exists R’ > 0 independent of ¢
such that, for a.e. r € [s, T] and for any § > ¢,

15°(r. ¢F o) = B(r. Yro) | Lo (Br)
< 16°(r, ¢55) = b° (o 95 ) Lo (B + 1% (. 65 ) = b° (r, W s) Lo By
+ 168 (r, Yrs) — B(r, Y | Lo (BR)
< @O~ (58 (1) = B (1, ) | Loy + 1D (7)) = b(r ) |Lr (By))
+ [16° (r. ) = b (r o) | Lo (B

Taking &, — O first (using the Lipschitz continuity of %) and then § — 0, we find that
the right-hand side above converges to zero. By Lemma 3.1, we may use the dominated
convergence theorem to deduce that

n—>00—>!

T
lim 0 ”bsn(r»(ﬁffg)_b(r’ Wr,s)”LP(BR) dV =0
s
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Sending n — oo in the integral equation

t
() = x + / b (1§21 (x)) dr

thus gives, in the distributional sense,

Vs () = x + f b(r. s (x)) dr. (3.6)

We also have, by Minkowski’s inequality,

T
n—>o0
105" — e Vs, N (B, L1 (5,T])) = / 165" (r, ¢77) — b(r, ¥rs)lLr(Bg) dT —— O,
S

and thus (3.6) is satisfied in the integral sense for a.e. x € R?. By Theorem 3.1, ¥ = ¢,
and therefore the convergence statements hold for the full family ¢ — 0. ]

Another means of regularization is through the addition of stochastic noise. In particu-
lar,if s €[0,T], x € ]Rd, e>0,and W:Q x[0,T] — R4 is a Wiener process defined over
a given probability space (2, ¥, P), then there exists a unique strong (that is, adapted to
the natural filtration of W) solution of the SDE

def (x) = b(t, ¢ (X)) dt + 2e dW,. (3.7)

This is true even if b is merely locally bounded; see [25, 59].
The following is then proved exactly as for Theorem 3.2.

Theorem 3.3. Assume b satisfies (3.2) and let $° be the solution of (3.7). Then, for
all s € [0, T, with probability 1, as ¢ — 0, ¢*; converges in C([s, T, L{(”C(Rd)) and
LY (R, C([5. T))) to $.s.

Proof. The transformation qgt,s (x) = s 5(x) — V2e(W; — Wj) leads to the equation
875 (x) = b(t.§7 5 (x) + V2e(W, = Wy)).

Exactly the same arguments as those above show that ¢~st isincreasing forall0 <s <t <
T, satisfies the regular Lagrange property (3.5), and, for any fixed Brownian path W, the
a priori estimates of Lemma 3.1 may be applied. Arguing as in the proof of Theorem 3.2,
we may then extract a subsequence &, 7%, 0 such that (,58” , and therefore ¢°", converges
in C([s, T], Lf;c(]Rd)) and Lf;c(]Rd, C([s, T])). The same arguments as in Theorem 3.2

may then be used to conclude that any such limit is the unique regular Lagrangian flow ¢
from Theorem 3.1. ]

If b is smooth, then ds¢; s (x) = —b(s, ¢ s(x)). It is then straightforward to show that
all the same theory as above can be developed for the terminal value problem for the flow
corresponding to —b.
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Theorem 3.4. Foreveryt € [0,T] and p € [1,00), ¢;. € C([0,¢], LP (R?)) N LP (R?,

loc

WL1((0,1])), and, for almost every x € R%, [0,1] 5 s +> ¢y 5(x) is the unique absolutely
continuous solution of

Brs(x) = x + / b(r.der (1) dr. s €[0.1].

3.4. Some remarks on the backward flow

We discuss next the question of solvability of the backward flow: for fixed s € [0, T], this
is the terminal value problem

0:Prs(x) = b(t, Pr5(x)), t€[0,5], ¢ss(x)=x. (3.8)

Formally, the lower bound on div b suggests that the backward flow should concentrate
positive measure sets to null sets. As an example when d = 1, if b(¢, x) = sgnx, then the
backward flow is given by

¢rs(x) =x —(sgnx)(s —t) forx eR, t <z,

and so all trajectories eventually concentrate at x = 0. This situation can be generalized
to multiple dimensions when b satisfies the half-Lipschitz property

(b(t,x) =b(t,y))- (x —y) = =C1()|x = y[>, C1 e LL([0,T)). (3.9)

Condition (3.9) then implies the existence of a unique, Lipschitz, concentrating solution
of the backward flow (3.8). This condition was used by Filippov [32] to build unique
solutions of differential inclusions; see also [23,53,54] and the recent work of the authors
[48].

The situation is very different when b satisfies (3.2). The differential inclusion corre-
sponding to (3.8) then takes the form

—0:¢r 5 (x) € [=D*(1,), =bs(t, ) (15 (x)), s€[0,T],0<1<s, ¢ss(x)=x.(3.10)
As it turns out, there is no unique flow, and, in some cases, no Lipschitz flow.
Example 3.1. For x = (x;,x») € R2, consider the vector field
b(x) = sgnx(1,1).

Since b is independent of 7, we formally write the flow ¢; s for 0 <t < s < T as ¢;—s.

Observe that, for all x, € R, b4(0,x3) = —(1,1) and b*(0, x) = (1, 1). It then follows
that the direction in which ¢_ (0, x5) moves for 7 > 0 lies in the box [—1, 1], and so any
flow that solves (3.10) must take the form, for some ¢ € [—1, 1] and all T > 0,

x—(sgnxy)(1, Dz,  |x1| >,
0,x3 +c(r — |x1])), |x1] <.

$C)(x) = {

There is therefore no unique flow in the strip {|x;| < 7}, even under the restriction that
the flow be Lipschitz.
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Recall that (3.10) is a weaker notion of solution than the classical Filippov formulation
(see Remark 3.3). In Example 3.1 above, this means (0, x,) is taken to be the smallest
convex set containing all limit points of b(y) as y — (0, x5), that is, the line segment
connecting (—1,—1) and (1, 1). The unique such solution is then the flow ¢®. However,
we can construct an example where even the Filippov flow is not unique.

Example 3.2. Taking d = 2 again, we set

(1,1), x1 > 0and x, > 0,

b ) (1,0), x1 <0and xp > 0,
X1,X2) =

b2 0,1,  x1>0andx, <0,

(—=1,-1), x; <Oandx, <0.

There are then three possible solution flows, even with the general Filippov formula-
tion, when the starting point (x1, x3) satisfies x; = x, and 7 > |x1| = |x1|. Indeed, the
nonuniqueness occurs once trajectories reach the origin. Then (3.10) admits the three solu-
tions

dD0) = —2(1,0), ¢$?@(0) = —2(0,1), and ¢ ) =0 forz >0.

In fact, qﬁ(_k,) is not continuous for any 7 > 0 and k = 1, 2, 3. This can be seen by consid-
ering the flows starting from (x1, x2) < (0, 0) with x; # x5: for T > 0,

(x1+1,x24+1) if0 <7< —max(xy,Xx3),
¢(_1t)(x) = ¢>(_2,)(x) = ¢>£3r)(x) =4 (x1 —2x2—1,0) ifx; <x2 <0andt > |x3],

(0,xp —2x1— 1) ifxy; <x; <Oandzt > |x1].
In particular, given t > Oand ¢ > 0, fork = 1,2, 3,
¢®(—1/2+e,—1/2) = ¢p®)(—1/2,—1/2 + &) = (% +2¢)(1.-1).

Poupaud and Rascle [55] explore the connection between the uniqueness (for every
x € R?) of Filippov solutions of (3.8) and a stable notion of measure-valued solutions to
the continuity equation’

3 f —div(b(t,x)f) =0 in(0,T)xR¢ and f(0,") = fo. (3.11)

As Example 3.2 shows, we cannot take this approach in analyzing (3.11), because there
are three distinct measure-valued solutions when fy = 8.

3Observe, from the minus sign in front of the velocity field, that this is not the same initial value
problem as (4.2).
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3.5. Stochastic differential equations
For b satisfying (3.2), we now consider the stochastic flow for the SDE
dtq)t,s(x) = b(l, @,’S(X)) dt +o(t, q)t,s(x)) dW;, te [S, T], q)s,s(x) =x. (3.12)
Here, for some m € N, W:[0, T] x 2 — R™ is an m-dimensional Wiener process on
a given probability space (2, ¥, P), and, for (r,x) € [0, T] x R%, o is a (d x m)-
dimensional matrix denoted coordinate-wise by 0;;,i =1,2,....d,j =1,2,...,m.
Because o0 may be degenerate, the addition of noise does not necessarily imply the

existence and uniqueness of a strong solution. In reproducing the theory for the ODE
(3.1), we are therefore led to the condition

o € L%([0,T],C%'(R4;R¥>*™)) and,
forae.t € [0,T]andalli =1,2,...,d, j =1,2,...,m, (3.13)
0i; (t,-) is independent of xi for k # i.

We assume in addition to (3.2) and (3.13) a bounded oscillation condition for b:

{for some C, € L}F([O, T1), and for a.e. (¢, x,y) € [0, T] x RY x R4, (3.14)

b(t,x) = b(t. y)| = Co(t)(]x — y[ + 1).
While not strictly necessary, this helps simplify some of the arguments by allowing certain

regularizations of b to be globally Lipschitz.
The reformulation of (3.12) as a differential inclusion then takes the form

di®;5(x) = a; dt +o(t, Pr5(x)) d Wy,
ar € [ba(t, ), (1, )](Ds 5(x)) forae.t € [s,T], (3.15)
Dy = x.
Theorem 3.5. Assume b satisfies (3.2) and (3.14), and o satisfies (3.13). Then the follow-
ing hold with probability 1, for all s € [0, T]:
(a) There exist solutions of <I>j's and @7 of (3.15) such that, for all t € [s, T}, CD;fS

;s is lower semicontinuous and

is upper semicontinuous and increasing and ©
increasing.

(b) Any other solution ® of (3.15) satisfies @~y < P. 5 < (ID"'S
(© IfO<r<s<t<T,then® 0o ®f =&, and ®; o ®;, = D;,.
(d) Forallt €[s,T), (D)« = Dy

(e) Fora.e. x € RY, (3.12) admits a unique integral solution, which is equal a.e. to
Q""S and 7.

(f) There exists w: [0, 0c0) — [0, 00) such that lim,_, o+ w(r) = 0 and, for all f €
L'R%) and0<s <t <T,

E[[lf o ®rsllz1] < T flL1.
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We first establish an analogue of Lemma 3.2.

Lemma 3.3. Assume B:[0,T] x R — R? satisfies

{t — ||VB(t,~)||oo} e L'([0,T]) and
axiBj >0 foralli # j,

and o satisfies (3.13). Let X, Y, a, B:[0, T] — R? be adapted with respect to the Wiener
process W such that, with probability 1, X and Y are continuous, o, 8 € L'([0, T]),

oy < B(t,X,;) and PB; > B(t,Y;) a.e in|[0,T],
and
dX; =a;dt +0@, X;)dW;, dY,=pB;dt +0(t,Y)dW;, in[0,T], Xo<Yp.
Then X; <Y, forallt € [0, T].

Proof. Fort € [0, T], define y; = a; — B, which satisfies y € L! and

d
yi < B, X)) = B, Y) =Y i (X] —Y])
j=1

fora.e. t € [0, T'], where
.. 1 .
w! = / 0;B'(t,0X; + (1 —0)Y,)db.
0

Note that '/ € L! forall i, j € {1,2,...,d} and u¥/ > 0 for i # j. Define also, for
i=1,2,....,dandk =1,2,...,m,

1
vik :/ 020 (1, 0X! 4+ (1 —0)Y}) db,
0
which satisfies vi*¥ € L2 (recall that oy depends only on (¢, x;)). Therefore, if, for i =
1,2,....d,setting A/ = X — Y we find that, fori = 1,2,....d,
AN, = yldi+ Y vikaldwl. vyl <Y ui Al Ap <o
k=1 j=1

Now, fori = 1,2,...,d, let Z' be the solution of the SDE

m m
dzi = (Z(V;k)z —M’;")z;‘ di— S vikziawk, zi=1.
k=1 k=1
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) tr1 . rmo
z =eXp(/ (5 Z(Vék)z—/ﬂs‘)ds—/ Z%desk) >0
0\ p=1 0 k=1

and so Itd’s formula yields

Then

d(Z{N) = (Ziyl — Wi ZiAD) de <Yl ZIA] dt.
J#i
For some § > 0 and an adapted, absolutely continuous, and increasing w: [0, T] — Ry
with w(0) = 1, define
= inf{t € [0, 7] : ZIAD —8e®® > 0 for some i = 1,2,....d}.

We have T > 0 because ZéAg < 0. Assume for the sake of contradiction that T < oo. If
i =1,2,...,mis such that ZiAi = 82 then

§e?® = 7 A’<Z[ A A’dt<82/ 1w R e®® d,

J#i J#i
where

i m

P t . .
=[Tex ( / [0 = 00 = uif + ] ds + / (v-ﬂ‘—vé")dW!‘)'
kel 0
If we choose w to satisfy
0) =1, t)=2 ”R”>0
(0) 0'()=2 ‘f?a,",dé“

then 5 3
§e®® < — / o' (1)e?®D dt = Z (@ — 1),
2 Jo 2

which is a contradiction for any § > 0. This implies A} < §e®®(Z})~! for all i =
1,2,...,m,t €[0,T], and § > 0, and we conclude upon sending § — 0. |

Proof of Theorem 3.5. Let b® and b, be the sup- and inf-convolutions of b as in the proof
of Proposition 3.1, and define the stochastic flows ®*+¢ and ¢ by

di @ (x) = b1, @S (%)) dt +0(t. 9 (x)dW, in[s.T]. @)F=1d
and
D3 (x) = be(t, @7 (X)) dt + o (t, @7 (x)dW, in[s,T], @, =Id.

Parts (a), (b), and (c) are then established exactly as in the proof of Proposition 3.1, making
use of the comparison result of Lemma 3.3 above.
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Part (d), and then, as a consequence, (e), are proved similarly to the proof of Propo-
sition 3.2 and Theorem 3.1, instead now using the one-sided mollifiers p® and p. to
regularize b. Note that, in view of assumption (3.14), for some C € Lﬂr([O, T1),

C
V(b(t.) * o)) < / 1b(t. ) — (1. )|V (x — )] dy < SO,

&

and similarly for b *x p,. This allows for the use of the comparison Lemma 3.3 in the
argument, which requires global Lipschitz regularity in view of the lack of finite speed of
propagation.

Finally, (f) follows exactly as in the proof of Theorem 3.1. ]

4. Linear transport equations with increasing drift

For velocity fields b satisfying (3.2), we discuss the terminal value problem for the non-
conservative equation

—du—b(t,x)-Vu=0 in(0,T)xR¢ u(T,-)=ur, (4.1)
as well the initial value problem for the conservative equation
3 f +div(b(t,x) f) =0 in(0,T)xRY,  £(0,-) = fo. 4.2)

The lower bound on div b implied by (3.2), which gave rise to the regular Lagrangian
property for the unique flow ¢ in the previous section, here allows for a theory of weak
solutions of (4.1) and (4.2) in L?-spaces, due to the expansive property of the flow.

4.1. The nonconservative equation

It is important to note that solutions u of (4.1) taking values in Ll‘l:)C cannot be understood

in the sense of distributions. This is because, under assumption (3.2), div b is a measure
that need not necessarily be absolutely continuous with respect to Lebesgue measure.
Instead, we identify unique solution operators for (4.1) that are continuous on Lebesgue
spaces and stable under regularizations. This is done through the relationship with the
flow in the previous section, and also by characterizing the solutions using “one-sided”
regularizations for increasing or decreasing solutions.

4.1.1. Representation formula. When b and # are smooth and ¢ € [0, T], the unique
solution of the transport equation (4.1) in [0, #] x R¢ with terminal value i at time 7 is

u(s, x) = S(s, Hu(x) = u(gss(x)), s€l0,1], 4.3)

where ¢ is the flow corresponding to the ODE (3.1). In view of Theorem 3.1, this formula
extendstou € Lf(’)c, 1 < p < oo if the assumption on b is relaxed to (3.2). We thus identify
a family of solution operators for (4.1) that are continuous on L? and evolve continuously
in time.
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Theorem 4.1. Assume that b satisfies (3.2), and define the solution operators in (4.3)
using the flow constructed in Section 3. Then the following hold:

(@) Forall0<s<t<T, S(s,t) is continuous on Lf)c(Rd)for 1 <p <o and

there exists C > 0 depending only on T such that, for any R > 0,

_ d _ _
||S(S,l)u||Lp(BR) <e (@@ wl(S))”u”Lp(BR+C(1+R)(‘UO(,)_‘UO(J)))'

(b) Forall0<r <s <t <T,wehave S(r,s)o S(s,t) = S(r,t).

() If0<t <T, then S(-,t)u € C([0, ], Llﬁc(Rd)) ifu €Ll for p < oo, and
S, t)ii € C([0,¢], L ., (RY)) ifit € L®

loc,w-x loc*

(d) If (b%) g0 is any family satisfying (3.2) uniformly in € such that
T
[ VB, )]l dt <00 foralle >0
0

e—>0 . g—>0 .
and b* —— b a.e., (uF)e>0 are smooth functions such that uy, —— ur in LY.

for some p < oo, and u® is the corresponding solution of (4.1), then, as € — 0,
u® converges to S(t, T)ut strongly in C([0, T], LII:JC(]R“')). The same statement
is true if u® solves

—duf —b(t,x)-Vu® =eAu® in(0,T)xR?, u¥T,") = uy.  (4.4)

Proof. Properties (a) and (b) follow immediately from Theorem 3.1, while properties (c)
and (d) follow from Theorem 3.2 and the dominated convergence theorem (and see also
Theorem 3.4). For the statement involving the viscous equation (4.4), we remark that, in
that case, u® is given by u®(z, x) = u?(d)it (x)), where ¢° is the stochastic flow corre-
sponding to (3.7). The proof is then finished because of Theorem 3.3. ]

Remark 4.1. The uniqueness of the semigroup is a consequence of the uniqueness of the
flow established in the previous section. Note, however, that, solely under the assumption
divb > —C; for some C; € L1+([0, T1]), any weakly limiting family of solution operators
must lead to solutions in C ([0, T], Lll(’)c(]Rd )), in the strong topology.

More precisely, for € > 0, we have the easy a priori bound

t
[S€Cs, t)ullLr < exp(/ Cl(r)dr)llﬁlle, welr.
S

It follows from a diagonal argument that there exist £, — 0 and a family of continuous
linear operators on L? such that S(r,s)S(s,t) = S(r,t) forr <s <t, and, forall ¢ € [0, T],

Sen(-,t)it = S(-,t)i weakly in L%([0, T], L? (R%)) forall it € L”.
In particular, u := S(-, 1)@t € C([0, T], LE(R?)), and so, for any s € [0, 7],

liminf ||u(s + h,-)|Lr = [Ju(s, ).
h—0t+
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On the other hand,

s+h
s + b1 < exp( [ an dr) (s o,

so that
limsup [lu(s + h,-)||lLr < [Ju(s, ).

h—0t
We find then that ||u(s + A, )||Lr — ||u(s,-)||L», which, coupled with the weak conver-
gence, means that u(s + h,-) — u(s, ) strongly in L? if p > 1 (and so also in Llloc). A
similar argument holds with 4 replaced by —#.

The following renormalization property for the solution operator S(s,#),0 <s <t <
T, is then immediate from the formula.

Proposition 4.1. If §: R — R is smooth and |B(s)| < C(1 + |s|") for some r > 1, then,
forallu € LT , B(S(s,t)it) = S(s,1)(B o u).

loc’

4.1.2. Characterizing increasing/decreasing solutions. The solution of the transport
equation in the previous subsection was characterized as the unique limit under arbitrary
regularizations, as well as through the formula involving the regular Lagrangian flow. The
remainder of the section is dedicated to understanding further ways to characterize the
solution, and in particular on the level of equation (4.1) itself. This will become useful in
the study of nonlinear equations in the final section.

We first observe that, if u7 is increasing/decreasing with respect to the partial order
(2.1), then so is u(z, -) for all ¢ € [0, T']. While this is immediately clear from the formula
u(t,-) = ur o ¢, and the fact that ¢, is increasing, it can also be seen directly from the

equation. Indeed, if u is a smooth solution of (4.1) and v; = dy,u,i = 1,2,...,d, then
—01v;i — b - V; — (0, b )v; = Y (0x,b7);.
J#i
Therefore, if v; > 0 (or v; < 0)whent = T foralli = 1,2, ...,d, then the same is true

for ¢t < T by the maximum principle Lemma 2.6. The result for general b satisfying (3.2)
follows from approximating b and using the limiting result in Theorem 4.1. By linearity,
we have thus established the following:

Proposition4.2. Forall0 <s <t <T, S(s,t): ABV — ABV.

In particular, since ABV is densely contained in Lf;c (R%) and S(s, t) is continuous
on L? , Proposition 4.2 implies that belonging to ABV is a suitable criterion for the prop-
agation of compactness. Notice for instance that this provides another proof of the fact
that the convergence statements in Theorem 4.1 are with respect to strong convergence in
C([0,T], LL,) for p < oo.

We now demonstrate how the propagation of the increasing or decreasing property
leads to a method for characterizing solutions of (4.1), independently of the solution for-

mula. The idea is to regularize u in a one-sided manner, as in Section 2.3.
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Formally, if u solves (4.1) and, for (¢, x) € [0, T] x R? (recall that o, is as in (3.3)),
(t,x) = u(r, e M=)

and
l;(l, x) = e~ (@1(T)—w1 (t))b(t, ewl(T)_wl(t)x) + C1()x,

then # solves (4.1) with b replaced by I;, and b satisfies (3.2) with C; = 0 and a possibly
different Cy. We may therefore assume here, without loss of generality, that b(z, -) is
increasing for a.e. ¢ € [0, T'].

Recall the definition of the one-sided mollifiers p; and p® defined in (2.4).

Definition 4.1. A function u: [0, 7] x R? — R is called a supersolution (resp. subsolu-
tion) of (4.1) if, for all ¢ € [0, T'], u(¢,-) is decreasing, and, if u, = u * p, and u® = u * p®,
then

—0sue —b(t,x)-Vugs >0 (resp. —0,u® — b(t,x) - Vu® <0) 4.5)

for a.e. (f,x) € [0, T] x R¥.
A solution is both a sub- and a supersolution.

Remark 4.2. A well-posed notion of sub- and supersolutions can be defined where u
is approximated using, instead of the one-sided mollifiers, the method of inf- and sup-
convolution:

Colu(t, )] (x) = inf{u(t,x )+ 'i—'} and  Cu(t,)](x) = sup{u(z,x - m}.

y y €
Theorem 4.2. Assume b satisfies (3.2) with Cy = 0. Then, for all R > 0, there exists
a modulus of continuity wg: [0, 00) — [0, 00) such that, if u, v: [0, T] x R4 — R are
respectively a sub- and a supersolution of (4.1) in the sense of Definition 4.1, then, for all
t €[0,T] and p € [1, 00),

/ (u(t,x) —v(t,x))5 dx < / (T, x) — v(T, x))% dx. (4.6)
Bgr

BRriwp(r—)

In particular, for any decreasing ur:R¢ — R, there exists a unique solution u of (4.1) in
the sense of Definition 4.1, which is given by u(t,-) = S(t, T)ur, and which is continuous
a.e.in[0,T] x RY.

Proof. Set u® = u * p® and vy = v * p,; then, combining the inequalities for u® and v,
given by Definition 4.1, we obtain

—0; (uf —ve) —b(t,x)-V(u® —v,) <0.

Let 8: R — R be smooth and increasing. Multiplying the above inequality by the positive
term 8’ (u® — v,) yields

—0; 8’ —ve) —b(t,x)- VBu® —v;) <0.
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We may then take B(r) = r i (arguing with an extra layer of regularizations if p = 1) and
find that, in the sense of distributions,

—0;(u® — )} —b(t,x)- V(u® —ve)5 <0.
Let ¥': [0, 00) — [0, 00) be smooth and decreasing, such that ¢/ = 1 on [0, 1] and { = 0
on [2,00), and set Y (¢, x) = 1@(|x|/R(t)) for some R: [0, T] — [0, 0o0) to be determined.
Using ¥ as a test function, we discover
=00 [0 = v da
R4
<=0,y (e, ) — div(b(t, )P (2, ). (W2, ) = ve(t, ))F)
< /d(u's(t, x) — ve(t, X)) (=0, ¥ (1, x) — b(t,x) - VY (¢, x)) dx,
R

where in the last line we used the fact that divbh > 0 and ¥ > 0. Using the fact that 1&’ <0,
with ¥" # 0 only if r € [1, 2], we find that

., R(t) b(t,x)-x
=0 = b9 = =V RO iz~ R

> —R(0)™'9/ (x/R(@)(R(1) = 2Co(t)(1 + 2R(1))).
For tg € [0, T], this is made nonnegative on [tg, T'] by choosing, for any fixed R > 0,

R(t) = ReMeo@—ooo)] 4 L ato@—voto _ )
5 :

and so

R dx</ (T, x) — ve(T. x)) ( x| )dx

/Rd (u®(to, x) — ve(to, X)L W ( R(T)

We may then choose functions g@ that approximate 1o ;; from above, and then, by the
monotone convergence theorem,

[ W (19, x) — ve(to, x))ﬁ dx < f We(T, x) — ve(T, x))i dx.
Bgr Br)
The proof of (4.6) is finished upon sending ¢ — 0 and setting
wr(r) = sup {(R + )(64[w0(t) wo (s)] 1)}
0<s<t<s+r<T

The comparison inequality (4.6) implies uniqueness for a solution with terminal con-
dition u 7, and so it remains to show that S(z, T)ur is a solution in the sense of Defini-
tion 4.1.
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Let (h%);5-¢ be a family of smooth functions satisfying (3.2) with C; = 0 and uniform
Cy and converging a.e. to b as § — 0, and let M‘; = ur * yg for a family of standard
mollifiers (ys)s=0o. Note then that, for § > 0, u‘; is decreasing, and, as § — 0, u‘ST — Uur
in Lﬁc for all p < co. Let u® be the corresponding solution of the terminal value problem

(4.1). It follows that u% (¢, -) is decreasing for all z € [0, T].
For any § > 0 and ¢ > 0,

— 3 (u® % p®) — b2 (1, x) - VW’ * p°)

- /Rd<b5<r,y) B (1) - Vi (1, y)p(x — y) dy <0,

where the last inequality follows from the fact that p®(x — y) # 0 only if x < y, b%(z, )
is increasing, and Vub < 0. Sending § — 0, it follows from Theorem 4.1 that, in the sense
of distributions, if u = S(-, T)ur and u® = u * p°,

—0;u®—b-Vu® <0.

It follows that S(-, T)ur is a subsolution. A similar argument shows that it is a super-
solution, and therefore the unique solution in the sense of Definition 4.1.
Now, for some M > 0, define ¥ (¢) = exp(Mw1(¢)) and

it x) = ul(t, x + v ()1).

For any fixed R > 0, there exists M > 0 such that, in view of the linear growth of »® given
by (3.2) uniformly in 8, and the fact that u® is decreasing in the spatial variable, for any
x € [-R, R]4,

a%fﬁ(z, x) = (=Vub) - (b%(t, x + ¥ ()1) — y'(0)1)
< Ci(O)(=Vu®) - (1 + x| + ¥ (1) — My (1)) < 0.

Since M is independent of §, we may send § — 0 and conclude that (¢, x) = u(t, x +
¥ (t)) is increasing on [0, T] x [-R, R]¢, and therefore continuous a.e. in that set by
Lemma 2.3. The transformation leading from u to # preserves null sets, and we conclude
that u is continuous almost everywhere. ]

Remark 4.3. The idea behind Definition 4.1 is to establish a sign for the commutator
between convolution and differentiation along irregular vector fields, as compared to the
work of DiPerna and the first author [30], where the commutator is shown to be small for
Sobolev vector fields. We must take convolution kernels with a specific one-sided structure
in order to analyze the commutators; a less crude example of this idea is seen in the work
of Ambrosio [2] for general BV velocity fields.

A different notion of sub- and supersolutions, which also selects S(:, T)ur as the
unique solution of (4.1), can be obtained by instead regularizing b. Recall that we have
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assumed without loss of generality that b is increasing. Then a decreasing function u
can be said to be a subsolution (resp. supersolution) if, for all ¢ > 0, in the sense of
distributions,

—0;u —bs-Vu <0 (resp. —0,u — b°-Vu > 0),

where b, < b < b® are one-sided regularizations of b, for example the one-sided mollifiers
or the inf- and sup-convolutions. The notion of sub- and supersolutions in Definition 4.1
turns out to be more amenable to the study of the nonlinear systems in Section 5.

Remark 4.4. Throughout this section, we have studied the setting where ur, and there-
fore u(t,-) for t < T, is decreasing. The same analysis can be achieved for increasing
solutions, in which case the inequalities in (4.5) are reversed. Note, in particular, that the
solution flows ¢, s (x) are vector-valued solutions in this sense, that is,

—05¢r,s(x) = b(s,x) - Vpr s(x) =0, ¢rs(x) = x.

We now observe that the full family of solution operators S(s, t): Lf(’)c — Lf(’,c, 0<s<
t < T, can be constructed independently of the ODE flows ¢; ;, which can then be recov-
ered with the theory of renormalization. Indeed, Definition 4.1, and its counterpart for
increasing solutions, can be used to define S(s, ¢)u for any # € ABV. The density of ABV
in Ll’;C(Rd ), and the L?-continuity of S(s, ¢), then allow the solution operators to be
continuously extended to Lf(’)c. It is, however, not clear whether solutions of (4.1) can be
characterized for arbitrary ur € L,’(’)c, other than by formula (4.3) or as limits of solutions

to regularized equations.

4.1.3. Lower-order terms. We briefly explain how to extend the above results to equa-
tions with additional lower-order terms, as in

—d;u —b(t,x)-Vu—c(t,x)u—d(t,x) =0 in[0,T] x R, u(T,") =ur, @47
for functions

ceLY([0,T],L®) and d e L'([0,T],LY ) forsomeq € [I,oq]. (4.8)

loc loc

p
loc*

Theorem 4.3. Assume p € [1,00) N [1,q] and ur € L
functionu € C([0, T), L) with the following properties:

loc

(a) There exist C; € L1 ([0, T)), and, for R > 0, a modulus wg:[0,T] — [0, T],
depending only on the assumptions in (3.2) and (4.8) such that, for R > 0,

Then there exists a unique

T T
e Mo < exp( [ Cods)lurlyy, o+ [ cawas
t R+wp(T—t) t

(b) Let (b%)e>0, (¢¥)e>0, and (d?)q>¢ be families satisfying (3.2) and (4.8) uniformly
in &, such that, as ¢ — 0, (b%,¢®,d®) — (b,c,d) a.e. Let (u%)e>0 be a family

of smooth functions approximating ur in Lf)c, and let u® be the corresponding



P-L. Lions and B. Seeger 1008

p
loc/*

solution of (4.7). Then, as ¢ — 0, u® converges strongly to u in C([0,T], L
The same statement is true if u® solves

—uf —b(t,x)- Vut —c(t,x)u® —d(t,x) = eAu® in[0,T] x R?,
u?(T,-) = ur.

(c) For(t,x) €[0,T] x R?, u has the formula
T
u(t, x) = ur(Ppry(x)) eXP(/ (s, Ps,e (x)) dS)
t

T K
+ [Casganen( [ cwumar)as @)

t t
Analogous statements hold when p = q = oo, in which case u € C([0,T], L, | ) and
the convergence in part (b) is weak-* in L°°.

Proof. For b®, c®, d*, u%, and u® as in the statement of part (b), if (¢7 ;(xX))s,ref0,7]
denotes the corresponding smooth flow, we have the formula

T
V(6 %) = e (5, () exp( f (5. 9%, (x)) ds)

T s
+/ ds(s,qﬁit(x))exp(/ ct(r, g5, (x)) dr) ds.

The convergence statements, and thus the formula in part (c), are then proved just as in
Theorem 3.2. In particular, arguing just as in that proof, we have

loc

}E%(”u%("(ﬁft) —ur(, ¢ Dlpqryery + I14°¢ ¢5) — d("¢',t)”L1([t,T],L£C)) =0
and, for all r < oo,

eli_r)l})||c8(~,¢f,) —cCd Iervqe,rer) = 0.

loc

In addition, ¢*(z, ¢; ;) is uniformly bounded in L'([0,T], L), in view of Lemma 3.1,
and so we conclude parts (b) and (c) by the dominated convergence theorem. The L?-
estimates in part (a) are proved just as before, either from the regularized equation itself

or from (4.9), using the lower bound on the divergence of b. ]

Sub- and supersolutions can be characterized when ur is increasing/decreasing under
the additional assumption that

c=c(t) e Li([O, T]) and d(t,-) is decreasing for all ¢t € [0, T]. (4.10)

The propagation result Proposition 4.2 is then easily generalized (the proof is almost
identical and so we omit it):
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Proposition 4.3. Assume (3.2), (4.8), and (4.10). If ur € L is increasing (decreasing)

and u is the solution of (4.7) specified by Theorem 4.3, then, for all t < T, u(t,-) is
increasing (decreasing).

Definition 4.1 is then generalized as follows:

Definition 4.2. A function u: [0, 7] x R? — R is called a supersolution (resp. subsolu-
tion) of (4.7) if, for all ¢ € [0, T'], u(¢,-) is decreasing, and, if u, = u * p, and u® = u * p®,
then, for a.e. (¢, x) € [0, T] x RY,

—0sug —b(t,x) - Vug —c(t)us —d(t,x) >0

@.11)
(resp. — d,u® —b(t,x) - Vu® —c(t)u® —d(t,x) <0).

A solution is both a sub- and a supersolution.
Finally, the following is proved almost identically to Theorem 4.2:

Theorem 4.4. Assume b satisfies (3.2) with C; = 0, and ¢ and d satisfy (4.8) and (4.10).
Then, for all R > 0, there exist moduli of continuity @, wg: [0, 00) — [0, 00) such that, if
u,v:[0, T] x R? — R are respectively a sub- and a supersolution of (4.7) in the sense of
Definition 4.2, then, for allt € [0, T] and p € [1, 00),

/ (u(t,x) —v(t, x))’i dx < e®T—1) / (u(T, x) — v(T, x))i dx.
Bgr BRrtwg(r-1)

p
loc

in the sense of Definition 4.2, which is given by (4.9), and which is continuous a.e. in
[0,T] x R4,

In particular, for any decreasing ur € LY (R?), there exists a unique solution u of (4.7)

4.2. The conservative equation

In contrast to the theory for the nonconservative equation, solutions of (4.2) belonging
to Lebesgue spaces can be made sense of in the sense of distributions. However, under
assumption (3.2), these are not in general unique, as the simple example b(x) = sgn x
on R shows. Drawing an analogy once more with the setting studied in [12, 13, 48] of
half-Lipschitz velocity fields, the “good” (stable) solution of (4.2) is identified using a
particular solution formula, and, in [48], this is shown to coincide with the pushforward
by the regular Lagrangian flow of the initial density. As discussed in Section 3.4 above,
the former strategy is unavailable; however, in view of the theory of the nonconservative
equation and the forward regular Lagrangian flow that was built in the previous section,
we may define solutions by duality.

4.2.1. Duality solutions. For 0 <s <t < T<denote by S$*(z, s) the adjoint of the solu-
tion operator S(s, t).

Theorem 4.5. Let 1 < p <ocoand fy € L{ , and define f(t,x) = S*(t,0) fo. Then f €

C(0,T].L? (R?))if p<ocor feC(0,T],L® ) if p =00, and f is a distributional

loc loc,w-*
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solution of (4.2) and
S*(t,o)f() = (¢t,0)ﬁf0’ (412)

where ¢ is the flow obtained in Section 3. If (b®)e=¢ is a family of smooth functions sat-
isfying (3.2) uniformly in € > 0 and converging a.e. to b as ¢ — 0, (f5)e>0 is a family
of approximations of fy in Lf;c for1 < p < oo, and f¥ is the corresponding solution of

(4.2), then, as ¢ — 0, ¢ — f weakly in C([0, T], LII;C(IR{”I)). The same is true if [¢ is
taken to be the unique smooth solution of

3 fC +div(bf®) = eAf® in[0,TIxRY,  £5(0,) = f¢,
and analogous convergence statements hold in the weak-x sense if p = oo.

Proof. The identity (4.12) follows immediately from (4.3); observe that it is well defined
for fo € L{ in view of the regular Lagrange property (3.5).

We now prove the convergence statements, and it suffices to prove the results for p <
oo, since L C LY forany p < 0o. Let (b%)e=0, (f¢)e>0, (f€)e>0 be as in the statement.
In view of the lower bound on the divergence, it is straightforward to prove a priori L?
bounds. Namely, for all R > 0, there exists a modulus of continuity wg: [0, co) — [0, 00)

depending only on T and Cy from (3.2), such that, forall e > O and ¢ € [0, T'],

/B 2 x)|P dx < o4 D@ / fE)I? dx. “13)
R

BRrtog()

It follows that there exist a subsequence &, "7 0 and f e L>®(0,T],L? (R?)) such

loc

that % — f weakly in L*°([0,T], L? _(R%)). Sending n — oo for & = ¢, in the equation

loc
3; o + div(b® for) = 0,

using the fact that b® converges strongly to b in L?_ for any p < oo, we find that f

is a distributional solution of (4.2), and thus, moreover, f € C([0, T1], LﬁC’W(Rd)). The
weak-x convergence statements when p = oo are proved analogously.

Fixu € C Cl (Rd) and 79 € [0, T], and let u® denote the solution of (4.1) with terminal
value u®(tg, ) = u; in view of the results of the previous subsection, u® has compact
support in [0, 7] x R¢ uniformly in & > 0.

Exploiting the duality of the equations and integrating by parts gives

/ (x) (o, x)dx :/ u®(0,x) f5 (x) dx.
R4 R4

Sending n — oo for ¢ = g, gives the identity

/ u(x) f(to, x) dx =/ u(0, x) fo(x) dx.
R4 R4

It follows that f(¢9,-) = S(o, 0) fo, and we therefore have the full convergence for all
& — 0. An identical argument can be used to prove the convergence statement for the
vanishing viscosity limit.
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Finally, the fact that f is continuous from [0, 7] into LY _ (R%) with the strong topol-
ogy is a consequence of the continuity of the upper bound in the L?-estimate (4.13) (see

Remark 4.1). [

Remark 4.5. It is clear from the proof above that, when 1 < p < oo, the initial functions

/¢ need only converge weakly in L to fo as e — 0.

Remark 4.6. It is not clear whether the convergence of regularizations f¢ to the duality
solution f of (4.2) can be upgraded to strong convergence, except when d = 1, in which
case (3.2) coincides with a half-Lipschitz condition on b (see [48, Theorem 4.2]).

4.2.2. Nonnegative solutions and renormalization. It is by now standard in the theory
of the continuity equation (4.2) that there is uniqueness of nonnegative solutions when the
measure fy is concentrated on sets where the ODE (3.1) has a unique solution; see [2, 3].
In view of Theorem 3.1, we then have the following:

? (R%), and fo > 0. Then f € C([0, T},
LY. (R%)) is a nonnegative distributional solution of (4.2) if and only if f = S*(-,0) fo.

Theorem 4.6. Assume 1 < p < oo, fo € L?

We present here an alternative proof using the characterization of f as the duality
solution, in order to emphasize again that the theory in this section can be developed
independently of the analysis of the ODE (3.1) in the previous section.

Proof of Theorem 4.6. By Theorem 4.5, f = S*(-,0) fp is a distributional solution, and its
nonnegativity can be seen through an approximation argument, since weak convergence
preserves nonnegativity.

Assume now that f € C([0, T], L? (R?)) is a nonnegative distributional solution of

loc

(4.2). Fix to € [0, T] and a decreasing function i: R¢ — R, and let u = S(-, fo)ii. Then
u(t,-) is decreasing for ¢ € [0, #9], and is a solution of (4.1) in the sense of Definition 4.1.
In particular, u, = u * p; and u® = u * p® satisfy, respectively,

—0ue —b-Vu, >0 and —9u®—»b-Vu® <0 in]0,1] x R4,
Lety € C} (R¥) with ¢ > 0. Using u,(, x)¥ (x) as a test function for f, we find that

[, ftox) pdrwrdx — [ om0 0% (o) dx
R . e
= /0 /Rd F (5. x)[05 (ue(s, x) ¥ (x)) + b(s. x) - V(ue(s. x)¥(x))] dx ds

< /m/ (s, x)ug(s,x)b(s,x) - Vi (x)dxds,
0o JRd

where we have used the nonnegativity of ¥ and f. Similarly,

/ Flto.x) (i % p°) () (x) dx — / FolOus (0. 1)y (x) dx
R4 R4

z/m/ f (s, x)ub(s,x)b(s,x) - Vy(x)dx ds.
0o JRA
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Sending ¢ — 0, we conclude that
/ S (o, x)u(x)y(x) dx — / Jo(x)S(0, 0)u(x) ¥ (x) dx
R4 R4

=[t0/ f(s, x)u(s,x)b(s,x) - Viyr(x)dx ds.
o JRrd

By linearity, the same is true for all increasing u as well, and therefore, by a density
argument, for all @ € L?_(R%). In particular, we take it € C.(R?), in which case S(-, 1)l

loc
is supported in [0, T] x Bg for some R > 0, by the finite speed of propagation property. To
conclude, we may then take ¥ € C} (R?) such that ¢ = 1 in B, and therefore Viyy = 0

in Bg. [

Corollary 4.1. Assume that f and | f| are both distributional solutions of (4.2). Then f
is the unique duality solution of (4.2); that is, f(t,-) = S(¢,0) f(0,-).

Corollary 4.1 gives a sufficient criterion for a distributional solution to be the correct
duality solution. However, we do not know whether this condition is necessary. In other
words, it is an open question whether |S*(z,s) f| = S*(z,s)| f| for any f € L? . This

loc*
renormalization property is equivalent to a kind of injectivity for the forward flow ¢; s,

which we describe with the next result.

Proposition4.4. Let0<s<t<T,1< p<o0,and [ € Lf;c(]Rd). Then the following
statements are equivalent:

@ |S*(.9)f]=S8*t.9)|f].
() IfAy ={f >0}and A_ = {f <0}, then

/ 114, ()] s1a_(x) dx = 0.
R4

Proof. Letp € L]’(’)C(]R{d) with p > 0, and set A := {x : p(x) > 0}. We first claim that

[{x : S, 5)p(x) > 0} Adx = S(t.5)La(x) > 0}|= 0. (4.14)

Let B C R? be measurable. Then by Theorem 4.5,

/ S* (1. $)p(x) dx = / p()Ubrs (x) € BY dx
B
and

/BS*(I,S)IA(X) dx = |{x €A:dis(x) € B}|

It follows that (S*(z, x)p)1p = 0 a.e. if and only if (S*(z, x)14)1p = 0 a.e., whence
(4.14).
It now follows that (b) is equivalent to

[{S*(t.5) f # 0} N {S*(t.x) f~ # 0} = 0.
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By linearity, . ) )
S*(t.8)f = S*(t,9) f+ —S*(t,x) -,
and so this is equivalent to
(S*([,X)f)i = S*(sz)f_:tv
and thus (a). [ |

Either of the two renormalization properties would follow from the strong convergence
of regularizations in Theorem 4.5. However, we do not know at this time whether the
strong convergence actually holds; see Remark 4.6.

The characterization in part (b) of Proposition 4.4 is a reformulation of the renormal-
ization property in terms of the injectivity of the flow. For instance, we have the following:

Lemma 4.1. Assume that b satisfies (3.2), let 0 <s <t < T and f_ IS Lf;c, and suppose
that

[{x € RY: s (xD) NS > 0} # Band ¢, ({x}) N{f <0} # 0}] = 0.
Then the renormalization property in Proposition 4.4 is satisfied.

Proof. Tt suffices to establish part (b) in Proposition 4.4. Let A1 = {%+ f > 0}. Then, for
any measurable B C R,

[ #hatndy = 14097k Bl
Let B be any finite-measure set contained in
By ={y e R?: ¢, ({y}) C A%}
Then
[ #hota, dx =14 gt =0,
It follows that ¢f 14, = O a.e. in By. Similarly, ¢f (14 = 0 ae.in
B_:={yeR?: ¢, ({y}) C A°}.

We conclude that gbf’ sla, () and d)f, s14_(y) are both positive only if ¢, 1({y}) intersects
both A4 and A_. In view of the assumption of the lemma, the set of such y has measure 0.
This establishes property (b) of Proposition 4.4. ]

Remark 4.7. Observe that, when d = 1, ¢ ¢ is actually injective forany 0 <s <t < T.
For the drifts introduced in Examples 3.1 or 3.2, the corresponding flow has the property
that ¢t_,s1 ({y}) is at most a singleton forany 0 < s <¢ < T and a.e. y € R¢.
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In view of the regular Lagrangian property, a kind of injectivity of the flow can be seen
for particular ordered sets. Suppose that x, y € R?, x < y, and @r,5(x) = ¢s5(y). Thenit
cannot be true that x; < y; foralli = 1,2,...,d.If this were the case, then ¢, ; would be
constant on the cube [x, y], which violates the regular Lagrange property. The following
then follows from Lemma 4.1:

Proposition 4.5. Assume that f e L? (R?) and, for a.e. x,y € R such that f (x)>0

loc

and f_(y) <0, either x < y or y < x. Then renormalization is satisfied for S*(t, s)ffor
all0<s <t <T.

The condition on f in Proposition 4.5 is satisfied if there exist cubes (Q,)nez such
that 0 < Qui1,' {f > 0} C Upez Q2n, and {f <0} C U,ez Q2nt1.

4.3. Some remarks on ‘“‘time-reversed” equations

As discussed in Section 3.4, for velocity fields b satisfying (3.2), there is no satisfactory
notion of reverse flow for the ODE (3.1). Nevertheless, we can indirectly make sense of
the backward Jacobian det(D,¢o (X)), which, formally, should be the solution of (4.2)
with fo = 1, that is,
J(t,)) = §*(,0)1. (4.15)

Proposition 4.6. Let J be defined by (4.15):

(a) Forall p €[l,00), J € L®NC([0,T], LY (R?)).

(b) If (b®)e>0 are smooth, satisfy (3.2) uniformly in &, and converge a.e. to b as ¢ — 0,

and if ¢g , is the solution of

e (x) = =b°(t. g, (x)) in[0.T],  ¢5o(x) = x.
then, as & — 0, det(Dx ¢y .) converges weakly in C([0, T], Lﬁc(Rd)) to J.
(c) Forall fo € L% and (t,x) € [0, T] x R4,
|S*(2,0) fo(xX)| < || flloo I (2, X).

Proof. Ttems (a) and (b) follow immediately from Theorem 4.2. To prove (c), let b® and
¢, be as in the statement, let f* be the solution of (4.2) with drift 5* and initial condition
Jo = f * ps, where p is a standard mollifier. Then, for (¢, x) € [0, T] x R4,

|£2@. )| = /5 (65, (x))| det(Dxgpg , (x)).

The statement follows upon sending ¢ — 0 and appealing to the weak convergence of f*
and det(Dx ¢y ,).- |

“In other words, for all x € Q, and y € Q,11, we have x < y.
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Continuing the formal discussion from above, note that, if fo and b are smooth, then
v(t,x) = fo(¢o,(x)) solves the initial value problem for the transport equation

dv+b(t,x)-Vo=0 in[0,T]xR%, v(0,") = fo. (4.16)

The time direction for (4.16) is forward, in contrast to (4.1), where it is backward. We
therefore cannot appeal to the theory for that equation. Nevertheless, if fy € L* and b
satisfies (3.2), then a candidate for the solution of (4.16) is

J(t, x)
S*(t,0) fo(x)’

which, by Proposition 4.6 (c), is a well-defined bounded function. Note, however, that
studying the stability properties of formula (4.17) is complicated by the fact that J and
S*(t,0) fo are stable only under weak convergence in C([0, ], LL).

To complement (4.16), we also consider the terminal value problem for the continuity

equation:

v(t,x) = (t.x) € [0, T] x R?, (4.17)

d,g +div(b(1,x)g) =0 in(0,T)xRY and g(T,-) =gr.
The formula in this case should be

g(t.x) = gr(pr,(x)) det(Dx¢pr,:(x)). (4.18)

In fact, both terms in the product have meaning: u(z, x) := gr (¢, (x)) is the solution of
(4.1) with terminal value g7, and det(Dx¢r,(x)) is well defined almost everywhere by
Lemma 2.3 and the fact that ¢ 7, is increasing. Furthermore, by regularizing b and taking
weak distributional limits, it turns out that det(D,¢r,(x)) is a measure bounded from
below. However, u is not continuous in general, and so it is not possible to make sense of
the product in (4.18). This is exactly what leads to multiple measure-valued solutions of
the equation in general; see the discussion of Example 3.2 above.

Remark 4.8. The ideas described here to relate the time-reversed equations to those con-
sidered in the other sections of this paper are similar to those of Bouchut, James, and
Mancini [13], and should especially be compared to their concept of reversible solutions,
a theory that was expanded upon by the authors in [48]. In particular, for b satisfying a
one-sided Lipschitz bound, a satisfactory solution theory can be built for both the for-
ward and backward equations, and the two theories can be related to each other in view
of the (one-sided) invertibility of the flow. This approach is limited in the current context
precisely because the backward flow cannot be uniquely defined in an appropriate way.

4.4. Second-order equations

We finish this section by briefly demonstrating how the first-order results can be extended
to the second-order equations

—d;u —b(t,x) - Vu—trfa(t, x)V>u] =0 in (0,T) x R and u(T,) =ur (4.19)
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and
3 f +div(b(t,x) )=V (a(t,x) f)=0 in(0,T) xR? and f(0,) = fo, (4.20)
where b satisfies (3.2) and (3.14), and a: [0, T] x R¢ — S¢ is given by
a(t,x) = %o(l,x)a(t,x)’
and o is a matrix-valued function satisfying (3.13). Observe that this means that
a;j (¢, x) depends only on (¢, x;, xj) € [0, T] x R? foralli, j=12,...,d. (4.21)
Theorem 4.7. For allur € LP(R%), 1 < p < oo, there exists a unique u € C([0, T], L?)

with the following properties:

(a) There exists a modulus w: [0, T] — R4 such that

max [[u(t,)l|r < T lur Lo
t€[0,T]

(b) If (b®)e>0 is any family of smooth functions satisfying (3.2), (3.14) uniformly
in &, converging a.e. to b as € — 0, and (U)o is a family of smooth functions
converging in L? tour, then, as € — 0, the unique solution u® of (4.19) converges
in C([0, T], LP) to u. The same is true for vanishing viscosity limits.

(c) Forany (t,x) €[0,T] x R4,
u(t,x) = E[®r;(x)]. (4.22)
where © denotes the stochastic flow from Theorem 3.5.

Proof. The argument follows almost exactly as in the first-order case (Theorem 4.1), using
the stability and uniqueness results in Theorem 3.5 for the SDE (3.12) (recall that we are
assuming the bounded-oscillation condition (3.14) in addition to (3.2)). Upon regularizing
the velocity field b, the formal a priori L? estimate in part (a) can be made rigorous,
which, in particular, gives boundedness of the solution operator on L? for all p € [1, 00),
uniformly in & > 0, so that the initial datum u( can always be assumed to belong to
C.(R%) without loss of generality. The existence and uniqueness of the strong limit and
its identification with the formula in part (c) are then a consequence of Theorem 3.5. =

Remark 4.9. If ur is increasing (decreasing), then the same is true for u(z, ) for all
t € [0, T, which, again, can be checked with the representation formula (4.22), or by
differentiating the equation and using (4.21). For now, we do not discuss the question of
characterizing solutions in a PDE sense.

Remark 4.10. Similar results can be obtained for the equation with lower-order terms
—0,u — tr[a(t, x)V?u] — b(t, x) - Vu
—c(t,x)u—d(t,x)=0 in (0, 7) x R?,
u(T,:) =ur.
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Theorem 4.8. For every fo € LP, 1 < p < 0o, there exists a distributional solution of
(4.20) with the following properties:

(a) f is obtained uniquely from weak limits in C ([0, T], L?) upon replacing b with
a regularization, or from vanishing viscosity limits, and the resulting solution
operator is bounded on LP, with bound depending only on the assumptions for
b, for all p € [1, 00).

(b) Ifpe[l,o0), t€]0,T],andui € Lp/, and if u is the solution identified in Theorem
4.7 of (4.19) in [0, t] x R4 with terminal value u(t,-) = u, then

/f(r,X)ﬁ(x)dx = [fo(x)u(O,x)dx.

(¢c) Forallt €]0,T],
f(t,) = E(Pr,0)4 fo,

where ®; ¢ is the stochastic flow from Theorem 3.5. Thus, if fo is a probability
density and Xy is a random variable independent of the Wiener process with
density function fy, it follows that f(t,-) is the probability density function of
D, 0(Xo) (which is absolutely continuous with respect to Lebesgue measure in
view of the regular Lagrange property).

(d) If fo = 0and g > 0is a nonnegative distributional solution of (4.20), then f = g.
Proof. The proofs of parts (a)—(c) proceed similarly to the proof of Theorem 4.5, by first
regularizing b, proving uniform L7-estimates, and passing to the limit, exploiting the
uniqueness results for (3.12). The uniqueness of nonnegative solutions in part (d) now

follows from the Ambrosio—Figalli-Trevisan superposition principle; see for instance [31,
58]. [

5. Nonlinear transport systems

We now turn to the study of the nonlinear transport systems discussed in the introduction,
that is,

du+ f(t,x,u) - Veu+g(t,x,u)=0 in(0,T)xR?, w(T,)=ur, (5.1

where, for some integer m > 1, u: [0, T] x RY — R™, £:[0, T] x R x R”™ — R?, and
2:[0,T] x R? x R™ — R™. We also consider the associated forward-backward system
of characteristics: for (¢, x) € [0, T] x R and s € [t, T, this is

{_asUs,t(x) = g(s, Xs,t(x)» Us,z(x)), UT,Z(X) = uT(XT,t(X))» 52)

asXs,t(x) = f(sv Xs,z(x)v Us,t(x))v Xt,t(x) = X.
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5.1. Weak solutions

We will introduce assumptions on f, g, and ur, that, freezing u, make equation (5.1)

satisfy the assumptions for the nonconservative linear equations studied in the previous

section. This then leads to a natural notion of weak solution via a fixed-point operator.
Assume

(f.£):[0,T] x R x R™ — R? x R™,
f(t.x,"),g(t, x,-) are continuous for (z, x) € [0, T] x RY,

[y (Lexol, )
0 1+ x| 1+ [ul

)dt < 00,
(x,u)eR4 xRm
) (5.3)
and, for some Co € L_ ([0, T]), a.e.t € [0,T],

andalli, j € {1,2,...,d}and k,£ € {1,2,...,m},
8xifj(t’ K ) = _CO(Z)&']" aukgz(l"v') > _CO(I)Sk[’ and

dy,g° <0,and d,, f/ <0on[0, 7] x RY x R™,

Under these assumptions, any solution operator for (5.1) should preserve the decreas-
ing property of solutions, which we show formally assuming the data are smooth.

Proposition 5.1. Assume f, g, and ut are smooth with uniformly bounded derivatives, f
and g satisfy (5.3), and up:R? — R™ is decreasing with respect to (2.1). If u is a smooth
solution of the terminal value problem (5.1), then, for allt € [0, T], u(t,-) is decreasing.

Proof. Leti € {1,2,...,m}andk €{1,2,...,d} be fixed, and define v;; := Al Taking
the derivative in xj of the i-component of (5.1) gives the system

Orvik + St x,u) - Voig + (3, S5, X, 1) + 9, ' (1, X, 1) vk + 0, &' (2, X, 10)
d m
==Y 0 S x Wiy = Y B W — DY By (1 X W) Ve vy
j#k LA J=14=1

In view of (5.3), the system satisfied by {v;x :i = 1,2,...,mand k = 1,2,...,d}, after
reversing time, is of the form in (2.5), and so the result follows from Lemma 2.6. [

We now make the connection with the linear transport equation theory of the previous
sections. In particular, note that if u(¢, -) is decreasing for all ¢ € [0, T], then b(¢, x) :=
f(t, x,u(t, x)) satisfies the assumptions of (3.2), while

c(t) = Co(t) and d(t,x) = g(t,x,u(t,x)) + Co(t)u(t, x)

satisfy (4.10).
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Definition 5.1. Assume f and g satisfy (5.3) and ur is decreasing. Then a locally
bounded function u: [0, T] x R4 — R that is decreasing in the R¥-variable and satisfies

u(t, x) } c L

{(Z,x) — T+ |

(5.4)

is called a solution of (5.1) if u is a solution of the linear equation (4.7) with b(¢, x) =
f(t,x,u(t,x)), c(t) =Co(t),and d(z,x) = g(t, x,u(t,x)) + Co(?)u(t, x).

Solving (5.1) in the sense of Definition 5.1 thus amounts to solving a fixed-point prob-
lem. We similarly give a weak sense to system (5.2) by using the properties of the flow
from Section 3.

Proposition 5.2. Assume that ut € LY° and u is a solution of (5.1) in the sense of Def-

loc
inition 5.1. Let ¢ be the forward regular Lagrangian flow as in Section 3 corresponding

to
at¢t,s(x) = f(tv ¢t,S(x)’u(t? ¢t,S(x)))’ t e [S, T]v ¢S,S(x) =X,
and define, for0 <s <t < T and x € R4,
Xis(x) = ¢rs(x) and Usg(x) :=u(t, ¢ss(x)).

Then, forall 1 < p < o0, X.5,U s € C([s, T, L?)ynL? (Rd, Wl’l([O, T1)), and, for

loc loc

a.e. x € R%, (5.2) is satisfied in the integral sense.

Proof. The regularity properties of X are seen from Theorem 3.1, as well as the fact that,
forae. x € R4,

Xps(x) = x + / F(r X (0 (. X)) dr = x + / 1 Xy (). Ups () dr.

Theorems 3.1 and 4.3 together imply that U. s € C([s, T, Lf;c). Also, in view of Theorem
4.3 (c), u satisfies, forany 0 <s <t < T,

Ups () = u(s.x) = ult, Xes(x)) + / g7 X1y (), u(r. by (1)) dr

t
= Una )+ [ 80 Xoal). Ups) dr:
S
It follows that, in the distributional sense,

0:Uss(x) = g(t, Xy,5(x), U x(x)).

Arguing as in the proof of Theorem 3.1, the right-hand side belongs to L{:,C(]Rd,
L'([0, T])), and we conclude as in that theorem. L]
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5.2. Minimal and maximal solutions

In this section we show that assumptions (5.3) give an increasing structure to equation
(5.1), which allows for the identification of unique minimal and maximal solutions.

Theorem 5.1. Assume [ and g satisfy (5.3), ut is decreasing, andu (1 + |- )~ € L.
Then there exist two decreasing solutions u™, u™ of (5.1) in the sense of Definition 5.1
with the following properties:
(a) Forallt €[0,T], u™(¢,-) is upper semicontinuous, u=(t,-) is lower semicontin-
uous, and both u™ and u™ are continuous a.e. in [0, T] x R?.

(b) Ifu is any other solution, thenu™ <u <u™.

Throughout this subsection, we may assume, without loss of generality, that the term
Co € L) in(5.3) is 0. Indeed, the function

T T
ut,x) = exp(/ Co(s) ds)u(t,exp(/ Co(s) ds)x)

is decreasing in x, satisfies (5.4), and, formally, solves equation (5.1) with f and g
replaced by

f(t,x,u) = exp(—[tTCo(s) ds)f(t,exp(/tTCo(s) ds)x,exp(—/;TCo(s) ds)u)

+ Co(t)x
and
T T T
gt,x,u) = exp([ Co(s) ds)g(t,exp([ Co(s) ds)x,exp(—/ Co(s) ds)u)
+ Co(?)u.

Proof of Theorem 5.1. For some C > 0 to be determined, set
£ = {u: [0, T] x R? > R™ : u(T, ) = ur, u(t,-) is decreasing for all ¢ € [0, T'],
and |u(t, x)| < C (1 + |x|) forall (¢, x) € [0, T] x R}.

We define amap S on £ as follows: for u € £, let v := § (1) be the solution, as in Theorem
4.3, of the linear transport equation

d;v+ f(t, x,u(t,x))-Vo+ g(t,x,u(t,x)) =0 in(0,T) x Rd, v(T,) =ur.

Then, in view of the solution formula (4.9) and the bounds (5.3) on f and g, there exists
a sufficiently large C, depending on u7, such that S maps £ into &£.
We now note that £ forms a complete lattice under the partial order

u<i < ul(t,x)<i'(t,x) forall(t,x)€[0,T]xR,i=12,....m; (55)
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that is, every subset of &£ has a greatest lower bound and least upper bound, which is a
consequence of the uniformly bounded linear growth of solutions in £.
Suppose now that u, u € £ satisfy u < & under the order (5.5), and set

b(t,x):= f(t,x,u(t,x)) and d(t,x):=g(t, x,u(t,x)).

Then (5.3) with Cy = 0 implies that b(¢, x) > f(¢,x,u(t,x)) and d(¢,x) < g(¢t,x,u(t, x)),
and so, in particular, v := §(u) and U := § (i) are respectively a sub- and a supersolution
of the linear equation (4.7) with c¢(¢) = 0. It follows from Theorem 4.4 that v < v, and
therefore § is increasing on the complete lattice &£ with respect to the partial order (5.5).
The existence of unique maximal and minimal solutions is now a consequence of the
Tarski lattice-theoretical fixed-point theorem [57].

The continuity a.e. in [0, 7] x R? of u* and u~ now follows from Theorem 4.4.
Observe now that any version of the maximal solution u™ is a solution in the sense of Def-
inition 5.1. Because u+(t, -) is decreasing, it is continuous a.e., and its maximal version is
upper semicontinuous, which is therefore also the unique maximal solution in the every-
where-pointwise sense. A similar argument shows that the minimal everywhere-pointwise
solution u~ is lower semicontinuous in the spatial variable, and we conclude. [

The fixed-point theorem of [57] used above further characterizes u™ and u™ as
ut =sup{lueL:Sw)>u} and w” =inf{u € L:8u)<u},

where the sup and inf are understood with respect to the partial order (5.5). We alterna-
tively characterize the maximal and minimal solutions in terms of appropriately defined
sub- and supersolutions of equation (5.1).

Recall that p® and p, are the one-sided mollifying functions from Section 2.3.

Definition 5.2. Assume f and g satisfy (5.3) with Cy = 0 and ur is decreasing. A
function u: [0, T'] x R4 — R™ that is decreasing in R is called a subsolution (resp. super-
solution) of (5.1) if u(7T,-) < ur (resp. u(7T,-) > ur) and u® := u * p€ (resp. Uy := U * pg)
satisfies

—0;u® — f(t,x,u(t,x)) - Vu® — g(t, x,u(t,x)) <0
(resp. — d;ug — f(t, x,u(t,x)) - Vug — g(t, x,u(t,x)) > 0) ae.in[0,T] x R¥.
In other words, sub- and supersolutions in the sense of (5.2) are sub- and supersolu-

tions of the corresponding linear equations identified in Definition 5.1. It follows that a
function which is both a sub- and a supersolution is in fact a solution.

Lemma 5.1. Under the conditions of Definition 5.2, assume that u and v are two sub-
solutions (resp. supersolutions) of (5.1). Then u Vv v (resp. u A v) is also a subsolution
(resp. supersolution).
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Proof. We prove only the subsolution statement, as the other one is analogously proved.
It is clear that max{u(7T,-), v(T,-)} < ur and u V v is decreasing in R¢.

Set u® = u % p® and v¥ = v * p®. Let W:R™ x R™ — R™ be smooth, increasing, and
satisfy W(u,v) > u Vv v for all u, v € R™. Note that, using (5.3) with Cy = 0,

ft, x,u(t,x)) A f(t,x,v(t,x)) = f(t,x,u(t,x) vo(t,x))

and
glt,x,u(t,x))vgl x,v x)) <g(, x,ut,x) Vvo(,x)),
and so a simple application of the chain rule gives
9, P (u®,v%) + f(t,x,uvv) VUu®, v®) + g, x,uvov)>0.

In particular, for any smooth positive test function ¢ € C°((0,T) x R9),

T
/ / (P s, v%)(t, x)0,¢(t,x) — g(t,x,u VvV v)P(t,x)) dx dt
0o JR4
+ (v(f(s SUV U)¢), \Ij(ues v&‘)) = 09

where the last term is understood as the pairing between locally finite measures and con-
tinuous functions, because f(z, x, (u V v)(¢, x)) is BV in x. We may then approximate
max (-, -) with such functions ¥ and determine that, in the distributional sense,

0 (u® v o)+ flt,x,uvv) -Vu®vv®) + g, x,uvov)>D0.

For § > 0, we convolve both sides of the above inequality with the one-sided mollifier p°
and obtain, in view of (5.3),

3wt V) x pb + ft,x,uv ) V[uf v od)x o]+ gt x,u v ) > 0.

For fixed §, as & — 0, (u® v v€) % p% — (u v v) * p® locally uniformly, and we may
therefore send ¢ — 0 in the above inequality, again using f € BV, to obtain the desired
subsolution inequality for (1 v v) * p®. ]

Lemma 5.2. Assume f and g satisfy (5.3) with Co = 0, ut is decreasing, and u is a
subsolution (supersolution) of (5.1) in the sense of Definition 5.2. Then there exists a
subsolution (supersolution) it such that w < ii (u > i) and Ui is continuous a.e. in [0, T] x
R4,

Proof. For such a subsolution u, let & be the solution of the linear transport equation
deii + f(t,x,u(t,x))- Vi + g(t, x,u(t,x)) =0 in(0,T) xR, 4(T,)) = ur.
Then, by Theorem 4.4, u < #, and # is continuous a.e. in [0, T'] X R4, By (5.3),
ft, x,u(t,x)) > f(t, x,u(t,x)) and g, x,u(t,x)) <g(t,x,u(t,x)),

and it follows that # is a subsolution of (5.1). The argument for supersolutions is analo-
gous. |



Linear and nonlinear transport equations with coordinate-wise increasing velocity fields 1023

Proposition 5.3. Let f and g satisfy (5.3) with Co = 0, and assume ut has linear growth
and is decreasing. Let u™ and u™ be the maximal and minimal solution from Theorem 5.1.
Then, in the sense of Definition 5.2, ut is the pointwise maximum of all subsolutions, and
u~ is the pointwise minimum of all supersolutions.

Remark 5.1. In view of Lemma 5.2, the maximum/minimum in Proposition 5.3 may be
restricted to sub/supersolutions that are continuous a.e. in [0, T'] x R¢.

Proof of Proposition 5.3. We prove only the statement for u™, since the proof is analo-
gous for u~. Let
at@, x) = sup{u(t, X):uisa subsolution}.

Because u™ is itself a subsolution, we clearly have u™ < #*. Suppose now that u is a
subsolution of (5.1), and let v be the solution of

v+ ft,x,u) - Vv+gt,x,u)=0 in(0,7)xR? and v(T,-) =ur.

It then holds that u and v are respectively a subsolution and solution of the linear equation
(4.7) with b(t,x) = f(t, x,u(t, x)), c(t,x) =0, and d(¢, x,) = g(¢, x, u(t, x)). Then
Theorem 4.4 implies ¥ < v. Note also that v belongs to the lattice &£ from the proof
of Theorem 5.1, because v(T,-) = ur. If § is the fixed-point map from the proof of
that theorem, we then set w = §(v), which, by a similar argument, satisfies w € £ and
S(v) = w > v. By the characterization of u™ by the Tarski fixed-point theorem, we must
have ¥ < u™, and therefore i+ < u™. n

5.3. Continuous solutions

We now investigate when the maximal and minimal solutions u™ and u~ identified in
the previous subsection coincide. In this subsection we prove a comparison principle for
continuous sub- and supersolutions, so that, in particular, ut = u~ if both are continuous.
As we will see by example in the forthcoming subsections, this can fail in general if the
assumption of continuity is dropped.

We will first introduce a different notion of solutions, which will turn out to be equiv-
alent when the solutions are continuous, using the theory of viscosity solutions. The
definition of solution we give here, which allows for discontinuities, is similar to the one
introduced by Ishii [39] in the context of Perron’s method.

Let us assume throughout this subsection, in addition to (5.3), that

f and g are uniformly Lipschitz continuous and bounded,
and Cy > 0 is constantin ¢ € [0, T. (5.6)

Definition 5.3. A function u: [0, T] x R? — R™ is a viscosity subsolution (supersolution)
of (5.1) if u(t, -) is decreasing for all ¢ € [0, T], and, whenever ¢ € C'([0, T] x R4, R),
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i=1,2,....,m,and u*(t,x) — ¢(t, x) (resp. u’ (t,x) — ¢ (¢, x)) attains a local maximum
(resp. minimum) at (#g, Xo),

—1(to, x0) — f(to., x0,u™(to, x0)) - Ve (to, Xo) — & (to. X0, u™(to, x0)) < 0
(resp. — ¢¢(t0, X0) — f(to. X0, ux(to, Xo)) - V(to, X0) — g(t0. Xo. ux(f0, X0)) > 0).

A viscosity solution is both a sub- and a supersolution.

Remark 5.2. Due to the evolutionary nature of the equation (in reversed time), in Defini-
tion 5.3, it suffices to interpret local extrema (¢, xo) over half-open neighborhoods of the
form [tg, 29 + 1) x B, (x¢) for some &, r > 0; see for instance the argument in [24, Theo-
rem 8.2].

Lemma 5.3. Assume (5.3) and (5.6). If u is a subsolution (supersolution) in the sense of
Definition 5.1 and is almost-everywhere continuous in [0, T'] x R4, then u is a viscosity
subsolution (supersolution) in the sense of Definition 5.3.

Remark 5.3. In view of Lemma 5.2, no generality is lost in considering sub- or superso-
lutions that are continuous a.e. in [0, 7] x R¥.

Proof of Lemma 5.3. We prove only the subsolution property. Note that, because u is
decreasing, we have u(z,-)* = u(t,-) a.e. Then u® = u * p° is a (classical) subsolution of

—0,uf — f(t,x,u*(t,x)) - Vu® — g(t,x,u*(t,x)) <0,

and, as ¢ — 0, u® \( u*.

Assume that u* (¢, x) — ¢ (¢, x) attains a maximum at (¢p, xo), which we may assume
to be strict by adding a quadratic penalization to ¢. For ¢ > 0, let (¢, x.) denote the
maximum point of u®(¢, x) — ¢ (¢, x) on [0, T'] x B1(xg), and let (s, y) be a limit point of
(e, X¢)e>0 along some subsequence (&,),en. By Lemma 2.5 (¢),

us(te, x¢) < u(te, xo —2el) + €1,

and so

lim sup u®" (¢, , X,) < u™(s, y).
n—>o0

Now let (S, Yn)neN C [0, T] x B1(x¢) be such that
(Sns Yn) e (to,xo) and u®(s,, yn) it u*(fo, Xo).

Taking n — oo in the inequality u®" (s, yn) — @(Sn. yn) < u®"(te,, Xs,) — P (ts,, Xs,)
yields u*(tg, o) — ¢ (t0, yo) < u*(s, y) — ¢ (s, y). This implies that (s, y) = (¢9, X¢), the
limit holds along the full family ¢ — 0, and limg_¢ u°(t,, xc) = u™* (29, xo).

By standard maximum principle considerations, and the facts that — f and g are
increasing in u and Vu® <0,

—0:p(te, xe) — f(te, Xe, u®(te, x¢)) - Vo (e, xe) — g(le, X, u®(te. xg)) < 0.

Sending ¢ — 0 gives the desired subsolution inequality. ]
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Theorem 5.2. Assume that f and g satisfy (5.3) and (5.6), and let u and v be respectively
a bounded sub- and supersolution of (5.1) in the sense of Definition 5.3 such that either

u is continuous and v is lower semicontinuous, or u is upper semicontinuous and v is
continuous. If u(T,-) < v(T,-), then, forallt € [0, T], u(t,-) < v(t,-).

Proof. The proofs of both statements are almost identical, so we prove only the statement
when u is continuous and v is lower semicontinuous.
We first prove the result under the additional assumption that, for some § > 0, u is a
subsolution of
—du—[f(t,x,u) +61]-Vu — g(t,x,u) < =61 5.7

and u(7,-) — v(T,-) < —61. Standard arguments from the theory of viscosity solutions
then imply that w(¢, x, y) := u(t, x) — v(t, y) is a subsolution of

—0;w—[f(t,x,u) +81]- Vxw— f(¢t,y,v)- V,w—g(t,x,u) + g(t,y,v) <—61. (5.8)

Fix A > 1l and B > 0, set

. . A B
._ i I A PV 1 2 2
0,731+ ¢(1) = x?ﬁﬁdﬁ{fﬁf,m(” (t.x) v (t.y) = S lx —y[F = Z(xI" + ]yl )),
and define

{= sup{t € (=00, T]: 9(2) > O}.

As A — oo,

. . A
HT) = max(u (T.0) v (T3 = S =y P = a4 1) = =5 1000,
X,¥,l
and so, if A is sufficiently large, depending on §, then ¢(T’) < 0, and therefore f < T.
We next claim that f < O for all sufficiently large A and small B, which implies ¢ (¢) <0
for all ¢ € [0, T'], and, hence, gives the result. If this were not true and 0 < { < T, then

choose i, X, y such that

B

n S Do A n N
0=¢(t)=u’(t,x)—vl(t,y)—§|x—y|2—5(|x|2+|y|2).
We then have
w (£,2) — v/ (7, 9) <u'(f.%) —v'(f,y) forallj =1,2,...,m. (5.9)

By definition of X and y, the functions

B
2

B
2
achieve their maxima at respectively x = X and y = 3, and so, from the fact that ¥ and v
are decreasing, we have

A A
(o) = Sl =P = SIx? and y o Gy) = 515 =y = P

AXj—y))+Px; <0 and AX; —FP;))—pBy; <0 forallj =1,2,...,d. (5.10)
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Moreover, in view of the boundedness of u and v, arguing as in for instance [24, Lemma
3.1], there exist §, and g satisfying limy_, o, 65 = limg_,o &g = 0 such that

A =3P <8 and BRI +[9%) < ep. (5.11)
In particular,
0 <u'(f,%) —v'(I,9) <268, + 2. (5.12)
On [, T] x R¢ x R4, the function
) . A B
wh(10) =0 () = Sl =y = SO P + )

achieves a maximum at (7, £, §), and so, applying Definition 5.3 to the doubled equation
(5.8) (see Remark 5.2),

d
§< Y (fIE.2u@ %) +8) (A& — §) + BR) + &' (1. 2. u(@. %))
j=1

d
=D SIE v DAE —F) - B5) — &' (.5 v, §)). (5.13)
j=1
Because of (5.3), f is nonincreasing in the u-variable, and so the inequalities (5.9) and
(5.10), together with the Lipschitz regularity of f and the inequality Z?:l |xi] >
d~1/2|x|, imply

d
YOG R uER) + SR — 9) + BR)
j=1

d
<D L7509 + @ ER) =o' G INT) + 8](AE = 5)) + BE))
j=1
d
L sae -9 T@,5,0@ PG — P, V)
< = SR =P+ D0 7@ v PN = 5) = B))
j=1
+ IV fllooAl% = P (7, %) = v' (7, ) + [V fllooAl % = PI?
+ @+ 1Sl BIXT+ 1S looBI -
The inequalities (5.11) and (5.12) thus give

d
DOIIE R R) + SR — §) + BR))
j=1

d
<Y SIE D@ INAR - §) — BF))
i=1
i oa 8
+ M1E = 91(= 575 + 2%/ Nl (B2 + £5))

+ Ve f llooba + (8 + 211 £ loc) B2 .
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Similarly, using the fact that g’ is nondecreasing in the u j-variable for all j # i, we have

g (E. 2 u, %) < g, 9,0, 9)) + I Vuglloo@ (%) = v' (7, ) + | Vegllool — F|
< g0, 5,0, §)) + 20| Vuglloo@r + £5) + I Vaglloor /282,

Combining this with (5.13) then yields

5 <5 = 51(= 3775 + 205 S leolBs + )
+ [V £ llooBa + (8 + 211 f loo) B/ 225
+ 2 Vuglloo (s + £p) + | Vg oot ~1/28,?
< Ve S llooBs + (6 + 211/ loo) B e >
+ 2] Vuglloo (61 + £p) + [ Vaglloor ™28,/
where the final inequality follows if A is taken large enough and S is taken small enough,
depending on 8, so that 2d /2 ||V, f [leo (61 + eg) < §. Further taking A large and 8 small

then yields a contradiction.
We now prove the general statement. For § > 0 and (¢, x) € [0, T] x R4, set

u(r, x) = u(t, x + 891 (1)1) — §y2(1)1,

where 1, and v, are two nonnegative scalar functions satisfying v¥;(7) = 0 and
Y2(T) = 1. Then
u(T,-) =u(T,-)— 41,

and so, using the fact that u is nonincreasing, we formally compute’
—0su — [f(t,x,u) —8]Vu — g(¢t, x, )
= 0,u — §Vyu - 1y + 8yal — [f(t, x + §¢11,u — §¥n1) + 8]Vu
—g(x +8v11,u —8y,1) + 461
< 8(=1- V)1 + [V f lloo¥2 + 1) + 802 + | Vuglloo¥2 + D1 (5.14)

We then choose 1 and v, so as to satisfy

Y1 = —|Vufllo¥2—1 and V2 = —[|Vuglloo¥2 — 1,
that is,
[Vie f lloo (I Vuglloo + 1) 1 Vuglloa(T=0) Vi f [l oo
V(1) = (e Vulloo -D+ (- )(T—1)
”Vug”czx) ( ”Vug”oo)

SThe computations can be made rigorous using test functions and Definition 5.3. Note that the argument
for u above is always (¢, x + 8y (¢)1).
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and

w0 = (1 1

)euvugnoo(T—z) _ .
IVuglloo

+ _
IVuglloo

Then (5.14) becomes exactly (5.7), and so, for (¢, x) € [0, T] X R4,

u(t, x +8y1(1)) — 82 (1) < v(z, x).
We conclude upon sending § — 0 and appealing to the continuity of u. ]
Let us note the following corollary of Theorem 5.1, Lemma 5.3, and Theorem 5.2.

Corollary 5.1. Under the same conditions on f and g as in Theorem 5.2, let ut be
bounded and decreasing and let ™ and u™ be the maximal and minimal solutions identi-
fied in Theorem 5.1. Then

ut(t,x) = inf{u(l, X) : u is a continuous viscosity supersolution with u(7,-) > uT}
and
u (t,x) = sup{u(t, X) : u is a continuous viscosity subsolution with u(7T,-) < uT}.

The comparison principle with continuous sub- and supersolutions also implies a con-
ditional uniqueness and stability statement.

Theorem 5.3. Assume f and g satisfy (5.3) and (5.6) and ur is bounded, continuous,
and decreasing. If there exists a bounded and continuous viscosity solution u of (5.1),
then it is the unique viscosity solution. Moreover, if u® is the unique classical solution of

deu + f(t, x,u°) - Vut +g(t, x,u®) +eAu’ = 0 in (0, T)xRY, u®(T,-) = ur,
then, as ¢ — 0, u® converges locally uniformly to u.

Proof. The uniqueness is a consequence of the comparison principle in Theorem 5.2,
since u is both a sub- and a supersolution. The local uniform convergence as ¢ — 0 of
u® to the unique continuous viscosity solution u is then proved with standard stability
arguments from the theory of viscosity solutions, arguing with half-relaxed limits and
applying the comparison principle, Theorem 5.2. ]

5.4. A one-dimensional example

For the rest of the paper, we assume d = m = 1 and consider the example of (5.1) with
f(t,x,u) =—uand g(t,x,u) = 0:

—0;u+udyu=0 in(0,T)xR, u(T,))=ur. (5.15)

Observe that (5.15) can be formally written in conservative form, where it becomes the
. . 2 .. .
Burgers equation with flux %-. When d > 1, it is not necessarily the case that (5.1) can be
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written as a conservation law, and the product of f'(¢, x, u) with Vu cannot be understood
by integrating by parts.

If the decreasing function u7 is Lipschitz continuous, then the system of character-
istics (5.2) can be solved in some maximal time interval [T — 7, T'] depending on the
Lipschitz constant for u7. This gives rise to a Lipschitz continuous solution of (5.15),
which can easily be checked to be a viscosity solution in the sense of Definition 5.3 and is
therefore unique. However, for ¢ < t, the system of characteristics fails to be solvable on
[t, T], due to the formation of shocks. This is in contrast to the case where u7 is Lipschitz
and increasing, in which case (5.15) has a Lipschitz continuous solution on (—oo, T].
We therefore see that the situation where a continuous solution exists is not typical on an
arbitrary time horizon, even if the function u 7 is smooth.

We therefore study in this subsection a simple example of a decreasing and discontin-
uous terminal data, namely

ur(x) = 1{x < 0}. (5.16)

. . . 2 . .
Viewed as a scalar conservation law with flux ”7, (5.15) is a Riemann problem whose

solvability is resolved with the theory of entropy solutions. Indeed, the unique entropy
solution is given by

T_t}, (5.17)

u(t,x) = 1{x < —

describing a shock wave moving with constant speed % (in reverse time), the constant %
being uniquely determined from the Rankine—Hugoniot condition.

5.4.1. Nonuniqueness of discontinuous solutions. When viewed as a nonlinear trans-
port equation, there is a strong failure of uniqueness for this problem.

Proposition 5.4. Let ¢: [0, T] — R satisfy ¢(T) = 0 and —c’ € [0, 1] a.e. Then
uc(t,x) == 1x < c(t)}
is a solution, in the sense of Definition 5.1, of (5.15) with terminal data (5.16).

Proof. Define ué = u, * p°. Then

c(t)
ui(t, x) =/ p°(x — y)dy,

—00

and so
Brus(t.x) = pf(x —c()'(t) and  dxuS(t.x) = —p°(x — (1)
Thus,

—0us (2, x) + uc(t, x)dxus(t,x) = p°(x —c(t))[—c'(t) — H{x < c(2)}].
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Recall that supp p® € [—2¢, 0], and so the above expression is nonzero only if x < ¢(¢). In
that case, because —¢’ < 1,

—'O)-Hx =c@)} =-'()-1=0,

and we conclude that u? is a subsolution. The proof of the supersolution property is simi-
lar, and uses the fact that —¢’ > 0. n

Remark 5.4. Note that u, is continuous a.e. in [0, 7] x R, and, therefore, by Lemma
5.3, is also a viscosity solution in the sense of Definition 5.3.

The system of characteristics (5.2) becomes, for (z, x) € [0, T'] x R4,

{—asUs,t(x) =0, Uz (x) = 1{X7,(x) <0},

(5.18)
asXs,t(x) = _Us,t(x)’ Xt,t(x) = X.

Recall that the system, and, in particular, the equation for X, is viewed as a differential
inclusion, where, for all s € [t, T],
{1} it Xr,(x) <0,
Usi(x) = Ury(x) = § {0} if X7,(x) >0, and
[0,1] if X7,(x) =0.

By Proposition 5.2, each solution u. corresponds to a solution (X ¢, U€) of (5.18), which
we can compute explicitly: namely, forx e Rand0 <s <¢ < T,

U (x) = uc(t, x) = Kx < c(t)}

and
X—s+1, x <c(t),
—t
Xe(x) = 1x _C(t);—z’ x =c(t), (5.19)
X, x >c(t).

We note that, for any solution (U, X), we must have X;;(x) = x —s + ¢ for x < 0 and
Xs1(x) =x forx > T —t. However, for x € [0, T — ¢], there is ambiguity in the speed at
which the X ;(x) travels: it can move with speed —1, 0, or anything in between, where in
the latter case the characteristic is constrained to end at X(7, ¢, x) = 0. The precise value
x € [0, 1] for which X7, (x) = 0 thus encodes the choice of the shock-wave speed ¢(?) in
the definition of u..

5.4.2. Stochastic selection. An important feature in the theory of entropy solutions of
scalar conservation laws is the stability under regularizations, and in particular under van-
ishing viscosity limits. In the above context, the entropy solution (5.17) of (5.15) arises as
the strong limit in C([0, T], L. (R%)), as ¢ — 0, of the unique smooth solution u? of

loc

2
—0u® +udu® =ediu®, u(T,:) =uy,
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where
us: R4 — R? is smooth and liH(l) us = 1(_oo,0) in Lj,.. (5.20)
e—>

By contrast, we show here that any solution u, can arise as a limit from suitably
regularized equations.

Theorem 5.4. Fix any ¢ € W21([0, T], R) satisfying c(T) = 0 and —c' € (0, 1). Then
there exists 0, € L([0, T]) such that, if us. is as in (5.20) and u® is the unique classical
solution of

—0,u® + ufdyuf = e(02uf + 0. (1)]0,uf|?), us(T,") = uf, (5.21)
then, forall 1 < p < oo, as e — 0, u® — u, strongly in C([0, T], LY ).

Proof. For 6:[0,T] — R to be determined, define, for ¢ € [0, T'],

log(6(t)v + 1) if () # 0and 6(r)v > —1,

ft,v) = (1)
v if 0(t) =0,
and note that
. e@(t)u -1
t,:) = —
S0 = =5

For ¢ > 0, let v¢ be the classical solution of

_ 9

—9,0¢ £YyE —
S = G )

v (T, = f(T,)7 (uf).

+e02v® in[0,T] xR and

By the maximum principle, it is easily checked that the values of v® fall within the
domain of f and its derivatives, and the solution of (5.21) is given exactly by u®(z, x) =

f(t,v8(t, x)).
Standard stability results [40] yield that, as ¢ — 0,

v® — v strongly in C([0, T], L% )

loc

for all p € [1, 00), where v is the unique entropy solution of

_ _ 0/t v) .
v+ f(t,v)0xv = 3, 7. 0) in[0,T] xR and 5.22)
o(T,) = fHT, ) (Dx<o + [ 71T, )(0)Lis0.

We then set
B(@)v + ) log(O(t)v + 1) — 0(t)v

0(1) ’

F(t,v) =
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which satisfies 9, F (¢, v) = f(t, v), so that equation (5.22) is equivalently written as

atf(t’ 'U) .
= — Tl xR
5 f(0.0) in [0,7T] x R and (5.23)

o(T.)) = fHT ) (Dlawo + f7HT,)(0) Lo

The unique entropy solution v of the conservative equation (5.23) is then given by

—0;v 4 05 F(t,v)

v (1), x <c(1),
vr(@), x> (1),

v(t,x) = {

where, for0 <t < T, vt+ and v are defined by

3, f(t,vF) _ _ _

vt = g gy L€ Tl vp = S0, vf = TN,
and c(t) is determined by the Rankine—Hugoniot condition
F(t.v™ (1) = F(t.v* (1)

vT() —v ()
Observe that ¢t — f(¢,vE (1)) is constant, and therefore
ey = FUS0) ) = F 6.7 0)
f@. )71 = f(2.)710)

c(T)=0 and —c'(t) =

= C(0()).

where, for 0 € R,
Bef —ef —1

B(e? —1)
We observe that C’ > 0, limg_,_o, C(0) = 0, and limg_, 4, C(0) = 1. Thus, letting
¢:[0, T] — R with —¢’ € (0, 1) be as in the statement of the theorem, we finally choose
0. (t) :== C~1(—=c'(t)), so that u® converges strongly in C([0, T], L), p € [1, 00), to

loc

f_l(l,')(l)(l,)()) = Mc(l,X). ]

Remark 5.5. The restrictions that ¢” € L' and ¢’ lie strictly within (=1, 0) are put in
place to ensure that 6, € W1 and —co < 0, < 00, so that the equation for v® is well
posed. Achieving speeds ¢ that are only Lipschitz, and where ¢’ is allowed to be either 0
or 1, is possible by letting 8, = 67 depend suitably on ¢.

C(0) =

The selection principle in Theorem 5.4 can be recast in terms of the nonunique gen-
eralized characteristics problem (5.18). Namely, we fix a filtered probability space (2,
F = (F¢)¢efo,77, P) with a complete, right-continuous filtration F and a Wiener process
W:[0,T] x @ — R progressively measurable with respect to I, and, for ¢ > 0 and
(t,x) € [0, T] x R, we consider the forward-backward SDE (FBSDE) on the interval
selt, Tl

& & 1 & & & &
—dUg,(x) = Z8,(x) d Wy — EQC(s)ZS,t(xy ds, Uf,(x) = u§ (X5, (x)), 520

dsX£,(x) = —UZ,(x)ds + ~2e d W, XE,(x) = x.



Linear and nonlinear transport equations with coordinate-wise increasing velocity fields 1033

Theorem 5.5. Let ¢ and 6, be as in Theorem 5.4. For every ¢ > 0 and (¢, x) € [0, T] x
R, there exists a unique strong solution (X%, (x), U%(x), Z%,(x)) to the FBSDE (5.24).
Moreover, with probability 1, as € — 0, Xft — Xft inC([t,T], Lll(’)c(]R))for all p €[1,00),
where X€ is as in (5.19).

Proof. The existence of a unique solution is a consequence of the nondegeneracy of the
noise; see [52]. Moreover, if u® solves (5.21), then

Uf’t(x) = u®(s, Xf’t(x)) and Zit(x) = \/Z(axm)(s,x;,(x)).

It follows that X, is the solution of the SDE (3.7) with b(, x) = —u*(f, x), and so, by
Theorems 3.3 and 5.4, as ¢ — 0 with probability 1, X, converges in C([t, T, LY (R))
to the regular Lagrangian flow corresponding to the drift —u.. This is exactly X€¢, and we
conclude. ]
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