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Properties of non-equilibrium steady states for the
non-linear BGK equation on the torus

Josephine Evans and Angeliki Menegaki

Abstract. We study the non-linear BGK model in one dimension coupled to a spatially varying
thermostat. We show existence, local uniqueness, and linear stability of a steady state when the linear
coupling term is large compared to the non-linear self-interaction term. This model possesses a non-
explicit spatially dependent non-equilibrium steady state. For the existence and the local uniqueness
we utilise a fixed point argument, reducing the study of the non-linear model to the linear BGK
model, while for the stability we adapt the L2 hypocoercivity theory, yielding existence of a spectral
gap for the linearised operator around this non-equilibrium steady state.

1. Introduction

Properties of non-equilibrium steady states (NESS) in systems in contact with thermal
reservoirs (thermostats) remain major open problems in statistical mechanics. Key ques-
tions include the existence, uniqueness, and structure of these states — whose analytic
expression is not explicitly known — as well as the rate at which out-of-equilibrium sys-
tems converge towards them.

There are a few classical open systems at the microscopic level that have been intro-
duced and studied to understand and derive the macroscopic Fourier law of heat conduc-
tion from microscopic Hamiltonian dynamics, for which there are some partial answers.
A particular class of models that has attracted a lot of attention in the mathematical
and theoretical physics community on thermal transport is the one-dimensional chain of
atoms/oscillators with nearest neighbour interactions, perturbed at the boundaries with
two reservoirs at different temperatures. Harmonic such crystals is a case well studied,
where the non-equilibrium steady state is explicit but it corresponds to a rather unphys-
ical scenario where Fourier’s law breaks down [40]. Regarding anharmonic crystals, even
though there are partial answers in certain cases on the non-equilibrium steady state —
existence, uniqueness, and exponential relaxation are ensured even quantitatively in the
number of particles in certain cases — very little is known on the structure of such states.
Apart from microscopic oscillator chains, existence and uniqueness are also provided for
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a system of Newtonian particles with a long-range repulsive interaction potential [29].
Again, the situation is far from well understood regarding a canonical description of the
state.

The same is true for systems in the mesoscopic level, i.e. kinetic models described
by a one-particle distribution function f(z, x, v), where ¢,x € Q C RY, v € R are the
time, space, and velocity variables respectively. In particular, there are no explicit solu-
tions of the stationary (time-independent) Boltzmann equation in the more realistic non-
equilibrium scenario and in many cases even the existence of such states is not known.

In this article we study the non-linear BGK model of the Boltzmann equation, which is
a kinetic relaxation model introduced by Bhatnagar, Gross, and Krook [9] as a toy model
for Boltzmann flows. We continue our investigation as in [27], where we showed existence
of a NESS for the one-dimensional model on the interval (0, 1) with diffusive boundary
conditions playing the role of two thermal reservoirs at the boundaries.

Here we change the boundary conditions to periodic boundaries, meaning that we
consider a gas of particles on the one-dimensional torus T. Our objective is to study
existence, uniqueness, and L)ZC,U stability for the non-linear BGK model coupled to a linear
BGK operator with spatially varying temperature — now being a thermostat that acts all
over the space.

1.1. Description of the model

We consider a gas of particles on the one-dimensional torus T where the collisions among
the particles are represented by the non-linear BGK operator.

1
0 f +vdxf =Lf = —(pr(@Muy, 1, + (1 =) Me() = f), (1.1

where x € T, v € R, 7(x) is a fixed function which varies with x, and @ € [0, 1]. Also,
with ¥ we denote the Knudsen number, i.e. the ratio between the mean free path and the
typical observation length.

For a stationary solution f(x, v) on the phase space T x R we define the hydro-
dynamic moments, the spatial density ps(x), the bulk velocity ur(x), and the pressure
Py (x) respectively as

oo

o= [ fermdv o = [ orteoa,

Pr(x) = / V2 £ (e, 0) dv = oy O[T/ () + up (2],

o

and then the local temperature profile corresponding to f is Ty. We denote by My, 7, (v)
the Maxwellian with temperature 7:

2
_ —1/2 v —uy|
My 1, (0) = 2 Ty) exp(—T).
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Finally, we write M (x) := My ¢(x) for the Maxwellian with the spatially varying temper-
ature t(x).

Our main objectives are (i) to determine the range of the parameters o, k,andt <t <7
for which we have existence of a non-equilibrium stationary state g(x, v) to (1.1), (ii) to
show uniqueness of such a state for small o, and (iii) to prove L? linear stability around g
via adaptations of hypocoercivity methods in this non-equilibrium scenario.

1.1.1. Motivation and state of the art. The main goal of our study is to understand
fundamental properties — such as existence, uniqueness, and possible stability — of non-
equilibrium steady states in particle systems in kinetic theory. There are many works in
this direction both for BGK and Boltzmann equations.

On BGK models: Boltzmann-type models with several thermostats acting either at the
boundaries or in the whole space have received a lot of attention in recent years. In par-
ticular, in [14, 15] the authors study the non-linear BGK model on the torus with periodic
boundary conditions when scatterers at two different temperatures are imposed. In the
cases covered there, one can find an explicit steady state which is spatially homogeneous
and which is also unique. However, our linear thermostat, in this article, is spatially non-
uniform, meaning that our non-equilibrium steady state is non-explicit, spatially inhomo-
geneous, and there is complex behaviour of the hydrodynamic quantities.

In [27] we also started studying the non-linear BGK equation on the domain (0, 1)
when the boundary conditions are diffusive, meaning that whenever a particle hits one of
the boundaries it is reflected back in the domain and its velocity is “thermalised” according
to the temperature of the boundary. We studied the case where the boundary temperatures
are sufficiently away from each other, which is an extreme non-equilibrium regime — for
a fixed Knudsen number — and we showed existence of a steady state. A very similar
scenario for the non-linear quadratic BGK model with large boundary data was studied in
[41] also providing existence, but the prescription of the boundary data is different.

On Boltzmann models: For the Boltzmann equation on bounded domains out-of-
equilibrium there are many contributions in the perturbative case around the equilibrium,
that is, when the boundary temperatures are close to the equilibrium at some uniform
temperature. In [22] the authors constructed a unique steady state in the kinetic regime,
i.e. finite Knudsen number, in the neighbourhood of the equilibrium and proved dynam-
ical stability, generalising and expanding existence and uniqueness results in [31,32] on
convex domains. Existence and stability results on the NESS of the Boltzmann equation
expanding around a small Knudsen number include [1-3]. Moreover, existence of non-
equilibrium steady states to the Boltzmann equation in the slab under diffuse reflection
boundary conditions in a non-perturbative setting was proven in [4].

Regarding the spatially homogeneous Boltzmann equation in the presence of scatterers
and Kac’s toy model, existence, uniqueness, and exponential relaxation towards the NESS
can be found in [16] and in [26], respectively.
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In the context of deriving Fourier’s law, i.e. a heat conduction law stating that the heat
flux vector is proportional to the gradient of the temperature with the proportionality to be
the thermal conductivity of the material, one needs to let the Knudsen number to go to 0,
allowing thus a large number of collisions per unit time and establishing a hydrodynamic
regime. Historically, that was obtained formally by Boltzmann and Maxwell [10,37] and a
rigorous proof was given in [23,24] in the slab geometry, in the close to equilibrium case.
For a collection of the recent works on the stationary Boltzmann equation of bounded
general domains on the perturbative close-to-equilibrium regime for both finite and close-
to-0 Knudsen number, we suggest the recent survey [25].

The question of deriving Fourier’s law from a deterministic particle system in the
microscopic level remains a major open question in statistical mechanics [11, 19,28, 36],
and recent works include studies of harmonic as well as anharmonic oscillator chains in
contact with thermal reservoirs at the boundaries [5, 6, 17, 18, 21, 33, 34, 38-40]. These
works provide existence and uniqueness of a NESS for a large class of interaction poten-
tials, exponential relaxation towards the NESS, and in some more specific cases quantit-
ative convergence rates as a function of the number of particles. Fourier’s law has been
shown to hold in cases of harmonic atom chains perturbed by a conservative stochastic
dynamics as considered in [8].

1.2. Notation

We write A < B in order to say that A < CB for some finite constant C independent of «.
We also write f(x) = O (g(x)) to denote that there is a constant C > 0 such that | f(x)| <
Clg(x)| and f(z) = o(g(2)) for z — zg if there is, for any & > 0, a neighbourhood U,
of zg such that | f(z)| < ¢|g(z)|- By LJZC,U we denote the space with functions that are in
L? for both space and velocity variables x, v. Finally, for simplicity we write M 1, (v) for
Mo, 7, (V).

1.3. Plan of the paper

In the rest of this section we state the main results. In Section 2 we prove the existence and
uniqueness of the steady for state the full non-linear problem. This is split into subsections
with the basic steps of the proof: in Section 2.2 we prove existence and uniqueness for the
linear version of the model, in Section 2.3 we provide upper and lower bounds on the
moments of the NESS, and the requirements for the fixed point theorem are proved in
Section 2.4. In Section 3 we prove L)Zc’v stability of the linearised operator around the
NESS, by first proving a microscopic coercivity, i.e. in the v variable (Section 3.3), a
macroscopic coercivity, i.e. in the x variable (Section 3.4), and boundedness of certain
operators (Section 3.5), introduced to modify the entropy and to run our hypocoercivity

argument.

1.3.1. Techniques and main results. Our first main theorem gives existence and a qual-
ified uniqueness result for a steady state.
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Theorem 1 (Existence and local uniqueness). Suppose there exist constants T and T such
that t < t(x) < T forall x € T. Then if T is sufficiently large and « is sufficiently small
(depending on T, T), there exists a steady state g = g(x, v) to the non-linear equation
(1.1). Moreover, there exist constants T and T depending on «, T, T such that the temper-
ature profile corresponding to this steady state Ty (x) = [°0 v?g(x,v)dv/ [% g(x,v)dv
satisfies

T <Tg(x) < T.

Finally, g is the unique steady state in the class of functions g satisfying this constraint.

This theorem is proved by a contraction mapping argument on the temperature. We
first show that for a specific set of parameters «, r, T, upper and lower bounds on the
temperature, pressure, and spatial density are preserved. Then in this set of parameters we
show that the mapping on the temperature is in fact contractive. To construct the map we
freeze the non-linearity in the equation to produce a linear equation which can be related
to a Markov process. We then use this to show that the linear equation has a unique steady
state for which we can define its temperature. This gives us a map from one temperature to
another. Our estimates showing bounds on the temperatures rely on a representation of the
steady state of this linear equation found through Duhamel’s formula. This is an adaption
of our techniques from [27] where we performed a Schauder fixed point argument on a
similar equation.

Theorem 2 (Linear stability of the steady state). For t sufficiently large so that the result
of Theorem 1 applies and « sufficiently small, the linear operator found by linearising
(1.1) around g has a spectral gap in L*>(g™ ).

This theorem is proved by adapting the L2-based hypocoercivity strategy of Dol-
beault-Mouhot—Schmeiser [20]. The novelty here is that we push forward the hypoco-
ercivity techniques to an out-of-equilibrium system, meaning that we deal with a non-
explicit, spatially inhomogeneous, steady state. Therefore we work on a functional space,
L?(g~1), with non-explicit weights. The L? hypocoercivity theory relies on verifying
assumptions. In our case the most challenging is the microscopic coercivity assumption.
Difficulties in verifying this assumption are related to the fact that the non-equilibrium
nature of our dynamics mean there are complex behaviours relating to flow of macro-
scopic quantities which appear as potentially growing modes in the space spanned by g,
vg, v2g. We are able to control these terms when « is small. Doing this involves bounding
the normalised third and fourth moments (skewness and kurtosis) of the steady state g that
we find.

Remark 1 (On the Knudsen number). Both Theorems 1 and 2 require a finite Knudsen
number « of order @ (1), meaning that we stay on the kinetic—-mesoscopic level, without
passing to the hydrodynamic regime. We remark that this was also the case for the steady
state we found in [27] when the model was subject to diffusive boundary conditions at two
different — sufficiently large — temperatures far away from each other.
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Remark 2 (Discussion for the hydrodynamic regime). The BGK operator is of special
significance in kinetic theory when we are close to the hydrodynamic limit, which occurs
as the Knudsen number x — 0. In our previous work on a bounded interval [27], this would
bring us close to the situation where the steady state f approximates a Maxwellian distri-
bution whose moments solve a stationary fluid equation with boundary conditions set at
the walls. In the situation of the current paper it means we are close to M (y). In this situ-
ation we expect we could establish existence, uniqueness, and hypocoercivity arguments
by expressing the solution as f* = M(x) + «h, where kh represents a small perturbation.
This approach would involve a different set of arguments from those presented in this
work, likely being more straightforward since the solution would be near a Maxwellian
distribution.

Remark 3 (Comparison with [27]). Regarding the stability and uniqueness of the steady
state that is provided here for small «, let us remark that it is due to the thermostat at
temperature 7 (x) acting all over the space. This term is helping the system to be stabilised
as it imposes constraints everywhere in the space. That comes in contrast with the case
when the thermostats act just on the boundaries, as in [27]. This means that the steady state
found for the system studied in [27] when the difference of the boundary temperatures is
large, could possibly be unstable.

Remark 4 (Discussion of larger values of «). If we were to consider « larger, we are
presently unsure whether or not stability would be retained. Even for values of o very
close to 1, where the equation approximates the standard BGK operator, the situation is
still not entirely clear. For this equation the momentum and kinetic energy are preserved
and the kernel of the linearised BGK operator will contain terms not fixed by the very
small thermostat term.

Nevertheless, we emphasise that the existence of a steady state is expected to hold for
all @ € [0, 1]. In this sense our statements on existence are not fully optimised, as small
values of « are required for the stability argument later on in any case.

1.3.2. Discussion and open problems. There are several natural next steps from this
work. For the model studied in the paper two natural next steps would be

* studying the non-linear stability of this equation by first utilising the toolbox in [30]
to prove weighted L stability for the linearised equation;

* looking at the case of small Knudsen number (k) where we expect that one should be
able to use the fact that the steady state will be close to Maxwellian.

We comment that we could also look at the situation where t does not vary very much.
That is to say, |T — t| is small and we can weight by the Maxwellian at a fixed temperature.
In fact, we expect this case to be rather straightforward. We have included a brief proof
of linear stability in the appendix under the assumption that the temperature of the steady
state is close to a uniform temperature, close to 7, T in this case. We expect that this
assumption could be verified by arguments similar to our contraction mapping argument
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to show that the temperature of the steady state is a Lipschitz function of t(x) when t is
considered as a function in L*°. These would be more involved than the linear stability.
We would like to be able to perform a linear stability analysis similar to the one in this
paper for the equation studied in [27] with diffusive boundary conditions. For this equation
it is not at all clear that the steady state found is stable when the difference between the
boundary temperatures is large. This comment is also made in the related paper of Ukai
[41]. Briefly, if we try and run an argument similar to the linear stability argument in
this paper we are not able to verify the microscopic coercivity assumption and we can in
fact show that it is possible for the L2(g~!) norm to grow for certain initial data. This is
caused by complex behaviour of the hydrodynamic quantities and these terms cannot be
controlled by terms coming from the thermostat since it only acts on the boundary.

2. Existence and uniqueness

2.1. Overview of the strategy

In this section we prove Theorem 1, which is split into several steps. We provide a sum-
mary of the strategy of the proof before giving all the details.

Step 1. Forany T = T'(x) > 0, it is proved that there exists a unique probability density
g = g7 satisfying

1
voyg = Lrg = ;[pg(aMT(x) + (1 — )My ) — gl

which is obtained through Doeblin’s theorem applied to the stochastic process associated
with the linear BGK relaxation equation

0:f +vdxf =Lrf 2.1

The main technical argument is to establish Doeblin’s condition, namely a positive lower
bound on the solutions to (2.1).

Step 2. Given the existence of g7 from Step 1, we then continue by defining the mapping
on C(T),
F:T v T,r,

and proving that it is a contraction under a suitable smallness condition on « and a suit-
able lower bound on t < 7(x). This means that ¥ admits a unique fixed point thanks
to the Banach fixed point theorem. This fixed point g is the stationary state to the BGK
equation (1.1).

The proofs are based on several technical estimates established on g7 (in Lemma 1),
on pgr (in Lemma 2), on Ty7 (in Lemma 3), and on ¥ (in Proposition 2).

We write L = Ly to simplify the notation and we write g = g7 (x, v) to be the steady
state of (2.1) corresponding to the temperature profile T € C(T). First we prove the exist-
ence and uniqueness of such a state through Doeblin’s theorem.
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2.2. Doeblin’s argument for existence and uniqueness of a steady state
to the linear equation

We need to show the existence and uniqueness of a steady state for the linear PDE (2.1).
We first construct a stochastic process, the law of which is a weak solution of the PDE
(2.1). Then using Doeblin’s theorem from Markov process theory we show existence and
uniqueness of the steady state.

To construct the stochastic process, first let us generate a Poisson process with rate
% and call Jy, Js, J3, ... the jump times of the Poisson process. In order to construct
the stochastic process X;, V; we proceed iteratively: Suppose we have it up to time J;;
then for

Ji<t < Jiy1, wesetX; =Xy +(@—-J)Vy,
and
Ji<t <Jiyr. Vi=Vy,

while for r = J;41 we generate a new velocity independent of everything except Xy, , ;.
drawn to have density a M7 (x,, , ) + (1 —@)Me(x,,, )- Itis straightforward to check that
this gives the right equation: By taking a test function ¢ on C°((0, 00) x T x R), Taylor
expanding the quantity s 'E(¢(t + 5, X;45, Vits) — ¢(t, X1, V1)), and taking the limit
as s — 0, we indeed recover a weak solution of our PDE (2.1).

Before applying Doeblin’s theorem, let us first give a general statement of it.

Theorem 3 (Doeblin’s theorem). Let Z; be a continuous time Markov process on a state
space Z. Let us write f° for the law of Z, conditional on Zy = zo. Suppose that there
exist a time ty > 0, a constant B € (0, 1), and a probability measure v on Z so that for
any zg € Z we have

Z
f t*o > Pv.
Then the Markov process has a unique steady state.

In order to prove the conditions of Doeblin’s theorem for our particular Markov pro-
cess, the most convenient way is to look at the PDE form of the equation.

Proposition 1. For the linear equation with fo = 8x, v, we have B € (0,1) and v a
probability density such that

fr = Bv.
Proof. First, since t, T are bounded above and below we can find ¢ > 0 so that
aMr(x) (V) + (I =)Mo () (v) = cljyi<
uniformly in x. Then Duhamel’s formula yields the lower bound

F(t,x,v) = et £(0,x — vt,v)

1 t
—i——/ e_(t_s)/"/f(s,x—v(t—s),u)du
0

K
X (@MT (x—v(1—s5)) (V) + (1 — ) M (x—p(—s)) (V) ds.
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Then using the notation (S; f)(x,v) = f(x —tv, v), i.e. the semigroup of the transport
part, and P, f = cljy<1 [g f(x,u)du we write

1 t
f(t,x, U) 2 e_t/KStfo + E/ e_(t_S)/KSt—sPcfs dS.
0

This implies that f (¢, x,v) > e*/*S; fo. Now, by substituting this into the second term
of the equation, we get

1 t
f(t,x,v) > ;/ %S, _sP.Ss fo ds,
0

and by substituting the new lower bound in again we get

1 t N
fxz o [ [ e ps, oS, foar ds
k=Jo Jo
Now, by our initial assumption fo = 8(x,,v,), We have that

Srgxo,vo = 5xo+rv0ﬂ)0 .

Therefore we have

PcSero,vo = 05x0+rv01\v|§17

Ss—r PeSr(xq,v0) = COxgtrvg (X — (s = r)V) Ljy|<1.
2
c
and - PeSs—r PeSrdceo00) = - Tpist lixo+rvo—x|=Gs—n)1-

Since x is on the torus as long as (s —r)1 > \/32, where d is the dimension fixed here to
be d = 1, then the last indicator function is always satisfied. So

2
PcSs—r PcSrg(xo,vo) =

Lyj<1
s—r

and hence )

St—sPcSs—r PcSrS(xo,vo) =

i<t
S —r

whenever (s —r)1 > V. Finally, choose t,. = 2+/d =2, in our one-dimensional setting,

and integrate over 0 < r < § < 4 so that indeed we have s —r > Jd , to get our lower
bound as needed. [

2.3. Representation formula for the steady state and moment bounds

In this subsection we proceed by getting a handy representation of our steady state for the
linear BGK (2.1) through an application of Duhamel’s formula. This will then allow us to
estimate, below and above, the density and the pressure in the steady state.
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Lemma 1. Let g7 be a stationary solution to (2.1). We can get the following representa-
tion formula:

. 1 ==/l
X,V) = X sgn(v
§ ) = [ e sn())

X (aMT(ersgn(v)y)(v) + (1 - a)Mt(x+sgn(v)y)(v)) dy-

Proof. To simplify the notation we write g for g7. Let v > 0 and notice that Duhamel’s
formula yields

et/"g(x +vt,v) — g(x,v)

t eS/K
= [ S par ) @b 0) (1= @) Mo (00 85

Since x € T, by inserting t = |Tl\ and y = vs, we write
Vel 1 oy/klv|
(e —Dg(x,v) = / ng(x + V@M T(x4y) (V) + (1 — ) M (x4 (V) dy,
0

or equivalently

1 o==y)/klv|
gx.v) = fo ol ey P (6 V@M @)+ (= @) Meein () 4,

while the same calculations for v < 0 give

1 p=(=y)/klo]
glrn) = [ s = )My () + (1= ) Mea (0.

This implies the stated representation formula for the steady state. ]

We proceed by providing explicit upper and lower bounds on the density pg, the pres-
sure Pg, and consequently the temperature T, . Our ultimate goal is, through our bounds
on Ty, to determine the values of «, 7, r for which (i) the non-equilibrium steady state
g of the linear model coincides with a steady state to the non-linear model, providing
existence, and (ii) this steady state is unique.

Lemma 2. Assuming that T < t, fort > 1 and a < Z}Jf—:gj/z, we have uniformly in
xeT,
1 -1/2 —1/2 o 1—aq2
- — < < - -
l K[O‘Z +(l a)‘l_: ] ~pg(x) ~4|:KT1/4 + K'l_,'l/4:|

Proof. Upper bound on the density: In order to run our computations we first establish
two bounds that, while slightly fiddly, are not surprising. First, for all x > 0, a € (0, 1) we

have B
xe ax

1—e*

2
<1+4=. (2.2)
a
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To demonstrate this, we define the function
nl(x) =l —e ¥ — zef(lfa/2)x + zeax/Z
a a ’
and then we observe that
72—
nx)=e™+ Me_(l_a/z)x 4+ /2 > ¢**/2 > 1 and 1,(0) = 0.
a
From this it follows that 7 (x) > x for all x > 0. We also have
—x 2 ax/2
mE) = (=) (14 Ze?),

so that

X 2
<1 _eax/z’
l—e—> — + a

and hence —ax
xe <€—ax+ze—ax/2<1+z’
l—e™> ™~ a - a
thus proving the bound (2.2).
Our second bound is that for x > 0, a € (0, 1) there exists C > 0 a constant independent

of a such that

—ax

xe
—— <1+ Cx. 2.3)
To prove this, we consider
() ==
whose first derivative is given by
1—(1+x)e™™
/ —
Mp(x) = W

We observe that n5(x) — 1/2 as x — 0 by L’Hopital’s rule and 75 (x) — 1 as x — oo
and 177, is continuous so 7, must be bounded. This implies the existence of a C such that
n2(x) < 12(0) + Cx = 1 + Cx. The bound (2.3) then follows from the fact that e=%* is
bounded by 1. Now we wish to bound a term of the form

00 1 o—(=y)/kv
/0 Hl_e——l/xvdn@(v)dv,

after applying Fubini, which we are allowed to do as the integrand has positive terms. We
split into bounds for small and large velocities, applying the inequalities (2.2) and (2.3)
respectively:

L | —(1—y)/kv 2 Vs
/ L Me()dv < (1 + —)/ Mo (v) dv
0 I—=y/Jo

kv 1 —e /v

< (1 + %)(271@)—1/%*
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and

© 1 —(1—y)/kv 00 C
/ Me(w)dv < / (1+ - ) Mo() dv
v v

. Kv 1 —e 1k . K|v]

|
=D
+
@)
SN—"
o~
* 3
=
@
=
o
(4

C
f%(”m)

Putting these together gives that for any v, > 0 we have

00 | o—(=¥)/kv 2 1 C
L Moy dv = (14 ——)@roy2u, + L (14—,
/o kv 1 — e 1/kv o(v)dv = Jr1—y (2m8) Y +2 +K|v*|

‘We want to choose a v4« which balances the contribution of the two terms,
C\1/2 2 \—1/2
Ve = (—) (27r®)1/4(1 + —) .
2k 1—y
With this choice of vs, we obtain the bound
°© 1 —(1—y)/kv 1 2 1/2
/ —e—M@(v) dv < C’—®_1/4(1 + —) .
0o Kkvl—e l/kv N/ 1—y

In particular, we get a bound which is integrable in y.
Applying this bound for ® being 7" and t, we get the following upper bound on the
density for positive v for some § € (0, 1):

o0
/gT(x,v)dv
0
Ir o 2 \1/2
< —(1+—) T —1/4
N/O [JE( +1_y) (y+x)

-« 2 \1/2
2+ 4] d
e (14 755) T 0 et
- (1+%)1/2 1-6
- N3 0

1
Ll e

l—a/l 1 \1/2 -1/
tw Gt amy) Toro et

pe(y + 0T (x + »)V* + (1 —a)r(x + ) /*]dy

o 11—«
<
~ [ﬁinfy T(x + y)l/4 + Vi infy (x + y)1/4]

2\1/2 (173 o 1 \1/2
[(1+3)" [ narsinde [ G+ qts)"a] e
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Expanding for § small we notice that
! 1 \1/2
/ (E + a )) dy = O(i8cot(1) esc(1)/2 + /8(1 + 8)) = O(V$).
1-8 -y
Also taking into account the negative velocities, we eventually bound the last line in (2.4)
as

e 2 [ ][+ ) ot

S [«/EOYEIM \}—11/4][31— + ||Pg”ooC2“/—]

for some finite constants C;, C,. Now take V= L —— to find that for all
2C2[f71/4 ﬁ11/4]
xeT, T

o l—a 72
pg(x)sé"ClCZ[\/_ 1/4 \/—_[1/4]

Lower bound on the density: Let A > 0 be sufficiently large so that

1
m NK|U| fOI'

|v] > A and write

/oog (x,v)dv

e~ (1=y)/k[v]
/ f Ty P MM () + (1= @)y )] dy do

e~ (1=y)/k[v]
2 / /A Kol (1= _1/,C|U‘)Pg(x + WaMrety) (V) + (1 — ) Me(x45)(v)]dvdy

2 /0 et +3) [ i M) (0 (1= )Moty (0] dody

1 [oe] o
2/0 Pg(x+y)[/ R K\/ﬁ M1 (v) dv

VT (x+y)

;M dv | d
+/(A+K T(x + y) 1) v} Y

VTlx+y)
> [B_ T -1/2 _ ~1/2
203 S @I+ )"+ (1 —a)rle + )77
>1—[al Y2+ (1 —a)" V.

This implies the stated lower bound on the density, which is a non-negative quantity under
the constraints in the hypothesis. ]

Now we proceed to get upper and lower bounds on the pressure Pyr(x) which we
recall is given by

Por(x) = /szgT(x, v)dv = pr(x)[Tyr(x) + ugr(x)z].
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First we notice that

SvgT(x,v)dv _

[gT(x,v)dv

This is since, due to mass conservation, dx (1 g7 (x)pgr (x)) = 0, which implies

Ugr(x) =

/ng(x,v) dv = /ng(O, v)dv = 0.

Moreover, the pressure is constant in x since

1
0x Pgr(x) = —;ugr (x)pgr (x) = 0.

Lemma 3. For o sufficiently small so that the following holds true,

4r 1/4_1/4 27 1 1 \2
Ot(*/j_‘/f—i_,{27~1/4t1/4(\/f_Z t )+ﬁa(7~1/4 - Il/4> )
2 1
< - 2.5
=VI- 4 N (2.5)
we have uniformly in x € T,

1/2 r1/2 Ir « 1 —aq2
T I R
[a 27 +d-9 2 kLert/4 + kTl/4

S Per(x) < o + (1 —a)T + %(aﬁ+ (1 —oe)ﬁ).

Proof. Upper bound on the pressure P,r: Using the representation formula for the sta-
tionary state g7, we need to control the following for positive velocities:

1
1) i= [ perte )
00 e~ (1=»)/klv]
X f() |v|m(a=MT(x+y)(v) + (1 =) My(x4y)(v)) dv dy.

We use the inequality

1 C
— _e—l/Klvl)—1 <1+ —
Klv| «lvl

that was used in the bound on the density. This gives

|U_|ef(17y)/lc|v\(1 e Clv
K

Integrating then gives

o p=(1=y)/kh|
/0 = My () + (1 — @) Moy (0) dv

k(1 — e~ 1/xlvly
‘/T(x—i-y)) ,/t(x—i-y)).
K K

§a(T(x+y)+ +(1—a)(r(x+y)+
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From this it follows that
1
J+(x),5/ pg(x+y)(af+(1—a)f+l(aﬁ+(1_a)ﬁ))dy
0 K
—aT + (- 0)F + ~(@VT + (1 —a)V3).

K
Here we have used the fact that p integrates to 1. The analogous bound for negative velo-
cities gives in total

Pe(x) <aT + (1 — ) + %(Olﬁ-i— (1 —a)V7).

Lower bound on the pressure Pgr - For this we bound e~ (1=?)/klvl > 1 _ 1|—_Uy" so that for

K
positive velocities,

0 L,=(1=y)/klv|
/0 |v] mMT(x-i-y)(v) dv

[ee] (&) 1 _ y
> /0 VM () (V) /0 I Moy (0) do

K|v]
N 2k~ 2w 2K
Consequently,
1 T1/2 /2 1 1—y
1)z [ perte o= +a—oSJar— [ preensEa
T1/2 .L,l/2 1

O v bl
o —a)— | ==+ —|
~ 27 2 kL4 Kkgl/*
Collecting the same estimates for the negative v’s we write

1/2 1/2 1

p - T | T o 1 —a7?
gr(x)w[oe 5 +(1—-a) e :I_;[Kzl/4+K‘£1/4:| )

T

The constraint (2.5) is required to make this lower bound non-negative. ]

2.4. Contraction of the mapping ¥

Since we have ensured the uniqueness of the steady state g = g7 for equation (2.1), as
proved in Section 2.2, we are allowed to define the mapping

25, vlPg(x,v) dv _ Per ).

F:O(T) - C(T), (FT)(x) = [P gc.vydy
—00 ? gT

Our goal is to show that this mapping is contractive, which implies that there is a fixed
point. Existence of such a fixed point, i.e. T € C(T) so that T(x) = Tg(x) forallx € T,
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implies that the steady state found for the linear model (2.1) corresponds to a steady state
in the non-linear BGK model (1.1).

Before proceeding with the statement let us define the following set that determines
the Lipschitz constants for ¥, in terms of «: We first define

o l—«o o -«
fe) = 7 g L) =

Then the set is as follows:
16Casi (@)’ (55 + KZ+/2]

1—4C ki (o)
5 ([aT + (=) + L@VT + (1 - a)VD)]
[1— 32 ()]?

+(1—a)(f+‘/;)+a(f+

€T,f,l,z,x =(0,1)n {a :

)

K

+ 20 zi/z 11— G@] ™ <o, 1)}.

Proposition 2. Let two temperature profiles Ty, T, € C(T). Assuming that

4 \4
i =: i = > — =
xuequr t(x) =11 > xuequr Tx)=T, 2 ( ) . oand @ €Crzq o,

N3

the mapping ¥ exhibits a contraction property
[7(T1) = F(T2) Loy < Co 727,20, IT1 — T2llLoo(m)

for some explicit finite constant Ca,T,%,Z € [0, 1) depending on «, T,7, T, 1, k.

ST,K

Proof. We fix two functions 77, T, € C(T') and using the upper and lower bounds on the
density and the upper bound on the pressure, we calculate

|F (T (x) = F(T2)(x)|

1
= (Png PgTz)(X) |Png (x)(PgTz - Png)(x) + PgTi (x)(Png — Pgrz)(x)|

Png 1
————(%)|pgri — pgra [(x) +
PgTiPgT2 PgT>

T + (1 - )7 + L@vVT + (1 —a)v7)]
[ = §l™2 + (1 —a)r /22

A

|Peri — Py, |(x)

= C0|pgT1 - pgT2 |(x)

+|Pgn = Py |(0)]1 - %{az”” +(1- a)z“/z]]_l. (2.6)
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Now we estimate the difference of the densities using the representation of our steady
state:

|pgT1 - IOgTZ |(X)
o /xlol

Kl |(€1/K|U‘ )[png (.X' + y)(OCMTl()H_y)(U) + (1 - a)Mr(x-l-y)(U))

— PgT> (x + y)(aMTz(x+y) (v)

+ (I = ) Me(xty) (v)] dv dy‘

ey/xlv]

o K|v|(el/lc|v\ )[Iong (X — ) (@M, (x—y) (V)

+ (1 - O{)M‘r(x—y)(v))
= pe1a (X = ) @M,y (x—y) (V)

+ (1= @) Me(e_yy(v)] dv dy‘.
We look at the positive velocities and write
oy/klv]
/ | e e (@M 10+ (1 =) Mrei ()
— PgT> (x + y)(aMTz(x+y)(v) + (- O‘)f/"(r(x-i-y)(v))] dvdy
1
= [ bum = per ) + DI =1 (5. ) + s T )]y
1
ta / pers (5 + MK (Th. y) = J(Ta. )] dy.
0

where K is the integral kernel defined by

o0
1
K1(0,y) = / — e /Kl (] o= 1/KIP =T g4 o (0) d.
o kvl
Together with the negative velocities then
|pgT1 - IOgTZ |('x)
1
S 20l [ 1T+ ). ) = K (Tal £ ). 3)
+ | Ki(Ti(x — p), y) — Ki(T2(x — ), y)|dy

1
+/0 (1 =) Ki(z(x + ), y) + aK1(T2(x + 3), )| |pgri — pgra [(x +y) dy

1
4 /0 (1 — ) K (20— ). ) + @Ko (Talx — 9). 9 logms — pyrs | — 1) dy
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o 1—aq2 (!
/cT—l/“+m] /0 [K1(T1(x +y),y) — Ki(Ta(x + y), y)]

+ | Ki(Ti(x — ), y) — Ki(Ta(x — y), y)|dy

— g2 Loy [(1 — )T /4 + aT~/%, 2.7)

< 801[

4C
+ W ”IO ng
where in the last line we used the following upper bound on K; from the proof of
Lemma 2 on the density’s upper bound:

K@+ )3 = (14 725) ot 4

as well as the integrability in y, all these yielding a factor C which is independent of a,
Kk, and the temperatures. We notice now that K satisfies

[K1(T1(y), y) — Ki(T2(y), y)| < C|T1(y) — T2(y)]
for a constant C. Indeed, we compute

d (6 d r® U=y« » q
@ 1( ’J’) - @/0 K|U|(1 _e_l/ldvl) G(U) v

00 e~ (1=»)/klv] 1 e v°/26 2 ,—v?/20
- - TR P
/0 Klvl(l—e‘l/“'”')[ 2032 276 202 276

1 oo —(1=y)/x|v] Py , .
202 - d
262 / Kk|v|(1 — e~ 1/klvl) g(v)(—=0 +v7)dv

1 00 ,—(1=y)/klv| )
= Wf K|v|(1 —e‘”"'”‘)Ma(v)v dv.

With similar estimates to the proof of the upper bound for the pressure, we write

d 1 % |y|e=(1=2)/klv]
g9 710y = W/ ma\lg(v)dv
1 Cl| 1 Vo
_ < ~7
< 292/ (2 + =7 ) Moy dv 5 55 (1 + =)
_1,
20 k032

where for the last inequality we neglected the negative terms. This implies that

1
KT, ) = Ka (T 0] = Caf 5 + 7571 = B0l

for a universal constant C;. Then inserting this into (2.7) implies

1 1

1
1
1/4] 2Ty — T2||L<>°(T)/0 [ﬁ + '@—3/2] dy

— pgts Loom)l(1 — o)™/ + aT~1/4.

|)0ng pgT2|(x) ~ Sal: T1/4 +

4C
+ %”png
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There is a finite constant C then so that

1—aq2

o 1 1
lpgri = pgra|(X) S 16C0€[KT—1/4 + ”—1/4] [i + T3/2]||T1 T2l ()

= gtz lLoo(ml(1 — o)™/ + T 71/4,

4C
+ ﬁ”pg’rl
implying that, after taking the supremum over x in the left-hand side,
4C _ -
logri — pgr ||L°°(’]1")(1 - W[(l Y ]/4])
< 16C o 1—aq2r 1 1
<16 OZI:W + K‘EW:I I:i + T3/2]||T1 T3 Loo(T)

or, as long as (1 — 47%[(1 —a)t™ 4 4+ aT7Y*]) > 0 which is satisfied when

4C \ Y g
t>T, 1’2(%), and 06<T_1/4—_I_1/4,

we have that

16Ca[—%77 KT 1/ + Kr1/4] [2T le/z]

(1= [ -y V4 +aT ™4

pgri — PerallLoe(T) < IT1 — T2l (T)-

As a next step we estimate the difference of the pressures:

|Png - P T2|(x)

lv|e¥/xIv]

K(el/K|”| ) [Png (x + y)(af/%ﬂ (x+y) (v)
+ (1 — )M (x+y)(v))

— PgT> (x + )’)(O“MTz(x+y) (v)

+ (I = ) Me(x 1) (v)] dv dy’

lv|e¥/xIv]

oo K(el//clv| ) [Png (x = YY) (M7, (x—y) (V)

+ (1 - a)f/%r(x—y)(v))
— g7z (X = Y) @My (x—y) (V)

+ (I = ) Mr(x—y)(v)] dv dy'-

869

2.8)
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Looking at the positive velocities, the terms we need to estimate are

1 [ele) | |ey//<|v|
/0 {01/0 md%ﬂ(x+y)(v)(ﬁgﬁ —PgTz)(x+Y)dU

% |y|e¥/Elv]
+ a/o mpgTz (X + V)M, 4y) = MTy (et ) (V) dv

lu|ey/xIv]
+ (1 - Ol)/ (el/K‘Ul )Mr(x+y)(PgT1 - pgTZ)(x + y) dl)} dy

= /0 {((1 =) K (t(x + ). y) + @Ko (Ti(x + ). ¥))(pgri — pgr2)(x + )

+ apgr; (x + Y)(Ka(Ti(x + y), y) = Ko(Ta(x + y), ¥))} dy,

where
% yleX/ vl
Ko(O(x +y,y)) = /0 mMG)(xH)(U) dv.
An upper bound on this integral kernel, as was computed above by the use of inequality
(2.3), is
~ O(x +
K@+ y. ) = (00 4 y) + YEEEI)

for a universal constant C. We have then, also collecting the negative velocities, the fol-
lowing upper bound on the difference of the pressures:

|PgT1 - PgT2|(x)
1
< 1pgrs — pyrs o) /0 [0 = ) (x(x + 1), ) + € Ja(Ti(x + 7). )|

+ (1 —a)Ka(z(x — y).y)
+aKo(Ti(x —y), y)[]dy

1
+ ol pg7s [ Loo(T) /0 (K2(Ti(x + y), ) — Ka(T2(x + ¥), y)|
+ [Ko(T1(x — ), y) — Ka(Ta(x — y), y)[]dy

16Ca[ 27 + S5 [5r + a7l 7 ~ VT
< RN e T 3 [(1—a)<f+£)+a(T+ﬁ>]
TE[(l —a)T V4 T4 « ‘

x || Ty — T2||L°°(T)

0‘1/ + 1/4 /[|J{2(T1(x+y) ¥) = Ka(Ta(x + ¥), y)

+4a[
kT

+ | Ka(T1(x —y),y)
— Ka(Ta(x — y), y)|ldy, 2.9
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where for the first integral on the right-hand side we applied the upper bounds on K>, and
on [|pgr; — pgs [ Loo(T) from (2.8). For the next term, we applied the upper bound on the
density.

We next notice that — as in the case of K; — the kernel K, also satisfies

[ K2 (T1(y), y) — Ka(T2(y). y)| < C|T1(y) — T2(y)]

for a constant C that is integrable in y € T: for that we compute

dJC 0 1 [ |vleX/<l M 2_g
@ 2(sJ’)—ﬁ/0 m g(v)(v™ —0)dv

1 © 4 Ey/klvlve
ﬁ/o 2 p1/klvlVE —
1 00 13 y/klvlve
ﬁ/o 2 1 /xlolVE — |

Ki/é[vi(l + %) + «/Zvie_v’%/z]
1 [vi(l 2 )+4«/§]’

+_
260 1—y Vs

where we split the integral on [0, v«], [v«, 0o[. Then choosing v, = (ﬁ—ﬁi)l/i we have
T~y

My (v)(v? —1)dv

A

My (v) dv

A

[\

A

d 1 2 \1/5
S K,0,y) < 1 :
ag %20 2K91/2< +l—y)

which implies

1 2 /
Ha(T1(0). ) = KoL) 0] 5 g (14 4 _y)1 1T 0) = ).

Inserting this into (2.9),

|Pgry — Pgry |(x)

16Ca[ iz + sl ’lar + o) [ —a)(z + ﬁ) +o(T + E)]
K K

< —
T =50 -t aT )

X ||Ty — T2l Lo (T)

8ar « l—aq12 1
+ 7[KT1/4 + /cgl/“] 7172 71 — T2l Loo(T).-

Finally, (2.6) together with (2.8) and (2.9) yields a contraction for ¥ :

Sug |‘77(T1)(x) - 37(T2)(x)| 5 CO(,T,‘I_I,I,LK”TI - T2||L°°(T)v
xe
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16Cal g + (i Py + )
(1= 4C[(1 — )z /4 + a7~/

{[aT+(1—oz)t+ (a\/_—l—(l—a)«/_)]
[ 4T~ + (1 - o)z 1/22

+[a-o(i+ £) +a(T+ E)]}

8a o 1—a2 - ) .
KT1/2[KT1/4 +K‘[1/4] I:l—;[a’]_" 1/2+(1_a)z 1/2]] m

2.5. Proof of Theorem 1
Let us define the set Sy 7 :={T < T'(x) < T} In order to apply the Banach fixed point
theorem we want to ensure that the mapping # maps the set Sy 7 into itself, i.e.

J""(SLT) C SZ,T' (2.10)

Using the estimates from Lemmas 2 and 3, we get the upper and lower bounds on the

2
image of ¥, ¥ (T)(x) = %, stated in the following lemma.

Lemma 4. Under the condition (2.5) on o and t, we have uniformly in x € T that
s a5 e s e )
4 o 2 iLer/4 7 gl/4 KTV4 T kgl
T + (1 - )7 + L@VT + (1 —a)V7)]
(1=l 2+ A —mt2)

SF(M)(x) L

Thus, in order to ensure that (2.10) holds, we need to assume that
-1 _
[aT+(l—a)r+ (@ \/_+(1—a)«/_)](1——ch V24— (x)g_l/z]) <T

and

1[[ Zl/z+(1 )21/2] 1[ o +1—a]2][ o +1—a] 2>
4 T T il 7% 7 kg1 KTVA T et/ =

By setting @ = 0 in the equations above we can see that this will be possible provided we
first choose

&

_ 1 1
Fog il g rYr_ 1 @2.11)
/c T—1 8w K

and then choose « sufficiently small depending on 7, z, T, T, and «.
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Proof of Theorem 1. Since ¥ (St 7) C Sr 7 and the mapping ¥ is contractive as long as
o € €r ¢, we conclude that there is a unique fixed point, i.e. there is a unique 7 € C(T)
so that T = T,. The uniqueness of the fixed point implies the uniqueness of the steady
state found, in the class of functions satisfying the condition T’ < T, (x) < T forallxeT.
This holds for T, T satisfying (2.11) with & sufficiently small so that « € CF 27 10 18
in (0, 1). [

3. Linear stability

In this section we prove the dynamical perturbative stability in the weighted L? space with
weight g(x,v)™L.

Before linearising our operator around the NESS g and studying its stability, let us
provide two more properties on g that are going to be needed for the basic estimates for
the stability, that is, to prove bounds on higher moments.

3.1. Bounds on the third and fourth moments of the NESS
Let us define the normalised third and fourth moments of the steady state g7 .

Definition 1 (Normalised 3rd and 4th moments). Let us define the third moment of the
steady state g7 corresponding to temperature 7" as

1
dz(x) = ——— v3Tx,vdv
J(x) pgTTm[I; &7 (x.v)
and the fourth moment by

ds(x) :=

per T2 /I;v“gT(x,v) dv — 3.

Proposition 3. For «a sufficiently small and T > 1, uniformly in x € T we have for the
third normalised moment of the non-equilibrium steady state g,

e P 1 = _
“ { [KI”“ " Kzlf“] (@F +(1-a)7) - zm[“\/?+ (1 - )3}
< ds(x) < C(T3? + 232 4 (T + ) /x)

320 = (@72 + (1 —a)z!/?))’

while for the fourth normalised moment of g,

T2 o l—a1-2 /21 3 1 _
/2 B 3/2y b o]
4 [[KT1/4 + sz] V ;;(“Z + (1 —a)z’’) e (T + (1 oz)r)] 3

- C(TZ +.EZ + (’]_"3/2 +.E3/2)/K)
T - @I 4 (- ertf2)

for a finite constant C.

< da(x)
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Proof. Upper bound on dz: We start with the upper bound on d3 using the representation
formula for g7 . For positive velocities we write

o0 s 7 oo pl 5 e—1=y)/xv|
v x,v)dv = v X +
/0 g ( ) /0 /O K|U|(1 _g—l/KM)pg( y)

X (@Mr(y+x) + (1 — @) Me(y4x)) dy dv.

Again, we use the bound

1
W(l —e Ve h=l <1 4 /x|,

for some universal constant C. Using this we have the bound

% |p|2e=A=¥)/klv] 3/2
/0 mMT(U) dl) f C(T + T/K),

for some different universal constant C. This then implies that

0o 1
| e < [ pue s C@ 4 B4 (T 4 D0y
0 0
< C(T?? + 732 (T + 7)/x).

Combining this with a similar bound for negative velocities and dividing by our lower
bound on p, (x) gives

C(T*? 4+ 732 + (T 4+ 7)/x)
T¥2(1 = @72 + (1 —o)z'/2)

|d3(x)] <

Lower bound on d3: Regarding the lower bound on d3, we use the inequality e ~(1=)/«I?|

1—y .
> 1 - =2
>1 ol to write

1 00 |v|267(1*y)/lc
- M dv | d
« pg(x+y>([0 R M) v) y

2o [ ([T (- g gm an) @

K K|v|
_ 1 Tx+y) 1—yJ/T(x+y)
—a/O pg(X+y)[ % N ]dy
T o ﬁ [ o l—a]z

Zo— — —
K’]_"l/4 K§1/4

4
2k 2 2mk
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This in total gives

s (x) 1 {a(T JT 4[ o l—a]2)

RV

loglleT22 N2 22wk LT VA e/
_ R
r-a(E - S S 28T
2K 2 27TK [{‘[_jl/4 K'l_,'l/4

T_K3/2 {2[,(;/4 + ,lc;/(z]%az +(1—a)7) — 2\/15 [aﬁ+ (1— a)«/?]},

The parameter o being small enough ensures the non-negativity of the lower bound.

Upper bound on d4: We now continue with the upper bound on d4. From the representa-
tion formula for g7 for positive velocities we write

0o i T oo pl 5 e—(l—y)/K
v ,v)dv = v
/(; g (.X ) /(; /(; K|v|(1—e_1/"|"‘)pg(x+y)
X (Mr(y+x) + (1 =) Me(y4x)) dy dv.

Repeating the strategy for d3 we bound

4 ,—(1—y)/k|v|
v|ie
| | |v|3’

<]t + =
kv|(1 —e~1/xlvly — vl K

for some universal constant C. This implies that we have

®  |y|te==)/klvl ) 32
/0 <l _e—l/xlvl)‘MT(v) dv < C(T*+T7%/k),

for some different universal constant C. This implies that

[e¢) 1
/ v4gT (x,v)dv < / pg(x +y)C(T? + 7 + (T?? + 53/2)//() dy
0 0
=C(T? + 7+ (T + %) Jx).
Combining this with the analogous bound for negative velocities and our lower bound on
pg this gives
C(T? + 72 + (T2 4+ 3/2) /i)
21— @72+ (1 -a)'/?)

|da(x)] <

Lower bound on dy: Finally, for the lower bound we write

1 % |y[Be—(1-)/k
— M dv |d
a/O pg(ery)(/O (1l — 17k T+ (V) v) y

1 % yI3 1—
za [ Lot n( [ B (1= ) Moo av) ay
0 o Kk

k]
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1 J—
2 a/o pg(x + y)[\/g%T(x + )32 = (lkzy) T(x2+ y)]dy

R Py a 1—a2T
T ‘“[,Cz—mﬂq—m] 2

Finally, together again with the negative velocities, the (1 — «) terms, and the upper bound
on the density, we write

T72r « 1—a7-2 2 732 o 1—a72T
da(x) 2 — [KT1/4 +K11/4] [“ = _a[ T1/4 +,{,1/4] 2
+ (

1—a2T
( Ci)[ 1/4 +_K‘L'l/4:| K_2:|_

T2 l-a
= Lz + ) \f @I + (1 -a)z*?)
K—

[KT1/4 ¥ i;/‘fj] —@T+0 —05)7,’)]

T2 « l—o 3
_ /2 3/2
e [[KT1/4 “1/4 \/7 @T?? + (1 - )33

—Kiz(af+(1—a)f)]—3. .

Vv

3.2. Linearising and splitting the operator

In this subsection we linearise the operator &£ around the non-equilibrium solution g:
f(t,x,v)=g(x,v) + eh(t,x,v). In the following lemma we state the linearised evolution
equation that the new unknown / satisfies.

Lemma S. The linearised equation around the steady state g is

1 o uv 1 u? v2
9h = Lh = —vih + ;(aMTg(x) /_oo(l too 5(T—g - 1)(T—g — 1) )h(x, w)du
+ (01— a)M,(x)/ h(x,u)du — h). 3.D
—o0

Proof. We write f = g + ¢h; then we have

(o) oo
pr =pg +eop and pruy = / vf(x,v)dv = pgug + 8/ h(x,v)vdv.
—00 —00

We recall that u, = O (cf. the discussion just above Lemma 3), and therefore by denoting
mp = f_ozo uh(x,u)du,
emy, _em

by o).

Ur = =
s pg (1 + epn/pg) Pg
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Regarding the temperature we write, up to first order in ¢,
pr(Ty + u}) = pgTg + &P,

and so

Ty 4+ €Pr/pg
1y = Tt oPulbs o

1+ eon/pg
=T, + s(% — /%Tg) — (ug + S(IZ)L: - %))2 +o(¢)
=T + 8(% — ﬁ—ZTg) +o0(e) = Tg(l + 8(% - z—z» + o(e)
— Tg(l n é /_:(;—: - l)h(x,v)dv) +o(e),

where we used again that ug = 0. Next we move to the linearisation of the Maxwellian.

Up to first order in & we write

lv—uyp|?/2T = ‘v _8(%)‘2%[ _ é/_oo [;_: - 1]h(x,u) du:| +o(e)

4 g 00
2 o] 2
= [v_ —sv( M >]|:1 — i/ [u_ - l]h(x,u)du] + o(e)
2T Tepg Pg J-coltTg
2 2 0o .2
v e / [u_ — 1]h(x, u)du — cvh + o(e),
2Ty 2Tgpg J-cot Ty Tgpg
and so by expanding the exponential near 0,
lv—uy|? v?
ool %) <o)
2Ty 2T,
ev? 00 ry2 svmy,
x |1+ / [— — l]h(x,u) du + + 0(8)).
( 2Tgpg J-0o' Ty Tepg
For its normalisation we have by expanding again around O that

_ 1 e(Pn pn
27Ty) V2 = 1__<___) L o(e
(rTy) rmg( (5= ) +o(e)

1 00 2
= (1 -2 [u_ — 1]h(x, u) du) + o(¢).
vV 27TTg 2108 —00 Tg

Therefore, altogether the infinitesimal Maxwellian is

[OO uh(x,u)du

—00

My, (0) = M ()(1+ ev? [l "~ b du+
Tr\V) = 0,7, \V —_— = X, Uu)du
e f 2Tgpg J-ootTg Tgpe

e o0 M2
3 _w[T_g - l]h(x,u)du) +o(e)
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e o2 %0 )2
= 1+ —|——1 | d
M”g(v)( +2pg[Tg ]/_w[Tg e au
&v *°
/ uh(x,u)du)—i—o(s),
Tgpg J-oo

and so the whole non-linear term is

pruf,Tf (U)

I3 o 1102 u?
— pg M I 1 —[——1][——1
P O@Aw[-+pg{[m(-+2 -l

+ﬂ h(x,u)duy |.
J+ g o auf|

Using then that —vd, g + £g = 0, we end up with the stated operator £. |

Next we stress that our linearised operator is a non-self-adjoint operator in the
weighted space L2(g™!). Nevertheless, we proceed by decomposing the operator £ =
T + € into a symmetric and an antisymmetric part. This is motivated by techniques in
hypocoercivity (see for example [20, 35, 42]) and more recently a technique via Schur

complements [7].

Lemma 6. The linearised equation (3.1) has the form

0 f+Tf=Cf

where € is symmetric in L?(g™") and T is antisymmetric. The explicit formulas are given

by

a [ Mr, (u)
ef =5 [ (Mn0)+ TE D)
2 2

uv lru v
X\ 1+ =+ -1z —-1
( Ty 2[Tg ][Tg
l—a [ Mo (u)
2k /_oo(Mt(v)+g(x,u)
1 ( aMr, + (1 —a)M,
P g(x.v)

+

> ) G.v).

while

o o« [® Mr, ()g(x,v)
qusw@f+§;[w@ugm——fazﬁ—q

2

uv lru v

])f(x,u) du

g(x, v))f(x, u) du

2

x (1+T—g+§[T—g—1][T—g—l])f(x,u)du

[ (M) - D) iy

g(x,u)

,u)du

1
-5 S, v)(l ) (@M, o) + (1 - a)Mr(x)(v))).

g(x,v)
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Proof. We stress here that by £ we denote the whole operator, together with the transport
part, so that

2 2

Lh = —vih + %(aMTg(x) /;:(1 + % + = ! [;—g — 1][;—g — 1])h(x,u) du

+ (1 —oz)eMr(x)/; h(x,u)du —h).

Calculating the adjoint of this operator, £*, in L2(g™') we find that it is

L*h = voxh
Tg(u) uv  1ru? v?
[ag(x v)/oo 2. 1) +T_g+§[T_g_l][T_g_l])h(x’u)du
+(1- )[ gz(X)( )h(x,u) du g(x,v)]
pg(X) (1— 05)
ey (M0 @) + = M () ). (3.2)

Indeed, the adjoint of the transport part gives, using that g is NESS,

v hr ) — v X8V

(—vdy)*h(x,v) 2(x.0)

v h(x,v)
— g(x,0) " pg () @My () (V) + (1 — @) Moy (V)1 (x, v) = h(x, ),

which accounts for the first and the last terms in (3.2). Then we use this to get symmetric

. . . *
and antisymmetric parts since € = £+£ and T = £ 23

Typically in L2-hypocoercivity (see [20]), the strategy is to prove that the collisional
symmetric operator in L2(g™!) satisfies a microscopic coercivity property on the ortho-
gonal complement of its null space and that the transport antisymmetric operator satisfies
a macroscopic coercivity property exactly on the null space of the collisional operator.
These conditions imply that g is in the kernel of &£. Then, after introducing a modified
entropy functional, equivalent to the L? norm, under additional general assumptions on
the decomposing operators, one can control its dissipation and conclude exponential relax-
ation of the semigroup to the steady state.

This general framework in L? to estimate relaxation rates for a general class of kinetic
equations does not apply in our case as it is, because our steady state does not have an
explicit formula. In [20] it is required that the global equilibrium lies in the intersection
of the null spaces of the two decomposing operators, i.e. the transport and the collision
operators. This is not the case in our out-of-equilibrium setting.

To our knowledge there are two articles so far dealing with such circumstances, [12]
where the authors treat the problem perturbatively and [13] where the transport and colli-
sion operators are redefined.
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Our approach is mainly inspired by the latter: in particular, we split the operator dif-
ferently from [20], into a symmetric and a skew-symmetric part as is shown in Lemma 6.
Then we show a microscopic coercivity inequality for the symmetric part and a macro-
scopic coercivity for the antisymmetric part.

Before we move on with proving such properties, let us stress that now one can check
with explicit computations that

Cg=Tg=0,

where €, T are computed explicitly in Lemma 6. So with this decomposition the steady
state belongs in the intersection of the kernels of the decomposed part of the operator.
We denote by IT the orthogonal projection to Ker(€) which is given by

o0
Inf = pfi, where pr(x) = / f(x,v)dv.
Pg o

The space that we work in is

H={f¢€ LZ(%):ffoRf(x,v)dxdv =0}

induced by the scalar product
o fo) = (fi )iz ety = / Ao Hlouw)/gnuydudy. (33

3.3. Microscopic coercivity

This subsection is devoted to the coercivity property of the symmetric operator on the
orthogonal of the kernel of €.

Proposition 4 (Microscopic coercivity). With the above notation, we have that the oper-

ator € satisfies
—(€h,h) = Am||(I — TDA|?

for some positive constant Ay,.

Proof. In this proof we will write

i fo) = U fodazeny = / F0) fau)/ g o) du,

which we note is a function of x.
We start by computing (€4, h)12(g-1). In order to do this let us rewrite

o 2

e o RS [ENES) )

+ ;—Kg(x, v)((h, MTg) + \/LT—g<h’ \/_T_gMTg>
2

T Lol (A L )
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+ lz__o‘(g(x, v)(h, Me) + Mo (B, €))
K

_%(1 gadwrg;i’lv—)a)a%t)h(x’v).
Using this we write
(e k) = 2 (0h b, )+ (.~ ). =)
ol o )+ s
Y N

We split this into
1
(€h,h) = E[aI + (1 -a)d],
where

u u
= MTg)(h,zg) +(n \/—T_gMTg><h,2\/—T—gg>

u u

+ (. 5~ e L7 - 1))

—%/_Oo(wpg( ) Tg)hg(éc’?)z du,

while
du,

o0 M h(x,u)?
1 (x) ) s
( + pg(x) 2. 10)
and we are going to bound them separately.
Motivated by this, we consider as a function of v (for a fixed x € T) the functions

g = <h,Mf><h,g>—§/

—00

v dzx)v
(Tg \/T_g Dg

_ 8 v o
p1(v)g = ——=, pa2(v)g:= = p3(v)g = .
A/ Pg pglg pg(2+ds—d?)

We observe that these are orthogonal functions in Lz(g .

Then we decompose & as the sum of & = i + h where h is orthogonal in L2(g™")
to the space spanned by p;(v)g, p2(v)g, p3(v)g, while h belongs in the space that these
quantities span. We collect the above observations in the following lemma.

Lemma 7. For fixed x € T, we consider the mappings v — p;(v)g(x,v) fori =1,2,3,
where

2 di(x)v
(Tg \/T_g l)g

_ & v o
pi(v)g = ——, pa(v)g:= . p3(v)g = .
VPg pgTe Vpg 2+ dy — d?)

These are orthogonal functions in L2(g™"') of norm 1.
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Proof. This is just a computation:

2 3/2
/(1)2 dv l)zgdv pgTg B +da)  2p,diTy N ped3 T, _Zpng

- Tg T3/ 2 Tg Tg

——— + Pg
T, JT. ;
= pg(2+ds —d3).

We continue by writing h = [ap1g + Bp2g + yp3g] + h for some constants a, B,
y and where his orthogonal to the space spanned by p1g, p2g, p3g in L2(g™!). In the
following lemma we collect the explicit values of each term appearing in I, . One can
check these by explicit computations.

Lemma 8. Decomposing the solution of (3.1) as h = ap1g + Bp>g + yp3g + h, for
some constants a, B, y, then

(h.g) = a/pg. <h, \/LT—gg> = B./Pg-

(g5l = Je) = oy = 4 e
and
(h, Mr,) = \/_p_g + (h. Mz,),
<h, u ): B yds +<5,LMTg)-

VP pe(2 4 dy — d?) Vg

From now on we will denote by Z = Z(x) := 2 + d4(x) — d3(x)? and let us note that
we are able to bound this from below and above uniformly in x, thanks to Proposition 3
with constants depending on «, t, T. Inserting these values into I, for its first three terms
we have

(h, Mz, )(h. g) +

PP 2~ ot )]

+\/E[ htMTg +,3< J%MTg)+ 7 ——1

Moving to the fourth term in I ,we first note that we have

h? h?
/—=a2+/32+y2+/—, (3.4)
g g
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and therefore

h? h? h?
[ eestn: = [ pestn s [ Goest

y*2+d3) 2By

=a*+p>+ Z —ﬁd3
+ g |2alh, :/\/(Tg)+2(,3—y—al3)( — M, )

" JTe
o3l ol 1]

h 2
+ /; gix—v;ng (x)Mr, (v) dv.

Putting this together we get

I=a+ B2+ y +aypg(h Mr,) + 2B /pe(h.

+ (ﬁ, [% - 1],MTg)\/%(,,\/§+ %) _ % B ﬂ; ~ ;/2(2242r d3

Mr, )

h(x,v)? a> B2 y? 1 [ h(x,v)?
_5/—00 g(x, )Zpg(x)MTg(v)dv—T—————5/_00 g(x,v) @

2 2
Yo, 2+d; By
=5 (0 2+d4—d2) f|d3|

el s (05 V3 RN - ]

1 / iiz ( Mr

S R () (35
2) ¢ ‘g

Now regarding the terms involving h we first estimate by Cauchy—Schwarz and then use
that [°0 v M7, (v)dv = Ty

m(ﬁ, \/LT_gMTg> = /pg(x) /OO ﬁ(x,v)\/l;?(f(:))

2 1/2 2 1/2
- ([_oo %pg(xm% (v) dv) (/Oo ”—gMTg (v)dv)

%) ],;2 1/2
= ([ G wa) (36

—0o0
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and similarly

Jeslf %[% 1)< (f g—ng(meg (v)dv)m. 37

The first line on the right-hand side of (3.5) becomes

)’_2 ds —2d3 Byds
22+dy—d? JZ

The rest of the terms are estimated by (3.6), (3.7), and Young’s inequality. Altogether we

get
dy—2d2  Byds d3|y| \/’ \/’ ﬂda
I< 2 3
_y2+d4—d2+\/7 +‘
hi(x.v)?
< o(ds. d)(B> +77) < o(ds. ds) / Ll 670) by
oo g(x,)
where

S (= = —E) g £

NN N
Moreover, ¢(d3, ds) is a continuous function of d3, d4 which goes to 0 as dz, dy — 0.
The last inequality above follows from equation (3.4) as we can write & = h™ + ap, g,
which implies that

h~2 h2 h)2
a2+/32+y2+/—=/—=/u+
g g g

cf. Lemma 7. Then 2 + y? = [ (hgﬁ — };—2, and the claim follows.
Now we move onto ¢ which is simpler as here we only want to split % into its parts
that are parallel and perpendicular to g. We have

1 ‘M‘L’ 1
=a’+a h , M) —a —a— 1+ p.— )k
& v NG ( Ps g)
1 (hJ_)Z
2/(1+Pg g) g

152
- ;/<1+pg g )(hg) '

(choh) =+ (apt ) - -5%) [ “’?2.

Now d3, d4 change with o; however, from Proposition 3 we see that we do not have
singularities in terms of « in the upper and lower bounds of d3, d4. Thus we can bound

Therefore,
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the moments uniformly over all & € [0, 1]. This implies that there is a finite constant M
so that ¢(d3, dy4) < M(k, T.T,7, 7) < oo for M independent of «. Then

1 - 1- ht)?

(eh.h) < (ame. T.7.7.0) - %) [ CF
K

which yields microscopic coercivity as long as

1
DMk, T, T.7,71)— 1

o >

Since we can make this bound M («, T, T, 7, 1) large, we ensure that there is a positive
constant A,, so the statement of the proposition holds true. ]

3.4. Macroscopic coercivity

We recall that if IT is the projection onto the kernel of € then [1h = ﬁ—z g. We proceed by
providing a macroscopic coercivity inequality for the antisymmetric part of the linearised
operator on the null space of €.

Proposition 5. Let the condition (2.5) on «a hold, namely « is sufficiently small so that
(VT T s Bl )
2T1/4 1/4 T1/4 1/4
< T — ——
VR e T
Then with the same notation as above, for the antisymmetric operator there exists a posit-

ive constant Ayg so that
[T TA|l > Ap || TTA]|

forallh € # N DT II).
Proof. We first recall (cf. Lemma 6) that the antisymmetric part 7 is given by

Mr, (W)g(x, v))

g(x,u)
2 2

X (1 + % + %(;—g — l)(;—g - l))h(x,u)du
- (M,(v) - %)h(x,u)du
1

_ ﬂ<h - %g(aMTg @)+ (1— a)M,(v))h).

Th = @ _
Th=vich+ o /(MTg(v)

l—«o

From this we can explicitly compute, since 7 g = 0, that

h = vax(g—h)g.
g
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Consequently, with respect to the inner product defined in (3.3),

17 TR |2 = /Tszg(x’v)(ax(z_:)>2dvdx:/;rpg(X)Tg(X)(ax<Z_Z>)2dx
1

N
~ 4 2 2 kL4 " Kkgl/4

<[t ] Lnen(en(2) e

g

where we applied the lower bound on the temperature from Lemma 4. Therefore we con-
clude the macroscopic coercivity provided that pg (x) dx satisfies a Poincaré inequality:
Indeed, then

2
||THh||22)LM/ pg(x)<p—h> (x)dxz/lM// g(x,v) " TR dx dv = A || T2,
T Pg TxR

where Ay = Ay(,k, T, T, 7, 7). Now a Poincaré inequality is true since our space
is the torus and pg is upper and lower bounded uniformly in x € T: For i € J, i.e.
Jr (Z—z)(x) dx = 0 (this is equivalent by the upper and lower bound on the density with

J1 pr dx = 0), it holds that

/T(ax(z—Z))zdxz/T(ﬁ—:)zdx.

Hence macroscopic coercivity holds with the explicit constant

= llei o) g e

=—||la —Q)— | ——

M= T 2T K KZ1/4 kTl/4 KZ1/4 kTl/4
x[1=[al ™2 + (1 —a) /2. n

3.5. Boundedness of auxiliary operators

From above we can see that

nrmh =0 3.8)
since [ ug(x,u)du = 0. Indeed,
T Ph gx,v) . (P glx,v) _
M7 h = /uax(pg>(x)g(x,u)du e () = Bx(pg>(x)ug(x) g (¥) =0

Following the approach in [20], we define the operator
A= 1+ TI*T (T I*

We will use this operator in order to define the modified entropy for the hypocoercivity.
The final ingredient we will need is the boundedness of certain operators. In this subsec-
tion we record some properties of these operators. The first thing to notice is that A = TT1A.
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This is easy to see for example from the relation
Af = —TIT f + TIT?MAf, forall f € ¥, (3.9)

which follows directly from the definition of A. Then taking the inner product in (3.9)
with Af we see that

IAf1? = (LTOAS) = ITOASI? < (1 = D) fIITTAS || — |TTLAS|?
I — )f||2

2e

for ¢ > 0, where we used (3.8). This yields the boundedness of both A and T A for all
f ek

In [20] they require a stronger hypothesis regarding the boundedness of auxiliary oper-
ators, namely that

or JASI? +ITTAS|? < IIJ naf|?

AT —ID fI + [[ACfIl < I —TD fl.
It is immediate on studying the proof in this paper that it is also sufficient to show that
AL — 1D f| < (1 —TD) f|.
Lemma 9. With the above notation the operators
A, TA, and AR

are bounded and
AL —ID) f| < CI(I —=TI) f

for some constant C depending ona, «, T, T, T, T.

Proof. The operator AL is bounded if and only if £*A* is bounded. We show this is
bounded by adapting an elliptic-regularity-style result as in [20] but here with some extra
terms. Let us write

f=u+@mxan)’f
and define m(x) = Z—Z(x). Then

LA f =TS = L*W(dm)g(x,v))
= 0y (v(axm)g(x v))
2 2

(oeg(x v) / uMTg(u) 1 + % + %[;—g — 1][;—g — 1]) du

+(1- a)/ ga;)i))ug(x, u)du g(x, v))

p(;,,x(xg) ( M7, () (V) + -«

= 2 (Bm()gxv) —  @em()g(x,v),

M () ) vg (¥, v) ()
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where in the last line we used that g is a NESS and the cancellation of the odd Maxwellian
moments. So taking the L)ZC’U (g~ ') norm we have

. (11—
[£FAT Il = Tg«/ﬂg[aim]/v4gdv . +— v P Tg (9xm(x))l|L2(T)
L2(T)
< Clm|g2(T) (3.10)

where C = C(a, k, T, T, 7, 7) and for the bounds we used the results from Lemma 3 and
Proposition 3. We furthermore know that

I+ (@TI*TM)f = [+ Te(32m)g = f.

Integrating this and dividing by pg gives

M) — @) = g (2)

Te(x) g (x)

where ng(x) = Z-—g(x). Then since 7, is bounded above and below (see Lemma 4),
L? — H? elliptic regularity gives us that

n
mlieny = €[ 7|
lml 2Ty < T,

L2(T)
lrr TY? /29 1 o« 1 —a2
G e | ]
=C(zll* 5 +(1-a) o P /<7_"1/4+Kzl/4
o 1 —a7=2\~-
|:KT1/4+K'£1/4:| ) ||ng||L2(T)'

This in turn yields from (3.10) that
||£*A*f|| =< C(a9 K, T’ Zs T, 'E)””g ”LZ(T) = C(Ot, K, T» Zv T, ‘E)”f”Lz(g_l)v

which concludes the lemma. [

3.6. Proof of Theorem 2

As we have verified the main assumptions required for the abstract L? stability theorem
— microscopic coercivity of €, macroscopic coercivity of 7, and boundedness of certain
operators — the stability of our linearised equation follows directly by considering, for A
defined in (3.9), the modified entropy

1
H(f):= §|If||2 +&{Af. f).
where ¢ > 0. One then computes the entropy dissipation

D(f)=—(Cf. f) +e(ATIL f) +e(ACU =T [, f) —e(T AL, f)
=—(CL f) +e(ATIS ) + (AU =TI [, f) — &(T Af. f).
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The coercivity of the Dirichlet form follows thanks to Propositions 4 and 5, via which we
treat the first two terms:

~(CS f) + (AT T f) 2 Am A |

EAM >
ol

for Ay = Apg(a,k, T, T,7,7) and the same for A,,. Then up to sufficiently small ¢ € (0, 1),
(i) the new perturbed entropy is equivalent to the L? norm, i.e. 2(1 —&)[| f||> < H(f) <
%(1 + &)|| f|I? and (ii) also using the boundedness of AL (cf. Lemma 9), we conclude
the existence of a positive constant A = A(a,k, T, T, T, 7) for which D(f) > A| f||>.
From this, due to the equivalence, we get from Gronwall an exponential relaxation of the
semigroup e’* in H(f) and therefore in L2 up to prefactors.

A. Linear stability when the temperature variation is small

Theorem 4. Suppose that there exist a T« and an € > 0 such that |t(x) — t| < € and there
exists a steady state g such that |Tg (x) — t«| < Ce for some C that can depend on ty but
not on €. Then the steady state g is linearly stable provided € is sufficiently small in terms
of T«.

Proof. Let us define
(9] 1 2 2

Lo, f = _Uaxf‘i‘%(f/%r*/ (Haﬂ+5(”——1)(:——1))f(x,u)du—f).

00 Tx Tx *

Then we notice that using a standard L2-hypocoercivity argument we can find a norm
| - |+ which is equivalent to the Lz(eMr: 1) norm for which €., has a spectral gap. We
write

(Lo fi e < =Au|l 112,

where A, depends on 4, «, and the choice of norm. We also notice that

1+ 02 P)

1 v
Lf L. fl<—(CMp, =M
I f = e fl = (COMr, = Moy + oy + =z P

+ cmt*(l + )(1 +v2)e + (M — M,*)pf).

Ty — €
Therefore,
12/ = Le 2zt < C@I(€ + (1 + v (M, — Me)llp20az
+ [ M: — Mu”[,%(M,j )”f”
We can show that

/(1 +0)[Mr (v) = My ()P Mz dv = /(1 + v2)[1 _ M)

2
Mr () ] Mr(v)dv
T

T(x)

'U2 —_ —_ 2
~ /(1 + UZ)MT(U)[l - e T@T-T 1)i| dv.
v
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If we write T'(x) = T + 6(x) with sup, |0(x)| <,

/(1+v2)MT(v)[1—,/T(T)e S Gater “} dv

T pRow b2 2
e 2 2T
T'(x)

/(1 + v2)MT(v)e‘”| ¢ dv.

dv

~ /(1 + vz)MT(v)[l

4T2

Applying the above for our temperatures t(x), 7«, Tg, we have

1€f = 2o fllo iz < Ca)e?ll f1.

Therefore, as our other norm is equivalent we have

I€f = Lz, flls < C' (x| -
Hence, q
Ellfll2 < =X = C' () fI3

So indeed Gronwall implies that if € is small enough we will have a positive spectral gap
in the *-norm for the operator £. ]
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