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Okounkov bodies associated to abundant divisors
and Iitaka fibrations

Sung Rak Choi, Jinhyung Park, and Joonyeong Won

Abstract. The aim of this paper is to study the Okounkov bodies associated to abundant divisors.
As a main result, we prove that the valuative Okounkov bodies of an abundant divisor encode all the
numerical properties. We apply this result to recover the asymptotic base loci of an abundant divisor
from the valuative Okounkov bodies. We also give a criterion for when the valuative and limiting
Okounkov bodies of an abundant divisor coincide by comparing their Euclidean volumes. To obtain
these results, we prove some variants of Fujita’s approximations for Okounkov bodies using Iitaka
fibrations.

1. Introduction

Inspired by the work of Okounkov [25,26], Lazarsfeld–Mustaţă [20], and Kaveh–Khovan-
skii [14] independently introduced and studied the convex sets called the Okounkov bod-
ies associated to big divisors. Following their philosophy, there have been a number of
attempts to understand the various asymptotic properties of divisors by analyzing the
structure of the Okounkov bodies. The details are as follows. We first let X be a smooth
projective variety of dimension n. For a divisor D on X , the Okounkov body �Y�.D/
is defined as a convex set in Rn which clearly depends on D and also on the choice
of the admissible flag Y� (see Definition 2.1). It is expected that one can extract vari-
ous positivity properties of the divisor D from the structure of the Okounkov bodies.
Based on the results on the Okounkov bodies of big divisors [20], we extended in [5, 7, 8]
the study of Okounkov bodies to pseudoeffective divisors by introducing the valuative
Okounkov body �val

Y�
.D/ and the limiting Okounkov body �lim

Y�
.D/ of a pseudoeffective

divisor D (see Definition 2.2). By definition, �val
Y�
.D/ � �lim

Y�
.D/ holds in general and

�Y�.D/D �
val
Y�
.D/D �lim

Y�
.D/ whenD is a big divisor. See Section 2.6 for more details.

By [20, Proposition 4.1 (i)] and [13, Theorem A], it is known that the Okounkov bod-
ies are numerical in nature, i.e., two big divisors D;D0 on a smooth projective variety
X are numerically equivalent if and only if �Y�.D/ D �Y�.D

0/ for every admissible
flag Y� on X . This statement was extended to pseudoeffective divisors using the limit-
ing Okounkov bodies in [5, Theorem C]. Thus theoretically one could read off all the
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numerical information of a given pseudoeffective divisor from its limiting Okounkov bod-
ies. In contrasts, the valuative Okounkov bodies do not reflect the numerical properties of
divisors in full as we observed in [5, Remark 3.13].

The first aim of the paper is to show that as is often the case, imposing the “abundance
condition” on divisors turns the valuative Okounkov bodies into numerical objects. In this
paper, following [3, 6], we say that a divisor D is abundant if �.D/ D �BDPP.D/ holds.
Since �.D/ � �BDPP.D/ � �� .D/ � ��.D/ holds in general, our definition is weaker
than the classical abundance which requires �.D/ D �� .D/ or �.D/ D ��.D/. We refer
to Section 2.5 for the definitions of numerical Iitaka dimensions �BDPP.D/, �� .D/, ��.D/
and to Section 2.7 for abundant divisors.

The following theorem is an extension of [20, Proposition 4.1 (i)] and [13, Theorem A]
to valuative Okounkov bodies of abundant divisors.

Theorem A (Corollary 4.11). Let D; D0 be pseudoeffective abundant R-divisors on a
smooth projective variety X . Then we have:

D � D0 if and only if �val
Y�
.D/ D �val

Y�
.D0/ for every admissible flag Y� on X:

We remark that the ‘only if’ direction of Theorem A does not hold when D;D0 are
not abundant. It is because dim�val

Y�
.D00/ D �.D00/ holds for any divisor D00 while we

may possibly have �.D/ ¤ �.D0/ even when D � D0 (see [5, Remark 3.13]). However,
the ‘if’ direction of Theorem A holds without the abundance assumption on D;D0 (see
Proposition 4.9). As a consequence, we will also show in Corollary 4.12 that if Pic.X/ is
finitely generated, then for any divisors D;D0 with �.D/; �.D0/ � 0, we have:

D �R D
0 if and only if �val

Y�
.D/ D �val

Y�
.D0/ for every admissible flag Y� on X:

It is natural to ask how to extract the numerical properties of abundant divisors from
the valuative Okounkov bodies. To give a partial answer to this question, we study the
restricted base locus B�.D/ (see Section 2.2 for the definition) of an abundant divisor D
using the valuative Okounkov bodies. The analogue of the following theorem for limiting
Okounkov bodies was obtained in [4, Theorem A] (see also [16–18]).

Theorem B (Theorem 5.1). Let D be a pseudoeffective abundant R-divisor on a smooth
projective variety X of dimension n, and x 2 X be a point. Then the following are equiv-
alent:

(1) x 2 B�.D/.
(2) �val

Y�
.D/ does not contain the origin of Rn for every admissible flag Y� on X

centered at x.

(3) �val
Y�
.D/ does not contain the origin of Rn for some admissible flag Y� on X

centered at x.

As we observed in [7, Remark 4.10], without the abundance condition, �val
Y�
.D/ may

not contain the origin of Rn for some admissible flag Y� even if D is nef. Note that the
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analogous statements concerning BC.D/ as in [4, Theorem C] for an abundant divisor
D easily follow from [4, Theorem 6.5] since big divisors are abundant and BC.D/ D X
holds if D is not big.

In [5], we have seen that the Okounkov bodies �val
Y�
.D/ and �lim

Y�
.D/ encode a good

amount of asymptotic properties of the divisor D if the given admissible flag Y� contains
a Nakayama subvariety or a positive volume subvariety ofD, respectively (see Section 2.6
for the definitions of these special subvarieties). For example, we have dim�val

Y�
.D/D�.D/

and dim�lim
Y�
.D/ D �BDPP.D/ for such admissible flags Y�. Thus for the two Okounkov

bodies �lim
Y�
.D/ and �val

Y�
.D/ to coincide with each other, it is necessary to assume that

�.D/ D �BDPP.D/, i.e., D is an abundant divisor. In this case, we show in Proposi-
tion 2.15 that a subvariety is a Nakayama subvariety of D if and only if it is a positive
volume subvariety of D. However, even under the abundance condition, the inclusion
�val
Y�
.D/ � �lim

Y�
.D/ can be strict as was noticed in [5, Example 4.2]. By comparing the

Euclidean volumes of the Okounkov bodies �val
Y�
.D/ and �lim

Y�
.D/, we obtain a criterion

for the equality of these bodies.

Theorem C (Theorem 6.1). Let D be a pseudoeffective abundant R-divisor on an n-
dimensional smooth projective variety X with �.D/ > 0. Fix an admissible flag Y� on X
such that V D Yn��.D/ is a Nakayama subvariety ofD and Yn is a general point. Consider
the Iitaka fibration �WX 0! Z ofD and the strict transform V 0 of V onX 0. Then we have

volR�.D/

�
�lim
Y�
.D/

�
D deg.�jV 0 WV 0 ! Z/ � volR�.D/

�
�val
Y�
.D/

�
:

In particular, �val
Y�
.D/ D �lim

Y�
.D/ if and only if the map �jV 0 W V 0 ! Z is generically

injective.

We remark that even ifD is an abundant R-divisor with �.D/ > 0, there may not exist
Nakayama subvarieties V giving rise to a generically injective map �jV 0 W V 0 ! Z (see
Example 6.3). See also [5, Section 4] for more related results.

To prove all the above theorems, we use results on Nakayama subvarieties and Iitaka
fibrations (see Section 2.7). Other key ingredients are some versions of Fujita’s approxi-
mations for the valuative Okounkov bodies�val

Y�
.D/ of an effective divisorD (Lemma 3.1)

and for the limiting Okounkov bodies �lim
Y�
.D/ of an abundant divisor D (Lemma 3.6).

These results may be also regarded as alternative constructions of Okounkov bodies
�val
Y�
.D/ and �lim

Y�
.D/.

The organization of the paper is as follows. We begin by collecting relevant basic facts
on various asymptotic invariants, Iitaka fibrations, Zariski decompositions, Okounkov
bodies, numerical Iitaka dimensions, etc. in Section 2. In Section 3, we prepare the main
ingredients required for the proofs of Theorems A and C. Sections 4, 5, and 6 are devoted
to proving Theorems A, B, and C, respectively.

2. Preliminaries

In this section, we collect relevant facts which will be used later.
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2.1. Conventions

Throughout the paper, we work over the field C of complex numbers. By a .sub/variety,
we mean an irreducible (sub)variety, and X denotes a smooth projective variety of dimen-
sion n. Unless otherwise stated, a divisor means an R-Cartier R-divisor. A divisor D on
X is pseudoeffective if its numerical class ŒD� 2 N 1.X/R lies in the pseudoeffective cone
Eff.X/, the closure of the cone spanned by effective divisor classes. A divisor D on X is
big if ŒD� lies in the interior Big.X/ of Eff.X/.

2.2. Asymptotic invariants

Let D be a divisor on X . The stable base locus of D is defined as

SB.D/ WD
\

D�RD
0�0

Supp.D0/:

The augmented base locus ofD is defined as BC.D/ WD
T
A SB.D �A/ where the inter-

section is taken over all ample divisors A. The restricted base locus of D is defined
as B�.D/ WD

S
A SB.D C A/ where the union is taken over all ample divisors A. It is

well known that BC.D/ and B�.D/ depend only on the numerical class of D. Note that
B�.D/ D X (resp. BC.D/ D X ) if and only if D is not pseudoeffective (resp. not big),
and B�.D/D ; (resp. BC.D/D ;) if and only ifD is nef (resp. ample). For more details,
see [11].

Consider a subvariety V � X of dimension v. The restricted volume of D along V is
defined as

volX jV .D/ WD lim sup
m!1

h0
�
X jV; bmDc

�
mv=vŠ

where h0.X jV; bmDc/ is the dimension of the image of the natural restriction map

H 0
�
X;OX

�
bmDc

��
! H 0

�
V;OV

�
bmDcjV

��
:

If V 6� BC.D/, then the restricted volume volX jV .D/ depends only on the numerical
class ofD, and it uniquely extends to a continuous function volX jV WBigV .X/! R where
BigV .X/ is the set of all R-divisor classes � such that V is not properly contained in any
irreducible component of BC.�/. When V D X , we simply let volX .D/ WD volX jX .D/,
and we call it the volume of D. For more details, we refer to [19, Section 2.2 (C)], [12].

Now, assume that V 6� B�.D/. The augmented restricted volume of D along V is
defined as volC

X jV
.D/ WD lim"!0C volX jV .D C "A/ where A is an ample divisor on X .

The definition is independent of the choice of A. Note that volC
X jV

.D/ D volX jV .D/ for
D 2 BigV .X/. This also extends uniquely to a continuous function

volC
X jV
WEff

V
.X/! R

where Eff
V
.X/ WD BigV .X/ [ ¹� 2 Eff.X/ n Big.X/ j V 6� B�.�/º. For D 2 Eff

V
.X/,

we have volX jV .D/ � volC
X jV

.D/ � volV .DjV /, and both inequalities can be strict in
general. For more details, see [5, Section 2.3].
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2.3. Iitaka fibration

Let D be a divisor on X . The Iitaka dimension of D is defined as

�.D/ WD max
²
k 2 Z�0

ˇ̌̌
lim sup
m!1

h0
�
X;OX

�
bmDc

��
mk

> 0

³
if h0.X;OX .bmDc// ¤ 0 for some m > 0, and �.D/ WD �1 otherwise. Note that �.D/
is not an invariant of the R-linear equivalence class of D. Nonetheless, it satisfies the
property that �.D/ D �.D0/ when �.D/; �.D0/ � 0 andD �R D

0 (see [5, Remark 2.8]).
Now, assume that �.D/> 0. Then there exists a morphism �WX 0!Z between smooth

projective varieties X 0; Z with connected fibers such that for all sufficiently large and
divisible integers m > 0, the rational maps �mD WX Ü Zm defined by jbmDcj are bira-
tionally equivalent to �, i.e., there exists a commutative diagram

X

�mD

��

X 0
f

oo

�

��

Zm Z
gm
oo

of a rational map �mD and morphisms f; �; gm with connected fibers, where the hori-
zontal maps f; gm are birational, dimZ D �.D/, and �.f �DjF / D 0, where F is a very
general fiber of � (see e.g., [19, Theorem 2.1.33], [24, Theorem-Definition II.3.14]). Such
a fibration is called an Iitaka fibration of D. It is unique up to birational equivalence.

2.4. Divisorial Zariski decompositions

To define the divisorial Zariski decomposition, we first consider a divisorial valuation � on
X with the center V WDCentX � onX . IfD is a big divisor onX , we define the asymptotic
valuation of � at D as �V .kDk/ WD inf¹�.D0/ j D � D0 � 0º. If D is only a pseudo-
effective divisor on X , we define �V .kDk/ WD lim"!0C �V .kD C "Ak/ for some ample
divisor A on X . This definition is independent of the choice of A. Note that �V .kDk/
is a numerical invariant of D. If E WD CentX � is a prime divisor on X , then we write
ordE .kDk/ WD �E .kDk/. The divisorial Zariski decomposition of a pseudoeffective divi-
sor D is the decomposition

D D P� CN� D P� .D/CN� .D/

into the negative part N� D N� .D/ WD
P
E ordE .kDk/E where the summation is over

the finitely many prime divisors E of X such that ordE .kDk/ > 0 and the positive part
P� DP� .D/ WDD �N� . The positive partP� .D/ is characterized as the maximal divisor
such that P� � D and P� .D/ is movable (see [24, Proposition III.1.14]). Note that by
construction N� .D/ is a numerical invariant of D. For more details, see [1], [24], [27].

LetD be a divisor on X with �.D/ � 0. The s-decomposition ofD is the decomposi-
tion

D D Ps CNs D Ps.D/CNs.D/
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into the negative part Ns D Ns.D/ WD inf¹L j L �R D; L � 0º and the positive part
Ps D Ps.D/ WD D �Ns . The positive part Ps.D/ is characterized as the smallest divisor
such that Ps � D and R.X;Ps/ ' R.X;D/ (see [27, Proposition 4.8]). Note that Ns.D/
is an R-linear equivalence invariant of D. Note that Ps.D/ � P� .D/ and Ps.D/; P� .D/
do not coincide in general. IfD is an abundant divisor (see Definition 2.11), thenPs.D/D
P� .D/ so that Ps.D/;Ns.D/ become numerical invariants of D (see Theorem 2.13 (2)).
For more details, see [27].

2.5. Numerical Iitaka dimensions

Let D be a pseudoeffective divisor on X . There are several notions of numerical Iitaka
dimensions in the literature defined from different perspectives (see e.g. [3,6,10,21–24]).
Among them, the following dimension first introduced by Boucksom–Demailly–Păun–
Peternell [3] is the most interesting for us:

�BDPP.D/ WD max
®
k 2 Z�0 j hD

k
i ¤ 0

¯
:

Here hDki is the positive intersection product (see [21, Section 4] for the definition and
basic properties). By [21, Theorem 6.2] (see also [6, Theorem 1.1]), we have

�BDPP.D/ D max
®

dimW j volC
X jW

.L/ > 0
¯

D max
®

dimW j inf
�

vol zW
�
P� .�

�D/j zW
�
> 0

¯
where W ranges over all the irreducible subvarieties of X not contained in B�.D/, and
�W . zX; zW / ! .X; W / ranges over all W -birational models, which by definition means
that W is not contained in any �-exceptional center and zW is the strict transform of W
(see [21, Definition 2.10]). We have �BDPP.D/ � 0 whenever D is pseudoeffective. We
put �BDPP.D/ WD �1 when D is not pseudoeffective. We will use the following basic
properties of �BDPP.D/:

(1) �.D/ � �BDPP.D/.

(2) �BDPP.D/ � n, and �BDPP.D/ D n if and only if D is big.

(3) �BDPP.D/ is a numerical invariant of D, i.e., �BDPP.D/ D �BDPP.D
0/ whenever

D � D0.

(4) �BDPP.D/ D �BDPP.P� .D//.

We refer to [6, 21, 24] for further properties.
We recall some other numerical Iitaka dimensions defined for a pseudoeffective D

�� .D/ WD max
²
k 2 Z�0

ˇ̌̌
lim sup
m!1

h0
�
X; bmDc C A

�
mk

> 0

³
��.D/ WD min

®
dimW j D does not numerically dominate a subvariety W of X

¯
�vol.D/ WD max

²
k 2 Z�0

ˇ̌̌
lim inf
"!0

volX .D C "A/
"n�k

> 0

³
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where A is a sufficiently positive ample Z-divisor on X . The first two dimensions ��
and �� were defined by Nakayama [24, Chapter V] (see [24, Definition V.2.22] for the
definition of D numerically dominating W ), and the third dimension �vol is defined by
Lehmann [21]. They are also numerical invariants ofD. Note that �� .D/; �vol.D/; ��.D/

are nonnegative integers at most n D dimX when D is pseudoeffective and they take
value n if and only if D is big. By [6, Proposition 3.1], we have

�BDPP.D/ � �� .D/ � ��.D/ and �BDPP.D/ � �vol.D/ � ��.D/:

It is worth noting that these numerical Iitaka dimensions �� .D/; �vol.D/; ��.D/ can be
strictly larger than �BDPP.D/ (see [23, Theorem 3], [6, Theorem 1.2]).

2.6. Okounkov bodies

Here we recall the construction and basic properties of Okounkov bodies associated to
pseudoeffective divisors in [5, 14, 20]. Throughout this subsection, we fix an admissible
flag Y� on X , which by definition is a sequence of subvarieties

Y� W X D Y0 � Y1 � � � � � Yn�1 � Yn D ¹xº

where each Yi is an irreducible subvariety of codimension i in X and is nonsingular at x.
LetD be a divisor onX with jDjR WD ¹D0 jD�R D

0 � 0º¤;. We define a valuation-like
function

�Y� W jDjR ! Rn�0

as follows: forD0 2 jDjR, let �1D �1.D0/ WD ordY1.D
0/. SinceD0 � �1.D0/Y1 is effective

and does not contain Y2 in the support, we define

�2 D �2.D
0/ WD ordY2

�
.D0 � �1Y1/jY1

�
:

We then inductively define

�iC1 D �iC1.D
0/ WD ordYiC1

��
� � �
�
.D0 � �1Y1/jY1 � �2Y2

�
jY2 � � � � � �iYi

�
jYi

�
:

Thus we finally obtain

�Y�.D
0/ WD

�
�1.D

0/; �2.D
0/; : : : ; �n.D

0/
�
2 Rn�0:

Definition 2.1. When jDjR ¤ ;, the Okounkov body �Y�.D/ of a divisor D on X with
respect to an admissible flag Y� on X is defined as the closure of the convex hull of
�Y�.jDjR/ in Rn�0. When jDjR D ;, we set �Y�.D/ WD ;.

More generally, a similar construction can be applied to a graded linear series W�
associated to a Z-divisor on X to construct the Okounkov body �Y�.W�/ of W� with
respect to Y�. For more details, we refer to [20].

In [14,20], the Okounkov bodies �Y�.D/ were mainly studied for big divisors. When
D is not big, the following extension was introduced in [5].
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Definition 2.2 ([5, Definition 1.1]).

(1) For a divisorDwhich is effective up to�R, i.e., jDjR¤;, the valuative Okounkov
body �val

Y�
.D/ of D with respect to an admissible flag Y� is defined as the closure

of the convex hull of �Y�.jDjR/ in Rn�0. If jDjR D ;, then we set �val
Y�
.D/ WD ;.

(2) For a pseudoeffective divisor D, the limiting Okounkov body �lim
Y�
.D/ of D with

respect to an admissible flag Y� is defined as

�lim
Y�
.D/ WD lim

"!0C
�Y�.D C "A/ D

\
">0

�Y�.D C "A/ � Rn�0

whereA is an ample divisor onX . (Note that�lim
Y�
.D/ is independent of the choice

of A.) If D is not pseudoeffective, then we set �lim
Y�
.D/ WD ;.

Note that we actually have �Y�.D/ D �
val
Y�
.D/ for any divisor D and any admissible

flag Y�. However, we will only use the notation �val
Y�
.D/ when D is known to be non-big

or at least when the bigness of D is not clear in order to distinguish our results from the
well-known cases for big divisors. We also remark that Boucksom’s numerical Okounkov
body �num

Y�
.D/ in [2] coincides with our limiting Okounkov body �lim

Y�
.D/.

By construction, the valuative Okounkov body �val
Y�
.D/ is only an R-linear invariant

of D, not a numerical invariant of D (see [5, Remark 3.13 and Proposition 3.15]). The
limiting Okounkov body�lim

Y�
.D/ is a numerical invariant ofD. More precisely, for pseu-

doeffective divisors D;D0, it is known that D � D0 if and only if �lim
Y�
.D/ D �lim

Y�
.D0/

for every admissible flag Y� on X (see [5, Theorem C]).

Lemma 2.3 (cf. [4, Lemma 3.4], [8, Lemma 3.4]). Let D be a divisor on X . Consider a
birational morphism f W zX ! X with zX smooth and an admissible flag

zY� W zX D zY0 � zY1 � � � � � zYn�1 � zYn D ¹x
0
º

on zX . Suppose that f is isomorphic over a neighborhood of f .x0/ and

Y� WD f . zY�/ W X D f . zY0/ � f . zY1/ � � � � � f . zYn�1/ � f . zYn/ D
®
f .x0/

¯
is an admissible flag on X . Then �val

zY�
.f �D/ D �val

Y�
.D/ and �lim

zY�
.f �D/ D �lim

Y�
.D/.

Proof. The case of the limiting Okounkov body is shown in [4, Lemma 3.4]. The proof
for the case of the valuative Okounkov body is almost identical, and we leave the details
to the readers.

Remark 2.4. By Lemma 2.3 and [4, Lemma 3.5], we can assume that each Yi in the
admissible flag Y� on X is smooth (see also [4, Remark 3.6]).

Lemma 2.5 (cf. [4, Lemma 3.9], [8, Lemma 3.5]). Let D be a divisor on X with the s-
decompositionDDPs CNs and the divisorial Zariski decompositionDDP� CN� . Fix
an admissible flag Y� onX . Then we have�val

Y�
.D/D�val

Y�
.Ps/C�

val
Y�
.Ns/ and�lim

Y�
.D/D

�lim
Y�
.P� /C�

lim
Y�
.N� /. If Yn is a general point (i.e., Yn 6� Supp.N� /, Yn 6� Supp.Ns/), then

�val
Y�
.D/ D �val

Y�
.Ps/ and �lim

Y�
.D/ D �lim

Y�
.P� /.
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Proof. The assertion for�val
Y�
.D/ follows from the fact that R.X;D/' R.X;Ps/ and the

construction of the valuative Okounkov body. The assertion for �lim
Y�
.D/ is nothing but

[4, Lemma 3.9].

By definition, �val
Y�
.D/ � �lim

Y�
.D/, and the inclusion can be strict in general (see [5,

Examples 4.2 and 4.3]). IfD is big, then�Y�.D/D �
val
Y�
.D/D �lim

Y�
.D/. For a divisorD

with �.D/ � 0, by [2, Proposition 3.3] and [6, Theorem 1.1], we have

dim�val
Y�
.D/ D �.D/ � dim�lim

Y�
.D/ � �BDPP.D/

for any admissible flag Y�.

Remark 2.6. It was shown in [2, Lemma 4.8] and [5, Proof of Proposition 3.21] that

dim�lim
Y�
.D/ � �vol.D/ D max

²
k 2 Z�0

ˇ̌̌
lim inf
"!0

volX .D C "A/
"n�k

> 0

³
for every admissible flag Y� on X . In [5, 7, 8], we use the coincidence of the numerical
Iitaka dimensions �vol.D/ D �BDPP.D/, which was claimed in [21]. However, based on
Lesieutre’s example in [23], Choi–Park proved that there exist a smooth projective variety
Y and a pseudoeffective divisor E such that �vol.E/ > �BDPP.E/ (see [6, Theorem 1.2]).
Thus some results of [5,7,8] are affected by these examples (in those papers, �� is used to
mean �� , and is supposed to be equal to �BDPP and �vol). Fortunately, we have

�BDPP.D/ D max
®

dim�lim
Y�
.D/ j Y� is an admissible flag on X

¯
;

by [6, Theorem 1.1]. If we use �BDPP for the numerical Iitaka dimension, then all the
results in [5, 7, 8] are valid.

In [5], we introduced a Nakayama subvariety and positive volume subvariety of a
divisor D to extract asymptotic invariants of D from the Okounkov bodies.

Definition 2.7 ([5, Definitions 2.12 and 2.19], [8, Definition 4.1]).

(1) For a divisor D such that �.D/ � 0, a Nakayama subvariety of D is defined as
an irreducible subvariety U � X such that dimU D �.D/ and for every integer
m � 0 the natural map

H 0
�
X;OX

�
bmDc

��
! H 0

�
U;OU

�
bmDcjU

��
is injective (or equivalently, H 0.X;	U ˝OX .bmDc// D 0 where 	U is an ideal
sheaf of U in X ).

(2) For a divisorD with �BDPP.D/� 0, a positive volume subvariety ofD is defined as
an irreducible subvariety V �X such that dimV D �BDPP.D/ and volC

X jV
.D/ > 0.

We have the following characterization of a Nakayama subvariety and a positive vol-
ume subvariety in terms of Okounkov bodies.
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Theorem 2.8 ([8, Theorem 1.2]). LetD be a divisor onX . Fix an admissible flag Y� such
that Yn is a general point. Then we have the following:

(1) If D is effective, then Y� contains a Nakayama subvariety of D if and only if
�val
Y�
.D/ � ¹0ºn��.D/ �R�.D/.

(2) If D is pseudoeffective, then Y� contains a positive volume subvariety of D if and
only if �lim

Y�
.D/ � ¹0ºn��BDPP.D/ �R�BDPP.D/ and dim�lim

Y�
.D/ D �BDPP.D/.

The following is the main result of [5].

Theorem 2.9 ([5, Theorems A and B]).

(1) Let D be a divisor on X with �.D/ � 0. Fix an admissible flag Y� containing a
Nakayama subvariety U of D such that Yn is a general point. Then �val

Y�
.D/ �

¹0ºn��.D/ � R�.D/ so that one can regard �val
Y�
.D/ � R�.D/. Furthermore, we

have

dim�val
Y�
.D/ D �.D/ and volR�.D/

�
�val
Y�
.D/

�
D

1

�.D/Š
volX jU .D/:

(2) Let D be a pseudoeffective divisor on X , and fix an admissible flag Y� containing
a positive volume subvariety V of D. Then �lim

Y�
.D/ � ¹0ºn��BDPP.D/ �R�BDPP.D/

so that one can regard �lim
Y�
.D/ � R�BDPP.D/. Furthermore, we have

dim�lim
Y�
.D/D �BDPP.D/ and volR�BDPP.D/

�
�lim
Y�
.D/

�
D

1

�BDPP.D/Š
volC

X jV
.D/:

Remark 2.10. As in [5, 8], when considering �val
Y�
.D/ (resp. �lim

Y�
.D/), we say that Yn is

general if it is not contained in SB.D/ (resp. B�.D/) (see [8, Remark 4.7]).

The relation between the valuative Okounkov bodies and restricted volumes is also
studied in [9].

2.7. Abundant divisor

In this paper, we adopt the following notion of abundance.

Definition 2.11. A pseudoeffective divisor D on X is said to be abundant if �.D/ D
�BDPP.D/ holds.

We will need the following generalization of the well-known result of Kawamata for
nef and abundant divisors [15, Proposition 2.1] (see also the Errata of [22]).

Theorem 2.12 ([6, Theorem 1.4]). Let D be an effective R-divisor on X with �.D/ > 0.
Then D is abundant in the sense that �.D/ D �BDPP.D/ holds if and only if there are
a birational morphism �WW ! X from a smooth projective variety W and a surjective
morphism gWW ! T to a smooth projective variety T with connected fibers such that

P� .�
�D/ �Q P� .g

�B/

for some big divisor B on T and gWW ! T is a birational model of the Iitaka fibration
of D.
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The following theorem essentially due to Lehmann will play a crucial role in proving
our main results, Theorems A, B, and C.

Theorem 2.13. Let D be a pseudoeffective abundant divisor on X . Then the following
numerical properties hold:

(1) If D0 is a divisor on X such that �.D0/ � 0 and D � D0, then D0 is also an
abundant divisor.

(2) For any divisorial valuation � on X with the center V D CentX � on X , we have

�V
�
kDk

�
D inf

®
�.D0/ j D �R D

0
� 0

¯
:

In particular, P� .D/ D Ps.D/.

Proof. For (1), we note that if �.D0/ � 0, then D0 is Q-linearly equivalent to an effective
divisor. Thus (1) follows from [22, Corollary 6.3]. For (2), we apply [22, Proposition 6.4]
and [8, Lemma 2.3]. Note that the condition (5) of [22, Theorem 6.1], which is asserted in
Theorem 2.12, is used in the proofs of [22, Corollary 6.3] and [22, Proposition 6.4].

Lemma 2.14. Let D be a pseudoeffective abundant divisor on X . If V is a Nakayama
subvariety of D or a positive volume subvariety of D, then V 6� SB.D/.

Proof. If V is a Nakayama subvariety of D, then the assertion follows from definition.
Assume that V is a positive volume subvariety of D. We can take an admissible flag Y�
containing V . By Theorem 2.9 (2),

�lim
Y�
.D/ � ¹0ºn��BDPP.D/ �R�BDPP.D/:

Since�val
Y�
.D/��lim

Y�
.D/, it follows that ordV .D0/D0 for every effective divisorD0�RD.

Thus V 6� Supp.D0/. Since SB.D/ � Supp.D0/, we are done.

Proposition 2.15. Let D be a pseudoeffective abundant divisor on X . A subvariety V of
X is a Nakayama subvariety of D if and only if it is a positive volume subvariety of D.

Proof. We can always construct an admissible flag Y� onX containing a given Nakayama
subvariety V ofD. By Lemma 2.14, we can take Yn D ¹xº in such a way that x 62 SB.D/.
Thus x is a general point in the sense of Remark 2.10. By Theorem 2.8 (1),

�val
Y�
.D/ � ¹0ºn��.D/ �R�.D/:

Recall now that�val
Y�
.D/��lim

Y�
.D/ and dim�val

Y�
.D/D�.D/D�BDPP.D/Ddim�lim

Y�
.D/.

Thus �lim
Y�
.D/ � ¹0ºn��.D/ �R�.D/. Theorem 2.8 (2) implies that V is a positive volume

subvariety of D.
Now, let V � X be a positive volume subvariety of D, and Y� be an admissible flag

containing V . By Lemma 2.14, we can take Yn D ¹xº in such a way that x is a general
point in the sense of Remark 2.10. By Theorem 2.8 (2), we have �val

Y�
.D/ � �lim

Y�
.D/ �

¹0ºn��.D/ �R�.D/. Theorem 2.8 (1) implies that V is a Nakayama subvariety of D.
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3. Fujita’s approximations for Okounkov bodies

The aim of this section is to prove some versions of Fujita’s approximations for Okounkov
bodies, which may be regarded as alternative constructions of valuative and limiting
Okounkov bodies (see Lemmas 3.1 and 3.6). These will be used in the course of the
proofs of Theorems A and C. Throughout the section, X is a smooth projective variety of
dimension n.

3.1. Valuative Okounkov body case

We fix notation used throughout this subsection. Let D be a divisor on X with �.D/ > 0.
We do not impose the abundant condition on D in this subsection. Fix an admissible flag
Y� on X containing a Nakayama subvariety U of D such that Yn D ¹xº is general in the
sense of Remark 2.10 so that x 62 SB.D/ (see Lemma 2.14). We can regard the valuative
Okounkov body �val

Y�
.D/ � ¹0ºn��.D/ �R�.D/ as a subset of R�.D/ (see Theorem 2.9).

Now, for a sufficiently large integer m > 0, we take a log resolution fmWXm ! X of
the base ideal b.bmDc/ so that we obtain a decomposition f �m.bmDc/ DM

0
m C F

0
m into

a base point free divisor M 0m and the fixed part F 0m of jf �m.bmDc/j. Let Mm WD
1
m
M 0m

and Fm WD 1
m
F 0m. Since x 62 SB.D/ and m� 0, it follows that x is not in the image of

the base locus of jf �m.bmDc/j under fm. Thus fmWXm ! X is an isomorphism over a
neighborhood of x. Let f �mD D Pm CNm be the s-decomposition.

Since Yn is general, by taking the strict transforms Y mi of Yi on Xm, we obtain an
admissible flag Y m� W Y

m
0 � � � � � Y

m
n on Xm. We note that Um WD Y m

n��.D/
is also a

Nakayama subvariety of f �mD since fm is U -birational (see [5, Proposition 2.15]). By
definition, we see that Um is also a Nakayama subvariety of Mm.

Let W� be a graded linear series on U associated to DjU where Wk is the image of
the natural injective map H 0.X;OX .bkDc//! H 0.U;OX .bkDc/jU /. We also consider
a graded linear series W m

� on Um associated to MmjUm where W m
k

is the image of the
natural injective map H 0.Xm;OXm.bkMmc//! H 0.Um;OXm.bkMmc/jUm/. Note that
dimWm D dimW m

m . Let �mWXm ! Zm be the morphism defined by jM 0mj. Then there
is an ample divisor Hm on Zm such that ��mHm D Mm. Note that �mjUm WUm ! Zm is
a surjective morphism of projective varieties of the same dimension �.D/. Since Yn is
general, we can assume that xY m� W Zm D �m.Y

m
n��.D/

/ � � � � � �m.Y
m
n / is an admissible

flag on Zm.
The following lemma is the main result of this subsection.

Lemma 3.1. Under the same notation as above, we have

�val
Y�
.D/ D lim

m!1
�val
Ym�
.Mm/ D lim

m!1
� xYm� .Hm/:

Proof. As we noted above, we treat�val
Y�
.D/;�val

Ym�
.Mm/, and� xYm� .Hm/ as the subsets of

the same fixed space R�.D/. By Lemmas 2.3 and 2.5, we have

�val
Y�
.D/ D �val

Ym�
.f �mD/ D �

val
Ym�
.Pm/;
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and by [5, Remark 3.11] and [8, Lemma 5.1], we have

�val
Ym�
.Mm/ D �Ym

n��.D/�
.W m
� / D � xYm� .Hm/:

Note that �val
Ym�
.Mm/ � �

val
Ym�
.Pm/. By [5, Remark 3.11], we also have

�val
Y�
.D/ D �Yn��.D/�.W�/:

By applying [20, Remark 2.8, Theorems 2.13 and 3.3], we see that

volR�.D/

�
�Yn��.D/�.W�/

�
D lim
m!1

volR�.D/

�
�Ym

n��.D/�
.W m
� /
�
:

As �Ym
n��.D/�

.W m
� / � �Yn��.D/�.W�/, we obtain

�Yn��.D/�.W�/ D lim
m!1

�Ym
n��.D/�

.W m
� /:

Thus the assertion now follows.

Remark 3.2. When D is a big divisor, Lemma 3.1 is the same as [20, Theorem D]. See
[20, Remark 3.4] for the explanation on how this statement implies the classical statement
of Fujita’s approximation (see also [19, Theorem 11.4.4]). Another version of Fujita’s
approximation for effective divisors is stated in [9, Theorem 1.2].

3.2. Limiting Okounkov body case

We fix notation used throughout this subsection. Let D be a pseudoeffective abundant
divisor on X with �.D/ D �BDPP.D/ > 0. Fix an admissible flag Y� on X containing a
positive volume subvariety V of D such that Yn D ¹xº is general so that x 62 SB.D/ (see
Lemma 2.14). By Proposition 2.15, V is also a Nakayama subvariety ofD. We can regard
the limiting Okounkov body �lim

Y�
.D/ in ¹0ºn��.D/ � R�.D/ as a subset of R�.D/ (see

Theorem 2.9).
Now, for a sufficiently large integer m > 0, we take a log resolution fmWXm ! X of

the base ideal b.bmDc/ so that we obtain a decomposition f �m.bmDc/ DM
0
m C F

0
m into

a base point free divisorM 0m and the fixed part F 0m of jf �m.bmDc/j. LetMm WD
1
m
M 0m and

Fm WD
1
m
F 0m. We may assume that fmWXm ! X is an isomorphism over a neighborhood

of x. Let f �mDDPmCNm be the divisorial Zariski decomposition. By Theorem 2.13 (2),
it is also the s-decomposition.

Since Yn is general, by taking the strict transforms Y mi of Yi on Xm, we obtain an
admissible flag Y m� W Y

m
0 � � � � � Y

m
n on Xm. We note that Vm WD Y m

n��.D/
is also a

positive volume subvariety of f �mD since fm is V -birational ([5, Proposition 2.24]). By
definition, we also see that Vm is also a Nakayama subvariety of Mm. Clearly, it is also a
positive volume subvariety of Mm.

The following lemma is obvious (cf. [24, Lemma II.2.11]).

Lemma 3.3. Let f WX ! Y be a surjective morphism with connected fibers between
smooth projective varieties, andD be an effective divisor on Y . ThenH 0.X; bf �.mD/c/

D H 0.Y; bmDc/ for a sufficiently large integer m > 0.
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Proof. We can write bf �.mD/c D f �bmDc C bf �¹mDºc. Note that for every irre-
ducible component E of Suppbf �¹mDºc, we have codim f .E/ � 2 since we assume
m > 0 is sufficiently large. By the projection formula, we obtain f�bf �.mD/c D bmDc,
and the assertion follows.

We now prove a version of Fujita’s approximation for an abundant divisor, which is a
generalization of [21, Proposition 3.7].

Lemma 3.4. Under the same notation as above, for a sufficiently large integer m > 0,
there exists an ample divisor H on X such that

Mm � Pm �Mm C
1

m
f �mH:

Proof. By Theorem 2.12, we can take a birational morphism �WW ! X with W smooth
and a contraction gWW ! T such that for some big divisor B on T , we have P 0 �Q P 00

where ��D D P 0 CN 0 and g�B D P 00 CN 00 are the divisorial Zariski decompositions.
By taking further blow-ups of T , we may assume that T is smooth. For any sufficiently
large integer m > 0, as in [21, Proof of Proposition 3.7], we consider a log resolution of
hmWTm ! T of the base ideal b.bmBc/ and the asymptotic multiplier ideal J.kmBk/ so
that we obtain a decomposition h�m.bmBc/ D M 000m C F

000
m into a base point free divisor

M 000m and the fixed part F 000m of jh�m.bmBc/j. Let M 00m WD
1
m
M 000m and F 00m WD

1
m
F 000m . Now,

for a sufficiently large integerm > 0, we take a log resolution f Wm WX
W
m ! W of the base

ideal b.bm��Dc/ so that we obtain a decomposition .f Wm /�.bm��Dc/ DMW
m

0
C FWm

0

into a base point free divisor MW
m

0 and the fixed part FWm
0 of j.f Wm /�.bm��Dc/j. Let

MW
m WD

1
m
MW
m

0 and FWm WD
1
m
FWm

0. Note that for a sufficiently large m0 > m, we may
take birational morphisms hm0;mWTm0 ! Tm and f Wm0;mWX

W
m0 ! XWm . We can assume that

there are contractions gmWXWm ! Tm for sufficiently large integers m > 0. Thus we have
the following commutative diagram:

XWm0
f W
m0;m
//

gm0

��

XWm
f Wm //

gm

��

W
�
//

g

��

X

Tm0
hm0;m

// Tm
hm

// T:

We now claim that

MW
m �Q g�mM

00
m for any sufficiently large and divisible integer m > 0: (3.1)

We can assume that D itself is an effective divisor. By applying Lemma 3.3, we obtain

H 0
�
X; bmDc

�
D H 0

�
W; b��.mD/c

�
D H 0

�
W; bmP 0c

�
D H 0

�
W; bmP 00c

�
D H 0

�
W; bg�.mB/c

�
D H 0

�
T; bmBc

�
:
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We then have

H 0
�
XWm ; mM

W
m

�
D H 0

�
X; bmDc

�
D H 0

�
T; bmBc

�
D H 0.Tm; mM

00
m/

D H 0
�
XWm ; g

�
m.mM

00
m/
�
:

Note that MW
m � .f

W
m /�P 0 �Q .f Wm /�P 00 � g�mM

00
m and

H 0
�
XWm ; mM

W
m

�
D H 0

�
XWm ;

�
m.f Wm /�P 0

˘�
D H 0

�
XWm ;

�
m.f Wm /�P 00

˘�
D H 0

�
XWm ; g

�
m.mM

00
m/
�
:

Since mMW
m ; g

�
m.mM

00
m/ are base point free, we obtain MW

m �Q g�mM
00
m as desired.

Let h�mB D P 0m C N
0
m be the divisorial Zariski decomposition. By [21, Proposition

3.7], there exists an effective divisorE 0 on T such thatM 00m�P
0
m�M

00
mC

1
m
h0
�

mE
0. (Even

though this assertion is slightly different from the actual statement of [21, Proposition 3.7],
Lehmann actually proved this assertion in its proof.) Thus we have

h�m0;mM
00
m �M

00
m0 � P

0
m0 � h

�
m0;mP

0
m � h

�
m0;mM

00
m C

1

m
h�m0;mh

�
mE
0

D h�m0;mM
00
m C

1

m
h�m0E

0

so that 0 �M 00m0 � h
�
m0;mM

00
m �

1
m
h�m0E

0. Let E WD g�E 0. By taking pullback via gm0 and
by applying the claim (3.1), we obtain

0 �MW
m0 �

�
f Wm0;m

��
MW
m �

1

m

�
f Wm0

��
E:

By taking pushforward via f Wm0;m, we then have

0 � f Wm0;m�M
W
m0 �M

W
m �

1

m

�
f Wm

��
E:

Let .f Wm /���D D PWm CN
W
m be the divisorial Zariski decomposition, which is also the

s-decomposition by Theorem 2.13 (2). By definition of s-decomposition,

PWm D lim
m0!1

f Wm0;m�M
W
m0 :

Hence we obtain 0 � PWm �M
W
m �

1
m
.f Wm /�E. We can take an ample divisor H on X

such that ��H � E. Then we have

MW
m � P

W
m �M

W
m C

1

m

�
f Wm

��
��H: (3.2)

To finish the proof, consider a common log resolution f 0mWZ!X of�ıf Wm WX
W
m !X

and the log resolution fmWXm ! X of b.bmDc/ with the morphisms pWZ ! XWm and
qWZ ! Xm. Note that MZ

m WD p�MW
m D q�Mm is also a base point free divisor. Let
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.f 0m/
�D D PZm CN

Z
m be the divisorial Zariski decomposition. It is clear thatMZ

m � P
Z
m .

On the other hand, sincePZm �p
�PWm , it follows from (3.2) thatPZm �M

Z
m C

1
m
.f 0m/

�H .
Notice that Pm D q�PZm . Thus by taking pushforward via q, we finally obtain

Mm � Pm �Mm C
1

m
f �mH:

This completes the proof.

Remark 3.5. When D is a big divisor, one can easily deduce the classical statement of
Fujita’s approximation (see e.g., [19, Theorem 11.4.4]) from Lemma 3.4.

The following is the main result of this subsection. This generalizes [20, Theorem D]
to the limiting Okounkov body case.

Lemma 3.6. With the same notation in the proof of Lemma 3.4, we have

�lim
Y�
.D/ D lim

m!1
�Ym

n��BDPP.D/�
.MmjVm/:

Proof. We treat �lim
Y�
.D/ and �Ym

n��BDPP.D/�
.MmjVm/ in the statement as the subsets of the

same fixed space R�BDPP.D/. For any sufficiently largem0 > 0, by Lemmas 2.3 and 2.5, we
have

�lim
Y�
.D/ D �lim

Ym
0

�

.f �m0D/ D �
lim
Ym
0

�

.Pm0/:

Thus �lim
Ym
0

�

.Pm0/ is independent of m0. By [8, Lemma 5.5], for any m > 0, we have

�lim
Ym�
.Mm/ D �

lim
Ym
n��BDPP.D/�

.MmjVm/:

To prove the lemma, it is sufficient to verify �lim
Ym
0

�

.Pm0/ D limm!1�
lim
Ym�
.Mm/.

By Lemma 3.4, for any sufficiently large integer m > 0, we have

Mm � Pm �Mm C
1

m
f �mH

for some ample divisor H on X . Since x 2 X is general, we may assume x 62 Supp.H/.
By the subadditivity property of limiting Okounkov bodies,

�lim
Ym�
.Pm �Mm/C�

lim
Ym�

�
1

m
f �mH CMm � Pm

�
� �lim

Ym�

�
1

m
f �mH

�
D
1

m
�Y�.H/:

Since limm!1
1
m
�Y�.H/ D ¹0º, it follows that

lim
m!1

�lim
Ym�
.Pm �Mm/ D lim

m!1
�lim
Ym�

�
1

m
f �mH CMm � Pm

�
D ¹0º:

By the subadditivity property of limiting Okounkov bodies,

�lim
Ym�
.Mm/C�

lim
Ym�
.Pm �Mm/ � �

lim
Ym�
.Pm/;

�lim
Ym�
.Pm/C�

lim
Ym�

�
1

m
f �mH CMm � Pm

�
� �lim

Ym�

�
Mm C

1

m
f �mH

�
:
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Since �lim
Ym�
.Pm/ � R�BDPP.D/ and Y m

n��BDPP.D/
6� BC.Mm C

1
m
f �mH/, it follows from

Lemma 3.4 and [8, Theorem 1.1] that

lim
m!1

�lim
Ym�
.Mm/ � lim

m!1
�lim
Ym�
.Pm/ � lim

m!1
�Ym

n��BDPP.D/�

�
Mm C

1

m
f �mH

�
:

The existence of the limits is guaranteed by the following claim:

lim
m!1

volR�BDPP.D/

�
�lim
Ym�
.Mm/

�
D lim
m!1

volR�BDPP.D/

�
�Ym

n��BDPP.D/�

�
Mm C

1

m
f �mH

��
: (3.3)

If this claim (3.3) holds, then

lim
m!1

�lim
Ym�
.Mm/ D lim

m!1
�lim
Ym�
.Pm/ D lim

m!1
�Ym

n��BDPP.D/�

�
Mm C

1

m
f �mH

�
:

As we saw in the beginning of the proof, �lim
Ym�
.Pm/ coincide with �lim

Y�
.D/ for all suffi-

ciently large m > 0. Thus we have

�lim
Y�
.D/ D lim

m!1
�lim
Ym�
.Mm/:

It now remains to prove the claim (3.3). We may assume that Vm WD Y mn��BDPP.D/
is a

smooth positive volume subvariety ofMm, and fmjVm WVm! V is a birational contraction.
By [8, Lemma 5.5], we have

volR�BDPP.D/

�
�lim
Ym�
.Mm/

�
D

1

�BDPP.D/Š
volVm.MmjVm/ D

1

�BDPP.D/Š
.MmjVm/

�BDPP.D/:

Similarly, by [20, (2.7), p. 804], we also have

volR�BDPP.D/

�
�Ym

n��BDPP.D/�

�
MmjVm C

1

m
.f �mH/jVm

��
D

1

�BDPP.D/Š
volVm

�
MmjVm C

1

m
.f �mH/Vm

�
D

1

�BDPP.D/Š

�
MmjVm C

1

m
.f �mH/jVm

��BDPP.D/

D
1

�BDPP.D/Š

�
.MmjVm/

�BDPP.D/

C

�BDPP.D/�1X
kD0

�
�BDPP.D/

k

�
m�BDPP.D/�k

�
MmjVm

�k
�
�
.f �mH/jVm

��BDPP.D/�k
�
:

To prove claim (3.3), it is sufficient to show that for each 0 � k � �BDPP.D/ � 1, there
exists a constant Ck independent of m such that

.MmjVm/
k
�
�
.f �mH/jVm

��BDPP.D/�k
� Ck :
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If k D 0, then we have�
.f �mH/jVm

��BDPP.D/
D
�
.fmjVm/

�.H jV /
��BDPP.D/

D .H jV /
�BDPP.D/;

which is independent of m. Now, suppose that 1 � k � �BDPP.D/ � 1. Note that Vm 6�
SB.f �mD/ and MmjVm � .f

�
mD/jVm . Thus

MmjVm �
�
.f �mH/jVm

��BDPP.D/�1
� .f �mD/jVm �

�
.f �mH/jVm

��BDPP.D/�1

D DjV � .H jV /
�BDPP.D/�1:

By a Hodge-type inequality [19, Corollary 1.6.3 (i)], we have

.MmjVm/
k
�
�
.f �mH/jVm

��BDPP.D/�k
�

�
MmjVm �

�
.f �mH/jVm

��BDPP.D/�1�k��
.f �mH/jVm

��BDPP.D/�k�1
�

�
DjV � .H jV /

�BDPP.D/�1
�k�

.H jV /�BDPP.D/
�k�1 :

Note that the right-hand side is independent of m. This proves the claim (3.3) and com-
pletes the proof.

4. Numerical equivalence and Okounkov body

In this section, we prove Theorem A as Corollary 4.11. Throughout the section, X is a
smooth projective variety of dimension n. First, we need the following lemma.

Lemma 4.1. Let f W zX!X be a birational morphism with zX smooth, andD be a divisor
on X with �.D/ � 0. Consider an admissible flag

zY� W zX D zY0 � zY1 � � � � � zYn�1 � zYn D ¹x
0
º

on zX and an admissible flag

Y� W X D Y0 � Y1 � � � � � Yn�1 � Yn D ¹xº

on X such that each restriction f j zYi W
zYi ! Yi is a birational morphism for 0 � i � n.

Assume that Yi and zYi are smooth for 0� i � n. For 1� i � n, write f j�
zYi�1

Yi D zYi CEi
for some effective f j zYi�1 -exceptional divisor Ei on zYi�1. Then we have

�val
zY�
.f �D/ D

²
xC

n�1X
iD1

xi � � zYi�.Ei j zYi /
ˇ̌̌

x D .x1; : : : ; xn/ 2 �val
Y�
.D/

³
where we regard � zYi�.Ei j zYi / as a point in ¹0ºi �Rn�i � Rn. In particular, �val

Y�
.D/ and

�val
zY�
.f �D/ determine each other.
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Proof. We can canonically identify jDjR with jf �DjR. For any D0 2 jDjR, let

�Y�.D
0/ D .�1; : : : ; �n/ and � zY�.f

�D0/ D . Q�1; : : : ; Q�n/:

Since �Y�.jDjRj/ and � zY�.jf
�DjR/ are dense subsets of�val

Y�
.D/ and�val

zY�
.f �D/, respec-

tively, it is sufficient to show that

. Q�1; : : : ; Q�n/ D .�1; : : : ; �n/C

n�1X
iD1

�i � � zYi�.Ei j zYi /: (4.1)

Let D01 WD D
0 on X D Y0, and define inductively D0i WD .D

0
i�1 � �i�1Yi�1/jYi�1 on

Yi�1 for 2 � i � n. Similarly, let zD01 WD f
�D0 on zX D zY0, and define inductively zD0i WD

. zD0i�1 � Q�i�1
zYi�1/j zYi�1 on zYi�1 for 2 � i � n. Then �i D ordYi D

0
i and Q�i D ord zYi

zD0i
for 1 � i � n. First of all, observe that the first coordinates of both sides in (4.1) are Q�1
and �1 and Q�1 D �1. As zY1 D f �Y1 �E1, we get

zD02 D .f
�D01 � �1

zY1/j zY1 D
�
f �.D01 � �1Y1/C �1E1

�
j zY1
D f j�

zY1
D02 C �1E1j zY1 :

Then we have
� zY1�.

zD02/ D � zY1�.f j
�
zY1
D02/C �1 � � zY1�.E1j zY1/:

Note that ord zY2
zD02 D Q�2 and ord zY2 f j

�
zY1
D02 D �2. Thus (4.1) holds for the second coor-

dinates. Now, as zY2 D f j�zY1
Y2 �E2, we get

.f j�
zY1
D02 � �2

zY2/j zY2 D
�
f j�
zY1
.D02 � �2Y2/C �2E2

�
j zY2
D f j�

zY2
D03 C �2E2j zY2 ;

Then we have

� zY2�

�
.f j�
zY1
D02 � �2

zY2/j zY2

�
D � zY2�.f j

�
zY2
D03/C �2 � � zY2�.E2j zY2/:

Note that

ord zY3.f j
�
zY1
D02 � �2

zY2/j zY2 C the third coordinate of �1 � � zY1�.E1j zY1/ D Q�3

and ord zY3 f j
�
zY2
D03 D �3. Thus (4.1) holds for the third coordinates. In general, we have

� zYi�

�
.f j�
zYi�1

D0i � �i
zYi /j zYi

�
D � zYi�.f j

�
zYi
D0iC1/C �i � � zYi�.Ei j zYi / for 2 � i � n � 1:

Note that

ord zYiC1.f j
�
zYi�1

D0i � �i
zYi /j zYi C the .i C 1/-th coordinate of

i�1X
jD1

�j � � zYj�.Ej j zYj / D Q�iC1

and ord zYiC1 f j
�
zYi
D0iC1 D �iC1. Thus we obtain (4.1).
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We first prove the ‘only if’ direction of Theorem A, which is a generalization of [20,
Proposition 4.1 (i)] to (possibly non-big) abundant divisors.

Proposition 4.2. Let D;D0 be divisors on X with �.D/; �.D0/ � 0. Suppose that D or
D0 is an abundant divisor. If D � D0, then �val

Y�
.D/ D �val

Y�
.D0/ for every admissible flag

Y� on X .

Proof. By Theorem 2.13 (1), both D;D0 are abundant divisors. Fix an admissible flag Y�
on X . Possibly by taking a higher birational model of X , we may assume that each subva-
riety Yi in Y� is smooth (see Remark 2.4). By Theorem 2.12, there is a birational morphism
�WW ! X and a morphism gWW ! T with connected fibers such that P� .��D/ �Q

P� .g
�B/ for some big divisor B on T . Thus P� .��D0/jF � 0 for a general fiber F of g,

and hence, P� .��D0/jF �Q 0 since �.��D0/ D �.D0/ � 0. This implies that

��
�
P� .�

�D0/jF
�
D �

�
P� .�

�D0/jF
�
D 0:

By taking a higher birational model ofW if necessary, by [24, Corollary V.2.26] (see also
[22, Theorem 5.7]), we may assume that P� .��D0/ �Q P� .g

�B 0/ for some divisor B 0

on T . Applying [24, Lemma III.5.15] (see also [22, Proof of Corollary 6.3]), we see that
P� .B/ � P� .B

0/ and B 0 is also a big divisor on T . We also have

P� .�
�D/ �Q P� .g

�B/ D P�
�
g�P� .B/

�
;

P� .�
�D0/ �Q P� .g

�B 0/ D P�
�
g�P� .B

0/
�
:

We write P� .B/ D P� .B 0/C N for some numerically trivial divisor N on T . Then we
have

P� .�
�D/ �Q P�

�
g�P� .B/

�
D P�

�
g�P� .B

0/
�
C g�N �Q P� .�

�D0/C g�N:

By successively taking strict transforms zYi of Yi under the birational morphisms

�j zYi�1 W
zYi�1 ! Yi�1 for 1 � i � n;

we obtain an admissible flag

zY� W W D zY0 � zY1 � � � � � zYn�1 � zYn

on W . Possibly by taking a higher birational model of W , we may assume that each
subvariety of zY� is smooth. By Theorem 2.13 (2), we have P� .��D/ D Ps.�

�D/ and
P� .�

�D0/ D Ps.�
�D0/. By Lemmas 2.5 and 4.1, it is sufficient to show that

�val
zY�

�
P� .�

�D/
�
D �val

zY�

�
P� .�

�D0/
�
:

Now, take an ample divisor A on T so that AC kN is also an ample divisor for every
k 2 Z. Choose a large integer a > 0 such that aP� .B 0/ � A �Q E 0 for some effective
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divisor E 0 on T . Then aP� .g�P� .B 0//� g�A �Q E for some effective divisor E onW .
For any integer m > 0, we have

.mC a/P� .�
�D/ �Q .mC a/

�
P� .�

�D0/C g�N
�

�Q mP� .�
�D0/CE C g�

�
AC .mC a/N

�
:

By the subadditivity property of the valuative Okounkov bodies, we have

�val
zY�

�
P� .�

�D/
�
�

m

mC a
�val
zY�

�
P� .�

�D0/
�
C

1

mC a
�val
zY�
.E/

C
1

mC a
�val
zY�

��
g�.AC .mC a/N /

��
:

Note that g�.AC .mC a/N / is a semiample divisor onW . Then we can find an effective
divisor E 00 2 jg�.AC .mC a/N /jR such that ord zYi .E

00/D 0 for 1 � i � n, so the origin
of Rn is contained in �val

zY�
.g�.AC .mC a/N //. Hence we obtain

�val
zY�

�
P� .�

�D/
�
�

m

mC a
�val
zY�

�
P� .�

�D0/
�
C

1

mC a
�val
zY�
.E/:

By letting m!1, we see that

�val
zY�

�
P� .�

�D/
�
� �val

zY�

�
P� .�

�D0/
�
:

Similarly by replacing D by D0 and N by �N , we can also obtain the reverse inclusion.
Therefore we complete the proof.

Remark 4.3. Obviously, Proposition 4.2 does not hold without the assumption that D or
D0 is an abundant divisor (see [5, Remark 3.13]).

For the converse of Proposition 4.2, we need several lemmas.

Lemma 4.4. Consider two surjective morphisms f1WX ! Z1 and f2WX ! Z2 with
connected fibers. Suppose that dimZ1 D dimZ2 > 0 and f1; f2 are not birationally
equivalent. Then for a general member G 2 jH j where H is a very ample divisor on Z1,
the inverse image f �11 .G/ dominates Z2 via f2, i.e., we have f2.f �11 .G// D Z2.

Proof. Notice that jf �1 H j is a base point free linear system. Thus we may assume that
f �11 .G/ D f �1 G 2 jf

�
1 H j is a general member so that f �11 .G/ is a prime divisor on X .

Suppose that f2.f �11 .G// does not dominate Z2 via f2. Then f2.f �11 .G// is contained
in a prime divisor D on Z2. We then have f �1 G � f

�
2 D, so

H 0
�
X;OX .mf

�
1 G/

�
� H 0

�
X;OX .mf

�
2 D/

�
for any integer m > 0:

In particular, D is a big divisor on Z2. Consider a rational map 'WX Ü Z0 given by
jmf �2 Dj for a sufficiently large and divisible integer m > 0. The rational map ' factors
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through Z2 via a birational map '0WZ2 Ü Z0 given by jmDj, and ' and f2 are bira-
tionally equivalent. SinceH 0.X;OX .mf

�
1 G// �H

0.X;OX .mf
�
2 D//, there is a rational

map � WZ0 Ü Z1. Note that � ı 'WX Ü Z1 is birationally equivalent to f1WX ! Z1.
As f1 has connected fibers, � is birational and so is � ı '0WZ2 Ü Z1. This implies that
f1; f2 are birationally equivalent, so we get a contradiction.

Theorem 4.5. Let D;D0 be divisors on X with �.D/; �.D0/ > 0. If �val
Y�
.D/ D �val

Y�
.D0/

for every admissible flag Y� on X , then the Iitaka fibrations of D;D0 are birationally
equivalent.

Proof. Let f WX 0 ! X be a birational morphism with the Iitaka fibrations �WX 0 ! Z of
D and �0WX 0!Z0 ofD0. Since dim�val

Y�
.D/D �.D/ for any admissible flag Y�, we have

�.D/ D �.D0/ so that dimZ D dimZ0. To derive a contradiction, suppose that �; �0 are
not birationally equivalent. By Lemma 4.4, for a general member G 2 jH j where H is
a very ample divisor on Z, the inverse image ��1.G/ dominates Z0 via �0. We can take
a general subvariety V 0 � ��1.G/ of dimension �.D0/ such that f .V 0/ is a Nakayama
subvariety of D0. By Theorem 2.8, f .V 0/ is also a Nakayama subvariety of D. However,
�.V 0/ � �.��1.G// D G, so V 0 does not dominate Z via �. This is a contradiction, and
we are done.

The following lemma plays a crucial role in the proof of the converse of Proposi-
tion 4.2. It can be considered as a generalization of [13, Corollary 3.3 and Theorem 3.4 (b)]
although our proof is completely different from Jow’s proof in [13].

Lemma 4.6. LetD be a divisor on X with �.D/ > 0, andD D Ps CNs be the s-decom-
position. Consider an irreducible curve C on X obtained as a transversal complete inter-
section of general effective very ample divisors on X . We can choose an admissible flag
Y� W X D Y0 � Y1 � � � � � Yn�1 � Yn D ¹xº on X such that Yn��.D/ is a Nakayama
subvariety of D, Yn�1 D C , and x is a general point in the sense of Remark 2.10. Fix an
Iitaka fibration �WX 0 ! Z of D, and let C 0 be the strict transform of C on X 0. Then we
have

Ps � C D deg
�
C 0 ! �.C 0/

�
� volR1

�
�val
Y�
.D/x1D���Dxn�1D0

�
:

Proof. We can choose general effective very ample divisors A1; : : : ; An�1 on X such
that A1 \ � � � \ An�1 D C . We may assume that Yi WD A1 \ � � � \ Ai is an irreducible
subvariety of codimension i for each 1 � i � n � 1. By letting Yn WD ¹xº where x is a
general point in the sense of Remark 2.10, we obtain an admissible flag

Y� W X D Y0 � Y1 � � � � � Yn�1 � Yn D ¹xº

on X . Since A1; : : : ; An��.D/ are general effective very ample divisors, Yn��.D/ is a
Nakayama subvariety of D by [5, Proposition 2.13]. Thus this admissible flag Y� satisfies
the conditions in the statement.

For a sufficiently large integer m > 0, take a log resolution fmWXm ! X of the base
ideal b.bmDc/ so that we obtain a decomposition f �m.bmDc/ D M

0
m C F

0
m into a base
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point free divisor M 0m on Xm and the fixed part F 0m of jf �m.bmDc/j. Let Mm WD
1
m
M 0m

and Fm WD 1
m
F 0m. Let �mWXm ! Zm be a morphism given by jM 0mj. By taking a higher

birational model of Zm, we may assume that Zm is a smooth variety. There exists a nef
and big divisor Hm on Zm such that Mm D �

�
mHm. Since our choice of admissible flag

Y� is independent of this process, we may assume that fmWXm ! X is an isomorphism
over a neighborhood of x. Let Cm be the strict transform of C on Xm. By taking strict
transforms Y mi of Yi on Xm for each 0 � i � n � 1 (note that Y mn�1 D Cm), we obtain an
admissible flag

Y m� W Xm D Y
m
0 � Y

m
1 � � � � � Y

m
n�1 � Y

m
n D

®
f �1m .x/

¯
on Xm. We may also assume that

xY m� W Zm D
xY m0 D �m.Y

m
n��.D// �

xY m1 D �m.Y
m
n��.D/�1/ � � � � �

xY m�.D/�1

D �m.Y
m
n�1/ �

xY m�.D/ D �m.Y
m
n /

is an admissible flag on Zm. Note that

d WD deg
�
C 0 ! �.C 0/

�
D deg

�
Cm ! �m.Cm/

�
:

Then Mm � Cm D d � .Hm � �m.Cm//. By [8, Theorem 1.1], we have

Hm � �m.Cm/ D volZmj xY�.D/�1.Hm/ D volR1

�
� xYm� .Hm/x1D���Dx�.D/�1D0

�
:

We now prove that Ps � C D limm!1Mm � Cm. Let E1; : : : ; Ek be the divisorial
components of SB.D/. Since the closure of SB.D/ n .E1 [ � � � [Ek/ has codimension at
least two in X , we may assume that C \ SB.D/ � E1 [ � � � [ Ek . We can also assume
that C is smooth and meets all Ei transversally at smooth points of Ei . Thus Cm does not
meet any effective fm-exceptional divisor. We write

f �m
bmPsc

m
DMm C e

m
1 f
�1
m�E1 C � � � C e

m
k f
�1
m�Ek C F

00
m

where F 00m is an effective fm-exceptional divisor. We have

bmPsc

m
� C D f �m

bmPsc

m
� Cm DMm � Cm C e

m
1 E1 � C C � � � C e

m
k Ek � C:

Since limm!1 e
m
i D 0 for each 1 � i � k and limm!1

bmPsc
m
� C D Ps � C , it follows

that Ps � C D limm!1Mm � Cm as desired.
Combining what we have obtained above, we find

Ps � C D d � lim
m!1

volR1

�
� xYm� .Hm/x1D���Dx�.D/�1

�
:

To prove the lemma, it is sufficient to show that

lim
m!1

� xYm� .Hm/x1D���Dx�.D/�1D0 D �
val
Y�
.D/x1D���Dxn�1D0: (4.2)
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By definition,

lim
m!1

� xYm� .Hm/x1D���Dx�.D/�1D0 � �
val
Y�
.D/x1D���Dxn�1D0

holds. To derive a contradiction, suppose that this inclusion is strict. For a sufficiently
large integer m0 > 0, we can choose a small ample Q-divisor Am0 on Zm0 such that

volR1

�
� xYm� .Hm/x1D���Dx�.D/�1

�
C Am0 � �m0.Cm0/ < volR1

�
�val
Y�
.D/x1D���Dxn�1D0

�
� "

for any sufficiently small number " > 0 and any sufficiently large integer m > m0. There
exists a sufficiently small number ı > 0 such that all the following divisors

Am0;1 D Am0;1.ı1/ �Q Am0 C ı1
xY
m0
1 ;

Am0;2 D Am0;2.ı1; ı2/ �Q Am0;1j xYm01
C ı2 xY

m0
2 ;

:::

Am0;�.D/�1 D Am0;�.D/�1.ı1; : : : ; ı�.D/�1/ �Q Am0;�.D/�2j xYm0
�.D/�2

C ı�.D/�1 xY
m0
�.D/�1

are ample Q-divisors for any nonnegative rational numbers ı1; ı2; : : : ; ı�.D/�1 � ı. By
Lemma 3.1, �val

Y�
.D/ D limm!1 �

val
Ym�
.Mm/ D limm!1 � xYm� .Hm/. Thus there exist a

sufficiently large integer m > 0 and an effective divisor H 0m �Q Hm on Zm such that if
we write � xYm� .H

0
m/ D .ı1; : : : ; ı�.D/�1; b/, then ı1; ı2; : : : ; ı�.D/�1; b are nonnegative

rational numbers with ı1; ı2; : : : ; ı�.D/�1 � ı and volR1.�val
Y�
.D/x1D���Dxn�1D0/ � " � b.

We can write

H 0m D Hm;1 C ı1
xY m1 ;

Hm;1j xYm1
D Hm;2 C ı2 xY

m
2 ;

:::

Hm;�.D/�2j xYm
�.D/�2

D Hm;�.D/�1 C ı�.D/�1 xY
m
�.D/�1

where each Hm;i is an effective divisor on xY mi�1 for 1 � i � �.D/ � 1. Notice that
Hm;�.D/�1 � �m.Cm/ D Hm;�.D/�1 � xY

m
�.D/�1

� b. By taking a common resolution, we
can assume that there is a birational morphism gmWZm ! Zm0 such that

xY mi D gmj
�
xYmi�1

xY
m0
i for every 1 � i � �.D/:

Note that Hm C g�mAm0 C B is an ample Q-divisor on Zm for any ample Q-divisor B
on Zm. We may assume that xY m

�.D/�2
6� Supp.B/. Thus we can find an effective divisor

E �Q Hm C g
�
mAm0 C B such that

Ej xYm
�.D/�2

D Hm;�.D/�1 C gmj
�
xYm
�.D/�2

Am0;�.D/�1 C Bj xYm
�.D/�2

where Am0;�.D/�1 D Am0;�.D/�1.ı1; : : : ; ı�.D/�1/. Then we obtain

.Hm C g
�
mAm0 C B/ � �m.Cm/

D E � �m.Cm/ D
�
Hm;�.D/�1 C gmj

�
xYm
�.D/�2

Am0;�.D/�1 C Bj xYm
�.D/�2

�
� �m.Cm/ > b:
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As B can be an arbitrarily small ample divisor, we get .Hm C g�mAm0/ � �m.Cm/ � b.
Then we have

volR1

�
� xYm� .Hm/x1D���Dx�.D/�1

�
C Am0 � �m0.Cm0/

D .Hm C g
�
mAm0/ � �m.Cm/ � b � volR1

�
�val
Y�
.D/x1D���Dxn�1D0

�
� ";

which is a contradiction. Therefore, we obtain (4.2) as required.

Remark 4.7. Here we explain why Lemma 4.6 can be considered as a generalization
of Jow’s result [13, Corollary 3.3 and Theorem 3.4 (b)], which states that if D is a big
divisor onX and Y� is an admissible flag onX whose subvarieties are transversal complete
intersections of general effective very ample divisors on X , then

volR1

�
�Y�.D/x1D���Dxn�1D0

�
D D � Yn�1 �

kX
iD1

X
p2Yn�1\Ei

ordEi
�
kDk

�
where E1; : : : ;Ek are irreducible components of SB.D/. Since Yn�1 is a sufficiently gen-
eral curve, we may assume that Yn�1 is smooth and meets all Ei transversally at smooth
points of Ei . Thus Jow’s result can be also expressed equivalently as

kX
iD1

X
p2Yn�1\Ei

ordEi
�
kDk

�
D N� .D/ � Yn�1

so that volR1.�Y�.D/x1D���Dxn�1D0/ D P� .D/ � Yn�1. Note that for any big divisor D,
P� .D/ D Ps.D/ and the identity map idX WX ! X is an Iitaka fibration of D. Thus
Lemma 4.6 recovers Jow’s result.

Lemma 4.8. Let D be a divisor on X with �.D/ > 0, and D D Ps C Ns be the s-
decomposition. Let E be an irreducible component of Ns . Then we have

multE Ns D inf¹x1 j .x1; : : : ; xn/ 2�val
Y�
.D/; Y� is an admissible flag such that Y1 D Eº:

In particular, one can read off the negative part Ns from the set®
�val
Y�
.D/ j Y� is an admissible flag on X

¯
:

Proof. By the definition of s-decomposition, we have

inf
®
x1 j .x1; : : : ; xn/ 2 �

val
Y�
.Ps/; Y� is an admissible flag such that Y1 D E

¯
D 0:

Note also that �val
Y�
.Ns/ consists of a single point .x1; : : : ; xn/ with x1 D multE Ns . Thus

the assertion follows from Lemma 2.5.

We are now ready to complete the proof of Theorem A by proving the converse of
Proposition 4.2. The following result is a generalization of [13, Theorem A] to possibly
non-big divisor case.
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Proposition 4.9. LetD;D0 be divisors onX with �.D/;�.D0/�0. If�val
Y�
.D/D�val

Y�
.D0/

for every admissible flag Y� on X , then D � D0.

Proof. Recall that if D is a divisor with �.D/ � 0, then any �.D/-dimensional general
subvariety of X is a Nakayama subvariety of D. Thus we can take an admissible flag Y�
containing the Nakayama subvarieties of D;D0 with general Yn. By the assumption, we
can deduce from Theorem 2.9 (1) that �.D/D �.D0/. The assertion is trivial when �.D/D
�.D0/ D 0. Thus, from now on, we assume that �.D/; �.D0/ > 0. By Theorem 4.5, we
may fix an Iitaka fibration � W X 0 ! Z for both D and D0. Let D D Ps CNs and D0 D
P 0s CN

0
s be the s-decompositions. By Lemma 4.8, we have Ns D N 0s . Thus it is sufficient

to show that Ps � P 0s . By applying [13, Lemma 3.5], we can take irreducible curves
C1; : : : ; C� on X obtained by transversal complete intersections of general effective very
ample divisors on X in such a way that they form a basis of N1.X/Q. As in Lemma 4.6,
for each 1 � i � �, we can choose an admissible flag

Y i� W X D Y
i
0 � Y

i
1 � � � � � Y

i
n�1 � Y

i
n D ¹x

i
º

on X such that Y i
n��.D/

is a Nakayama subvariety of D, Y in�1 D Ci , and xi is a very
general point on Ci . For each 1 � i � �, let C 0i be the strict transform of Ci on X 0. By
Lemma 4.6 and the assumption, we have

Ps � Ci D deg
�
C 0i ! �.C 0i /

�
� volR1.�val

Y i�
.D/x1D���Dxn�1D0/

D deg
�
C 0i ! �.C 0i /

�
� volR1.�val

Y i�
.D0/x1D���Dxn�1D0/

D P 0s � Ci

for every 1 � i � �. Thus Ps � P 0s , and this finishes the proof.

Remark 4.10. In Proposition 4.9, we do not assume that D or D0 is an abundant divi-
sor. Clearly, Proposition 4.9 does not hold without the assumption that �.D/; �.D0/ � 0.
We have �.D/; �.D0/ D �1 for any non-pseudoeffective divisors D and D0. However,
�val
Y�
.D/ D �val

Y�
.D0/ D ; for every admissible flag Y� on X .

As a consequence of Propositions 4.2 and 4.9, we obtain Theorem A as Corollary 4.11.

Corollary 4.11. Let D;D0 be divisors on X with �.D/; �.D0/ � 0. If D or D0 is an
abundant divisor, then D � D0 if and only if �val

Y�
.D/ D �val

Y�
.D0/ for every admissible

flag Y� on X .

Proof. The assertion follows from Propositions 4.2 and 4.9.

Finally, we prove the following.

Corollary 4.12. Let D;D0 be divisors on X with �.D/; �.D0/ � 0. If Pic.X/ is finitely
generated, then D �R D

0 if and only if �val
Y�
.D/ D �val

Y�
.D0/ for every admissible flag Y�

on X .
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Proof. The ‘only if’ direction is trivial by definition (see also [5, Proposition 3.13]). For
the converse, note thatD �D0 if and only ifD �R D

0 under the assumption that Pic.X/
is finitely generated. Then the ‘if’ direction follows from Proposition 4.9.

5. Restricted base locus via Okounkov bodies

We show Theorem B as Theorem 5.1 in this section. The idea of the proof is essentially
the same as that of [4, Theorem A], but we include the detailed proof for the reader’s
convenience. Throughout the section, X is a smooth projective variety of dimension n.

Theorem 5.1. Let D be a pseudoeffective abundant divisor on X , and x 2 X be a point.
Then the following are equivalent:

(1) x 2 B�.D/
(2) �val

Y�
.D/ does not contain the origin of Rn for every admissible flag Y� on X

centered at x.

(3) �val
Y�
.D/ does not contain the origin of Rn for some admissible flag Y� on X

centered at x.

Proof. We may assume that D is effective. Since D is an abundant divisor, we have
�V .kDk/ D inf¹�.D0/ j D �R D0 � 0º by Theorem 2.13 (2) for any divisorial valua-
tion � with the center V on X .

(1))(2) Assume that x 2 B�.D/, and fix an admissible flag Y� centered at x. By
taking a sufficiently small ample divisor A, we may assume that x 2 B�.D C A/. By
[11, Theorem B], we have �x.kD C Ak/ > 0, where � is a divisorial valuation with the
center x on X . Thus it follows that

ı WD inf
®

multx.D0/ j D �R D
0
� 0

¯
D �x

�
kDk

�
� �x

�
kD C Ak

�
> 0:

For D0 2 jDjR, we write �Y�.D
0/ D .�1.D

0/; : : : ; �n.D
0//. Then we obtain

�1.D
0/C � � � C �n.D

0/ � multx.D0/ � ı:

This implies that for any point x D .x1; : : : ; xn/ 2 �val
Y�
.D/, we have x1 C � � � C xn � ı.

In particular, �val
Y�
.D/ does not contain the origin of Rn.

(2))(3) Trivial.
(3))(1) Assume that x 62 B�.D/, and fix an arbitrary admissible flag Y� centered

at x. By Remark 2.4, we may assume that each Yi in Y� is smooth. We use the notation
in Section 3.2. We may take a birational morphism fmWXm ! X for each sufficiently
large integer m > 0 in such a way that there is an admissible flag Y m� on Xm such that
fmjYmi W Y

m
i ! Yi is a birational morphism for 0 � i � n. We can write f �mD D Mm C

Nm C .Pm �Mm/. Note that Y mn 6� Supp.Nm/ and Mm is semiample. Thus there is an
effective divisor D0m �R D such that

�Ym� .D
0
m/ D �Ym� .Pm �Mm/:
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Now, by Lemma 3.4, there is an ample divisor H on X such that Pm �Mm �
1
m
f �mH .

We then have

�Ym� .D
0
m/C x D �Ym� .Pm �Mm/C x 2 �val

Ym�

�
1

m
f �mH

�
for some x 2 Rn�0:

In view of Lemma 4.1, we see that

�Y�.D
0
m/C x0 2 �val

Y�

�
1

m
H

�
for some x0 2 Rn�0:

However, since limm!1 �
val
Y�
. 1
m
H/ D ¹0º, it follows that limm!1 �Y�.D

0
m/ D 0. This

means that the origin of Rn is contained in �val
Y�
.D/. We have shown that (3))(1).

Corollary 5.2. Let D be an abundant divisor on X . Then the following are equivalent:

(1) D is nef.

(2) For every point x 2 X , there exists an admissible flag Y� on X centered at x such
that �val

Y�
.D/ contains the origin of Rn.

(3) �val
Y�
.D/ contains the origin of Rn for every admissible flag Y� on X .

Proof. Recall that a divisor D on X is nef if and only if B�.D/ D ;. Thus the corollary
is immediate from Theorem 5.1.

Remark 5.3. Note that Theorem 5.1 and Corollary 5.2 may not hold when D is not
abundant (see [7, Remark 4.10]). The main reason is that for a divisorial valuation � with
the center V on X , we may have

�V
�
kDk

�
¤ inf

®
�.D0/ j D �R D

0
� 0

¯
in contrast to the abundant divisor case (Theorem 2.13 (2)).

6. Comparing two Okounkov bodies

In this section, we prove Theorem C as Theorem 6.1.

Theorem 6.1. Let D be a pseudoeffective abundant divisor on an n-dimensional smooth
projective varietyX with �.D/>0. Fix an admissible flag Y� onX such that V WDYn��.D/
is a Nakayama subvariety ofD and Yn is a general point in the sense of Remark 2.10 (see
Lemma 2.14). Consider the Iitaka fibration �WX 0 ! Z of D and the strict transform V 0

of V on X 0. Then we have

volR�.D/

�
�lim
Y�
.D/

�
D deg.�jV 0 WV 0 ! Z/ � volR�.D/

�
�val
Y�
.D/

�
:

In particular, �val
Y�
.D/ D �lim

Y�
.D/ if and only if the map �jV 0 W V 0 ! Z is generically

injective.
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Proof. We use the notation in Section 3. By Proposition 2.15, V is also a positive volume
subvariety of D. For a sufficiently large integer m > 0, we have

deg.�mjVm WVm ! Zm/ D deg.�jV 0 WV 0 ! Z/ DW d:

Since �mj�VmHmDMm, it follows that volVm.MmjVm/Dd � volZm.Hm/. By Lemmas 3.1,
3.6, Theorem 2.9, and [20, Theorem A], we obtain

volR�.D/

�
�lim
Y�
.D/

�
D lim
m!1

1

�.D/Š
volVm.MmjVm/;

volR�.D/

�
�val
Y�
.D/

�
D lim
m!1

1

�.D/Š
volZm.Hm/:

Thus the first assertion immediately follows.
Recall that �val

Y�
.D/ � �lim

Y�
.D/. Thus

�val
Y�
.D/ D �lim

Y�
.D/ if and only if volR�.D/

�
�val
Y�
.D/

�
D volR�.D/

�
�lim
Y�
.D/

�
:

Now the second assertion follows from the first assertion.

Example 6.2. Upon obtaining Theorem 6.1, one may wonder whether under the same
settings, �lim

Y�
.D/ and �val

Y�
.D/ coincide up to rescaling by a constant, i.e.,

�lim
Y�
.D/ D

�
deg.�jV 0 WV 0 ! Z/

� 1
�.D/ ��val

Y�
.D/:

This is not true in general. For instance, consider the 3-fold X WD P2 � P1 with the
projections f WX ! P2 and gWX ! P1. Let H WD f �L and F WD g�P where L is
a line in P2 and P is a point in P1. Then H is an abundant divisor with �.H/ D 2.
Note that f is the Iitaka fibration of H . Take a general point x and general members
H 0 2 jH j and S 2 jH C 2F j containing x. Note that S is a Nakayama subvariety of H
and deg.f jS WS ! P2/ D 2. We now fix an admissible flag

Y� W X � S � S \H
0
� ¹xº

on X . It is easy to check that �val
Y�
.H/ is an isosceles right triangle in ¹0º � R2�0 and

�lim
Y�
.H/ is a non-isosceles right triangle in ¹0º �R2�0. In particular, we see that

�lim
Y�
.H/ ¤

p
2 ��val

Y�
.H/:

Example 6.3. We give an example of a variety with a pseudoeffective abundant divisor
which does not have any Nakayama subvariety V giving rise to a generically injective map
�jV 0 W V

0 ! Z (i.e., deg.�jV 0/ D 1) as in Theorem 6.1. Let S be a minimal surface with
�.S/D 1. ThenKS is semiample, and �.KS /D �BDPP.KS /D 1. Denote by � WS!C the
relatively minimal elliptic fibration induced by jmKS j form� 0. Note that � is the Iitaka
fibration ofKS . Suppose now that � has no section. For instance, if � has a multiple fiber,
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then � has no section. For any Nakayama subvariety V ofKS , the map �jV WV !C is not
generically injective. In particular, by Theorem 6.1, �val

Y�
.KS / and �lim

Y�
.KS / are different

for any admissible flag Y� on S containing a Nakayama subvariety of KS such that Y2 is
a general point.
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