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Okounkov bodies associated to abundant divisors
and litaka fibrations

Sung Rak Choi, Jinhyung Park, and Joonyeong Won

Abstract. The aim of this paper is to study the Okounkov bodies associated to abundant divisors.
As a main result, we prove that the valuative Okounkov bodies of an abundant divisor encode all the
numerical properties. We apply this result to recover the asymptotic base loci of an abundant divisor
from the valuative Okounkov bodies. We also give a criterion for when the valuative and limiting
Okounkov bodies of an abundant divisor coincide by comparing their Euclidean volumes. To obtain
these results, we prove some variants of Fujita’s approximations for Okounkov bodies using litaka
fibrations.

1. Introduction

Inspired by the work of Okounkov [25,26], Lazarsfeld-Mustatd [20], and Kaveh—Khovan-
skii [14] independently introduced and studied the convex sets called the Okounkov bod-
ies associated to big divisors. Following their philosophy, there have been a number of
attempts to understand the various asymptotic properties of divisors by analyzing the
structure of the Okounkov bodies. The details are as follows. We first let X be a smooth
projective variety of dimension n. For a divisor D on X, the Okounkov body Ay, (D)
is defined as a convex set in R” which clearly depends on D and also on the choice
of the admissible flag Y, (see Definition 2.1). It is expected that one can extract vari-
ous positivity properties of the divisor D from the structure of the Okounkov bodies.
Based on the results on the Okounkov bodies of big divisors [20], we extended in [5,7, 8]
the study of Okounkov bodies to pseudoeffective divisors by introducing the valuative
Okounkov body AY'(D) and the limiting Okounkov body AY"(D) of a pseudoeffective
divisor D (see Definition 2.2). By definition, A‘}’f.l(D) C A‘}:“(D) holds in general and
Ay,(D) = AY(D) = A}Y"(D) when D is a big divisor. See Section 2.6 for more details.

By [20, Proposition 4.1 (i)] and [13, Theorem Al], it is known that the Okounkov bod-
ies are numerical in nature, i.e., two big divisors D, D’ on a smooth projective variety
X are numerically equivalent if and only if Ay,(D) = Ay,(D’) for every admissible
flag Yo on X. This statement was extended to pseudoeffective divisors using the limit-
ing Okounkov bodies in [5, Theorem C]. Thus theoretically one could read off all the

Mathematics Subject Classification 2020: 14C20 (primary); 52A20 (secondary).
Keywords: Okounkov body, abundant divisor, Fujita’s approximation, litaka fibration.


https://creativecommons.org/licenses/by/4.0/

S. R. Choi, J. Park, and J. Won 1024

numerical information of a given pseudoeffective divisor from its limiting Okounkov bod-
ies. In contrasts, the valuative Okounkov bodies do not reflect the numerical properties of
divisors in full as we observed in [5, Remark 3.13].

The first aim of the paper is to show that as is often the case, imposing the “abundance
condition” on divisors turns the valuative Okounkov bodies into numerical objects. In this
paper, following [3, 6], we say that a divisor D is abundant if k(D) = vgppp(D) holds.
Since k(D) < vgppp(D) < k(D) < ky(D) holds in general, our definition is weaker
than the classical abundance which requires « (D) = «x(D) or k(D) = k, (D). We refer
to Section 2.5 for the definitions of numerical Iitaka dimensions vgppp(D), kg (D), k(D)
and to Section 2.7 for abundant divisors.

The following theorem is an extension of [20, Proposition 4.1 (i)] and [13, Theorem A]
to valuative Okounkov bodies of abundant divisors.

Theorem A (Corollary 4.11). Let D, D’ be pseudoeffective abundant R-divisors on a
smooth projective variety X. Then we have:

D = D' ifandonlyif A} (D) = AY(D’) for every admissible flag Yo on X .

We remark that the ‘only if” direction of Theorem A does not hold when D, D’ are
not abundant. It is because dim A;}f (D) = k(D") holds for any divisor D” while we
may possibly have k(D) # k(D’) even when D = D’ (see [5, Remark 3.13]). However,
the “if” direction of Theorem A holds without the abundance assumption on D, D’ (see
Proposition 4.9). As a consequence, we will also show in Corollary 4.12 that if Pic(X) is
finitely generated, then for any divisors D, D" with k (D), x(D’) > 0, we have:

D ~gr D' ifand only if A} (D) = AV (D') for every admissible flag Yo on X .

It is natural to ask how to extract the numerical properties of abundant divisors from
the valuative Okounkov bodies. To give a partial answer to this question, we study the
restricted base locus B_(D) (see Section 2.2 for the definition) of an abundant divisor D
using the valuative Okounkov bodies. The analogue of the following theorem for limiting
Okounkov bodies was obtained in [4, Theorem A] (see also [16-18]).

Theorem B (Theorem 5.1). Let D be a pseudoeffective abundant R-divisor on a smooth
projective variety X of dimension n, and x € X be a point. Then the following are equiv-
alent:
(1) x e B_(D).
2) A;}d‘l(D) does not contain the origin of R" for every admissible flag Yo on X
centered at Xx.

3) A‘I’;‘J(D) does not contain the origin of R" for some admissible flag Yo on X
centered at X.

As we observed in [7, Remark 4.10], without the abundance condition, A}*‘.I(D) may
not contain the origin of R” for some admissible flag Yo even if D is nef. Note that the
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analogous statements concerning B4 (D) as in [4, Theorem C] for an abundant divisor
D easily follow from [4, Theorem 6.5] since big divisors are abundant and B (D) = X
holds if D is not big.

In [5], we have seen that the Okounkov bodies A}"‘.I(D) and Alli}:‘(D) encode a good
amount of asymptotic properties of the divisor D if the given admissible flag Y, contains
a Nakayama subvariety or a positive volume subvariety of D, respectively (see Section 2.6
for the definitions of these special subvarieties). For example, we have dim A‘l’,a.' (D)=«(D)
and dim Al}‘f(D) = vgppp(D) for such admissible flags Y,. Thus for the two Okounkov
bodies Alli,‘.“(D) and A}a.l(D) to coincide with each other, it is necessary to assume that
k(D) = vgppp(D), i.e., D is an abundant divisor. In this case, we show in Proposi-
tion 2.15 that a subvariety is a Nakayama subvariety of D if and only if it is a positive
volume subvariety of D. However, even under the abundance condition, the inclusion
A}a.l(D) C Alf,’:‘(D) can be strict as was noticed in [5, Example 4.2]. By comparing the
Euclidean volumes of the Okounkov bodies A}a‘l(D) and A'{,‘:“(D), we obtain a criterion
for the equality of these bodies.

Theorem C (Theorem 6.1). Let D be a pseudoeffective abundant R-divisor on an n-
dimensional smooth projective variety X with k(D) > 0. Fix an admissible flag Yo on X
suchthat V. =Y,_.(p) is a Nakayama subvariety of D and Y, is a general point. Consider
the litaka fibration ¢: X' — Z of D and the strict transform V' of V on X'. Then we have

volge) (AYN(D)) = deg(¢ply: V' — Z) - volgew) (AY(D)).

In particular, A}‘il(D) = Al}r‘“(D) if and only if the map ¢|y:: V' — Z is generically
injective.

We remark that even if D is an abundant R-divisor with x (D) > 0, there may not exist
Nakayama subvarieties V' giving rise to a generically injective map ¢|y: V' — Z (see
Example 6.3). See also [5, Section 4] for more related results.

To prove all the above theorems, we use results on Nakayama subvarieties and litaka
fibrations (see Section 2.7). Other key ingredients are some versions of Fujita’s approxi-
mations for the valuative Okounkov bodies Ag,a.l(D) of an effective divisor D (Lemma 3.1)
and for the limiting Okounkov bodies Alji,‘f(D) of an abundant divisor D (Lemma 3.6).
These results may be also regarded as alternative constructions of Okounkov bodies
Ag,a.l(D) and Alji,‘:’(D).

The organization of the paper is as follows. We begin by collecting relevant basic facts
on various asymptotic invariants, litaka fibrations, Zariski decompositions, Okounkov
bodies, numerical litaka dimensions, etc. in Section 2. In Section 3, we prepare the main
ingredients required for the proofs of Theorems A and C. Sections 4, 5, and 6 are devoted
to proving Theorems A, B, and C, respectively.

2. Preliminaries

In this section, we collect relevant facts which will be used later.
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2.1. Conventions

Throughout the paper, we work over the field C of complex numbers. By a (sub)variety,
we mean an irreducible (sub)variety, and X denotes a smooth projective variety of dimen-
sion n. Unless otherwise stated, a divisor means an R-Cartier R-divisor. A divisor D on
X is pseudoeffective if its numerical class [D] € N1(X)g lies in the pseudoeffective cone
Eff(X), the closure of the cone spanned by effective divisor classes. A divisor D on X is
big if [ D] lies in the interior Big(X) of Eff(X).

2.2. Asymptotic invariants

Let D be a divisor on X. The stable base locus of D is defined as

SB(D):= () Supp(D").
D~ D'>0
The augmented base locus of D is defined as B (D) := (), SB(D — A) where the inter-
section is taken over all ample divisors A. The restricted base locus of D is defined
as B_(D) := [ J, SB(D + A) where the union is taken over all ample divisors A. It is
well known that B4 (D) and B_(D) depend only on the numerical class of D. Note that
B_(D) = X (resp. B+ (D) = X) if and only if D is not pseudoeffective (resp. not big),
and B_(D) = @ (resp. BL (D) = @) if and only if D is nef (resp. ample). For more details,
see [11].
Consider a subvariety V € X of dimension v. The restricted volume of D along V is
defined as
. ho(X|V, | mD])
volyjy (D) := limsup ——————
m—>00 mV /v!

where 1°(X |V, [m D) is the dimension of the image of the natural restriction map
H°(X,0x(\mD])) - H°(V. Oy (ImD]|v)).

If V& BL(D), then the restricted volume voly|y (D) depends only on the numerical
class of D, and it uniquely extends to a continuous function voly |y : Big” (X) — R where
Big" (X) is the set of all R-divisor classes & such that V' is not properly contained in any
irreducible component of By (§). When V' = X, we simply let voly (D) := voly|x (D),
and we call it the volume of D. For more details, we refer to [19, Section 2.2 (C)], [12].
Now, assume that V' & B_(D). The augmented restricted volume of D along V is
defined as VOI;(_W(D) = limg 54 volyy (D + &A) where A is an ample divisor on X.
The definition is independent of the choice of A. Note that vol;(rW(D) = voly |y (D) for

D e Big” (X). This also extends uniquely to a continuous function

—V
vo1;|V:Eff (X) >R
where Eff. (X) := Big" (X) U {¢ € Eff(X) \ Big(X) | V & B_(£)}. For D € Eff’ (X),
we have voly |y (D) < vol;("W(D) < voly(D|y), and both inequalities can be strict in

general. For more details, see [5, Section 2.3].
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2.3. Iitaka fibration

Let D be a divisor on X . The litaka dimension of D is defined as

0
k(D) := max {k € Zxo ) fim sup h (X, OX(LmDJ)) - O}

m—00 mk

if h%(X, Ox (lmD])) # 0 for some m > 0, and k(D) := —oo otherwise. Note that k(D)
is not an invariant of the R-linear equivalence class of D. Nonetheless, it satisfies the
property that k(D) = «(D’) when k(D),x(D’) > 0and D ~g D’ (see [5, Remark 2.8]).

Now, assume that k(D) > 0. Then there exists a morphism ¢: X’ — Z between smooth
projective varieties X', Z with connected fibers such that for all sufficiently large and
divisible integers m > 0, the rational maps ¢,,p: X --> Z,, defined by ||m D || are bira-
tionally equivalent to ¢, i.e., there exists a commutative diagram

Xl x

|
émp | J/qb
4

Zpe—Z

of a rational map ¢,,p and morphisms f, ¢, g, with connected fibers, where the hori-
zontal maps f, g, are birational, dim Z = «(D), and k(f*D|f) = 0, where F is a very
general fiber of ¢ (see e.g., [19, Theorem 2.1.33], [24, Theorem-Definition I1.3.14]). Such
a fibration is called an litaka fibration of D. It is unique up to birational equivalence.

2.4. Divisorial Zariski decompositions

To define the divisorial Zariski decomposition, we first consider a divisorial valuation o on
X with the center V' := Centy o on X . If D is a big divisor on X, we define the asymptotic
valuation of ¢ at D as oy (| D||) := inf{o(D’) | D = D’ > 0}. If D is only a pseudo-
effective divisor on X, we define oy (|| D||) := limg—o+ oy (|| D + €A]|) for some ample
divisor A on X. This definition is independent of the choice of A. Note that oy (|| D||)
is a numerical invariant of D. If E := Centy o is a prime divisor on X, then we write
ordg (|| D) := ae (|| D||)- The divisorial Zariski decomposition of a pseudoeffective divi-
sor D is the decomposition

D:Pa+Na:P0(D)+Na(D)

into the negative part No = Ng(D) := ) g ordg (|| D||) E where the summation is over
the finitely many prime divisors E of X such that ordg (|| D||) > 0 and the positive part
Py = P;(D):= D — N,. The positive part P, (D) is characterized as the maximal divisor
such that P; < D and P, (D) is movable (see [24, Proposition III.1.14]). Note that by
construction Ny (D) is a numerical invariant of D. For more details, see [1], [24], [27].

Let D be a divisor on X with k(D) > 0. The s-decomposition of D is the decomposi-
tion

D = P+ Ny = Pg(D) + Ng(D)
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into the negative part Ny = Ng(D) := inf{L | L ~g D, L > 0} and the positive part
Py = Pg(D) := D — N;. The positive part Ps(D) is characterized as the smallest divisor
such that Py < D and R(X, Ps) >~ R(X, D) (see [27, Proposition 4.8]). Note that Ns(D)
is an R-linear equivalence invariant of D. Note that Pg(D) < Py(D) and Ps(D), Ps(D)
do not coincide in general. If D is an abundant divisor (see Definition 2.11), then Ps(D) =
P, (D) so that Pg(D), Ny(D) become numerical invariants of D (see Theorem 2.13 (2)).
For more details, see [27].

2.5. Numerical litaka dimensions

Let D be a pseudoeffective divisor on X. There are several notions of numerical Iitaka
dimensions in the literature defined from different perspectives (see e.g. [3,6, 10,21-24]).
Among them, the following dimension first introduced by Boucksom—Demailly—Paun—
Peternell [3] is the most interesting for us:

vaprp(D) = max {k € Zxo | (D) # 0}.

Here (D¥) is the positive intersection product (see [21, Section 4] for the definition and
basic properties). By [21, Theorem 6.2] (see also [6, Theorem 1.1]), we have

vgppp(D) = max {dim W | vol;‘W(L) > 0}
= max {dim W | igfvolv-f, (Ps(¢*D)|) > 0}

where W ranges over all the irreducible subvarieties of X not contained in B_(D), and
¢: (f W) > (X, W) ranges over all W -birational models, which by definition means
that W is not contained in any ¢-exceptional center and W is the strict transform of W
(see [21, Definition 2.10]). We have vgppp(D) > 0 whenever D is pseudoeffective. We
put vgppp(D) := —oo when D is not pseudoeffective. We will use the following basic
properties of vgppp(D):

(1) k(D) < veppp(D).
(2) veppp(D) < n, and vgppp(D) = n if and only if D is big.
(3) veppp(D) is a numerical invariant of D, i.e., vgppp(D) = veppp(D’) whenever
D =D
(4) vepep(D) = vpprp(Po(D)).
We refer to [6,21,24] for further properties.
We recall some other numerical litaka dimensions defined for a pseudoeffective D

hO(X.|mD] + 4
Ko(D)::maX{kEZZ()‘limsllp (X, mD] )>o}

m—00 mk

ky(D) := min {dim W | D does not numerically dominate a subvariety W of X }

Ix (D A
Kyol(D) := max {k € Z>o | lim infM > 0}

&—0 gn—k
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where A is a sufficiently positive ample Z-divisor on X. The first two dimensions ko
and k, were defined by Nakayama [24, Chapter V] (see [24, Definition V.2.22] for the
definition of D numerically dominating W), and the third dimension k. is defined by
Lehmann [21]. They are also numerical invariants of D. Note that k5 (D), kyo1(D), 1, (D)
are nonnegative integers at most # = dim X when D is pseudoeffective and they take
value 7 if and only if D is big. By [6, Proposition 3.1], we have

veppp(D) < k(D) < k(D) and veppp(D) =< kyoi(D) =< k(D).

It is worth noting that these numerical litaka dimensions kg (D), kyo1(D), k(D) can be
strictly larger than vgppp(D) (see [23, Theorem 3], [6, Theorem 1.2]).

2.6. Okounkov bodies

Here we recall the construction and basic properties of Okounkov bodies associated to
pseudoeffective divisors in [5, 14, 20]. Throughout this subsection, we fix an admissible
flag Yo on X, which by definition is a sequence of subvarieties

Yo : X=Yy2Y12---2Y, 127, ={x}

where each Y; is an irreducible subvariety of codimension i in X and is nonsingular at x.
Let D be adivisor on X with |[D|g :={D’| D ~r D’ > 0} # @. We define a valuation-like
function

vr.:|Dlr — R,
as follows: for D’ € | D|g, let vy = v;(D’) :=ordy, (D'). Since D' — v (D') Y7 is effective
and does not contain Y, in the support, we define

vy = v(D') 1= ordy, (D' —viY1)ly,).
We then inductively define
vitr = vip1(D') :=ordy,,, ((--- (D" = viYD)ly, —v2Y2)ly, — - — viYi)ly;)-
Thus we finally obtain
vy, (D) := (vi(D),v2(D’), ..., va(D")) € RL.

Definition 2.1. When |D|r # @, the Okounkov body Ay, (D) of a divisor D on X with
respect to an admissible flag Yo on X is defined as the closure of the convex hull of
vy, (|D|r) in RL,. When |D[gr = @, we set Ay, (D) := 0.

More generally, a similar construction can be applied to a graded linear series W,
associated to a Z-divisor on X to construct the Okounkov body Ay, (W,) of W, with
respect to Y,. For more details, we refer to [20].

In [14,20], the Okounkov bodies Ay, (D) were mainly studied for big divisors. When
D is not big, the following extension was introduced in [5].



S. R. Choi, J. Park, and J. Won 1030

Definition 2.2 ([5, Definition 1.1]).

(1) For adivisor D which is effective up to ~g, i.e., | D|r # @, the valuative Okounkov
body A;‘f( D) of D with respect to an admissible flag Y, is defined as the closure
of the convex hull of vy, (| D|r) in RZ. If [D|g = @, then we set AY(D) := 0.

(2) For a pseudoeffective divisor D, the limiting Okounkov body Alli}.n(D) of D with
respect to an admissible flag Y, is defined as

AIMD) = Jim Ay, (D +e4) = [ Ar.(D +e4) SRZ,
>0
where A is an ample divisor on X . (Note that Al}’.“(D) is independent of the choice
of A.) If D is not pseudoeffective, then we set A'}T(D) = 0.

Note that we actually have Ay, (D) = A;‘:I(D) for any divisor D and any admissible
flag Y.. However, we will only use the notation A}"‘.I(D) when D is known to be non-big
or at least when the bigness of D is not clear in order to distinguish our results from the
well-known cases for big divisors. We also remark that Boucksom’s numerical Okounkov
body Ay™(D) in [2] coincides with our limiting Okounkov body Alf,‘.“(D).

By construction, the valuative Okounkov body A}*‘}(D) is only an R-linear invariant
of D, not a numerical invariant of D (see [5, Remark 3.13 and Proposition 3.15]). The
limiting Okounkov body AI}‘:‘( D) is a numerical invariant of D. More precisely, for pseu-
doeffective divisors D, D’, it is known that D = D’ if and only if Al}f‘(D) = Alli,‘.“(D’)
for every admissible flag Y, on X (see [5, Theorem C]).

Lemma 2.3 (cf. [4, Lemma 3.4], [8, Lemma 3.4]). Let D be a divisor on X. Consider a
birational morphism [ : X — X with X smooth and an admissible flag

Yo:X=V,2V1 22V, 27, = (x}
on X. Suppose that [ is isomorphic over a neighborhood of f(x') and

Yoi= f(Ve): X = f(Yo) 2 f(Y1) 2--- 2 f(Fa1) 2 f(Ta) = {f ()}
is an admissible flag on X. Then A?l(f*D) = A‘}’ﬁ‘.'(D) and Agl,m(f*D) = Al}",‘:‘(D).

Proof. The case of the limiting Okounkov body is shown in [4, Lemma 3.4]. The proof
for the case of the valuative Okounkov body is almost identical, and we leave the details
to the readers. [

Remark 2.4. By Lemma 2.3 and [4, Lemma 3.5], we can assume that each Y; in the
admissible flag Y, on X is smooth (see also [4, Remark 3.6]).

Lemma 2.5 (cf. [4, Lemma 3.9], [8, Lemma 3.5]). Let D be a divisor on X with the s-
decomposition D = Pg + N and the divisorial Zariski decomposition D = Py + Ng. Fix
an admissible flag Yo on X . Then we have A?.I(D) = A‘{;‘J(Ps) + A‘}’f.l(Ns) and A'}T(D) =
A'}‘:’(Pg) + Al;,‘f(Ng). If'Y, is a general point (i.e., Y, Z Supp(Ny), Yy, € Supp(Ny)), then
A}"f(D) = A}"f(Ps) and A‘;,‘:“(D) = A'{,‘:“(PU).
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Proof. The assertion for A;,a_l(D) follows from the fact that R(X, D) >~ R(X, Ps) and the
construction of the valuative Okounkov body. The assertion for Alji,‘:l(D) is nothing but
[4, Lemma 3.9]. [

By definition, A} (D) € A}"(D), and the inclusion can be strict in general (see [5,
Examples 4.2 and 4.3]). If D is big, then Ay, (D) = A‘)’f.l(D) = Alli/‘.“(D). For a divisor D
with (D) > 0, by [2, Proposition 3.3] and [6, Theorem 1.1], we have

dim AY(D) = k(D) < dim A}Y™(D) < vgpep(D)

for any admissible flag Y.

Remark 2.6. It was shown in [2, Lemma 4.8] and [5, Proof of Proposition 3.21] that

Ix (D A
voly (D + ¢ )>O}

dim Ai™(D) < k(D) = max {k € Zso ( liminf ="

for every admissible flag Yo on X. In [5,7, 8], we use the coincidence of the numerical
Iitaka dimensions kyo (D) = vgppp(D), which was claimed in [21]. However, based on
Lesieutre’s example in [23], Choi—Park proved that there exist a smooth projective variety
Y and a pseudoeffective divisor E such that ko (E) > vgppp(E) (see [6, Theorem 1.2]).
Thus some results of [5,7,8] are affected by these examples (in those papers, «, is used to
mean ks, and is supposed to be equal to vgppp and k). Fortunately, we have

vpppp(D) = max {dim A}™(D) | Y, is an admissible flag on X},

by [6, Theorem 1.1]. If we use vgppp for the numerical litaka dimension, then all the
results in [5, 7, 8] are valid.

In [5], we introduced a Nakayama subvariety and positive volume subvariety of a
divisor D to extract asymptotic invariants of D from the Okounkov bodies.

Definition 2.7 ([5, Definitions 2.12 and 2.19], [8, Definition 4.1]).

(1) For a divisor D such that k(D) > 0, a Nakayama subvariety of D is defined as
an irreducible subvariety U C X such that dim U = x(D) and for every integer
m > 0 the natural map

H(X,0x(lmD])) - H°(U, Oy (ImD]|v))

is injective (or equivalently, H°(X, Iy ® Ox(|mD|)) = 0 where Iy is an ideal
sheaf of U in X).

(2) Foradivisor D with vgppp(D) > 0, a positive volume subvariety of D is defined as
an irreducible subvariety V' C X such that dim V' = vgppp(D) and VOI;W(D) > 0.

We have the following characterization of a Nakayama subvariety and a positive vol-
ume subvariety in terms of Okounkov bodies.
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Theorem 2.8 ([8, Theorem 1.2]). Let D be a divisor on X. Fix an admissible flag Yo such
that Y, is a general point. Then we have the following:

(1) If D is effective, then Yo contains a Nakayama subvariety of D if and only if
A\}’;dl(D) c {O}n—K(D) x R¥(D)

(2) If D is pseudoeffective, then Y, contains a positive volume subvariety of D if and
only if A (D) < {0} veore(D) 5 Rveore(D) g dim AY™(D) = vppp(D).

The following is the main result of [5].

Theorem 2.9 ([5, Theorems A and B]).

(1) Let D be a divisor on X with k(D) > 0. Fix an admissible flag Y, containing a
Nakayama subvariety U of D such that Y, is a general point. Then AQ‘(D) -
{0y (D) 5« R¥(P) 50 that one can regard A‘)'f.l(D) C R¥D). Furthermore, we
have

. ) 1
dim AY/(D) = k(D) and volg«w) (A} (D)) = D) voly |y (D).
k(D)!

(2) Let D be a pseudoeffective divisor on X, and fix an admissible flag Yo containing

a positive volume subvariety V of D. Then AI}I,‘:’(D) C {0}~ vsore(D) 5 RvBPP(D)

so that one can regard Alji,‘.“(D) c RV (D) Fyrthermore, we have

dim A} (D) = vgppp(D) and volgugpeem) (A4 (D)) = ol§,, (D).

—_—
veppp(D)!
Remark 2.10. As in [5,8], when considering A}(D) (resp. AY"(D)), we say that Y, is
general if it is not contained in SB(D) (resp. B_(D)) (see [8, Remark 4.7]).

The relation between the valuative Okounkov bodies and restricted volumes is also
studied in [9].
2.7. Abundant divisor

In this paper, we adopt the following notion of abundance.

Definition 2.11. A pseudoeffective divisor D on X is said to be abundant if k(D) =
VBDPP(D) holds.

We will need the following generalization of the well-known result of Kawamata for
nef and abundant divisors [15, Proposition 2.1] (see also the Errata of [22]).

Theorem 2.12 ([6, Theorem 1.4]). Let D be an effective R-divisor on X with k(D) > 0.
Then D is abundant in the sense that k(D) = vgppp(D) holds if and only if there are
a birational morphism . W — X from a smooth projective variety W and a surjective
morphism g: W — T to a smooth projective variety T with connected fibers such that

Py (n*D) ~Q P;(g"*B)

for some big divisor B on T and g: W — T is a birational model of the litaka fibration
of D.
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The following theorem essentially due to Lehmann will play a crucial role in proving
our main results, Theorems A, B, and C.

Theorem 2.13. Let D be a pseudoeffective abundant divisor on X. Then the following
numerical properties hold:

(1) If D' is a divisor on X such that k(D') > 0 and D = D/, then D’ is also an
abundant divisor.

(2) For any divisorial valuation o on X with the center V = Centy o on X, we have
oy (IID|]) = inf{o(D") | D ~g D' = 0}.
In particular, Py (D) = Ps(D).

Proof. For (1), we note that if K (D’) > 0, then D’ is Q-linearly equivalent to an effective
divisor. Thus (1) follows from [22, Corollary 6.3]. For (2), we apply [22, Proposition 6.4]
and [8, Lemma 2.3]. Note that the condition (5) of [22, Theorem 6.1], which is asserted in
Theorem 2.12, is used in the proofs of [22, Corollary 6.3] and [22, Proposition 6.4]. [

Lemma 2.14. Let D be a pseudoeffective abundant divisor on X. If V is a Nakayama
subvariety of D or a positive volume subvariety of D, then V- € SB(D).

Proof. If V is a Nakayama subvariety of D, then the assertion follows from definition.
Assume that V is a positive volume subvariety of D. We can take an admissible flag Y,
containing V. By Theorem 2.9 (2),

Alli/m(D) c {O}n—vBDPP(D) x RVBorr(D)

Since A}(D) S AY™(D), it follows that ordy (D) =0 for every effective divisor D' ~g D.
Thus V' & Supp(D’). Since SB(D) C Supp(D’), we are done. [

Proposition 2.15. Let D be a pseudoeffective abundant divisor on X. A subvariety V of
X is a Nakayama subvariety of D if and only if it is a positive volume subvariety of D.

Proof. We can always construct an admissible flag ¥, on X containing a given Nakayama
subvariety V of D. By Lemma 2.14, we can take Y,, = {x} in such a way that x & SB(D).
Thus x is a general point in the sense of Remark 2.10. By Theorem 2.8 (1),

AY(D) € {0} < P) x R¥(D),

Recall now that A;,"‘.I(D) - Alli/‘:l(D) and dim A;,"‘.I(D) =« (D)=vpppp(D) =dim Ag‘,‘f(D).
Thus AiM(D) € {0} (P x R¥(P)_ Theorem 2.8 (2) implies that V" is a positive volume
subvariety of D.

Now, let V' C X be a positive volume subvariety of D, and Y, be an admissible flag
containing V. By Lemma 2.14, we can take Y,, = {x} in such a way that x is a general
point in the sense of Remark 2.10. By Theorem 2.8 (2), we have A}(D) € AJ™(D) <
{0)77%(D) 5 R¥(P) Theorem 2.8 (1) implies that V' is a Nakayama subvariety of D. m



S. R. Choi, J. Park, and J. Won 1034
3. Fujita’s approximations for Okounkov bodies

The aim of this section is to prove some versions of Fujita’s approximations for Okounkov
bodies, which may be regarded as alternative constructions of valuative and limiting
Okounkov bodies (see Lemmas 3.1 and 3.6). These will be used in the course of the
proofs of Theorems A and C. Throughout the section, X is a smooth projective variety of
dimension 7.

3.1. Valuative Okounkov body case

We fix notation used throughout this subsection. Let D be a divisor on X with k(D) > 0.
We do not impose the abundant condition on D in this subsection. Fix an admissible flag
Y. on X containing a Nakayama subvariety U of D such that ¥,, = {x} is general in the
sense of Remark 2.10 so that x & SB(D) (see Lemma 2.14). We can regard the valuative
Okounkov body A}a’l(D) C {0y (D) x R¥(D) a5 a subset of R¥P) (see Theorem 2.9).

Now, for a sufficiently large integer m > 0, we take a log resolution f,;: X, — X of
the base ideal b(|m D]) so that we obtain a decomposition f,;(|mD]) = M, + F,, into
a base point free divisor M,, and the fixed part F,, of |f (lmD])|. Let M, := %M,’n
and Fy, := %F,;z Since x & SB(D) and m > 0, it follows that x is not in the image of
the base locus of | f,r (|mD])| under f,,. Thus f,: X,, — X is an isomorphism over a
neighborhood of x. Let f,» D = P, + N,, be the s-decomposition.

Since Y}, is general, by taking the strict transforms Y;” of ¥; on X,,, we obtain an
admissible flag Y,” : YJ* 2 --- 2 Y, on X,,. We note that Uy, := Yn"iK(D) is also a
Nakayama subvariety of f,» D since f,, is U-birational (see [5, Proposition 2.15]). By
definition, we see that Uy, is also a Nakayama subvariety of M,,.

Let W, be a graded linear series on U associated to D |y where Wy is the image of
the natural injective map H®(X, Ox(|kD])) — H°(U, Ox(|kD])|v). We also consider
a graded linear series W,™ on Uy, associated to My,|y,, where W) is the image of the
natural injective map H%(X,,, Ox,, (kM ])) — H®(Upn, Ox,, (LkMpu |)|u,,)- Note that
dim Wy, = dim W*. Let ¢y,: X — Zp, be the morphism defined by |M,, |. Then there
is an ample divisor H,, on Z,, such that ¢» Hy, = My,. Note that ¢, |y,,: Un — Z,, is
a surjective morphism of projective varieties of the same dimension k(D). Since Y, is
general, we can assume that Y : Z,, = ¢ Y epy) 2+ 2 ém(Y,") is an admissible
flag on Z,,.

The following lemma is the main result of this subsection.

Lemma 3.1. Under the same notation as above, we have
AY(D) = lim AYw(My) = lim Agm(Hp).
¢ m—00 . m—>00 °
Proof. As we noted above, we treat A;,a.l(D), A‘}’f.}n (M), and Agm (Hyy,) as the subsets of
the same fixed space R(®). By Lemmas 2.3 and 2.5, we have

AY(D) = A (D) = Ay (Pm).
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and by [5, Remark 3.11] and [8, Lemma 5.1], we have

AYn(Mpy) = Aym

n—«k(D)e

(W™) = Agp (Hm).
Note that A;a},, (M) C A}a‘.}n (Pm). By [5, Remark 3.11], we also have

AY/(D) = Ay,

n—«k(D)e

(We).
By applying [20, Remark 2.8, Theorems 2.13 and 3.3], we see that

VOlR«(D) (AYWK(D)_(W.)) = mh_r)noo VOlR«(D) (AY':”_K(D)'(W.m))-

As AY':@K(D).(W.’”) C AY,_(p).(We), we obtain
AYn—;c(D)o (W.) = mh—I>nOO AYJ’LK(D).(W.m).
Thus the assertion now follows. [

Remark 3.2. When D is a big divisor, Lemma 3.1 is the same as [20, Theorem D]. See
[20, Remark 3.4] for the explanation on how this statement implies the classical statement
of Fujita’s approximation (see also [19, Theorem 11.4.4]). Another version of Fujita’s
approximation for effective divisors is stated in [9, Theorem 1.2].

3.2. Limiting Okounkov body case

We fix notation used throughout this subsection. Let D be a pseudoeffective abundant
divisor on X with k(D) = vgppp(D) > 0. Fix an admissible flag Yo on X containing a
positive volume subvariety V' of D such that Y, = {x} is general so that x & SB(D) (see
Lemma 2.14). By Proposition 2.15, V' is also a Nakayama subvariety of D. We can regard
the limiting Okounkov body AIM(D) in {0}"~*(P) x R*(P) as a subset of R*(P) (see
Theorem 2.9).

Now, for a sufficiently large integer m > 0, we take a log resolution f,;: X;,, — X of
the base ideal b(|m D]) so that we obtain a decomposition f,;(|mD]) = M, + F,, into
a base point free divisor M,, and the fixed part F, of | fx(lmD])|. Let My, := L M} and
F, = %F,’n We may assume that fy,: X;, — X is an isomorphism over a neighborhood
of x.Let f,5 D = P, + Ny, be the divisorial Zariski decomposition. By Theorem 2.13 (2),
it is also the s-decomposition.

Since Y, is general, by taking the strict transforms ¥;”* of Y¥; on X,,, we obtain an
admissible flag YJ" : Y 2 --- D Y, on X,,. We note that V;,, := Y;’iK(D) is also a
positive volume subvariety of f,* D since f,, is V-birational ([5, Proposition 2.24]). By
definition, we also see that 1}, is also a Nakayama subvariety of M,,. Clearly, it is also a
positive volume subvariety of M,,.

The following lemma is obvious (cf. [24, Lemma I1.2.11]).

Lemma 3.3. Let f: X — Y be a surjective morphism with connected fibers between
smooth projective varieties, and D be an effective divisor on' Y. Then H°(X, | f*(mD)|)
= HO(Y, |mD)) for a sufficiently large integer m > 0.
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Proof. We can write | f*(mD)| = f*|mD]| + | f*{mD}]. Note that for every irre-
ducible component E of Supp| f*{mD}]|, we have codim f(E) > 2 since we assume
m > 0 is sufficiently large. By the projection formula, we obtain fi| f*(mD)| = |[mD |,
and the assertion follows. ]

We now prove a version of Fujita’s approximation for an abundant divisor, which is a
generalization of [21, Proposition 3.7].

Lemma 3.4. Under the same notation as above, for a sufficiently large integer m > 0,
there exists an ample divisor H on X such that

1
My < P < My + — fXH.
m

Proof. By Theorem 2.12, we can take a birational morphism pu: W — X with W smooth
and a contraction g: W — T such that for some big divisor B on T, we have P’ ~g P”
where u*D = P’ 4+ N’ and g*B = P” + N’ are the divisorial Zariski decompositions.
By taking further blow-ups of 7', we may assume that 7' is smooth. For any sufficiently
large integer m > 0, as in [21, Proof of Proposition 3.7], we consider a log resolution of
hm: Ty — T of the base ideal b(|m B |) and the asymptotic multiplier ideal & (||m B]|) so
that we obtain a decomposition i, (lmB]) = M, + F,! into a base point free divisor
M, and the fixed part F,;’ of |k}, (|mB])|. Let M), := L M)" and F}, := LF" Now,
for a sufficiently large integer m > 0, we take a log resolution me: X ,‘,’,V — W of the base
ideal b([mu* D) so that we obtain a decomposition (£,V)*(lmu*D|) = MmW/ + F,,V,V/
into a base point free divisor M,/ " and the fixed part F)Y " of (L) (lmu* D])|. Let
MY = %MmW/ and F)V .= %F,ZV/ Note that for a sufficiently large m’ > m, we may
take birational morphisms /1 g Ty — Tp and fn‘f,/, - X ,ZK - X ,‘f,/ . We can assume that
there are contractions g,,: X, ,Ifl/ — T,, for sufficiently large integers m > 0. Thus we have
the following commutative diagram:

St W
xW 2 w Iy My
gmi gml gl
T - T - T.
We now claim that
MmW ~q gnM,, for any sufficiently large and divisible integer m > 0. 3.D

We can assume that D itself is an effective divisor. By applying Lemma 3.3, we obtain
H°(X,|mD]) = H*(W, |u*(mD)|) = H°(W, |mP'])
= Ho(W.|mP"|) = H*(W, |g*(mB)])
= H%(T, |mB]).
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We then have

HO(X)Y . mM)) = H°(X,|\mD]) = H*(T,|mB]|) = H*(T,n, mM,))
= H(XY . gr(mMy)).

Note that M) < (f,/)*P' ~q (/3 )*P" = gy M,, and

HO(X, mM, ) = HO(X, [ m(f,0) P ) = HO(X,0 [ m(f))* P"])
= HO(X, g (mM;)).

Since mM)Y | g* (mM.") are base point free, we obtain M,)Y ~q gk M as desired.

Let i), B = P, + N,, be the divisorial Zariski decomposition. By [21, Proposition
3.7], there exists an effective divisor E’ on T such that M, < P, <M, + L h'; E'. (Even
though this assertion is slightly different from the actual statement of [21, Proposition 3.7],
Lehmann actually proved this assertion in its proof.) Thus we have

1
* M// < Mr/y/l’ < Pr/n/ < h:n’mPr/n < h* MN —+ —h;knrmh;knE/
s m i

m' .m""m m'.m""'m
1
% " * ’
=l My + — I E

sothat0 < M\, —hy, M, < Lh* E'.Let E := g*E’. By taking pullback via g, and
by applying the claim (3.1), we obtain
0= My — (f) M/ <

m',m

By taking pushforward via fm“,/’m, we then have

o<l MV —mM" <

L
m’ ,mx* E(fm ) E.
Let (f,7)*u*D = P + N, be the divisorial Zariski decomposition, which is also the
s-decomposition by Theorem 2.13 (2). By definition of s-decomposition,

Py = lim f¥ . mY.
m’—o00 ’

Hence we obtain 0 < P)Y — MV < %( £V)*E. We can take an ample divisor H on X
such that u*H > E. Then we have

1
MY <PV <MV + —(f7) A (3.2)
m
To finish the proof, consider a common log resolution f;.: Z— X of o £V: XW — x

and the log resolution f;,: X, — X of b(|mD|) with the morphisms p: Z — XV and
q: Z — Xm. Note that MZ := p*MYW = g*M,, is also a base point free divisor. Let
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(fp)*D = PZ + NZ be the divisorial Zariski decomposition. It is clear that M;Z < P.Z.
On the other hand, since PZ < p* P,V it follows from (3.2) that P2 < MZ + L(f,})*H.
Notice that Py, = ¢« P,f . Thus by taking pushforward via ¢, we finally obtain

1
My < Py <My + — fn H.
m
This completes the proof. u

Remark 3.5. When D is a big divisor, one can easily deduce the classical statement of
Fujita’s approximation (see e.g., [19, Theorem 11.4.4]) from Lemma 3.4.

The following is the main result of this subsection. This generalizes [20, Theorem D]
to the limiting Okounkov body case.

Lemma 3.6. With the same notation in the proof of Lemma 3.4, we have

AYND) = lim Ay

n— VBDPP(D)'( m|V"‘)

Proof. We treat Ahm(D) and Aym

n—vgppp(D)e
same fixed space R¥8PP*(P) For any sufficiently large m’ > 0, by Lemmas 2.3 and 2.5, we

have

(M,|v,,) in the statement as the subsets of the

AYN(D) = Ahm/(fm,D) A“m (P).

Thus Alli/“r:l, (Pyy) is independent of m’. By [8, Lemma 5.5], for any m > 0, we have

AV (M) = AYR (Momlv,,)-

v vpppp(D)e

To prove the lemma, it is sufficient to verify Ahm (Pyr) = limyy 00 AV (Myn).
By Lemma 3.4, for any sufficiently large 1nteger m > 0, we have

Mmngng+—f,;l"H
m

for some ample divisor H on X. Since x € X is general, we may assume x ¢ Supp(H).
By the subadditivity property of limiting Okounkov bodies,

. 1 1
AYR (P — M) + A3 = i H + My — P ) S AV fm = —Ay,(H).
Y. m m
Since limy o0 o Ay, (H) = {0}, it follows that
. 1
lim A5 (P — M) = lim AYH (—f,;H + My, — Pm) = {0}.
m—00 m

By the subadditivity property of limiting Okounkov bodies,
AU (Myn) + A3 (P — M) € AU (P,

1
AV (Pm) + AYh (Zf,,’fH + M, — P,,,) < AYh (M,,, + Ef,;fH).
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Since Alf,?n (Py) € RVeore(P) apd Y”iVBDPP(D) Z By(M,, + %f,;fH), it follows from

n

Lemma 3.4 and [8, Theorem 1.1] that
) . 1
lim AYn (M) € lim AV (Pp) C lim Aynm (Mm + — f,;;H).
m—o00o . m—o00 . m—o0 n—vpppp(D)e m
The existence of the limits is guaranteed by the following claim:

lim Volgugpep(0) (A (M)

m—o0
. 1
= mh_r)noo VOl R vgppe(D) (AY’:”_VBDPP(D)’ (Mm + ;f,: H)) (3.3)
If this claim (3.3) holds, then
. . 1
: lim T lim T m %
mlgnoo AY-m (M) = mlgnoo AY-m (Pm) - mlgnoo AYn—vBDPP(D)° (Mm + m fm H)

As we saw in the beginning of the proof, A}, (Py,) coincide with A}™(D) for all suffi-
ciently large m > 0. Thus we have

AYND) = Jim AV (M)

. . " um .
It now remains to prove the claim (3.3). We may assume that V,;, :=Y vgppp(D) 18 @

smooth positive volume subvariety of M,,, and f;;|v,,: Vim — V is a birational contraction.
By [8, Lemma 5.5], we have

Volguper(o) (AYm (M) = voly,, (Mpuly,,) = (Min]y,, )P,

VBDPP(D) ! VBDPP(D)!

Similarly, by [20, (2.7), p. 804], we also have

ol By (Ml + )l )

n—vpppp(D)e

1 1
=— voly, (M, —(f*H
VBDPP(D)!Vovm( mlV + - (fn W)
1 1
=—— (M —(f*H
e Dy (Ml + Dy,
1

i G

) vpppp(D)

vpppp(D)—1 (VBDPP(D))

" (Mm|V,,,)k . ((fr;:H)h/m)VBDPP(D)—k).

mVeoep(D)—k
k=0

To prove claim (3.3), it is sufficient to show that for each 0 < k < vgppp(D) — 1, there
exists a constant Cy independent of m such that

D)—k
(Mulv, )% (£ HD Iy, )™ P75 < .
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If k = 0, then we have

(U DI = (il "1™ = (1o ®),

which is independent of m. Now, suppose that 1 < k < vgppp(D) — 1. Note that V,,
SB(f,y D) and M|y, < (f, D)lv,,. Thus

D —_
(£2D)v,, - (£ H) )P
= Dly - (H|V)VBDPP(D)—1_

D)—
Munlvi, - (£ HDy, ) P!

IA

By a Hodge-type inequality [19, Corollary 1.6.3 (i)], we have

(Mm|Vm : ((fr;:H)|Vm)UBDPP(D)—1)k
(((fr:H”Vm)vBDPP(D))k—I

< (D|V : (H|V)VBDPP(D)—1)k

((H|V)”BDPP(D))’<—1

(Mlv,)¥ - (£ H)y, )" P <

Note that the right-hand side is independent of m. This proves the claim (3.3) and com-
pletes the proof. ]

4. Numerical equivalence and Okounkov body
In this section, we prove Theorem A as Corollary 4.11. Throughout the section, X is a
smooth projective variety of dimension n. First, we need the following lemma.

Lemmad.1. Let f: X — X be a birational morphism with X smooth, and D be a divisor
on X with k(D) > 0. Consider an admissible flag

Yo:X=V, 27122V, 27, =(x}
on X and an admissible flag
Yo: X =Y2YV1 2 2Yp1 2V, ={x}

on X such that each restriction f |Y Y; — Y; is a birational morphism for 0 <i < n.
Assume that Y; and Y; are smooth for 0 <i <n. For 1 <i <n, write f| Y =Y, + E
for some effective [ |Y, -exceptional divisor E; on Yi_1. Then we have

n—1
AP(f*D) = {x + Y xiovg (Eilg) [x=(x1.....x) € AQI(D)}
i=1

where we regard v;i.(E,' |7i) as a point in {0} x R"~* C R”". In particular, A‘}’E.I(D) and
A‘i’;‘l( f*D) determine each other.
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Proof. We can canonically identify |D|g with | f* D|r. For any D’ € |D|g, let
vy, (D) = (v1,...,vp) and vy (f*D') = (¥1,..., ).

Since vy, (| D|r|) and v, (| f/* D|r) are dense subsets of A}a.l(D) and A‘I’;l(f*D), respec-
tively, it is sufficient to show that '

n—1
(ProeonDn) = V1..ovn) + Y vi-vg (Eilg). (4.1)
i=1

Let D} := D’ on X = Yy, and define 1nduct1vely D} :=(D;_; —vi1Yi_ 1)|yl .
Y, 1for2 <i <n. Slmllarly, let D’ = f*D’on X = Yo, and define inductively D’ =
(Dl 1= Vz—1Y1—1)|yl._1 on Y,_1 for 2 <i < n. Then v; = ordy, Dl and ¥; = ordy 7, Dl’
for 1 < i < n. First of all, observe that the first coordinates of both sides in (4.1) are v;
and vy and §; = vy. As ¥; = f*Y, — Ep, we get

Dy = (f*D} - 1)15/v1)|)71 = (/*(D] —viX) + 1)1E1)|171 = f|§1D§ +viEilg,.

Then we have
vy, (D3) = vy, (f15 D3) + v1 - vy, (Eilg,).

Note that ordg, 5’2 = D, and ordg, f Pi/i D, = v. Thus (4.1) holds for the second coor-
1
dinates. Now, as Y, = f|*}~; Y, — E>, we get
1
/13, D, — ”2Y2)|Yz (1% (Dlz — 1Y) + nE)lg, = f|}2D/3 + v2Ealy,.
Then we have
Vi ((F15 Dy = v2P2)lg) = vy, (F15,D4) + v2 - vy, (Ealg,).
Note that
ordy, (fl*%1 D) — vzi;z)lf,z + the third coordinate of vy - vy (E1lg,) = V3

and ordf,3 f |*i/“ D% = v3. Thus (4.1) holds for the third coordinates. In general, we have
2

vy ((f15_ Di— vi¥)ly) = vy, (f1§ Divy) +vi- vy (Eilg) for2<i=<n-—1.

Note that
i—1

ordfi+l(f|;i,v71D£ — viﬁ-)If,i + the (i + 1)-th coordinate of Z Vj - vf;j.(Ej|f;j) = Vg1
j=1

and ordg | f|*f/',-Dl/'+1 = v;+1. Thus we obtain (4.1). [
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We first prove the ‘only if” direction of Theorem A, which is a generalization of [20,
Proposition 4.1 (i)] to (possibly non-big) abundant divisors.

Proposition 4.2. Let D, D' be divisors on X with k(D), k(D’) > 0. Suppose that D or
D’ is an abundant divisor. If D = D’, then A‘I’}‘.I(D) = A‘}’,a.l (D) for every admissible flag
Yo on X.

Proof. By Theorem 2.13 (1), both D, D’ are abundant divisors. Fix an admissible flag Y,
on X . Possibly by taking a higher birational model of X, we may assume that each subva-
riety Y; in Y, is smooth (see Remark 2.4). By Theorem 2.12, there is a birational morphism
w: W — X and a morphism g: W — T with connected fibers such that P, (u*D) ~q
P;(g* B) for some big divisor B on T. Thus Py (u* D’)|r = 0 for a general fiber F of g,
and hence, Py (u*D’)|F ~q 0 since k(u*D’) = k(D’) > 0. This implies that

K(T(PO’(/J/*D/)'F) = K(PU(M*D/)lF) = 0.

By taking a higher birational model of W if necessary, by [24, Corollary V.2.26] (see also
[22, Theorem 5.7]), we may assume that Py(u*D’) ~q Py (g*B’) for some divisor B’
on T'. Applying [24, Lemma II1.5.15] (see also [22, Proof of Corollary 6.3]), we see that
P;(B) = P;(B’) and B’ is also a big divisor on T'. We also have

Py (u*D) ~Q Py;(g*B) = Pa(g*Po(B))»
Py (" D") ~Q Py (g*B') = Pa(g*Pcr(B/))

We write Py(B) = Py(B’) + N for some numerically trivial divisor N on T. Then we
have

Py (1u*D) ~q Ps(g* Ps(B)) = Ps(g* Ps(B")) + g*N ~q Ps(u*D’) + g*N.
By successively taking strict transforms Y; of Y; under the birational morphisms
/L|YH : )7;_1 — Y1 forl <i<n,
we obtain an admissible flag
Yo W=Y%2¥V2-2¥,,27,

on W. Possibly by taking a higher birational model of W, we may assume that each
subvariety of Y, is smooth. By Theorem 2.13 (2), we have Py(u*D) = Py(u* D) and
Py (u*D’) = Pg(u*D’). By Lemmas 2.5 and 4.1, it is sufficient to show that

AF(Po (1" D)) = AF(Po (1" D")).

Now, take an ample divisor A on T so that A + kN is also an ample divisor for every
k € Z. Choose a large integer a > 0 such that a P, (B’) — A ~q E’ for some effective
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divisor E’ on T'. Then a Py (g* Py (B’)) — g* A ~q E for some effective divisor E on W.
For any integer m > 0, we have

(m + a)Ps(u* D) ~q (m + a)(Ps (1" D') + g*N)
~qQ mPy(W*D') + E + ¢g*(A + (m + a)N).

By the subadditivity property of the valuative Okounkov bodies, we have

p: * va * 1 va
A;’;.l(Po(M D)) 2 Ay.l(Po(,u D/)) + —A}';.I(E)

m+a m+a
1 val *

Note that g*(A + (m + a)N) is a semiample divisor on W. Then we can find an effective
divisor E” € |g*(A + (m + a)N)|r such that ordg. (E”) = O for 1 <i <n, so the origin
of R” is contained in A‘)Lf‘l (g*(A + (m 4+ a)N)). Hence we obtain

m 1
AL (Py(u*D)) 2 —— A% (Py(u* D)) + ——AL(E).
7. (Po (™ D)) 2 = AP (Po(u" DY) + = — AF(E)

By letting m — oo, we see that
A (P (1 D)) 2 AF!(Po(1*D")).

Similarly by replacing D by D’ and N by —N, we can also obtain the reverse inclusion.
Therefore we complete the proof. ]

Remark 4.3. Obviously, Proposition 4.2 does not hold without the assumption that D or
D’ is an abundant divisor (see [5, Remark 3.13]).

For the converse of Proposition 4.2, we need several lemmas.

Lemma 4.4. Consider two surjective morphisms fi1: X — Z1 and fr: X — Z, with
connected fibers. Suppose that dim Z; = dim Z, > 0 and fi1, f> are not birationally
equivalent. Then for a general member G € |H | where H is a very ample divisor on Z1,
the inverse image f"'(G) dominates Z, via f>, i.e., we have f>(f; ' (G)) = Z>.

Proof. Notice that | f;* H| is a base point free linear system. Thus we may assume that
fTNG) = f*G € | f* H| is a general member so that f;~'(G) is a prime divisor on X.
Suppose that f>(f;"'(G)) does not dominate Z, via f>. Then f>(f;"'(G)) is contained
in a prime divisor D on Z,. We then have f{*G < f,* D, so

H°(X,0x(mf*G)) € H°(X,Ox(mf, D)) for any integer m > 0.

In particular, D is a big divisor on Z,. Consider a rational map ¢: X --> Z’ given by
|m f;* D| for a sufficiently large and divisible integer m > 0. The rational map ¢ factors
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through Z, via a birational map ¢’: Z, --> Z’ given by |mD|, and ¢ and f, are bira-
tionally equivalent. Since H%(X, Ox (mf;*G)) € H®(X, Ox (mf, D)), there is a rational
map 7: Z' --> Z;. Note that 7 o ¢: X --> Z; is birationally equivalent to f1: X — Z;.
As f1 has connected fibers, 7 is birational and so is 7w o ¢’: Z, --> Z;. This implies that
f1, f> are birationally equivalent, so we get a contradiction. |

Theorem 4.5. Let D, D' be divisors on X with k(D),«x(D’) > 0. IfA‘)’ﬁ‘.l(D) = A‘)’f‘.l(D’)
for every admissible flag Yo on X, then the litaka fibrations of D, D’ are birationally
equivalent.

Proof. Let f: X’ — X be a birational morphism with the Titaka fibrations ¢: X’ — Z of
D and ¢': X' — Z' of D'. Since dim A;“.I(D) = k(D) for any admissible flag Yo, we have
k(D) = k(D’) so that dim Z = dim Z’. To derive a contradiction, suppose that ¢, ¢' are
not birationally equivalent. By Lemma 4.4, for a general member G € |H| where H is
a very ample divisor on Z, the inverse image ¢~ (G) dominates Z’ via ¢’. We can take
a general subvariety V' C ¢~!(G) of dimension «(D’) such that f(V’) is a Nakayama
subvariety of D’. By Theorem 2.8, f (V") is also a Nakayama subvariety of D. However,
d(V") C ¢(¢~1(G)) = G, so V' does not dominate Z via ¢. This is a contradiction, and
we are done. ]

The following lemma plays a crucial role in the proof of the converse of Proposi-
tion 4.2. It can be considered as a generalization of [13, Corollary 3.3 and Theorem 3.4 (b)]
although our proof is completely different from Jow’s proof in [13].

Lemma 4.6. Let D be a divisor on X with k(D) > 0, and D = Py + Ny be the s-decom-
position. Consider an irreducible curve C on X obtained as a transversal complete inter-
section of general effective very ample divisors on X. We can choose an admissible flag
Yo : X=Yy2Y12:-2Yy_1 2Y, ={x} on X such that Y,,_(p) is a Nakayama
subvariety of D, Y,—1 = C, and x is a general point in the sense of Remark 2.10. Fix an
Iitaka fibration ¢: X' — Z of D, and let C’ be the strict transform of C on X'. Then we
have

Py-C =deg (C' — ¢(C")) - volg1 (AW (D)x;==x,_1=0)-

Proof. We can choose general effective very ample divisors Ay, ..., A,—1 on X such
that A1 N---N A,—; = C. We may assume that ¥; := A; N --- N A; is an irreducible
subvariety of codimension i for each 1 <i <n — 1. By letting ¥, := {x} where x is a

general point in the sense of Remark 2.10, we obtain an admissible flag
Yo : X=Yy2Y12---2Y, 127, ={x}

on X. Since Ay, ..., Ap—(p) are general effective very ample divisors, Y,_.(p) is a
Nakayama subvariety of D by [5, Proposition 2.13]. Thus this admissible flag Y, satisfies
the conditions in the statement.

For a sufficiently large integer m > 0, take a log resolution f;,: X, — X of the base
ideal b(|mD ) so that we obtain a decomposition f,*(|mD]) = M, + F,, into a base
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point free divisor M,, on X, and the fixed part F,, of | f,x(|mD])|. Let My, := %M,’n
and Fy, := %F,ﬁl Let ¢m: Xm — Zn be a morphism given by |M,, |. By taking a higher
birational model of Z,,, we may assume that Z,, is a smooth variety. There exists a nef
and big divisor H,, on Z,, such that M,, = ¢, H,,. Since our choice of admissible flag
Y. is independent of this process, we may assume that fy,: X;, — X is an isomorphism
over a neighborhood of x. Let C,, be the strict transform of C on X,,. By taking strict
transforms Yl”‘ of Y; on X, foreach 0 <i <n — 1 (note that ¥, | = Cp,), we obtain an
admissible flag

Y X =Y 2V 22 21 =, (0)
on X,,. We may also assume that
Y Zn =Y = m (V) 2 V7" = (Y, epy-1) 2 2 V)
= () 2T = b (V)
is an admissible flag on Z,,. Note that
d :=deg (C' — ¢(C")) = deg (Cn = dm(Cm)).
Then My, - Cp, = d - (Hp, - ¢ (Cry)). By [8, Theorem 1.1], we have
Hy - o (Chy) = VOIZmlyx(D)—l (Hy) = volg: (A}_].m (Hm)x1=~-~=x,<(p)71=0)-

We now prove that Py - C = limy,—o0 My, - Cp,. Let Eq, ..., Ex be the divisorial
components of SB(D). Since the closure of SB(D) \ (E1 U ---U Ej) has codimension at
least two in X, we may assume that C N SB(D) € Ey U --- U E}. We can also assume
that C is smooth and meets all E; transversally at smooth points of E;. Thus C,, does not
meet any effective f,,-exceptional divisor. We write

mP,
f;% =My + " f E 4+t el [ E + FL

where F,, is an effective f;,-exceptional divisor. We have

|mPs| C=fr [m Py |

C =My -Cp+€"Ey-C 4+ el Ey - C.
m m

Since limy, o €' = 0 for each 1 < i < k and lim;, oo me—PJJ -C = P, - C, it follows
that P; - C = lim;,—s00 My, - Cy, as desired.
Combining what we have obtained above, we find

PS -C=d- mh—r>noo VOI]RI (Ay.m (Hm)x1='"=x,<(p)71)-
To prove the lemma, it is sufficient to show that

im Agn (Him)xy ==, ) =0 = AYN(D) )=y =0- 4.2)
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By definition,
mli_I)noo Agm (Hm)x)==x,p)_1=0 S A‘)’ﬁ‘.l (D)x;==x,_1=0

holds. To derive a contradiction, suppose that this inclusion is strict. For a sufficiently
large integer mo > 0, we can choose a small ample QQ-divisor A,,, on Z,, such that

volg1 (Af.m (Hm)x1=~~~=xK(D)_1) + Amg * Pmo (Cmy) < vOlg1 (A\I?,I(D)x1=-~-=xn—1=0) —¢€

for any sufficiently small number ¢ > 0 and any sufficiently large integer m > mg. There
exists a sufficiently small number § > 0 such that all the following divisors

Amo,l = Amo,l(al) ~Q Amo + &1 Ylmo’
Amo2 = Am2(81.82) ~Q Amo.1lgmo + 621,

Amose(D)-1 = Amoue(D)-1(81, - - -, 8e(D)-1) ~Q Amo,lc(D)—2|)7’:'(‘g)72 + 3K(D)—117,C"(1°D)_1

are ample Q-divisors for any nonnegative rational numbers 81, 82, ..., 8¢(p)-1 < §. By
Lemma 3.1, A}a.l(D) = limy— oo A;a},, (M) = limpm—oco Apm(Hp). Thus there exist a
sufficiently large integer m > 0 and an effective divisor H,, ~q Hp on Z,, such that if
we write Vim (H)) = (61,....8¢)—1.b), then 81,82, ..., 8¢(py—1, b are nonnegative
rational numbers with 81,682, ..., 8¢(p)—1 < & and volg: (A;f.l(D)m:---:x,,,l:o) —e<b.
We can write

H), = Hpu,1 + 8:Y",
Hm,llf’lm = Hm,2 + 82}_/2”17

Hm,K(D)—2|17”’

oy = HmcD)=1 + Sep)-1Ye(p) 1

where each H,,; is an effective divisor on Yi’fl for 1 <i < k(D) — 1. Notice that
Hy, o(Dy=1 " $m(Cim) = Hpy e(D)—1 - YK”(“D)_1 > b. By taking a common resolution, we

can assume that there is a birational morphism g,,: Z,, — Z,,, such that
Ym = gmlpm Y™ forevery 1 <i <«(D).
i—1
Note that Hy, + g5, Am, + B is an ample Q-divisor on Z,, for any ample Q-divisor B

on Z,,. We may assume that ¥ Kn(lD)—Z & Supp(B). Thus we can find an effective divisor
E ~q Hp + g5, Am, + B such that

Elgm, , = Hnue)-1 + gm'%:r(zD)_ZAmo,lc(D)—l + Blyn,
where A, «(D)—1 = Amoc(D)—1(01, - . . c(p)—1). Then we obtain

(Hp + g;,Amo + B) - ¢m(Cp)
= E - ¢m(Cn) = (Hnu(p)—1 + gm|*7n(tD)72Am0,K(D)—l + Blgm

k(D)—2

) '¢m(cm) > b.
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As B can be an arbitrarily small ample divisor, we get (Hy, + g5, Amg) - dm(Cm) = b.
Then we have
Volg1 (AY.'" (Hm)x1=~~~=x,((p),1) + Amg * Pmo(Cimg)
= (Hm + & Amo) * $m(Cm) = b = volg1 (AP (D)x,=.=x,_,=0) — &,

which is a contradiction. Therefore, we obtain (4.2) as required. ]

Remark 4.7. Here we explain why Lemma 4.6 can be considered as a generalization
of Jow’s result [13, Corollary 3.3 and Theorem 3.4 (b)], which states that if D is a big
divisor on X and Y, is an admissible flag on X whose subvarieties are transversal complete
intersections of general effective very ample divisors on X, then

k
volgi (Ay,(D)xy=mx, y=0) =D Yo=Y Y ordg, (|D])
i=1peY,—1NE;

where E1, ..., Ey are irreducible components of SB(D). Since Y;,_; is a sufficiently gen-
eral curve, we may assume that Y, _; is smooth and meets all E; transversally at smooth
points of E;. Thus Jow’s result can be also expressed equivalently as

k
Y 3 ordg (ID) = Ne(D) - Yae

i=1peY,—1NE;

so that volgi (Ay, (D)x,==x,_,=0) = Ps(D) - Y,—1. Note that for any big divisor D,
Py (D) = Ps(D) and the identity map idy: X — X is an litaka fibration of D. Thus
Lemma 4.6 recovers Jow’s result.

Lemma 4.8. Let D be a divisor on X with k(D) > 0, and D = Py + Ny be the s-
decomposition. Let E be an irreducible component of Ns. Then we have

multg Ny = inf{x; | (x1,...,X,) € A;a.'(D), Y. is an admissible flag such that Y1 = E}.
In particular, one can read off the negative part Ny from the set
{A}"‘.l (D) | Yo is an admissible flag on X}
Proof. By the definition of s-decomposition, we have
inf {x1 | (x1.....Xn) € AY(Ps), Y, is an admissible flag such that Y; = E} = 0.

Note also that A;}*‘.I(NS) consists of a single point (x1, ..., x,) with x; = multg Ns. Thus
the assertion follows from Lemma 2.5. [

We are now ready to complete the proof of Theorem A by proving the converse of
Proposition 4.2. The following result is a generalization of [13, Theorem A] to possibly
non-big divisor case.



S. R. Choi, J. Park, and J. Won 1048

Proposition 4.9. Let D, D’ be divisors on X withk(D),x(D’)>0. IfA;z‘.l(D) = A‘)'ﬁ‘.l(D’)
for every admissible flag Yo on X, then D = D'.

Proof. Recall that if D is a divisor with k(D) > 0, then any «(D)-dimensional general
subvariety of X is a Nakayama subvariety of D. Thus we can take an admissible flag Y,
containing the Nakayama subvarieties of D, D’ with general Y,,. By the assumption, we
can deduce from Theorem 2.9 (1) that k (D) = (D). The assertion is trivial when k(D) =
k(D’) = 0. Thus, from now on, we assume that (D), «(D’) > 0. By Theorem 4.5, we
may fix an litaka fibration ¢ : X’ — Z for both D and D'. Let D = Py + Ny and D' =
P + N/ be the s-decompositions. By Lemma 4.8, we have Ny = N/. Thus it is sufficient
to show that Py = P;. By applying [13, Lemma 3.5], we can take irreducible curves
Ci....,C, on X obtained by transversal complete intersections of general effective very
ample divisors on X in such a way that they form a basis of N1(X)g. As in Lemma 4.6,
for each 1 <i < p, we can choose an admissible flag

Yi:X =Y, 2V 22V DY} ={x'}

on X such that Y;_K(D) is a Nakayama subvariety of D, YJ_I = C;, and x' is a very
general point on C;. For each 1 <i < p, let C/ be the strict transform of C; on X'. By
Lemma 4.6 and the assumption, we have
Py - C; = deg (C/ — ¢(C))) - volg1 (AY} (D) x; ==, =0)
= deg (€] — ¢(C)) - volg1 (A} (D)x) =w=x,-1=0)
= P]-C

forevery 1 <i < p. Thus Py = Ps/, and this finishes the proof. [

Remark 4.10. In Proposition 4.9, we do not assume that D or D’ is an abundant divi-
sor. Clearly, Proposition 4.9 does not hold without the assumption that k (D), «(D’) > 0.
We have k(D), k(D’) = —oc for any non-pseudoeffective divisors D and D’. However,
AYN(D) = AY(D') = 0 for every admissible flag Y on X.

As a consequence of Propositions 4.2 and 4.9, we obtain Theorem A as Corollary 4.11.

Corollary 4.11. Let D, D’ be divisors on X with k(D),k(D’) > 0. If D or D' is an
abundant divisor, then D = D’ if and only ifA;,a.l(D) = A}a.l(D’) for every admissible
flag Yo on X.

Proof. The assertion follows from Propositions 4.2 and 4.9. ]

Finally, we prove the following.

Corollary 4.12. Let D, D' be divisors on X with k(D), k(D’) > 0. If Pic(X) is finitely
generated, then D ~g D’ if and only ifA‘}’ﬁ‘.l(D) = A‘}’f.l(D/)for every admissible flag Yo
on X.
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Proof. The ‘only if’ direction is trivial by definition (see also [5, Proposition 3.13]). For
the converse, note that D = D’ if and only if D ~g D’ under the assumption that Pic(X)
is finitely generated. Then the ‘if” direction follows from Proposition 4.9. ]

5. Restricted base locus via Okounkov bodies

We show Theorem B as Theorem 5.1 in this section. The idea of the proof is essentially
the same as that of [4, Theorem A], but we include the detailed proof for the reader’s
convenience. Throughout the section, X is a smooth projective variety of dimension #.

Theorem 5.1. Let D be a pseudoeffective abundant divisor on X, and x € X be a point.
Then the following are equivalent:
(1) x e B_(D)
) A;}“‘.I(D) does not contain the origin of R" for every admissible flag Yo on X
centered at X.

3) A‘l’f.l(D) does not contain the origin of R" for some admissible flag Yo on X
centered at X.

Proof. We may assume that D is effective. Since D is an abundant divisor, we have
ov(||D|) = inf{o(D’) | D ~r D’ > 0} by Theorem 2.13 (2) for any divisorial valua-
tion o with the center V on X.

(1)=(2) Assume that x € B_(D), and fix an admissible flag Y, centered at x. By
taking a sufficiently small ample divisor A, we may assume that x € B_(D + A). By
[11, Theorem B], we have o, (|| D + A||) > 0, where o is a divisorial valuation with the
center x on X. Thus it follows that

§ :=inf{multy(D") | D ~g D' = 0} = ox (|| D||) = ox (|| D + All) > 0.
For D' € |D|r, we write vy, (D’) = (v1(D’),...,v,(D’)). Then we obtain
UI(D/) +oeeet Vn(D/) = mUItx(D/) > 4.

This implies that for any point x = (x1,...,X,) € A;,*‘.I(D), we have x; + -+ + x, > 4.
In particular, A;}‘.I(D) does not contain the origin of R”.
(2)=>(3) Trivial.

(3)=(1) Assume that x € B_(D), and fix an arbitrary admissible flag Yo centered
at x. By Remark 2.4, we may assume that each Y; in Y, is smooth. We use the notation
in Section 3.2. We may take a birational morphism f;,: X, — X for each sufficiently
large integer m > 0 in such a way that there is an admissible flag YJ" on X,, such that
fm|Yi'": Y™ — Y; is a birational morphism for 0 < i < n. We can write f,x D = M,, +
Nm + (Pm — My,). Note that Y, Z Supp(N,,) and M, is semiample. Thus there is an
effective divisor D}, ~r D such that

Vynn (D;n) = Vyrr (Pm — My,).
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Now, by Lemma 3.4, there is an ample divisor H on X such that Py, — M, < % S H.
We then have

vym(D;,) + X = vym (P — My) + X € A\;l.}n (n%f,,’fH) for some x € RZ,.
In view of Lemma 4.1, we see that
vr.(D),) + X € A} (%H) for some X' € RZ,,.
However, since limy,—co A;,“.l(%H) = {0}, it follows that lim,, o vy, (D},) = 0. This

means that the origin of R” is contained in Ag}:l(D). We have shown that (3)=(1). [ ]

Corollary 5.2. Let D be an abundant divisor on X. Then the following are equivalent:
(1) D is nef.

(2) For every point x € X, there exists an admissible flag Yo on X centered at x such
that A‘{f‘.l(D) contains the origin of R".

3) A‘I’}‘.' (D) contains the origin of R" for every admissible flag Yo on X.

Proof. Recall that a divisor D on X is nef if and only if B_(D) = @. Thus the corollary
is immediate from Theorem 5.1. ]

Remark 5.3. Note that Theorem 5.1 and Corollary 5.2 may not hold when D is not
abundant (see [7, Remark 4.10]). The main reason is that for a divisorial valuation o with
the center V on X, we may have

ov(ID|) # inf{o(D") | D ~g D' = 0}

in contrast to the abundant divisor case (Theorem 2.13 (2)).

6. Comparing two Okounkov bodies

In this section, we prove Theorem C as Theorem 6.1.

Theorem 6.1. Let D be a pseudoeffective abundant divisor on an n-dimensional smooth
projective variety X with k(D)>0. Fix an admissible flag Yo on X suchthat V :=Y,_(p)
is a Nakayama subvariety of D and Yy, is a general point in the sense of Remark 2.10 (see
Lemma 2.14). Consider the litaka fibration ¢: X' — Z of D and the strict transform V'
of V on X'. Then we have

volgew) (AYM(D)) = deg(¢ly: V' — Z) - volgewy (AF(D)).

In particular, A}a‘_l(D) = AII}T(D) if and only if the map ¢|y: V' — Z is generically
injective.
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Proof. We use the notation in Section 3. By Proposition 2.15, V' is also a positive volume
subvariety of D. For a sufficiently large integer m > 0, we have

deg(Pm|v,: Vin = Zm) = deg(o|y: V' — Z)=:d.

Since ¢, | *Vm H,, = M,,, it follows that voly, (M, |y, )=d - volz, (H,). By Lemmas 3.1,
3.6, Theorem 2.9, and [20, Theorem A], we obtain

= A (D)!

volgen) (AYN(D)) voly,, (Mp|v,,).

. 1
volg (AYN(D)) = Jim D! volz, (Hp).

Thus the first assertion immediately follows.
Recall that A‘;,a.l(D) C A‘Ii,'_“(D). Thus

AY(D) = AY™(D) if and only if volg«w) (A} (D)) = volgew) (AF"(D)).
Now the second assertion follows from the first assertion. [

Example 6.2. Upon obtaining Theorem 6.1, one may wonder whether under the same
settings, Alli,‘:‘(D) and A}a.l(D) coincide up to rescaling by a constant, i.e.,

AIn(D) = (deg(d|yr: V! — Z))7D) - AF(D).

This is not true in general. For instance, consider the 3-fold X := P2 x P! with the
projections f: X — P2 and g: X — P!. Let H := f*L and F := g*P where L is
a line in P2 and P is a point in P!. Then H is an abundant divisor with x(H) = 2.
Note that f is the litaka fibration of H. Take a general point x and general members
H’ € |H|and S € |H + 2F]| containing x. Note that S is a Nakayama subvariety of H
and deg(f|s: S — P?) = 2. We now fix an admissible flag

Yo: XD2SDOSNH D{x}

on X. It is easy to check that A;f‘.l(H) is an isosceles right triangle in {0} x Rzzo and
AY™(H) is a non-isosceles right triangle in {0} x R2 . In particular, we see that

ASN(H) # V2 AY(H).

Example 6.3. We give an example of a variety with a pseudoeffective abundant divisor
which does not have any Nakayama subvariety V' giving rise to a generically injective map
oly: V' — Z (ie., deg(¢|y/) = 1) as in Theorem 6.1. Let S be a minimal surface with
k(S) = 1. Then K is semiample, and k (Ks) = vgppp(Ks) = 1. Denote by 7: S — C the
relatively minimal elliptic fibration induced by |m Kg| for m >> 0. Note that r is the litaka
fibration of Kg. Suppose now that 7 has no section. For instance, if 77 has a multiple fiber,
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then 7 has no section. For any Nakayama subvariety V of K, the map 7 |y: V — C is not
generically injective. In particular, by Theorem 6.1, A}a.l(K s) and Alli,‘.n(K s) are different
for any admissible flag Y, on S containing a Nakayama subvariety of Ks such that Y5 is
a general point.
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