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On distribution relations of polylogarithmic
Eisenstein classes

Syed Waqar Ali Shah

Abstract. We show that for Siegel modular varieties of arbitrary genus, the natural distribution
relations satisfied by certain integral Eisenstein cohomology classes defined by Kings admit an
adelic refinement. This generalizes the classical relations for Siegel units on modular curves.

1. Introduction

Motivic cohomology classes such as Beilinson’s Eisenstein symbols have several impor-
tant arithmetic applications. Kato [11] used these symbols to construct Euler systems
for Galois representations attached to newforms and obtained spectacular results towards
p-adic Birch–Swinnerton Dyer and Iwasawa main conjectures in these settings. The con-
struction of Kato’s Euler system makes essential use of the so-called distribution relations
satisfied by these elements. These relations describe the behavior of Eisenstein sym-
bols under pushforward, pullback and conjugation morphisms between modular curves.
Colmez [3] later gave an adelic reformulation of these relations in the analogous setting
of modular forms. The adelic version is more useful since, e.g., it aids the construction of
Euler systems via representation theoretic methods.

The construction of Beilinson’s symbols can be generalized to other Shimura vari-
eties by means of polylogarithms on abelian schemes. The resulting classes are again of
motivic origin and referred to as Eisenstein classes by analogy. Using an Iwasawa theoretic
approach, Kings [16] showed that the p-adic étale realization of these classes satisfies a p-
adic interpolation property in varying weights. In particular, they enjoy certain integrality
properties.

The modest purpose of this note is to verify that the analogous adelic distribution rela-
tions hold integrally for polylogarithmic Eisenstein classes constructed in the cohomology
Siegel modular varieties of arbitrary genus. We point out that for genus larger than one,
Colmez’s argument does not immediately transfer to Kings’ setting owing partly to the
failure of Galois descent in cohomology and requires solving a non-trivial lifting problem.
The adelic relations play a pivotal role in the construction of Euler systems via pushfor-
wards of test vectors in the cohomology of more general Shimura varieties e.g., see [20].
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The formulation presented here is also needed in two forthcoming works [2, 23]. It is our
hope that the adelic extension of Kings’ theory presented here for higher genus will find
similar applications.

1.1. Main result

Let .VZ;  / denote the standard symplectic Z-module of rank 2n (see Section 3.1) and
G WD GSp2n.VZ;  / denote the Z-group scheme of automorphisms of VZ that preserve
 up to a scalar. For any ring R, we denote VR WD VZ ˝Z R. Let p be a rational prime
and c > 1 an integer with .c; p/ D 1. We denote Zcp WD

Q
`jcp Z`, Acp

f
the group of

finite rational adeles away from primes dividing cp and G WD G.Acp
f
/�G.Zcp/. Let �cp

denote the Zp-module of all locally constant compactly supported Zp-valued functions
on VAf n ¹0º of the form �cp ˝ �

cp where �cp is the characteristic function of VZcp and
�cp is a function on VAcp

f
n ¹0º. Then �cp is a smooth G-representation. For K � G

a subgroup, we denote by �cp.K/ � �cp the submodule of K-invariants. For N � 1,
let KN � G denote the principal congruence subgroup of level N , i.e., the subgroup
of G.yZ/ that acts trivially on VZ=NVZ. For each neat compact open subgroup K � G,
let Sh.K/ denote the Siegel modular variety over Q of level K and AK ! Sh.K/ the
universal abelian scheme. Let HZp D HAK ;Zp denote the Zp-sheaf on Sh.K/ of p-adic
Tate modules of AK and HQp the corresponding Qp-sheaf. For k � 0, let �k.HZp / (resp.,
Symk.HQp /) denote the k-th divided power (resp., k-th symmetric power) sheaf. For
each torsion section t W Sh.K/! AK nAŒc�, Kings [16] has constructed a p-adic étale
Eisenstein class

cEiskQp
.t/ 2 H2n�1ét

�
Sh.K/;Symk.HQp /.n/

�
in the continuous étale cohomology [10] of Sh.K/. For K � G a neat compact open
subgroup, let Ek.K/ denote the Zp-submodule of H2n�1ét .Sh.K/; Symk.HQp /.n// given
by the image of cohomology with coefficients in �k.HZp /.n/. The main result of [16]
implies that N k

cEiskQp
.t/ 2 Ek.K/ if t is N -torsion for N satisfying .N; c/ D 1. For

N � 3 and v 2 VyZ nNVyZ, let tv;N WSh.KN /!AKN denote the section corresponding to
vCNVyZ 2 VZ=NVZ under the universal levelN structure on AKN and �v;N 2 �cp.KN /

denote the characteristic function of v C NVyZ. Finally, let ‡ be the collection of all
compact open subgroups of G which are G-conjugate to a subgroup of KN for some
N � 3 satisfying .N; cp/D 1 and which are of the form G.Zcp/L for some L�G.Acp

f
/.

Theorem A (Theorem 4.19). There exists a unique collection of Zp-module homomor-
phisms

'k.K/W �cp.K/! Ek.K/

indexed by K 2 ‡ satisfying the following conditions:

• for each N � 3 prime to cp and v 2 VyZ nNVyZ,

'k.KN /.�v;N / D N
k
cEiskQp

.tv;N /;
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• for each K;L 2 ‡ satisfying L � K, we have commutative diagrams

�cp.L/ Ek.L/ �cp.L/ Ek.L/

�cp.K/ Ek.K/ �cp.K/ Ek.K/;

'k.L/

pr� pr�

'k.L/

'k.K/ 'k.K/

pr� pr�

where pr� and pr� denote respectively trace and inclusion maps,

• for each K 2 ‡ and g 2 G, we have a commutative diagram

�cp.K/ Ek.K/

�cp.gKg�1/ Ek.gKg�1/;

'k.K/

Œg�� Œg��

'k.gKg�1/

where Œg�� denotes the (contravariant) conjugation isomorphisms.

We refer to our result as an integral parametrization of Eisenstein classes by Schwartz
spaces. For n D 1 and k D 0, our result recovers the distribution relations for Kummer
images of Siegel units proved in [11, §1–2]. We remark that the classes cEiskQp

.tv;N / for
k � 1 and nD 1 are closely related to the Soulé twisting construction applied to the classes
for k D 0 [15, §4.7]. For n � 2, Lemma [19] has established that these classes are not all
zero for certain weights k.

The core ideas that go into the proof of Theorem A are derived from [3,11]. However,
we must carefully address some complications not encountered in these works. One of
the issues is in defining the maps 'k.K/ at, say, principal levels K D KN for functions
that are not supported on VyZ n ¹0º and constant modulo NVyZ. More precisely, there is
no obvious way to attach a linear combination of torsion sections for such functions. In
the setting of [3, §1], the passage from integral to rational adeles is made by defining the
action of the adelic group in the limit, using which maps at finite level can be recovered by
taking invariants. But since the K-invariants of the G-representation lim

�!L
Ek.L/ are not

necessarily equal to Ek.K/, one cannot define 'k.K/ in this manner without potentially
violating integrality, a crucial requirement in the context of Euler systems. So one has to
construct for each K-invariant Schwartz function a class in Ek.K/ which lifts the corre-
sponding class in the limit. We show, among other things, that these lifts can indeed be
constructed compatibly for all levelsK 2‡ using Hecke correspondences, Galois descent
for torsion sections and some elementary topological properties of the action ofG on VAf .

2. p-adic polylogarithms

In this section, we recall the construction and p-adic interpolation of Eisenstein classes via
polylogarithms following [9,16]. The main purpose is to establish some basic “distribution
relations” (Section 2.5) that describe the effect of isogenies and base change on these
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classes. Except for Section 2.5, the content is based on the original works and we skip
most of the proofs within these subsections.

Throughout, Sch denotes the category of finite type separated schemes over a fixed
Noetherian regular scheme of dimension at most 1. For any X 2 Sch, we let Sh.Xét/

denote the category of étale sheaves of abelian groups on the small étale site Xét of X
and Sh.Xét/

N the category of inverse systems on Sh.Xét/. The i -th right derived functors
of inverse limits of global sections of F D .Fn/n�1 2 Sh.Xét/

N is denoted Hiét.X; F/

and referred to as continuous étale cohomology [10]. For p a rational prime invertible
on X , we let Ét.X/Zp denote the abelian category of (constructible) Zp-sheaves and its
isogeny category of Qp-sheaves by Ét.X/Qp . Forƒ2 ¹Zp;Qpº, we let D.X/ƒ denote the
bounded “derived” category of Ét.X/ƒ in the sense of [4, Theorem 6.3]1. There is a full
six functor formalism on these and for any F 2 Ét.X/ƒ, we have HomD.X/ƒ.ƒ;FŒi �/ D

Hiét.X;F/ for all i � 0 by [7, Lemma 4.1].

2.1. Purity for unipotent sheaves

Let � WX ! S be a separated morphism of finite type in Sch. A Zp-sheaf F 2 KEt.X/Zp
is said to be S -unipotent of length k if there exists a decreasing filtration F D F0 � F1 �

� � � � Fn � FnC1 D 0 such that the Fi=FiC1 are isomorphic to ��Gi for Zp-sheaves Gi 2
KEt.S/Zp . We refer to Gi as the i -th graded piece of F. We can similarly define unipotence

of ƒ-sheaves for ƒ D Qp or ƒ D Z=prZ (i.e., étale pr -torsion sheaves).

Lemma 2.1. Let ƒ 2 ¹Z=prZ; Zp;Qpº. Suppose �i W Xi ! S for i D 1; 2 be mor-
phisms as above such that �i is smooth of relative dimension di . Let f WX1 ! X2 be
any S -morphism. Then for any S -unipotent ƒ-sheaf F (of some finite length), f ŠF '
f �F.d1 � d2/Œ2d1 � 2d2� functorially in F.

2.2. The Qp-logarithm

Let � WA! S 2 Sch denote an abelian scheme of relative dimension d , i.e., A is a group
scheme and � is a smooth proper morphism with connected geometric fibers of dimension
d . The unit section is denoted by eWS ! A. Let p be a prime invertible on S . The p-adic
Tate module of � is defined to be first relative homology

HZp WD HomS .R
1��Zp;Zp/ D R

2d�1��Zp.d/ 2 KEt.S/Zp (2.2)

of A with respect to S . It is a lisse Zp-sheaf and fiberwise equals the Tate module. We
let HQp WD HZp ˝ Qp 2 KEt.S/Qp denote the corresponding Qp-sheaf. For r � 1, we
similarly define Hƒr where ƒr WD Z=prZ. Then

AŒpr � ' Hƒr ' HZp ˝Zp Z=prZ; (2.3)

where AŒpr � on the left denotes the associated representable sheaf of pr torsion in A. In
what follows, we denote HZp simply by H if no confusion can arise.

1See [8, §0] for a short explanation how this differs from an ordinary derived category. See also [6,
Appendix A.1].
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The low term exact sequence for the Leray spectral sequence associated with the com-
position HomS .Zp;�/ ı �� evaluated at ��H gives

0! Ext1S .Zp;H/
��

�! Ext1A.Zp; �
�H/! HomS .Zp; R

1���
�H/

! Ext2S .Zp;H/
��

�! Ext2A.Zp; �
�H/:

The maps �� are necessarily injective as e� ı �� D .� ı e/� D id and therefore the mor-
phism to the second line above is 0. By the projection formula,R1����H'R1��Zp˝H.
Since R1��Zp ' HomS .H;Zp/ DW H_ and H_ ˝H ' HomS .H;H/, we get a split
short exact sequence

0! Ext1S .Zp;H/! Ext1A.Zp; �
�H/! HomS .H;H/! 0: (2.4)

with left splitting given by e�. Let �WHomS .H;H/! Ext1.Zp; ��H/ denote the unique
right splitting satisfying e� ı � D 0.

Definition 2.5. The first logarithm sheaf is defined to be the pair .Log.1/Zp
; 1.1// where

Log.1/Zp
D Log.1/A;Zp 2

KEt.A/Zp is such that �.idH/ 2 Ext1A.Zp; �
�H/ is represented by

0! ��H! Log.1/Zp

ı
�! Zp ! 0 (2.6)

and 1.1/WZp ! e�Log.1/Zp
is a fixed right splitting of the pullback of (2.6) under identity.2

The pair .Log.1/Zp
; 1.1// is then unique up to a unique isomorphism. We denote by Log.1/Qp

the associated Qp-sheaf.

By definition, Log.1/Zp
is S -unipotent of length one (see Section 2.1). One defines

Log.1/ƒr for r � 1 in the same way as Hƒr . Then,

Log.1/ƒr D Log.1/Zp
˝ƒr and Log.1/Zp

D
�
Log.1/ƒr

�
r�1

:

Definition 2.7. For k � 1, the k-th Qp-logarithm sheaf is the pair .Log.k/Qp
; 1.1// where

Log.k/Qp
WD Symk

�
Log.1/Qp

�
2 KEt.A/Qp

and
1.k/ WD

1

kŠ
Symk.1.1//WQp ! e�Log.k/Qp

is the splitting map induced by 1.1/ on the symmetric power.

The Qp-logarithms for k � 1 and their canonical splittings fit into an inverse sys-
tem as follows. Let ˇ WD ı ˚ idWLog.1/Qp

! Qp ˚Log.1/Qp
denote the diagonal map given

2This pullback is necessarily split since e� ı � D 0.
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by the sum of the projection ı in (2.6) and identity. For k � 2, define transition maps
uk WLog.k/Qp

! Log.k�1/Qp
via

Log.k/Qp
D Symk.Log.1/Qp

/
Symkˇ
����! Symk.Qp ˚Log.1/Qp

/

'

M
iCjDk

Symi .Qp/˝ Symj .Log.1/Qp
/

! Sym1.Qp/˝ Symk�1.Log.1/Qp
/ ' Log.k�1/Qp

:

For k � 2, we claim that .e�uk/ ı 1.k/WQp ! e�Log.k�1/Qp
is equal to 1.k�1/. First note

that by definition of 1.1/, we have

.e�ˇ/ ı 1.1/ D id˚ 1.1/

as maps Qp ! Qp ˚ e
�Log.1/Qp

. Therefore

Symk.e�ˇ/ ı 1k D
1

kŠ
Sym.k/.id˚ 1.1//

'

M
iCjDk

1

kŠ

�
k

i

��
Symi .id/˝ Symj .1.1//

�
D

M
iCjDk

1

iŠ

�
Symi .id/˝ 1.j /

�
:

The projection of the last sum above to the summand at i D 1 is equal to 1.k�1/. Since
uk is obtained from Symk.ˇ/ by post-composition with projection to i D 1 summand as
well, the claim follows. If we set Log.0/Qp

WD Qp , 1.0/WQp ! e�Log.0/Qp
the identity and

u1 WD ı (2.6), we still have
.e�u1/ ı 1.1/ D 1.0/:

By construction, we have for each k � 1 an exact sequence

0! ��SymkHQp ! Log.k/Qp

uk

�! Log.k�1/Qp
! 0 (2.8)

whose pullback under e splits, giving an identification e�Log.k/Qp
'
Qk
iD0 SymiHQp such

that e�uk is identified with the projection map

kY
iD0

SymiHQp !

k�1Y
iD0

SymiHQp :

One sees by induction that Log.k/Qp
is S -unipotent of length k with graded pieces given by

symmetric powers of HQp .

Definition 2.9. TheQp-logarithm prosheaf .LogQp
;1/ is the pro-system .Log.k/Qp

;1.k//k�0
of Qp-sheaves whose transitions maps are given by uk for k � 1.
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The logarithm prosheaf satisfies several important properties. Below we record the
ones needed later on.

Proposition 2.10 (Pullback compatibility). Suppose that f WT ! S is a morphism in Sch,
AT WD A�S T denotes the pullback of A to T and fAWAT ! A denotes the natural map.
Then there are canonical isomorphisms

f �A .Log.k/A;Qp

�
' Log.k/AT ;Qp

for all k � 0 such that f �A .1
.k/
A / is identified with the splitting 1.k/AT . These isomorphisms

commute with transition maps.

Proposition 2.11 (Functoriality). For any isogeny 'WA! A0 of abelian schemes over S ,
there are unique isomorphisms

'#WLog.k/A;Qp
! 'ŠLog.k/A0;Qp

' '�Log.k/A0;Qp

for all k � 0 such that 1.k/A is sent to 1.k/A0 . These isomorphisms commute with transition
maps and their pullbacks under identity induce Symk'� on k-th graded pieces.

Corollary 2.12 (Splitting principle). Let �WD ! A be a closed subscheme contained in
the kernel of an isogeny 'WA! A0 and �D WD ! S denote its structure map. Then there
exist isomorphisms

%kD W �
�Log.k/A;Qp

�
�!

kY
iD0

��DSymi .HA;Qp /

for all k � 0 that commute with transition maps and are independent of the isogeny '.

Proof. Let e0 denote the identity section ofA0. First assume that .�;D/D .t;S/ is a section
of ker' over S . We define %kt as the composition

t�Log.k/A;Qp

t�'#
���! .e0/�Log.k/A0;Qp

.e�'#/
�1

�����! e�Log.k/A;Qp
'

kY
iD0

Symi .HA;Qp /;

where the last isomorphism is induced by (2.8) as above. If  WA0 ! A00 is any isogeny
over S , the corresponding isomorphism defined with respect to '0 WD  ı ' is easily
seen to coincide with %kt using the cocycle condition '0# D .'

� /# ı '#, which holds by
uniqueness of the maps involved. As any two isogenies from A that annihilate t can be
refined by a common isogeny (by quasi-compactness of S ), %kt does not depend on '.

In general, let AD WD A �S D and tD WD ! AD be the tautological section obtained
from t by base change. Then we define %kD as %ktD after identifying

��Log.k/A;Qp
' t�DLog.k/AD ;Qp

and ��DHA;Qp ' HAD ;Qp :

Proposition 2.13 (Vanishing of cohomology). There exist natural isomorphisms

R2d��.Log.k/Qp
/ ' Qp.�d/
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for all k � 0 that commute with the transition maps. For i D 0; : : : ; 2d � 1, the induced
maps Riuk WRi��Log.k/Qp

! Ri��Log.k�1/Qp
are zero for all k � 1. In particular,

lim
 �
k

Hiét

�
A;Log.k/Qp

.d/
�
'

´
0 if i < 2d;

H0ét.S;Qp/ if i D 2d:

2.3. Cohomology classes

Fix c > 1 an integer invertible on S and let D WD AŒc� be the group of c-torsion points
of A. Then D is a finite étale group scheme over S . Let U D UD WD A nD denote the
complement of D in A and consider the diagram.

U A D

S

�U

jD

�

�D

�D
(2.14)

where j D jD and � D �D are natural inclusions and �D WD � ı �, �U WD � ı j are the
structure maps. For any F 2 D.A/Qp , we have a distinguished triangle R���ŠF ! F !

Rj�j
�F ! R���

ŠFŒ1� 2 D.A/Qp known as the localization triangle. Applying R�� D
R�Š to the localization triangle with F D Log.k/Qp

.d/ for a fixed k, we get a distinguished
triangle

R�D;��
ŠLog.k/Qp

.d/! R��Log.k/Qp
.d/! R�U;�j

�Log.k/Qp
.d/

! R�D;��
ŠLog.k/Qp

.d/Œ1� 2 D.S/Qp :
(2.15)

Using Lemma 2.1 and the fact that Log.k/Qp
is S -unipotent for each integer k, we see that

�ŠLog.k/Qp
.d/D��Log.k/Qp

Œ�2d� and thereforeR�D;��ŠLog.k/Qp
.d/DR�D;��

�Log.k/Qp
Œ�2d�,

etc. Applying HomD.X/Qp
.Qp;�/ and using the adjunctions �� a R��, etc., we obtain

a long exact sequence [12, Theorem II.1.3]

� � � ! H2d�1ét

�
A;Log.k/Qp

.d/
�
! H2d�1ét

�
U;Log.k/U;Qp

.d/
�

! H0ét

�
D; ��Log.k/Qp

�
! H2dét

�
A;Log.k/Qp

.d/
�
! � � � ;

(2.16)

where Log.k/U;Qp
denotes the pullback of Log.k/Qp

to the open subset U . By construction,
these sequences commute with maps induced by transition maps from kC 1 to k. Abusing
notation, we denote the inverse limit over k of each of the groups appearing in (2.16) by
removing the superscript .k/. Taking inverse limit of (2.16) over all k, we obtain an exact
sequence

0! H2d�1ét

�
U;LogU;Qp

.d/
�
! H0ét.D; �

�LogQp
/! H0ét.S;Qp/ (2.17)

by Proposition 2.13 and left exactness of inverse limit. The middle map appearing in
(2.17) is denoted resU and referred to as the residue map. The rightmost map in (2.17)
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is induced by the composition of augmentation �D;���Log.k/Qp
! �D;��

�Qp followed by
counit adjunction �D;���Qp D �D;Š�

Š
DQp!Qp . Via the identification of Corollary 2.12,

the restriction of the rightmost map above to the k D 0 component is the trace morphism

"D WH0ét.D;Qp/! H0ét.S;Qp/:

Let QpŒD�
0 D ker "D .

Definition 2.18. The polylogarithm class with residue ˛ 2 QpŒD�
0 is the unique coho-

mology class

˛
polQp

2 H2d�1ét

�
U;LogU;Qp

.d/
�

such that resU .˛polQp
/ D ˛. For k � 0, we define ˛polkQp

2 H2d�1ét .U;Log.k/U;Qp
.d// to

be the image of ˛polQp
.

Remark 2.19. We have a similarly defined exact sequence (of groups of inverse limits)

0! Ext2d�1U

�
Qp;LogU;Qp

.d/
�
! HomD.Qp; �

�LogQp
/! HomS .Qp;Qp/

and a class in the Ext group corresponding to ˛ 2 QpŒD�
0. This is the perspective taken

in [9, §5.2].

Fix now an integerN > 1 that is invertible on S and such that .N;c/D 1. Let t WS!A

be a non-zeroN -torsion section. Then t factors viaU as .N;c/D 1 and we will also denote
t WS ! U . The unit adjunction id! Rt�t

� on U gives a morphism

R�U;�Log.k/U;Qp
.d/! R�U;�Rt�t

�Log.k/U;Qp
.d/

�
�! R.�U ı t /�t

�Log.k/U;Qp
.d/ D t�Log.k/U;Qp

.d/

which in turn induces the pullback

t�WH2d�1ét

�
U;Log.k/U;Qp

.d/
�
! H2d�1ét

�
S; t�Log.k/U;Qp

.d/
�

(2.20)

on cohomology. By Corollary 2.12, we have a map

H2d�1ét

�
S; t�Log.k/U;Qp

.d/
� %kt
�!
�

H2d�1ét

�
S;

kY
iD0

Symi .HQp /.d/

�
prk
��! H2d�1ét

�
S;Symk.HQp /.d/

�
;

(2.21)

where prk is the projection on the k-th symmetric power.

Definition 2.22. Let ˛ 2 QpŒD�
0, t W S ! U be a non-zero N -torsion section as above

and k � 0 be an integer. The k-th rational Eisenstein class

˛EiskQp
.t/ 2 H2d�1ét

�
S;Symk.HQp /.d/

�
along t with residue ˛ is the image of ˛polkQp

2 H2d�1ét .U;Log.k/U;Qp
.d// under the com-

position prk ı %kt ı t
� of (2.21) and (2.20).
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There is a special choice of ˛ which enjoys certain compatibility properties and which
will be used in Section 4. Let ��D WH

0.S;Qp/ ! H0ét.D;Qp/ denote the pullback map
induced by �D and e�WH0ét.S;Qp/! H0ét.D;Qp/ the pushforward map induced by counit
adjunction Qp D �D;�eŠe

ŠQp ! �D;�Qp . Let

˛c D ˛A;c WD c
2de�.1/ � �

�
D.1/; (2.23)

where 1 2 H0ét.S;Qp/ denotes the global section given locally by 1 2 Qp . Then ˛c 2
QpŒD�

0 since �D;�.˛c/ D c2d .�D ı e/�.1/ � �D;���D.1/ D c
2d � c2d D 0.

Definition 2.24. We denote by cpolQp
(resp., cEisk.t/Qp ) the polylogarithm (resp., Eisen-

stein) class with residue ˛c .

Remark 2.25. See [15, §4] for a precise relationship between these classes in the elliptic
case and Kato’s Siegel units. The general construction of the polylogarithm has its origins
in the work of Beilinson and Levin [1], whose ideas were later placed in a much broader
framework by Wildeshaus [27] and Kings [13, 14]. When S is the Siegel modular variety
of genus two of a suitable level, Faltings [5] has also constructed a “potentially motivic”
Eisenstein class in H3ét.S;Qp.3//, whereas the weight zero construction above yields a
class in H3ét.S;Qp.2//. This other class has recently been used to construct a new Euler
system in [25].

2.4. Norm compatibility

We maintain the notations of Section 2.3. Suppose now that � 0WA0! S is another abelian
scheme with unit section e0W S ! A0 and define D0, U 0, etc., analogously as in diagram
(2.14). For notational clarity, we will denote F D Log.k/A;Qp

.d/ and G D Log.k/A0;Qp
.d/ in

this subsection.
Let 'WA ! A0 be an S -isogeny and 'D WD ! D0 denote its restriction to D. Set

zD WD '�1.D0/, zU WD '�1.U 0/ � U and denote by j zD W zU ! A, | W zU ! U the inclusion
maps. The unit adjunction id! R|�|

� gives a restriction transformation

rU; zU WRjD;�j
�
D ! RjD;�R|�|

�j �D
�
�! Rj zD;�j

�
zD
:

Since z' WD '
j zU W
zU ! U 0 is the pullback of ' along jD0 , we have z'Šj �D0 ' j

�
zD
'Š and a

base change isomorphism 'ŠRjD0;�
�
�! Rj zD;� z'

Š. Define

'\WRjD;�j
�
DF

'#
�! RjD;�j

�
D'

ŠG
r
U; zU

���! Rj zD;�j
�
zD
'ŠG

�
�! Rj zD;� z'

Šj �D0G
�
�! 'ŠRjD0;�j

�
D0G:

By [9, Lemma 5.1.2], there is a morphism of distinguished triangles in D.A0/Qp

R'�R�D;��
Š
DF R'�F R'�RjD;�j

�
DF R'�R�D;��

Š
DFŒ1�

R�D0;��
Š
D0G G RjD0;�j

�
D0G R�D0;��

Š
D0GŒ1�;

'\
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where '\WR'�RjD;�j �DF ! RjD0;�j
�
D0G denotes the mate of '\ under the adjunction

R'� D R'Š a '
Š. Applying R� 0

Š
D R� 0�, we obtain a diagram in D.S/Qp where the top

row is (2.15) and the bottom row is the version defined for A0. Repeating the steps of
Section 2.3, we obtain a norm map N' from the short exact sequence (2.17) for A to that
for A0. On H0ét.S;Qp/, N' is just identity while the map H0ét.D;Qp/! H0ét.D

0;Qp/ is the
trace 'D;�. By uniqueness of polylogarithms with respect to residues and compatibility of
adjunction morphisms, we obtain the following.

Proposition 2.26 (Norm compatibility). N'.˛polA;Qp
/ D ˇpolA0;Qp

where ˇ denotes the
trace 'D;�.˛/ 2 QpŒD

0�0.

We will also need the following result.

Lemma 2.27. If ' has constant degree and .deg'; c/ D 1, 'D;�.˛c/ D ˛A0;c .

Proof. Since 'D;� ı e�.1/ D .'D ı e/�.1/ D e0�.1/, we only need to show that

'D;� ı �
�
D.1/ D �

�
D0.1/:

This can be established étale locally, i.e., over a finite étale cover of S whereD;D0 become
constant group schemes on � WD .Z=cZ/2d . In this case, 'D WD!D0 is determined by an
automorphism of � and 'D;� identifies with the endomorphism on˚H0ét.S;Qp/ given by
identity maps between the permuted components determined by the automorphism of � .
As .1/2� is clearly preserved by such maps, the claim follows.

2.5. Distribution relations

Fix ˛, t and k as in Definition 2.22 for all of this subsection. For the next result, we
let f W T ! S denote a fixed morphism in Sch. Set AT WD A �S T , DT WD AT Œc� and
UT WD AT n DT . We denote by fAWAT ! A the natural map and by fD WDT ! D,
fU WUT ! U the restriction of fA to DT , UT respectively. Let eT W T ! AT denote the
identity section and tT WT ! UT the tautological section induced by base changing t .

UT U

T S

�UT

fU

�UtT

f

t (2.28)

Denote by

f �k WH
2d�1
ét

�
S;Symk.HA;Qp /.d/

�
! H2d�1ét

�
T;Symk.HAT ;Qp /.d/

�
;

f �D WH
0
ét.D;Qp/! H0ét.DT ;Qp/

the pullback maps induced by the unit adjunction id! Rf�f
�, etc. More generally, this

adjunction induces (via base change applied to (2.28) and Proposition 2.10) a morphism
from the triangle (2.15) to Rf� applied to the corresponding triangle for AT . Thus we get
a pullback map from the sequence (2.17) to the corresponding sequence for AT .
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Lemma 2.29. Let ˇ denote the image of ˛ under f �D . Then

f �k
�
˛EiskQp

.t/
�
D ˇEiskQp

.tT /:

Moreover, if ˛ D ˛c , we have ˇ D ˛AT ;c .

Proof. Since ˛ 2 QpŒD�
0 D ker "D , the compatibility of (2.17) along pullbacks implies

that ˇ 2 QpŒDT �
0. Let ˇpol.k/T;Qp

denote the polylogarithm for AT with residue ˇ. Then

f �U .˛polkQp
/ D ˇpolkT;Qp

by uniqueness of these classes with respect to residues. It is easily seen from the proof of
Corollary 2.12 that %ktT is the pullback of %kt along f once the functorial identifications are
made. Combining this with the relation t ı f D fU ı tT , we see that .˚kiD1f

�
i / ı %

k
t ı t

�D

%ktT ı .tT /
� ı f �U . So

f �k
�
˛EiskQp

.t/
�
D f �k ı prk ı %kt ı t

�.˛polkQp
/

D prk ı %ktT ı t
�
T ı f

�
A .˛polkQp

/ D ˇEiskQp
.tT /

which proves the first claim. For the second claim, note that since f �D ı �
�
D D �

�
DT
ı f �

as maps H0ét.S;Qp/! H0ét.D;Qp/ and f �.1/ D 1 2 H0ét.T;Qp/, we have f �D .�
�
D.1// D

��DT .1/. So it suffices to show that f �D ı eD;�.1/D eDT ;�.1/. This is easily seen by moving
to an étale cover of S on which D is trivialized.

The next result is an analogue of [11, Lemma 1.7 (2)]. Let 'WA! A0 be a S -isogeny
and D0, U 0, zU , etc., be as in Section 2.4. For the result below, we assume that s WD
' ı t ¤ e0 and that ker ' is a constant S -group scheme over a finite abelian group � , so
that the structure map f Wker'! S is identified with t2� idS . For any  2 � , we denote
e WS! ker' the section indexed by  and set t WD t C i ı e where i Wker'!A denotes
the inclusion. Finally, let

Symk'�WH2d�1ét

�
S;Symk.HA;Qp /.d/

�
! H2d�1ét

�
S;Symk.HA0;Qp /.d/

�
denote the map induced by '.

Lemma 2.30. Let ˇ 2 QpŒD
0�0 denote the image of ˛ under 'D;�. Then

ˇEiskQp
.s/ D

X
2�

Symk'�
�
˛EiskQp

.t /
�
:

Proof. As s¤ e0 isN -torsion and .N;c/D 1, s factors viaU 0 and therefore each t factors
via zU . Let � Wker'! zU be the morphism which equals t on the component indexed by  .
We claim that the diagram

zU U 0

ker' S

z'

�

f

s (2.31)
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is Cartesian in Sch. For this, we may replace z' with 'WA!A0. So let pWX!A, qWX!S

in Sch be such that ' ı p D s ı q. Assume wlog that X is connected. Since � ı p D � 0 ı
' ıpD� 0 ı s ı qD q, p is an S -morphism. Since ' ı .p� t ı q/D s ı q � s ı qD 0, there
is a unique S -morphism �WX ! ker' such that p � t ı q D i ı �. Since X is connected,
there is a unique ı 2 � such that � factors as X

q
�! S

eı
�! ker'. So p D i ı � C t ı q D

tı ı q D � ı � and the universal property is verified.
Since (2.31) is Cartesian, we have base change isomorphisms ts� D f �s� ' �� z'Š

and s�Rz'�
�
�! Rf��

�. In particular,

Rs�s
�Rz'� z'

Š �
�! R.sf /�.sf /

�
D tRs�s

�:

Denoting FU WD Log.k/U;Qp
.d/ and FU 0 WD Log.k/U 0;Qp

.d/, the stated isomorphisms yield a
commutative diagram

H2d�1ét .U;FU / H2d�1ét . zU ; z'�FU 0/ H2d�1ét .U 0;FU 0/

L
 H2d�1ét .S; t� FU /

L
 H2d�1ét .S; s�FU 0/ H2d�1ét .S; s�FU 0/;

˚t�

|�ı'# z'�

˚s� s�

.t� '#/
P

where maps in the right square are induced by various adjunction transformations applied
to Log.k/U 0;Qp

.d/, e.g., the middle vertical arrow is induced byRz'� z'Š!Rs�s
�Rz'� z'

Š. The
composition given by the top row is just N' by the discussion in Section 2.4. So by Propo-
sition 2.26, it suffices to show that for each  2 � , the composition %ks ı t

�
 '# ı .%

k
t
/�1 is

equal to Symk'� on the k-th symmetric power. But this composition is easily seen to be
e�'# once the maps at the ends are written in terms of an isogeny  WA0 ! A00 that anni-
hilates s (see the proof Corollary 2.12). That claim then follows by Proposition 2.11.

2.6. Interpolation

In this subsection, we recall the definition of integral logarithm sheaf and state Kings’ re-
sult on the interpolation of Eisenstein classes. For proofs, we refer the reader to [16, §4–6].

Let � WA! S be as in Section 2.2. Recall (2.3) that for each positive integer r , Hr WD

Hƒr is isomorphic to the representable sheaf associated with pr -torsion subschemeXr WD
AŒpr �. Let prr WXr ! S denote the structure map and set

ƒr ŒHr � D ƒr ŒXr � WD prr;�ƒr 2 Sh.Sét/: (2.32)

Thenƒr ŒHr � is a sheaf of (abelian) group algebras overƒr with product Hr �Hr !Hr

induced by the group structure on Xr . More generally, let t W S ! A be a torsion section
and let prr WXrhti ! S be defined by the pullback diagram

Xrhti Ar

S A;

prr Œpr �

t
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where Ar WD A considered as a finite étale cover of A. We denote by Hrhti the repre-
sentable sheaf corresponding to Xrhti and define

ƒr
�
Hrhti

�
D ƒr

�
Xrhti

�
WD prr;�ƒr 2 Sh.Sét/: (2.33)

Thenƒr ŒHrhei�Dƒr ŒHr �. Since the coverAr is anXr -torsor onA,Xrhti is anXr -torsor
over S . This makes ƒr ŒHrhti� a sheaf of modules over ƒr ŒHr �. Let

�r D �rhtiWXrC1hti ! Xrhti

be the map induced by the universal property ofXrhti applied toXrC1hti!ArC1
Œp�
��!Ar

and prrC1. Then .Xrhti/r forms a pro-system of finite étale covers of S . The adjunction
�r;� D �r;Š a �

Š
r D �

�
r (by étaleness of �r ) gives us a map �r;�ƒrC1 D �r;Š�ŠrƒrC1 !

ƒrC1 and post composing with prr;� gives us a map

ƒrC1
�
HrC1hti

�
D prr;��r;�ƒrC1 ! prr;�ƒrC1:

Reducing modulo pr , we obtain an induced “trace” map

Trr WƒrC1
�
HrC1hti

�
! ƒr

�
Hrhti

�
(2.34)

which is compatible with the underlying module structures.

Definition 2.35. The sheaf of Iwasawa algebras of H on S is defined to be the pro-
system ƒ.H/ WD .ƒr ŒHr �/r�1 with transition maps given by (2.34) for t D e. The sheaf
of Iwasawa modules associated with t is defined to be the pro-system .ƒr ŒHrhti�/r�1.

For each non-negative integer k, let �k.Hr / denote the sheafification of the presheaf
that sends an open subscheme U � S to the k-th divided power algebra �k.Hr .U //. Then
the reduction maps HrC1 ! Hr induce isomorphisms �k.HrC1/˝Z=prC1Z Z=prZ '
�k.Hr / and we obtain a Zp-sheaf �k.H/ WD .�k.Hr //r�1. There is a canonical map

k WSymk.H/! �k.H/ (2.36)

induced by sending m˝k 2 Symk.H/ to kŠmŒk� for m a section of H. It induces an
isomorphism Symk.H/˝Qp ! �k.H/˝Qp ' �k.HQp / between the corresponding
Qp-sheaves.

The sheaf Hr 2Sh.Sét/ possesses overXr 2Sét a tautological section �r 2�.Xr ;Hr /D

Hr .Xr / D HomS .Xr ; Xr / corresponding to the identity map Xr ! Xr . Its k-th divided
power gives rise to a section � Œk�r 2 �.Xr ;�k.Hr //. Let �k.Hr /jXr WD pr�r �k.Hr / denote
the restriction of �k.Hr / to Xr . Then

�
�
Xr ; �k.Hr /

�
D HomXr

�
ƒr ; �k.Hr /jXr

�
' HomS

�
prr;Šƒr ; �k.Hr /

�
' HomS

�
ƒr ŒHr �; �k.Hr /

�
;

where the penultimate isomorphism follows via the adjunction prr;Š a prŠr D pr�r and the
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last by the identification prr;Š D prr;�. Thus � Œk�r corresponds to a morphism

momk
r Wƒr ŒHr �! �k.Hr /: (2.37)

For fixed k and varying r , the maps momk
r are compatible with respect to

Trr WƒrC1ŒHrC1�! ƒr ŒHr �

and the reduction maps �k.HrC1/!�k.HrC1/˝ƒrC1 ƒr '�k.Hr / [16, Lemma 4.5.1].

Definition 2.38. The k-th moment map is defined to be the morphism momk Wƒ.H/!

�k.H/ of pro-systems obtained by the compatible system .momk
r /r�1 given in (2.37).

Parallel to the construction of ƒ.H/ is the construction of a pro-sheaf on A that is the
integral analogue of the Qp-logarithm pro-sheaf. Let Œpr �WAr ! A be the Xr -torsor over
A as above. Denote by �r WArC1 ! Ar the transition map induced by Œp�WA! A. Then
we have a pro-system .Ar /r�1 of finite étale covers on A. For s � 1, let

ƒsŒAr � WD Œp
r ��ƒs 2 Sh.Aét/:

Then as above, we get morphisms

�r;s WƒsŒArC1�! ƒsŒAr � for all s; r:

If s D r , the pre-composition of this map with reduction modulo pr gives a “trace” map
Trr WƒrC1ŒArC1�! ƒr ŒAr � as in (2.34).

Definition 2.39. The integral logarithm sheaf L is defined to be the pro-system�
ƒr ŒAr �

�
r�1
2 Sh.Aét/

N

with transition maps given by Trr .

Via the Xr -torsor Œpr �WAr ! A, L becomes a free rank 1 module over ��ƒ.H/. The
base change compatibility of such pro-systems [16, §4.4] implies that L is compatible
with arbitrary base change. Consequently, there is an isomorphism

&t W t
�L ' ƒ

�
Hhti

�
(2.40)

of sheaf of modules over ƒ.H/. In particular, e�L ' ƒ.H/.
The integral logarithm sheaf enjoys properties similar to those of LogQp

. Below we
record the ones needed to state Kings’ result.

Proposition 2.41 (Splitting principle). Let n be a positive integer and t W S ! A be an
n-torsion section. Then there exists a canonical homomorphism Œn�#W t

�L!ƒ.H/ which
is an isomorphism if .n; p/ D 1.

Corollary 2.42. Let c be an integer prime to p andD D AŒc�. Then there exists a canon-
ical isomorphism ��DL ' ��Dƒ.H/ where �D , �D are as in (2.14).
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Proposition 2.43 (Vanishing of cohomology). Let r; s be non-negative integers. There
exist natural isomorphismsR2d��.ƒsŒAr �/'ƒs.�d/which are compatible with respect
to �r;s and reduction modulo ps�1. For each i D 0; : : : ; 2d � 1, there exist a sufficiently
large integer r 0 such that Ri��ƒsŒAr 0 �! Ri��ƒsŒAr � is zero. In particular,

Hiét

�
A;L.d/

�
'

´
0 if i < 2d

H0ét.S;Zp/ if i D 2d:

Remark 2.44. By [10, Proposition 1.6] and above, Hiét.A;L.d// D lim
 �r

Hiét.A;ƒr ŒAr �/

where the limit involves ordinary étale cohomology groups (or continuous groups with
constant pro-systems ƒr ŒAr �).

Fix as before an integer c > 1 that is invertible on S but which is now also prime to p.
We retain the notations introduced in diagram (2.14). Repeating the same argument as in
Section 2.3 and invoking Proposition 2.43, we find an exact sequence

0! H2d�1ét

�
U;L.d/

� res
�! H0ét.D; �

�L/! H0ét.S;Qp/; (2.45)

where res is again referred to as the residue map. By Corollary 2.42, we may replace
H0ét.D; �

�L/with H0ét.D;�
�
Dƒ.H//. Since we have a section 1WZp!ƒ.H/ that is induced

by sending 1 2 Z=prZ to the identity in ƒr ŒAr �, there exists a corresponding inclusion
H0.D;Zp/! H0ét.D; �

�
Dƒ.H//. Let ZpŒD�0 denote the kernel of the trace map

H0ét.D;Zp/! H0ét.S;Zp/:

Then ZpŒD�0 lies in the image of residue map for the same reasons as in Section 2.3. Note
that the class ˛c of (2.23) is a member of ZpŒD�0.

Definition 2.46. Let ˛ 2 ZpŒD�0. The integral étale polylogarithm with residue ˛ is the
unique class

˛polZp 2 H2d�1ét

�
U;L.d/

�
such that res.˛polZp / D ˛.

Fix now an integer N > 1 prime to c and invertible on S . Let t W S ! U be an N -
torsion section. By the adjunction id! Rt�t

�, isomorphism (2.40) and Proposition 2.41,
we obtain a composition

H2d�1ét

�
U;L.d/

� t�

�! H2d�1ét

�
S; t�L.d/

� &t
�!
�

H2d�1ét

�
S;ƒ.H/hti.d/

�
ŒN �#
���! H2d�1ét

�
S;ƒ.H/.d/

�
:

(2.47)

Definition 2.48. The Iwasawa-Eisenstein class

˛E	N .t/ 2 H2d�1ét

�
S;ƒ.H/.d/

�
associated with t ,N and ˛ is defined to be image of ˛polZp under the composition ŒN �# ı
&t ı t

� of (2.47).
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The following result of Kings shows that the classes just defined interpolate rational
Eisenstein classes. Let momk

Qp
denote the composition

H2d�1ét

�
S;ƒ.H/.d/

� momk
���! H2d�1ét

�
S; �k.H/.d/

�
�˝Qp

����! H2d�1ét

�
S; �k.H/.d/

�
˝Zp Qp

�k
�!
�

H2d�1ét

�
S;SymkHQp .d/

�
;

where the first map is induced by the moment map of Definition 2.38 and �k is induced
by (2.36).

Theorem 2.49 ([16, Theorem 6.3.3]). For ˛ 2 ZpŒD�0 and N > 1 an integer relatively
prime to c and invertible on S , the k-th rational Eisenstein class ˛EiskQp

.t/ along a non-
zero N -torsion section t WS ! A satisfies

momk
Qp

�
˛E	N .t/

�
D N k

˛EiskQp
.t/:

In particular,N k
cEiskQp

.t/ lies in the image of H2d�1ét .S;�k.H/.d// under �k ı .�˝Qp/.

3. Siegel modular varieties

In this section, we recall the definition and moduli interpretation of Siegel modular vari-
eties with principal level structures. Since Eisenstein classes of Definition 2.22 are a priori
only defined for scheme theoretic sections, we need to spell out the effect of various maps
between moduli varieties in a non-adelic fashion.

3.1. The Shimura data

For n � 1 an integer, let In denote the n � n identity matrix. Let

J D Jn D

�
In

�In

�
2 Mat2n�2n.Z/

be the standard symplectic matrix and G D GSp2n denote the reductive group scheme
over Z whose R points for a ring R are given by

G.R/ D
®
g 2 GL2g.R/ j gtJg D c.g/J for c.g/ 2 R�

¯
:

The induced homomorphism cWGSp2g ! Gm is called the similitude. The center of G
is denoted by Z which is identified with Gm via diagonal matrices. Let S WD ResC=RGm

denote the Deligne torus and define

hstdWS! GR .aC b
p
�1/ 7!

�
aIn bIn
�bIn aIn

�
:



S. W. A. Shah 1142

Let X denote the G.R/-conjugacy class of hstd. Then .GQ;X/ satisfies axioms SV1–
SV6 of [22] and in particular, constitutes a Shimura datum. Its reflex field is Q. For a neat
compact open subgroup K � G.Af /, let Sh.K/ D ShG.X; K/ denote the corresponding
canonical model over Q. It is a smooth quasi-projective variety of dimension n.nC 1/=2
whose C-points are identified with the double quotient G.Q/ n ŒX �G.Af /�=K.

Let .VZ;  / denote the standard symplectic Z-module where VZ WD Z2n and  WVZ �

VZ ! Z is the pairing induced by J . We let e1; : : : ; e2n denote the standard basis of VZ.
For any commutative ring R with unity, we denote VR WD VZ ˝Z R and VAf simply as
Vf . We will view elements of VR as column vectors and let G.R/ act on VR by left matrix
multiplication. For each positive integer N , let

KN WD
®
g 2 G.Af / j .g � 1/VyZ � NVyZ

¯
be the principal congruence subgroup of G.Af / of level N . These subgroups form a
base for the topology of G.Af / at identity and KN E K1 for all N � 1. The quotient
G.Af /=K1 is identified with the set of self-dual yZ-lattices in Vf by identifying the coset
gK1 2 G.Af /=K1 with the lattice gVyZ. More generally, G.Af /=KN is identified with
the set of pairs . yH; x�/ where yH � Vf is a self-dual yZ-lattice and x�WVZ=NVZ

�
�! yH=N yH

is a choice of a symplectic isomorphism.

3.2. Moduli interpretation

For N � 3, Sh.KN / is the Q-scheme representing the following moduli problem. Let
SchQ denote the category of locally Noetherian Q-schemes and let MN W SchQ ! Sets
denote the contravariant functor that sends a Q-scheme S to isomorphism classes of triples
.A; �; �/ where

• A is an abelian scheme over S of relative dimension n,

• �WA
�
�! A_ is a principal polarization,

• �W .VZ=NVZ/S
�
�! AŒN � is a symplectic similitude of group schemes over S , i.e., � is

an isomorphism of S -group schemes such that the Weil pairing on AŒN � corresponds
to a .Z=NZ/�-multiple of the pairing  after fixing an identification of .Z=NZ/�

with the roots of unity �N .

The isomorphism � is also referred to as a principal level N structure. Given a morphism
f WT ! S of schemes, the morphism MN .S/!MN .T / is given by pullback of families.
To say that MN is represented by Sh.KN / is to say that there exists a natural isomorphism

‰N WMN ! HomSchQ

�
�;Sh.KN /

�
of functors on SchQ. Abusing notation, we denote by idN 2MN .Sh.KN // the isomor-
phism class that corresponds to the identity map idN WSh.KN /! Sh.KN /. By definition,
there is an abelian scheme �N WAN ! Sh.KN / with principal polarization �univ

N and prin-
cipal level N -structure �univ

N such that the isomorphism class of .AN ; �
univ
N ; �univ

N / equals
idN . It is referred to as the universal family on Sh.KN /. We fix such a family once and for
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all for each N � 3. For v 2 VyZ, we let

tv;N WSh.KN /! AN

denote the canonical N -torsion section that corresponds under �univ
N to the class of v in

VyZ=NVyZ D VZ=NVZ.
Let M; N � 3 be integers such that M jN and let g 2 G.Af / be an element such

that KN � gKMg�1 that we fix for the rest of this paragraph. There is a finite étale map
Œg�N;M WSh.KN /! Sh.KM / of Q-schemes given on complex points by right multiplica-
tion by g in the second component. It induces a natural transformation

HomSchQ

�
�;Sh.KN /

�
! HomSchQ

�
�;Sh.KM /

�
;

corresponding to which there is a natural transformation

gˆN;M WMN !MM :

We explicitly describe the effect of gˆN;M for certain g, N , M (cf. [18, p. 9]). Assume
that g is such that g.dVyZ/�VyZ�gVyZ where d WDN=M . Let �WVZ=MVZ ,!VyZ=g.NVyZ/

be the inclusion given by

�WVZ=MVZ D dVyZ=NVyZ
g �
�!
�
g.dVyZ/=g.NVyZ/ ,! VyZ=g.NVyZ/

and let  WVZ=NVZ! VZ=NVZ be the symplectic endomorphism induced by v 7! g�1v

for v 2 VyZ (which is well defined since g�1VyZ is contained in VyZ). Note that

ker  D g.NVyZ/=NVyZ and .VZ=NVZ/= ker  ' VyZ=g.NVyZ/:

Thus VZ=MVZ embeds into the coimage of  via �. We note that ker is a totally isotropic
subspace of VZ=NVZ with respect to the induced symplectic pairing and its cardinality
equals kn for some positive integer k D k . Now let S 2 SchQ and .AN ; �N ; �N / 2
MN .S/ be (a triple representing) an isomorphism class. Let C be the finite flat sub-
group scheme of AN (over S ) given by the image of .ker /S under �N and let x�N W
VyZ=g.NVyZ/S ! AN =C be the embedding on quotients induced by �N . By �S , we
denote the morphism of constant group schemes over S determined by �. Consider the
triple .gAM ; g�M ; g�M / where

• gAM is obtained by the quotient map   WAN ! AN =C ,

• g�M W
gAM !

gA_ is the unique principal polarization satisfying Œk� ı �N D  _ ı
g�M ı   (see [21, Proposition 13.8]),

• g�M W .VZ=MVZ/S
�
�! gAM ŒM � is given by the composition x�N ı �S .

Then .gAM;g�M;g�M/ represents the isomorphism class gˆN;M .AN;�N; �N/2MM .S/.
It will be useful to note a few special cases of the aforementioned description. First,

if g is identity, the corresponding map on triples is given by “forgetting” the level N
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structure, i.e., by restricting �N to dVZ=NVZ. Second, if g D � 2 K1 and N D M , the
class of a triple .AN ; �N ; �N / is sent to the class of .AN ; �N ; �N ı �/. This induces a
right action of K1 D GSp2n.yZ/ on MN .S/. Third, if g is an element of the center Z.Q/
(satisfying the conditions of the discussion), the isogeny   WAN ! gAM factors via an
isomorphismAN '

gAM since C is the kernel of Œk�WAN !AN andAN =kerŒk�'AN .
Using this, we see that the map gˆN;M for g 2 Z.Q/ is again the forgetful one. This can
also be seen directly by the complex uniformization of these varieties.

We apply the above description to universal families and record some observations.
For an arbitrary g 2 G.Af / satisfying KN � gKMg�1, there is a triple

.gAM ;
g�M ;

g�M / 2MM

�
Sh.KN /

�
corresponding to Œg�N;M 2 HomSchQ.Sh.KN /; Sh.KM // under ‰M . By definition, this
triple is obtained by pulling back the universal family on Sh.KM / along Œg�N;M . But
Œg�N;M D ‰M ı

gˆN;M .idN /. The preceding discussion implies that when g 2 G.Af / is
such that .dVyZ/ � VyZ � gVyZ, there is an isogeny

g N;M W AN !
gAM (3.1)

over Sh.KN / such that the tautological section Œg��N;M .tv;M /W Sh.KN /! gAM induced
by tv;M is g N;M ı tgdv;N . When g D � 2 K1 in particular (so that KN � KM ), the
discussion above gives us a pullback diagram

AN AM

Sh.KN / Sh.KM /

�N �M

�N;M

(3.2)

and the tautological section of �N induced by tv;M for v 2 VyZ equals t�dv;N .

Remark 3.3. We note that a general g 2 G.Af / can be written as zah where h 2 G.Af /
satisfies VyZ � hVyZ and za 2 Z.Q/ ' Q� is identified with a positive integer a. Given
M � 3, we can find N a sufficiently large multiple of M such that h.N=M/VyZ � VyZ.
Since zaW Sh.KN / ! Sh.KN / is the identity morphism, the effect of gˆN;M can be
described by hˆN;M .

4. Parametrization

In this section, we prove our main result in Theorem 4.19. We first need some preliminar-
ies however.

4.1. Symplectic Orbits

For this subsection, we use the notations introduced in Section 3.1. In particular, G D
GSp2n denotes the symplectic Z-group scheme of rank n.
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Lemma 4.1. Let R be a Euclidean domain. The map that sends an ideal of R to the
G.R/-orbit of ˛e1 2 VR for ˛ a generator of the ideal establishes a bijection between the
set of ideals of R and the orbit space G.R/ n VR.

Proof. Pick a v 2 VR and write v D a1e1C � � � C a2ne2n. Let ˛ 2 R be a generator of the
ideal generated by a1; : : : ; an. For any x 2R and 1� i � n, let Ai;nCi .x/ 2Mat2n�2n.R/
be the matrix that has 1’s on the diagonal, x in the .i; nC i/ entry and 0’s elsewhere. Then
Ai;nCi .x/ 2 G.R/ and the action of Ai;nCi .x/ on v replaces the i -th coordinate with
ai C xanCi while keeping everything else the same. The matrices Bi;nCi obtained by
switching i -th and .n C i/-th row of the 2n � 2n identity matrix also lie in G.R/ and
their action on v is given by switching the i -th and .nC i/-th coordinates. By using these
matrices, we can apply the Euclidean algorithm to replace the i -th coordinate of v with
a generator for .ai ; anCi / for all 1 � i � n and make the remaining entries of v equal to
zero. Since G.R/ also contains matrices of the form�

A
.At /�1

�
for any A 2 GLn.R/, we easily deduce that ˛e1 2 G.R/v. Clearly ˛1e1; ˛2e1 2 VR are
in the same G.R/-orbit only if ˛1 and ˛2 generate the same ideal.

For R as above and v 2 VR, let Iv � R denote the ideal generated by its standard
coordinates. For I an ideal of R, let KR;I � G.R/ the subgroup of elements  such that
v 2 v C IVR for all v 2 VR.

Lemma 4.2. Suppose thatR is a discrete valuation ring and let$ be a uniformizer. Then
for any v 2 VR and ideals I; J � R,

KR;Iv C JVR D

´
IvVR n .$IvVR/ if I D R; Iv © J;

v C .J C I � Iv/VR otherwise:

Proof. First assume that J D 0. Then the case I D R is Lemma 4.1, so we also assume
that I is proper. Let dv 2 Iv be a generator and � 2 G.R/ such that v D �dve1. Since
KR;I is normal in G.R/,KR;Iv DKR;I .�dve1/D �dv.KR;I e1/ and the claim is further
reduced to the case vD e1. But this holds sinceKR;I contains matrices whose first column
is Œ1C a1; a2; : : : ; a2n�t for arbitrary ai 2 I . Now note that the cases for J ¤ 0 follow
easily from the corresponding ones for J D 0.

Lemma 4.3. LetM;N be positive integers such thatM jN and v 2 VZ. Let dv 2Z denote
a generator of Iv , b D gcd.Mdv; N / and S the set of primes ` such that dvZ` © NZ`
and ` − M . Then

KMv CNVyZ D
Y
`2S

.dvVZ` n `dvVZ`/
Y
`…S

.v C bVZ`/:

Proof. SinceKM D
Q
`KZ`;MZ` and vCNVyZ D

Q
`.vCNVZ`/, the claim follows by

Lemma 4.2.
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Remark 4.4. If we write N DMd , the result above shows that

.VZ=NVZ/
KM =KN D dVZ=NVZ:

4.2. RIC functors

The adelic distribution relations of Eisenstein classes are most conveniently described as
a morphism between two RIC functors [24, §2] (cf. [6, §2]). To make the note more self-
contained, we briefly recall the terminology and establish a basic result needed later on.

Fix for this subsection only a locally profinite group G and a non-empty collection ‡
of compact open subgroups. We assume that ‡ is closed under intersections, conjugation
by elements of G and for every K;L 2 ‡ , there exists a K 0 2 ‡ such that K 0 � L and
K 0 G K. For such an ‡ , we associate a category P .G/ D P .G; ‡/ whose objects are
elements of ‡ and whose morphisms are given by

HomP .G/.L;K/ D ¹g 2 G j g
�1Lg � Kº for L;K 2 ‡:

Elements of HomP .G/.L;K/ will be written as either .L
g
�! K/ or Œg�L;K , and composi-

tion in P .G/ is given by

.L
g
�! K/ ı .L0

h
�! L/ D .L0

h
�! L

g
�! K/ D .L0

hg
�! K/:

If e denotes the identity of G, the inclusion .L
e
�! K/ will also denoted by prL;K .

Definition 4.5. Let R be a commutative ring with identity. An RIC functor M on .G;‡/
valued in R-Mod is a pair of covariant functors

M �WP .G;‡/op
! R-Mod; M�WP .G;‡/! R-Mod

satisfying the following three conditions:

(C1) M �.K/ DM�.K/ for all K 2 ‡ . Denote this common R-module by M.K/.

(C2) For all K 2 ‡ and g 2 G,

.gKg�1
g
�! K/� D .K

g�1

��! gKg�1/� 2 HomR-Mod
�
M.K/;M.gKg�1/

�
:

Here for a morphism � 2 P .G/, we denote �� WDM�.�/ and �� WDM �.�/.

(C3) Œ�K;K;�WM.K/!M.K/ is the identity map for all K 2 ‡ and  2 K.

We will denote the RIC functor above simply as M WP .G;‡/! R-Mod. We refer to the
maps �� (resp., ��) in axiom (C2) as the pullback (resp., pushforward) induced by �. If
moreover the element of G underlying the morphism � is e, we also refer to �� D pr�

(resp., �� D pr�) as a restriction (resp., an induction).

Definition 4.6. A morphism 'WM1 ! M2 between two RIC functors M1, M2 is a col-
lection of morphisms '.K/WM1.K/! M2.K/ for all K 2 ‡ that together constitute a
natural transformationM1;�!M2;� and a natural transformationM �1 !M �2 . If '.K/ is
injective for all K, we say that M1 is a sub-functor of M2.
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Definition 4.7. Let M WP .G;‡/! R-Mod be an RIC functor. We say that M is

(G) Galois if for all L;K 2 ‡ such that L GK, we have

pr�L;K WM.K/
�
�!M.L/K=L:

Here the action of  2 K=L on M.L/ is via pullbacks induced by .L

�! L/ and

M.L/K=L denotes the invariants of M.L/ under this action.

(Co) cohomological if for all L;K 2 ‡ with L � K,

.L
e
�! K/� ı .L

e
�! K/� D ŒK W L� � .K

e
�! K/�:

That is, the composition is multiplication by index ŒK W L� on M.K/.

(M) Mackey if for allK;L;L0 2 ‡ with L;L0 � K, we have a commutative diagramL
 M.L / M.L/

M.L0/ M.K/

P
pr�

pr�

L
Œ�� pr� (4.8)

where the direct sum in the top left corner is over a fixed choice of coset represen-
tatives  2 K of the double quotient L nK=L0 and L D L \ L0�1 2 ‡ . The
condition is then satisfied by any such choice of representatives of L nK=L0.

If M satisfies both (M) and (Co), we will say that M is CoMack. If S is an R-algebra,
the mapping K 7! M.K/˝R S is an S -valued RIC functor, which is cohomological or
Mackey if M is so.

Remark 4.9. An RIC functor is referred to as a “cohomology functor” in [6]. We prefer
the former terminology, since the standard name for the axiom (Co) [26] conflicts with the
latter terminology.

Definition 4.10. Let N WP .G;‡/! R-Mod be an RIC functor and S � ‡ a non-empty
subset. Let G D ¹BK j K 2 Sº be a collection of R-submodules BK � N.K/ indexed by
K 2 S . We say that G is compatible under pullbacks of N if for all L, K 2 S and g 2 G
satisfying g�1Lg � K, the morphism Œg��L;K WN.K/! N.L/ sends BK to BL. We say
that G is compatible under restrictions if we only require the previous condition for L,
K 2 S with L � K and g the identity element. We similarly define compatibility under
pushforwards and inductions.

By definition, a family G as above constitutes a sub-functor of N if S D ‡ and G is
compatible under both pullbacks and inductions (equivalently, pushforwards and restric-
tions).

Definition 4.11. LetM ,N WP .G;‡/!R-Mod be two RIC functors, S �‡ be any non-
empty subset and G D ¹BK j K 2 Sº be a family of submodules BK � N.K/ indexed by
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K 2 S that is compatible under pullbacks of N . Let F D ¹'K WBK ! M.K/ j K 2 Sº

be a collection of R-module homomorphisms indexed by S . We say that F is compatible
under pullbacks of M if for all L, K 2 S and g 2 G satisfying g�1Lg � K, we have
Œg��L;K ı 'K D 'L ı Œg�

�
L;K as maps BK !M.L/. We similarly define compatibility of F

under restrictions, pushforwards or inductions when G has these properties respectively.

Suppose BK DN.K/ for allK 2 S . Then a family F as above constitutes a morphism
'WN !M of RIC functors if S D ‡ and F is compatible under pullbacks and inductions
(equivalently, pushforwards and restrictions).

Lemma 4.12. Let M , N WP .G; ‡/! R-Mod be RIC functors such that M is Mackey
and all restriction maps in M are injective. Let F D ¹'K WN.K/! M.K/ j K 2 ‡º be
a family of morphisms that is compatible under pullbacks. Then F is compatible under
inductions and thus constitutes a morphism of RIC functors.

Proof. Let L; K 2 ‡ with L � K. Pick a K 0 2 ‡ such that K 0 G K, K 0 � L. Since
pr�K0;K WM.K/!M.K 0/ is injective, prL;K;� ı 'L D 'K ı prL;K;� if and only if

pr�K0;K ı prL;K;� ı 'L D pr�K0;K ı 'K ı prL;K;� (4.13)

as mapsN.L/!M.K 0/. Since F is compatible under restrictions, we have pr�K0;K ı 'K D
'K0 ı pr�K0;K . As M is Mackey, (4.13) is equivalent toX

2K=L

Œ��K0;L ı 'L D
X

2K=L

'K0 ı Œ�
�
K0;L

(see [24, Lemma 2.1.11] for details). But this clearly holds by pullback compatibility
of F.

4.3. Functors for GSp2n

We now resume the notations introduced in Sections 3.1 and 3.2. Fix for the rest of this
note a rational prime p and an integer c > 1 with .c; p/ D 1. Denote by ‡1 the collection
of all principal congruence subgroups KN for N � 3 satisfying .N; cp/ D 1. Let

G WD G.Acp
f
/ �G.Zcp/;

where Zcp WD
Q
`jcp Z` and Acp

f
denote the finite rational adeles away from primes divid-

ing cp. We will also denote V cp
f
WD VZ˝Acp

f
, VZcp WD VZ˝Zcp , Z.Q/cp WD Z.Q/\G

and I cp WD ¹a 2 Z j .a; cp/ D 1º. For a 2 Q�, we denote by za 2 Z.Q/ ' Q� the cor-
responding element of the center given by 2n-copies of a on the diagonal. Let ‡ be the
collection of all compact open subgroups of G which are contained in a G-conjugate of
a group in ‡1 and which are of the form G.Zcp/L for some L � G.Acp

f
/. It is easily

verified that both ‡1, ‡ satisfy the conditions of the previous subsection with respect to
K1, G respectively.

Set X WD Vf n ¹0º and view elements of X � Vf D
L2n
iD1 Af ei ' A2n

f
as column

vectors. There is a smooth right action X � G ! X given by .v; g/ 7! g�1v, i.e., left
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matrix multiplication by inverse of g. Let �cp.X/ be the set of all Zp-valued functions on
X of the form �cp ˝ �

cp where �cp D ch.VZcp / is the characteristic function of Zcp and
�cp is a locally constant compactly supported function on .V cp

f
/ n ¹0º. Then �cp.X/ is a

smooth left G-representation via its action on X . We let

� WP .G;‡/! Zp-Mod

denote the RIC functor associated with the representation �cp.X/. That is, for any K2‡ ,
�.K/D �cp.X/K with restriction, inductions and conjugations given in the obvious man-
ner.

Fix now a non-negative integer k. Recall that for eachKN 2‡ , we have fixed a choice
�N WAN ! Sh.KN / of a universal abelian scheme in Section 3.2. Let HZp DHKN ;Zp be
the corresponding sheaf of Tate modules. For each N satisfying KN 2 ‡1, we denote

EN;Qp D EkN;Qp
WD H2n�1ét

�
Sh.KN /;Symk.HQp /.n/

�
:

Given two suchM;N such thatM jN , we have a restriction map pr�N;M WEM;Qp ! EN;Qp

induced by unit adjunction for prN;M D Œid�N;M W Sh.KN /! Sh.KM / and the isomor-
phism AN ! pr�N;M .AM / specified by (3.1) for g D id. Let

yEQp D
yEkQp
WD lim
�!
N

EkN;Qp
;

where the limit is taken with respect to restriction maps for M jN .

Lemma 4.14. yEQp is a smooth G-representation.

Proof. Given g 2 G and x 2 EM;Qp we can find z D za 2 Z.Q/cp for some a 2 I cp ,
an element h 2 G and a multiple N 2 I cp of M such that g D zh and �.N=M/VyZ �

VyZ � �VyZ is satisfied for � 2 ¹z�1; hº. The action of � is described by the pullback
Œ���N;M W EM;Qp ! EN;Qp induced by adjunction for Œ��N;M W Sh.KN / ! Sh.KM / and
the inverse of the isomorphism between symmetric power of sheaves of Tate modules
induced by the (prime-to-p) isogeny � N;M WAN !

�AM in (3.1). Since  univ
z�1

is just
Œa�, za D .za�1/�1 acts by ak . Then g � x is defined to be the element corresponding to
ak � Œh��N;M .x/ 2 EN;Qp . This action is well defined since the isogenies  univ

� for varying
� satisfy an obvious cocycle condition.

Since prN;M is Galois with Galois group KM=KN , we have

pr�N;M ı prN;M;� D
X

2KM =KN

Œ��N;M ;

prN;M;� ı pr�N;M D ŒKM W KN � � id:

Using these, one deduces that the natural map from EN;Qp to yEQp identifies the former
with the KN -invariants of the latter and that pr�N;M (resp., prN;M;�) is identified with
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inclusion (resp.
P
2KN =KM

 ). We let

EQp WP .G;‡/! Qp-Mod

denote the associated RIC functor, i.e., EQp .K/ WD .
yEQp /

K with obvious choice for pull-
back and pushforward maps. It is CoMack and Galois by construction.

Next we define an integral structure on EQp . Let ‡2 � ‡ be the subset of all groups
that are contained in a congruence subgroup in ‡1. ForK 2 ‡2, we let �K WAK ! Sh.K/
be the abelian scheme given by pulling back AM along the degeneration map Sh.K/!
Sh.KM / for someKM 2‡1 that containsK. Then AK is independent of the choice ofM ,
sinceKM1 \KM2 D Klcm.M1;M2/. Let HZp DHK;Zp the associated Zp-sheaf on Sh.K/.
If we pick KN 2 ‡1 such that KN E K, the natural pullback map along Sh.KN / !
Sh.K/ identifies H2n�1ét .Sh.K/; Symk.HQp /.n// with the K=KN -invariants of EN;Qp D

EQp .KN /. Again this identification is independent of the choice of N . Let EZp .K/ �

EQp .K/ denote the image of H2n�1ét .Sh.K/; �k.HZp /.n// under

H2n�1ét

�
Sh.K/; �k.HZp /.n/

� �˝Qp

����! H2n�1ét

�
Sh.K/; �k.HZp /.n/

�
˝Qp

�k
�!
�

H2n�1ét

�
Sh.K/;Symk.HQp /.n/

� �
�! EQp .K/;

where �k is the isomorphism induced by the map (2.36).

Lemma 4.15. The family ¹EZp .K/ j K 2 ‡2º is compatible under pullbacks and push-
forwards of EQp .

Proof. Let .L
g
�! K/ 2 P .G;‡/ be such that L;K 2 ‡2. We wish to show that

Œg��L;K WEQp .K/! EQp .L/

preserves the corresponding Zp-submodules. Since Z.Q/cp acts by invertible scalars,
we may assume wlog that g is such that VyZ � gVyZ. Choose KM ; KN 2 ‡1 such that
KM � K and L � KN . Replacing N by a multiple, we may assume that M jN and that
g.M=N/VyZ � VyZ. Recall that the isogeny g N;M WAN !

gAM (3.1) is given as the
quotient of AN by the group C �AN ŒN � corresponding to the kernel of  WVZ=NVZ!

VZ=NVZ defined by v 7! g�1v. Since g�1Lg � KM , the right action of L=KN on

AN
�
�! AL �Sh.L/ Sh.KN /

preserves C . Thus g N;M descends to an isogeny g L;K WAL !
gAK (where gAK WD

Œg��AK) giving an isomorphism

HZp ;L
�
�! Œg��HZp ;K : (4.16)

Here Œg�WSh.L/!Sh.K/ denotes the map given by right multiplication by g. The pullback
map H2n�1ét .Sh.K/; �k.HZp /.n// ! H2n�1ét .Sh.L/; �k.HZp /.n// defined using (4.16)
induces (after tensoring with Qp) a map pg W EQp .K/! EQp .L/ that sends EZp .K/ to
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EZp .L/ by construction. Since g N;M is the pullback of g L;K along Sh.KN /! Sh.K/,
pg is compatible with Œg��N;M W EM;Qp ! EN;Qp and therefore equal to the map Œg��L;K
of EQp . A similar argument applies to the pushforward Œg�L;K;�.

ForK 2‡ arbitrary, choose g 2G such thatK 0 WDgKg�1 2‡2 and define EZp .K/ WD

Œg��K0;K.EZp .K
0//. This is independent of the choice of g. Indeed if h 2 G is such that

K 00 WD hKh�1 2 ‡2, Œhg�1�� sends EZp .K
0/ to EZp .K

00/ by Lemma 4.15. The same
result implies that the family ¹EZp .K/ j K 2 ‡º is compatible under pullbacks and push-
forwards. So the association K 7! EZp .K/ assembles into an RIC functor

EZp WP .G;‡/! Zp-Mod (4.17)

which is CoMack but not necessarily Galois.

Remark 4.18. An alternative way to define EQp and its integral sub-lattice is to use the
notion of equivariant sheaves associated to algebraic representations of G along the lines
of [6, §4]. It is also possible to incorporate the action of a monoid † � G.Af / as in
loc. cit. larger than the group G that allows one to define the action of certain Hecke
correspondences at the prime p as well.

4.4. The main result

Recall that for v 2 VyZ and N � 3, we denote by tv;N WSh.KN /! AN the torsion section
given by �univ

N .v/. For N such that KN 2 ‡1 and v 2 VyZ nNVyZ, we denote

�v;N WD ch.v CNVyZ/WX ! Zp

the characteristic function of vCNVyZ � X . Note that vCNVyZ isKN -stable and equals
the product VZcp .v

cp C NVyZcp / where vcp denotes the image of v under the projection
Vf ! V

cp

f
and yZcp D yZ=Zcp . Thus �v;N 2 �.KN /. By Theorem 2.49, we have

N k
cEiskQp

.tv;N / 2 EZp .KN / for all v 2 VyZ nNVyZ:

Theorem 4.19. There exists a unique morphism 'k W�!EZp of RIC functors on P .G;‡/

such that for each KN 2 ‡1 and v 2 VyZ nNVyZ, we have

'k.KN /.�v;N / D N
k
cEiskQp

.tv;N /:

Proof. We are going to construct this morphism in several steps. Since we exclusively
work with Zp-coefficients, we will denote EZp simply as E .

Step 1. We first consider principal levels. For KM 2 ‡1, let AM � �.KM / denote the
Zp-span of �v;M for v 2 VyZ nMVyZ and let 'M WAM ! E.KM / be the Zp-linear map
given by �v;M 7!M k

cEiskQp
.tv;M /. This is well defined since AM is free over �v;M for v

running over representatives for .VZ=MVZ/ n ¹0º. Denote by �1;E1 the RIC functors on
P .K1; ‡1/ obtained by restricting the domain of � , E . Let

F WD
®
'M WAM ! E.KM / j KM 2 ‡1

¯
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be the collection of all 'M . Clearly, ¹AM jKM 2‡1º is compatible under pullbacks of �1.
We claim that F is compatible under pullbacks of E1. It suffices to check that for any
.KN

�
�! KM / 2 P .K1; ‡1/ and v 2 VyZ nMVyZ, the elements Œ��� ı 'M .�v;M / 2 E.KN /

and 'N ı Œ���.�v;M / 2 E.KN / are equal. Since Œ���.�v;M / D ch.�v CMVyZ/ is the sum
of ch.�v CMw CNVyZ/ for w 2 VZ=dVZ, we have

Œ��� ı 'M .�v;M / D Œ��
�
�
M k

cEiskQp
.tv;M /

�
; (4.20)

'N ı Œ��
�.�v;M / D

X
w2VZ=dVZ

N k
cEiskQp

.t�vCMw;N /: (4.21)

Now Lemma 2.29 applied to (3.2) implies that

Œ���
�
cEiskQp

.tv;M /
�
D cEiskQp

�
Œ���.tv;M /

�
D cEiskQp

.t�dv;N /:

But Lemma 2.30 (in conjunction with Lemma 2.27) applied to the multiplication by d
isogeny Œd �WAN ! AN over Sh.KN / implies that

cEiskQp
.t�dv;N / D

X
w

dkcEiskQp
.t�vCMw;N /:

Thus the equalities (4.20) and (4.21) are themselves equal.

Step 2. Next we consider the action of center. Let yA D
S
M AM and let yE1 (resp., yE) be

the inductive limit of E.K/ over all K 2 ‡1 (resp., K 2 ‡ ) with respect to restriction
maps. By Step 1, we have an induced map y'W yA ! yE1 of smooth K1-representations.
As any element of ‡ contains an element of ‡1, yE1 D yE . So the target of y' is a G-
representation. We show that y' extends uniquely to a map

y'W y� ! yE (4.22)

of .Z.Q/cpK1/-representations as follows. First note that yA is simply the subspace of all
functions in y� D �cp.X/ that are supported on VyZ. Next recall that supp.�/ for any non-
zero � 2 y� is of the form VZcpY for Y � .V cp

f
/ n ¹0º. SinceX D

S
M�1 1=M � .VyZ n ¹0º/,

there exists a positive integer a 2 I cp such that a � supp.�/� VyZ. So � D z�1a � � for some
� 2 yA and the only possible extension is to set

y'.�/ WD a�k y'.�/:

For this to be well defined, we must have y'.za � �v;M / equal to ak y'.�v;M / for all a 2 I cp ,
M satisfying KM 2 ‡1 and v 2 VyZ nMVyZ. But this follows since za � �v;M D �av;aM 2
�.KaM / is mapped under 'aM to .aM/kcEiskQp

.tav;aM / and this class coincides with
pr�aM;M applied to

ak'M .�v;M / D .aM/kcEiskQp
.tv;M /

by Lemma 2.29.
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Step 3. We now enlarge the domain of each 'M to all of �.KM / for any KM 2 ‡1. Let
BM � �.KM / denote the Zp-submodule of all finite sums

P
i zai � �i where �i 2 AM and

ai 2 Z.Q/cp . For any � D
P
i zai � �i 2 BM , set

'M .�/ WD
X
i

aki 'M .�i /:

Then 'M WBM ! E.KM / is well defined (and uniquely determined) by Step 2 and injec-
tivity of restrictions of E . We claim that BM D �.KM / for all M . It suffices to show that
ch.C / 2 BM for C � VyZ any KM -invariant compact open subset of the form VZcpY for
Y � V

cp

f
n ¹0º. For such C , we can pick aN DNC 2 I cp a multiple ofM such that C is a

finite disjoint union of cosets in VyZ=NVyZ. Since C is also KM -invariant, we can write C
as a finite disjoint union of sets of the formKMvCNVyZ and we may also assume v 2 VZ.
But Lemma 4.3 implies that ch.KMv CNVyZ/ can be written as a difference of two sums
of functions of the form ch.aw CMaVyZ/ for a 2 I cp , w … MVyZ. This completes the
step.

Step 4. We define maps for levels in K 2 ‡2. As in Step 3, we need to show that all
elements of y'.�.K// lift to E.K/. Fix anyKN 2 ‡1 such thatKN � K. Recall thatK �
K1 acts on (the left of) VZ=NVZ. For any v 2 VyZ nNVyZ, letKv �K denote the stabilizer
of vCNVyZ 2 VZ=NVZ. Since prKN ;Kv is Galois and vCNVyZ isKv=KN -invariant, the
section tv;N D �univ

N .v/ descends to an N -torsion section tv;Kv WSh.Kv/! AKv . Thus for
any  2 K, we have Œ��Kv ;KN .tv;Kv / D tv;N . Now note that

ch.Kv CNVyZ/ D
X

2K=Kv

�v;N

is an element of �.K/. We define

'K
�
ch.Kv CNVyZ/

�
WD prKv ;K;�

�
N k

cEiskQp
.tv;Kv /

�
which belongs to E.K/ by Theorem 2.49. That this agrees with

P
2K=Kv

y'.�v;N / in yE
follows since

pr�K;KN ı prKv ;K;�
�
N k

cEiskQp
.tv;K/

�
D

X
2K=Kv

Œ��Kv ;KN

�
N k

cEiskQp
.tv;Kv /

�
by the Mackey axiom and since 'N .�v;N /D Œ��Kv ;KN .N

k
cEiskQp

.tv;Kv // for any  2K
by Lemma 2.29.

As in Step 3, we can now define 'K for any finite linear combination of functions as
above scaled by elements of Z.Q/cp . So it only remains to argue that all elements of �.K/

are of this form. Again, it suffices to show this for characteristic functions ch.C / 2 �.K/

for some C � VyZ. But this follows since we can find a sufficiently large N D NC 2 I cp

such that KN � K and C is a finite disjoint union of sets of the form Kv CNVyZ.
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Step 5. The final step is to show that the family ¹'K j K 2 ‡2º extends uniquely to a
morphism of functors on P .G; ‡/. To this end, it suffices to establish y' (4.22) is a map
of G-representations. Indeed, any K 2 ‡ is such that gKg�1 2 ‡2 for some g 2 G and
we can define 'K.�/ as Œg�gKg�1;K;� ı 'gKg�1.g � �/. The resulting family of homomor-
phisms indexed by ‡ would then be compatible under pullbacks by G-equivariance and
Lemma 4.12 would give the desired claim.

Fix g 2G.Af / and � 2 y� . We wish to show that y'.g � �/D g � y'.�/. Recall that y' was
shown to equivariant with respect to Z.Q/cp in Step 2. Since any � 2 y� is KM -invariant
for some KM 2 ‡1, it suffices to restrict to the case where � D �v;M for some v, M and
g satisfies VyZ � gVyZ. Let N 2 I cp be a multiple of M such that g.N=M/VyZ � VyZ.
Moreover, let

g WAN !
gAM

denote the isogeny in (3.1) and g tv;M WSh.KN /! gAM denote the torsion section that is
obtained as the pullback of tv;M WSh.KM /! AM under Œg�N;M WSh.KN /! Sh.KM /.

AN
gAM AM

Sh.KN / Sh.KM /:

�N

g 

�M

Œg�N;M

g tv;M tv;M (4.23)

Then the universal torsion sections of AN that map to g tv;M under g are tgdvCw;N
where d WDN=M andw2gNVyZ runs over representatives of g.NVyZ/=NVyZ�VZ=NVZ.
Now Œg��N;M � �v;M D z

�1
d
� ch.gdvCgNVyZ/ and the right-hand side expands as

P
w z
�1
d
�

ch.gdv C w CNVyZ/ with w running over g.NVyZ/=NVyZ. So we need to show that

Œg��N;M
�
M k

cEiskQp
.tv;M /

�
D

X
w

Symk.g /�
�
d�kN k

cEiskQp
.tgdvCw;N /

�
:

But this follows by Lemmas 2.29 and 2.30 as before.

By Step 3 of the proof, the image of 'k.KN / is the Zp-linear span of Eisenstein
classes along non-zero universal N -torsion sections. An interesting implication of this is
the following.

Corollary 4.24. For any integer N � 3 and relatively prime to cp, the Zp-submodule of
H2n�1ét .Sh.KN /;Symk.HQp /.n// spanned by cEis.k/Qp

.tv;N / for non-zero v 2 VZ=NVZ is
stable under the natural action of Hecke correspondences ŒKNgKN � for any g 2 G.

Remark 4.25. Note that our parametrization result is only made for the image of the inte-
gral Eisenstein classes [16, Definition 6.4.3] in the Qp-cohomology, and not for the inte-
gral classes themselves. For nD 1 and c satisfying .c;6p/D 1, an alternative parametriza-
tion for these integral classes can be obtained as follows. Since the units of the structure
sheaf of modular curves have Galois descent, it is straightforward to define Siegel units
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associated with arbitrary Schwartz functions. One can then exploit [15, Theorem 4.7.1]
and the compatibility of Ohta’s twisting morphism with Kings’ moment maps (see [17,
Theorem 4.5.1 (2)]) to define “Eisenstein classes” integrally for any Schwartz function
of the form specified in [20, Definition 9.1.3]. These classes then agree with the integral
Eisenstein classes defined by Kings (up to a normalization factor) when the Schwartz
function corresponds to a genuine N -torsion section by the results of [15]. The adelic dis-
tribution relations of these classes then immediately follow from those of the Siegel units.
We are grateful to David Loeffler for sharing this observation.
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sharing his thoughts on an alternative strategy for establishing these relations in the case
of modular curves.
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