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Realisation of linear algebraic groups as automorphism
groups

Mathieu Florence

Abstract. Let G be a linear algebraic group, over a field F . We show that G is isomorphic to the
automorphism group scheme of a smooth projectiveF -variety, defined as the blow-up of a projective
space, along a suitable smooth subvariety.

1. Introduction

Let X be a projective variety over a field F . The automorphism group functor Aut.X/ is
represented by a group scheme, locally of finite type over F . This is due to Grothendieck
(see also [10, Theorem 3.7]). Note that the sub-group scheme Aut0.X/�Aut.X/, defined
as the connected component of the identity, is then a group scheme of finite type over F ,
that is to say, an algebraic group over F .

Conversely, it is natural to ask the following question.

Question 1.1. Let G be an algebraic group over a field F .
Does there exist a smooth projective F -variety X , such that G ' Aut.X/?

Consider the case of an abelian variety G D A. The natural arrow A
�
�! Aut0.A/ is

then an isomorphism. Meanwhile, Question 1.1 is non-trivial: the answer is yes, if and
only if A has finitely many automorphisms, over an algebraic closure of F . For different
proofs, see [1, 7, 9].

Brion and Schröer [4] recently proved that any connected G is isomorphic to the con-
nected component Aut0.X/, for some projective, geometrically integral F -variety X . We
refer to their paper, for an overview of the whole topic.

This paper treats Question 1.1, in the case of a linear algebraic F -group G, possibly
non-smooth. The answer is positive in full generality; see Theorem 2.1. In the recent
preprint [2], Bragg proves that every finite étale F -group scheme is isomorphic to Aut.C /,
for C a proper, smooth, geometrically integral F -curve. In our work, it is unclear whether
assuming G=F étale, could lead to simpler arguments.

This paper is organised as follows. The main theorem is stated in Section 2, and proved
in Section 9. The raw ideas go like this. One first proves a new and convenient structure
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result for linear algebraic F -groups: given such aG, there is a finite-dimensional F -vector
space W , together with an integer n � 1 and an F -linear subspace L of its n-th divided
power �nF .W /, such that G is isomorphic to Stab.L/ � PGL.W / (Proposition 8.3). One
then defines an F -variety X , by jointly blowing-up the Veronese embedding P .W / ,!
P .�nF .W // and the linear subvariety P .L/ ,! P .�nF .W //. It remains to carefully check,
that the natural homomorphism of F -group schemes G ! Aut.X/ is an isomorphism.

Tools and intermediate results are developed in Sections 3–8. Some of them are of
independent interest. For instance, Proposition 6.1 describes the F -automorphisms of the
blow-up of a smooth F -variety at a smooth center (under some extra assumptions), while
Proposition 5.1 describes its infinitesimal automorphisms (in full generality). The former
is achieved via explicit computations in Chow rings.

Our proofs are self-contained: they essentially do not rely on previous works cited in
the bibliography. Our methods and results are especially interesting in positive character-
istic. In characteristic zero, the main results are still new, but their proofs, and altogether
the proof of Theorem 2.1, are then considerably simpler. Indeed, divided powers may
then be replaced by symmetric powers, and most algebraic results (e.g., Lemma 8.1)
become exercises. Also, whenever checking that a homomorphism �WG ! H of lin-
ear algebraic F -groups is trivial (resp., injective, surjective), it then suffices to prove that
�. xF /WG. xF /!H. xF / has the same property, as a morphism of abstract groups. Thus, dif-
ferential calculus may be dismissed entirely. Sections 4 and 5 are not needed, the length
of the proof of Proposition 8.3 is halved, and that of Lemma 8.1 is reduced tenfold.

2. Statement of the theorem

Theorem 2.1. Let F be a field, and let G be a linear algebraic F -group (D an affine
F -group scheme of finite type).

There exists a smooth projective F -variety X , such that G is isomorphic to Aut.X/,
as a group scheme over F . More precisely, X can be picked as the blow-up of a projective
space, along a suitable smooth F -subvariety.

3. Conventions, notation

Rings and algebras over them, are commutative with unit.
Denote by F a field, with algebraic closure xF . Unless specified otherwise, by “F -

vector space” one means “finite-dimensional F -vector space”. Denote by F Œ"�, "2 D 0,
the F -algebra of dual numbers. A variety over F is a separated F -scheme of finite type.
A linear algebraic group over F is an affine F -variety, equipped with the structure of a
group scheme over F . Equivalently, a linear algebraic group over F is a closed F -sub-
group scheme of GLn, for some n � 1.

Let X be a variety over F . For an F -algebra A, denote by XA WD X �F A the A-
scheme obtained from X by extending scalars. Set xX WD X �F xF .
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The tangent sheaf TX ! X is defined point-wise, for every F -algebra A, by

TX.A/ D X
�
AŒ"�

�
:

If X is smooth over F , it is (the total space of) a vector bundle, dual to �1.X=F /.
A global section of the tangent sheaf is called a vector field on X .

3.1. Automorphism groups

For an F -variety X , denote by Aut.X/ the automorphism group functor of X . For every
F -algebra A, Aut.X/.A/ is defined as the group of automorphisms of the A-scheme XA.
If X=F is projective, this functor is represented by a group scheme, locally of finite type
over F .

For X=F arbitrary, by [3, Lemma 3.1], there is a canonical isomorphism

H 0.X; TX/
�
��! Lie

�
Aut.X/

�
:

Let G=F be a group scheme, locally of finite type. If G acts on the F -variety X , and for a
closed subschemeZ � X , we use the notation StabG.Z/ � G for the closed F -subgroup
scheme defined by

StabG.Z/.A/ D
®
g 2 G.A/; g.ZA/ D ZA

¯
;

for all F -algebras A. That it is representable follows from [5, II 1.3.6].

3.2. Grassmannians

Let V be an F -vector space. Pick an integer d , 0 � d � dim.V /. Denote by Gr.d; V / the
Grassmannian of d -dimensional subspaces of V . Set P .V /D Gr.1; V /. For v 2 V � ¹0º,
denote by .v/ 2 P .V /.F / (or abusively v if no confusion arises) the line directed by v.
Recall that, forE 2Gr.d;V /.F /, the tangent space TE .Gr.d;V // is naturally isomorphic
to HomF .E; V=E/.

3.3. Weil restriction

Recall the following important tool.

Definition 3.1. Let A be a finite F -algebra. Let Y be a quasi-projective scheme over A.
Denote by RA=F .Y / the Weil restriction of Y . It is a quasi-projective variety over F ,
characterised by the formula, for every F -algebra B:

RA=F .Y /.B/ D Y.B ˝F A/:

3.4. Symmetric and divided powers

Let V be a vector space over F . Define

V _ WD HomF .V; F /:
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For each n � 1, define

Symn.V / WD H0.Sn; V
˝n/;

�n.V / WD H 0.Sn; V
˝n/;

where coinvariants and invariants are taken w.r.t. the natural permutation action of the
symmetric group Sn on V ˝n. These are, respectively, the n-th symmetric power and the
n-th divided power of V . For v 2 V , set

Œv�n WD v ˝ v ˝ � � � ˝ v 2 �
n.V /:

These are called pure symbols. If jF j � n, they span �n.V /.
There is a canonical non-degenerate pairing of F -vector spaces

�n.V _/ � Symn.V / �! F�
Œ��n; x1x2 : : : xn

�
7�! �.x1/ : : : �.xn/:

It is perfect – whence an isomorphism

�n.V _/
�
��! Symn.V /_:

Denote by Sym.V / D
L
n2N Symn.V / and �.V / D

L
n2N �n.V / the symmetric

and divided powers algebras of V , respectively. Relations in �.V /, arise from the motto
“Œv�n D vn

nŠ
”. These are:

(1) Œv�0 D 1,

(2) Œv C v0�n D
Pn
0Œv�i Œv

0�n�i ,

(3) Œ�v�n D �nŒv�n,

(4) Œv�nŒv�m D
�
nCm
n

�
Œv�nCm.

For details, see [12].
Let .e1; : : : ; ed / be an F -basis of V . Then, �n.V / inherits a (canonical) basis, consist-

ing of symbols Œe1�a1 : : : Œed �ad , where ai � 0 and a1 C � � � C ad D n. Dually, Symn.V /

inherits its usual monomial basis, consisting of tensors ea11 : : : e
ad
d

.
There are two natural arrows

Symn.V / �! �n.V /

v1v2 : : : vn 7�! Œv1�1Œv2�1 : : : Œvn�1;

and

�n.V / �! Symn.V /

Œv�n 7�! vn:

Their composites equal nŠId. Hence, if char.F / D 0 or p > n, they are isomorphisms.
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4. Jet spaces via infinitesimal Weil restriction

“One-dimensional” jet spaces (i.e. with values in F ŒX�=Xn, for some n� 1) are a famous
tool in many branches of geometry. However, they would not suffice here. In this section,
we offer a self-contained exposition of what we shall actually need.

Definition 4.1. Denote by A a finite local F -algebra with residue field F , by M � A its
maximal ideal, and by �WA!A=MD F its residue homomorphism, which is a retraction
of the inclusion F ,! A.

Definition 4.2 (Jet spaces). Let q WA!A0 be a homomorphism of finite local F -algebras
with residue field F . For any F -variety X , q induces a morphism of F -varieties

q�WRA=F .X/ �! RA0=F .X/:

Formula: for an F -algebra B and for

x 2 X.B ˝F A/;

q�.x/ is defined as �
x ı .IdB ˝ q/

�
2 X.B ˝F A

0/:

Let G be a contravariant group functor, on affine F -varieties.
Define a group functor J.G; �/ by

J.G; �/.B/ WD Ker
�
G.A˝F B/

��
��! G.B/

�
;

for every F -algebra B . For an F -variety X , if generating no confusion, we set

J.X; �/ WD J
�
Aut.X/; �

�
:

Example 4.3. If A D F Œ"�, then �� is the tangent sheaf TX ! X , and

J.X; �/ D H 0.X; TX/ D Lie
�
Aut.X/

�
:

Lemma 4.4. Keep notation and assumptions above. Assume moreover, thatX is a smooth
F -variety. Consider a diagram

A1
q //

�1
��

A2

�2
��

F F;

of epimorphisms of finite local F -algebras with residue field F .
Denote by Mi the maximal ideal of Ai , and set 	 WD Ker.q/. Assume that 	M1 D 0.

Then, the morphism of F -varieties

q�WRA1=F .X/ �! RA2=F .X/

is a torsor under the (pull-back via ��2 of the) vector bundle TX ˝F 	. Thus, the morphism
�� is a composite of torsors under the vector bundle TX . As such, it is affine and smooth.
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Proof. The assertion is local on the smooth F -variety X , so that one may assume X D
Spec.R/ affine. Then RAi=F .X/ (i D 1; 2) is affine as well. Let B be an F -algebra. By
the infinitesimal lifting criterion for smooth morphisms [13, Tag 37.11.7], one sees that
the map

q�.B/WX.A1 ˝F B/ �! X.A2 ˝F B/

is onto. Let x1; y1 2 X.A1 ˝F B/ be such that q�.B/.x1/ D q�.B/.x2/. Set

x0 WD .�1/�.B/.x1/ D .�2/�.B/.x2/ 2 X.B/:

Consider x1;y1 (resp. x0) as homomorphisms ofF -algebrasR!A1˝F B (resp. R!B),
and form the difference

ı WD .y1 � x1/WR �! A1 ˝F B:

This is a priori just an F -linear map. Since q�.B/.x1/ D q�.B/.x2/, it takes values in
	 ˝F B � A1 ˝F B . Consider 	 ˝F B as an R-module via x0, treating 	 just as an
F -vector space. One then checks that

ıWR �! 	 ˝F B

is an F -derivation. Conversely, assume given a homomorphism of F -algebras

x1WR �! A1 ˝F B:

Denote its reduction mod M by x0WR! B . Pick a derivation

ıWR �! 	 ˝F B;

where the target is considered as an R-module as above. Then

y1 WD .x1 C ı/WR �! A1 ˝F B

is a homomorphism of F -algebras, such that q�.B/.x1/D q�.B/.x2/. This completes the
description of the torsor structure.

For the last assertion, one may assume M ¤ 0. Let n � 1 be the smallest integer such
that Mn D 0. Apply induction on dimF .A/, writing � as the composite

A D A=Mn
�! A=Mn�1

�! � � � �! A=M2
�! A=M D F:

Remark 4.5. Let V be an F -vector space. Consider its affine space

X D AF .V / WD Spec.Sym�.V _//:

Treating � as a linear form on the F -vector space A, �� is simply

AF .V ˝F A/ �! AF .V /

w 7�! .IdV ˝ �/.w/:

Thus, it is a trivial fibration in affine spaces.
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Remark 4.6. If X is affine, using the preceding lemma, and vanishing of coherent co-
homology over an affine base, one sees that �� is a trivial AN -fibration, as well.

Proposition 4.7. Let X be an F -variety. There is a functorial isomorphism between
J.X; �/, and the functor of sections of the morphism of F -schemes RA=F .XA/

��
�! X .

Proof. Let us describe, for every F -algebra B , a functorial bijection

J.X; �/.B/
�
��!

®
sWXB ! RA˝FB=B.XA˝FB/; �� ı s D Id

¯
:

For simplicity, we assume B D F ; the construction actually works in general.
Giving a section sWX ! RA=F .XA/ amounts to giving a morphism of A-schemes

f WX �F A! X �F A. Assuming that ��.f /WX ! X is the identity, one then just needs
to show that f is an iso. Since M is nilpotent, one sees that, as a homeomorphism of the
topological space X �F A, f is the identity. Let .Ui / be a covering of X by open affines.
From what was just said, f restricts to morphisms ofA-schemes fi WUi �F A!Ui �F A.
By a straightforward glueing argument, one thus reduces to the case X affine. One may
then use Lemma 4.10 below, applied to the homomorphism of A-algebras

ˆWOX .X/˝F A �! OX .X/˝F A;

which is such that f D Spec.ˆ/. Note that ˆ is regarded here as a morphism between
free A-modules. Since � D Id is an iso, one concludes that ˆ is an iso. Hence f is an
isomorphism of A-schemes, as desired.

Corollary 4.8. Assume that X is a smooth projective F -variety. Denote by Aut.X/0 �
Aut.X/ the connected component of the identity. It is a group scheme, of finite type overF .
Then J.X; �/ D J.Aut.X/0; �/ is a smooth, connected and unipotent linear algebraic
F -group. Moreover, it is F -split. In other words, it has a composition series with quo-
tients Ga.

Proof. If M2 D 0; then the morphism of F -schemes RA=F .XA/
��
�! X is a trivial torsor

under TX ˝F M; as proved in Lemma 4.4. By Proposition 4.7, (and using flat base-
change: H 0.X; TX/ ˝F B D H 0.XB ; TXB/, for every F -algebra B), one sees that
J.X; �/ is the affine space of the finite-dimensional F -vector space H 0.X; TX/˝F M,
which proves the corollary. The general case follows by dévissage, as in the proof of Pro-
position 4.7.

Lemma 4.9. Let �WZ ,! Y be a closed immersion of smooth affine F -varieties. Denote
by J.�; �/ � J.Y; �/ (resp. J0.�; �/ � J.Y; �/) the sub-group functor formed by infinites-
imal automorphisms f , such that fjZ factors through � (resp. fjZ D �). There is an exact
sequence (of group functors)

1 �! J0.�; �/ �! J.�; �/
f 7!fjZ
�����! J.Z; �/ �! 1:
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Proof. Let us show that

1 �! J0.�; �/.F / �! J.�; �/.F /
f 7!fjZ
�����! J.Z; �/.F / �! 1

is exact, as a sequence of abstract groups. The same proof works to show exactness for
points in an arbitrary F -algebra R. The only non-trivial part is surjectivity, which we
check by induction on dimF .A/, using Lemma 4.4, of which we adopt notation, and the
description of J.X; �/ provided in Proposition 4.7. Let f1WZ! RA1=F .Z/. By induction,
f2 WD q� ı f1 extends, to Qf2WY !RA2=F .Y /. Since Y is affine,H 1.Y;T Y ˝F 	/D 0, so
that Qf2 lifts via q�, to g1WY ! RA1=F .Y /. Consider .g1/jZ WZ! RA1=F .Y /. Via q�, it is
sent to f2. Thus, there exists a unique " 2H 0.Z; T Y ˝F 	/, such that .g1/jZ C " D f1.
Again, since Y is affine, " extends, to Q" 2 H 0.Y; T Y ˝F 	/. Then, Qf1 WD g1 C Q" is the
sought-for extension of f1.

The following result is standard. Lacking a reference, a proof is included.

Lemma 4.10 (Improved Nakayama’s, for Artinian rings). Let M;N be A-modules, and
let ˆWM ! N be an A-linear map. Denote by �WM ˝A F ! N ˝A F the induced
F -linear map. The following holds.

(1) If � is surjective, so is ˆ.

(2) Assume that N is a free A-module, possibly of infinite rank. Then if � is injective,
so is ˆ.

Proof. To prove (1), proceed by induction on the smallest k � 1, such that MkM D

MkN D 0. Case k D 1 is clear. Assume that MkC1M D MkC1N D 0, and that � is
onto. By induction, .�=Mk/WM=MkM ! N=MkN and �jMkM WM

kM ! MkN are
onto. By dévissage, one then sees that ˆ is onto.

Let us prove (2) by induction on the length of A. It suffices to show the following.
Let a ¤ 0 2M be such that aM D 0. Assume that the .A=aA/-linear map

ˆa WD .ˆ=a/WM=aM �! N=aN

is injective (in addition to injectivity of �). Then ˆ is injective.
To prove this assertion, pick x 2 Ker.ˆ/. Since ˆa is injective, one gets x 2 aM .

Write x D am. Since aˆ.m/ D ˆ.x/ D 0 2 N , since N is a free A-module, and since
A �M D A�, it must be the case that ˆ.m/ 2MN . Hence �.m/ D 0. Injectivity of �
then implies m 2MM . Thus, x 2 aMM D 0.

5. Infinitesimal automorphisms of blow-ups

The following improves on [7, Lemma 4.2].

Proposition 5.1. Let �WZ ,! Y be a closed immersion of smooth F -varieties. Denote by

ˇWX WD BlZ.Y / �! Y
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the blow-up of Y along Z, and by
i WE ,! X

the exceptional divisor. Let A be an F -algebra. There is a natural monomorphism

�WStabAut.Y /.Z/.A/ �! Aut.X/.A/:

Assume that each irreducible component ofZ has codimension � 2 in Y . Let A be a finite
local F -algebra, with residue homomorphism �WA! F . Then � induces an isomorphism

ˆW J
�

StabAut.Y /.Z/; �
� �
��! J.X; �/:

Proof. Recall that formation of blow-ups is functorial and commutes to base-change.
Precisely, let f W Y �F A! Y �F A be an automorphism of A-scheme, preserving the
subscheme Z �F A. By functoriality of the blow-up, f induces an A-automorphism of
X �F A. This provides the definition of �. Assume that f 2 StabAut.Y /.Z/.A/ is such
that �.f / D Id. Consider the commutative diagram

XA
ˇA //

Id
��

YA

f

��
XA

ˇA // YA:

Since ˇA is surjective, one sees that f , as a continuous map, is the identity. Checking that
f D Id becomes local on Y , so that one may assume Y D Spec.B/ is affine and connected.
Then B is integral, because Y is smooth over F . Denote by I � B the ideal defining Z.
ThenX WD Proj.R/, whereR WD

L1
nD0 I

n. It is covered by the open affines Spec.RŒ 1
f
�0/,

for 0¤ f 2 I . SinceB is integral, the natural arrowB ˝F A!RŒ 1
f
�0˝F A is injective.

The claim follows.
For the second assertion, note that elements of the source and target of ˆ are topolo-

gically the identity. Thus, the question is local on Y , so that one may assume Y (and hence
Z) affine. We use (and adopt notation of) Proposition 4.7. Note that J.StabAut.Y /.Z/;�/�

J.Y; �/ is the sub-functor J.�; �/ of Lemma 4.9. By [7, Lemma 4.2] (or more accurately,
its proof), one knows that

H 0.X; TX/ D Ker
�
H 0.Y; T Y /! H 0.Z;NZ=Y /

�
:

Equivalently, a vector field on X is the same thing as a vector field on Y , restricting to a
vector field on Z. Via this identification, the torsor structures on both sides are automat-
ically compatible with ˆ. One can then proceed by induction on dimF .A/ again, using
Lemma 4.4, which provides an exact sequence

0 �! H 0.Y; T Y ˝F 	/˝F R �! J.Y; �1/.R/ �! J.Y; �2/.R/ �! 1;

functorial in the F -algebra R. For simplicity, let us work with F -points – the case of



M. Florence 1210

R-points being the same. Consider the natural diagram (of abstract groups)

0

��

0

��
Ker

�
H 0.Y; T Y /! H 0.Z;NZ=Y /

�
˝F 	

��

' // H 0.X; TX/˝F 	

��
J.�; �1/.F / //

��

J.X; �1/.F /

��
J.�; �2/.F /

��

' // J.X; �2/.F /

��
1 1:

(Note that horizontal arrows are given by functoriality of the blow-up. In the right column,
we used H 0.X; TX ˝F 	/ D H 0.X; TX/˝F 	, and a similar fact in the left column,
which hold because dimF .	/ <1.) In this diagram, columns are clearly exact, except
possibly at the bottom. To conclude, it remains to prove surjectivity of

J.�; �1/.F / �! J.�; �2/.F /:

Using the exact sequence of Lemma 4.9, a diagram chase reduces this to checking sur-
jectivity of J0.�; �1/.F /! J0.�; �2/.F /. Pick f2 2 J0.�; �2/.F / � J.Y; �2/.F /. Extend
it (via q�) to g1 2 J.Y; �1/.F /. Then q�..g1/jZ/ D �, so that .g1/jZ D � C ", for " 2
H 0.Z; T Y ˝F 	/. Since Y is affine, " extends, to Q" 2 H 0.Y; T Y ˝F 	/. Then, f1 WD
g1 � Q" is the sought-for lift of f2.

6. Automorphisms of blow-ups of projective space, via Chow rings

We begin with gathering, from [8], material on blow-ups and their Chow rings.

Proposition 6.1. Let �W Y ,! Z be a closed immersion between smooth geometrically
integral F -varieties, of codimension c � 2. Denote by

ˇWX WD BlY .Z/ �! Z

the blow-up of Z along Y , and by eWE ,! X the exceptional divisor.

(1) The restriction ˇjX�E W .X �E/! .Z � Y / is an isomorphism, providing a nat-
ural arrow

�WPic.X/ �! Pic.Z � Y / D Pic.Z/

L 7�! LjX�E :
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(2) The morphism
� WD ˇjE WE �! Y

is the projective bundle of the normal bundle NY=Z . Denote by OE .1/ its twisting
sheaf, and set � WD c1.OE .1//2CH1.E/. The normal bundleNE=X is canonically
isomorphic to OE .�1/. For all i � 1,

ŒE�i D .�1/i�1e�.�
i�1/ 2 CHi .X/:

(3) (Projective bundle formula for �). The arrow

iM
jDiC1�c

CHj .Y / �! CHi .E/

.xj / 7�!
X

��.xj /:�
i�j

is an isomorphism, for every i � 1. In particular, for i D 1, the natural arrow

Pic.Y /˚ Z �! Pic.E/

.L; a/ 7�! ��.L/CO.a/

is an isomorphism. Denote the projection on the second factor by

Pic.E/ �! Z

L 7�! d.L/:

(4) The natural arrow

Pic.Z/˚ Z �! Pic.X/

.L; a/ 7�! ˇ�.L/COX .aE/

is an isomorphism. Its inverse is given by

Pic.X/ �! Pic.Z/˚ Z

L 7�!
�
�.L/;�d

�
e�.L/

��
:

(5) More generally, for i � 1 there is a natural exact sequence

0 �! CHi�c.Y / �! CHi .Z/˚ CHi�1.E/
�
��! CHi .X/ �! 0;

with injection given by

w 7�!
�
� ��.w/; �

�.w/:�c�1
�
;

and surjection given by

.u; v/ 7�! ˇ�.u/C e�.v/:

If i < c, this boils down to an isomorphism

CHi .Z/˚ CHi�1.E/
�
��! CHi .X/:
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(6) Let i � 1, and u 2 CHi .Z/. Via item (5), the product

ˇ�.u/:ŒE� 2 CHiC1.X/

equals �.0; ��.��.u///.

Proof. Items (1), and the first two assertions of (2), are standard features of blow-ups.
The self-intersection formula for ŒE� [8, Section 6.3], and the projection formula [8,
Example 8.1.1], then prove the last formula of (2) by induction on i :

ŒE�iC1 D ŒE�:ŒE�i D .�1/i�1ŒE�:e�.�
i�1/ D .�1/i�1e�

�
e�
�
ŒE�
�
:�i�1

�
D .�1/ie�.�

i /:

(The starting case i D 1 holds by definition.)
Item (3) is [8, Theorem 3.3 (b)]. Item (5) is [8, Proposition 6.7 (e)] (note the explicit

formulas in its proof). Item (4) is a particular case of (5), for i D 1.
Observe that ˇ ı e D � ı � . Item (6) follows, using the projection formula:

ˇ�.u/:ŒE� D ˇ�.u/:e�.1E / D e�
�
e�
�
ˇ�.u/

��
D e�

�
��
�
��.u/

��
:

The content of the following two propositions is that, under suitable assumptions, the
automorphism group of a blow-up in projective space, is “as naively expected.”

Proposition 6.2. For N � 6, let Y1; Y2 � PN be disjoint smooth closed F -subvarieties,
geometrically integral and of dimensions in Œ1; N � 3�. Denote by

ˇWX WD BlY .PN / �! PN

the blow-up of PN along Y WD Y1 t Y2, and by ei WEi ,! X the exceptional divisor lying
above Yi , i D 1; 2. By functoriality of the blow-up, there is a natural homomorphism of
abstract groups

ˆWStabAut.PN /.Y1/.F / \ StabAut.PN /.Y2/.F / �! Aut.X/.F /:

If the F -varieties E1 and E2 are not isomorphic, then ˆ is an isomorphism.

Proof. That ˆ is injective is straightforward. Let us check surjectivity. Let f WX ! X be
an F -automorphism. Observe that ˇ is the composite

X
ˇ2
��! X1

ˇ1
��! PN ;

where ˇ1 (resp. ˇ2) is the blow-up of PN along Y1 (resp. of X1 along ˇ�11 .Y2/). By item
(4) of Proposition 6.1, applied two times, one gets that CH1.X/ is a free Z-module of
rank 3, with basis (ˇ�.ŒH�/, ŒE1�, ŒE2�), where H � PN is a hyperplane. Since c � 3,
item (5) (applied two times, to ˇ1 and ˇ2) provides a natural isomorphism

CH2.X/ ' Z:Œˇ�.H/�2 ˚ CH1.E1/˚ CH1.E2/:
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Assume that f .Ei / ¤ Ej , for all ¹i; j º � ¹1; 2º. Since f .Ei / � X is an effective divisor
not contained in E1 t E2, the last formula of item (4) then yields a decomposition, for
i D 1; 2, �

f .Ei /
�
D ai

�
ˇ�.H/

�
� bi ŒE1� � ci ŒE2� 2 CH1.X/;

with ai � 1, and bi ; ci � 0. Using item (6) two times (exchanging the roles ofE1 andE2),
one gets, for i D 1; 2,

ŒE1�:ŒE2� 2 CH1.Ei / � CH2.X/;

w.r.t. the direct sum decomposition above. Thus ŒE1�:ŒE2� D 0. One also computes�
f .E1/

�
:
�
f .E2/

�
D
�
a1
�
ˇ�.H/

�
� b1ŒE1� � c1ŒE2�

�
:
�
a2
�
ˇ�.H/

�
� b2ŒE1� � c2ŒE2�

�
D
�
a1a2

�
ˇ�.H/

�2
;�;�

�
;

where it is needless to know the expression of the second and third components. It suffices
to observe that Œf .E1/�:Œf .E2/� ¤ 0, whereas ŒE1�:ŒE2� D 0. This is impossible, since f
induces a ring automorphism of CH�.X/. Consequently, it must be the case that f .Ei /D
Ej for some ¹i; j º � ¹1; 2º. Then i D j , by the assumption made on E1 and E2. Say
i D j D 2, so that f .E2/ D E2. Assume that f .E1/ ¤ E1. Then, as above, one may
write �

f .E1/
�
D a1

�
ˇ�.H/

�
� b1ŒE1� � c1ŒE2� 2 CH1.X/;

with a1 � 1, and b1; c1 � 0. Compute:�
f .E1/

�
:
�
f .E2/

�
D
�
a1
�
ˇ�.H/

�
� b1ŒE1� � c1ŒE2�

�
:ŒE2�

D a1
�
ˇ�.H/

�
:ŒE2� � c1ŒE2�:ŒE2� 2 Pic.E2/ � CH2.X/;

w.r.t. the direct sum decomposition above. Via the projection formula for the projective
bundle �2WE2 ! Y2 (items (2) and (3) of Proposition 6.1), one gets

a1
�
ˇ�.H/

�
:ŒE2� � c1ŒE2�:ŒE2� D

�
��2
�
a1ŒH �

�
; c1
�
2
�

Pic.Y2/˚ Z
�
' Pic.E2/;

where �2WY2 ,! PN is the closed immersion, and using item (6) with u WD ŒH �. Since a1 �
1, the divisor class ��2.a1ŒH �/ 2 Pic.Y2/ is ample, on the positive-dimensional projective
variety Y2, hence is non-zero. It follows that Œf .E1/�:Œf .E2/� ¤ 0, contradiction. Thus,
f .E1/ D E1 and f .E2/ D E2. Then, f restricts to an automorphism g of X �E1 �E2,
which by item (1) is an open subvariety of PN , with complement Y of codimension � 2.
By Lemma 6.4, g indeed extends to an automorphism of PN , which necessarily fixes Y1
and Y2 separately.

Remark 6.3. Under the same assumptions, Proposition 6.2 can be generalised to a blow-
up of any number of disjoint smooth subvarieties.

Lemma 6.4. Let Y � PN be a closed F -subvariety, of codimension� 2. Set U WD PN �
Y . Every F -automorphism of U extends to an automorphism of PN .
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Proof. Recall that, on a normal F -variety, regular functions are invariant upon removing
a closed subvariety of codimension � 2. The same property then holds for global sections
of line bundles, and one also infers that Pic.U / D Pic.PN / D Z:ŒO.1/�. One can then
reproduce the classical proof that Aut.PN /.F / D PGLNC1.F /, with U in place of PN .
Here are details. Let g be an F -automorphism of U . Then g�.ŒO.1/�/ is ample and gen-
erates Pic.U /; hence g�.O.1// ' O.1/. Fix such an isomorphism of line bundles, and
consider the effect of g� on

H 0
�
U;O.1/

�
D hX0; : : : ; XN i D F

NC1:

This gives a well-defined Qg 2 PGLNC1.F / – the sought for extension of g.

The following instructive exercise concludes this section. The proof given is by count-
ing points over finite fields, which is more elementary than by Chow groups.

Lemma 6.5. For i D 1; 2, let ai ;mi � 2 be integers, and let Vi be a vector bundle of rank
mi over Pai�1F . Denote by P .Vi /! Pai�1F the corresponding projective bundles. Assume
that a1 ¤ a2, and that P .V1/ and P .V2/ are isomorphic as F -varieties. Then m1 D a2
and m2 D a1.

Proof. By a classical “spreading out” argument, one may assume that F D Fq is a finite
field. Indeed, there exists a sub-ring R � F , which is a Z-algebra of finite type, such that
all data in the Lemma are defined over R. More precisely, for i D 1; 2 there is a vector
bundle Vi of rank mi over Pai�1R , such that the projective bundles P .V1/ and P .V2/ are
isomorphic as R-schemes. Specialising at a closed point of Spec.R/, one gets a similar
data over a finite field, as claimed. Consider the morphism of Fq-varieties P .Vi /! Pai�1Fq

.
It induces a surjection of finite sets

P .Vi /.Fq/ �! Pai�1Fq
.Fq/;

with fibers (non-canonically isomorphic to) Pmi�1Fq
. Counting points, one gets

P .Vi /.Fq/ D
.qai � 1/.qmi � 1/

.q � 1/2
:

Since the Fq-varieties P .V1/ and P .V2/ are isomorphic, one has

.qa1 � 1/.qm1 � 1/

.q � 1/2
D
.qa2 � 1/.qm2 � 1/

.q � 1/2
:

For n � 1, extend scalars to Fqn to get the same formula, with qn in place of q. Thus,

.Xa1 � 1/.Xm1 � 1/

.X � 1/2
D
.Xa2 � 1/.Xm2 � 1/

.X � 1/2
2 Q.X/;

and the conclusion follows.
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7. Divided powers to the rescue of projective geometry

One can think of the results this section, as a characteristic-free version of polarity. If
char.F / D 0, many of these boil down to facts found in [6, Chapter 1].

7.1. Veronese embedding

Here is a convenient coordinate-free definition of the Veronese embedding. Up to the
choice of a basis, it agrees with the usual one.

Definition 7.1. Let V be an F -vector space. Let n � 1 be an integer. The arrow of F -
varieties

VernWP .V / �! P
�
�n.V /

�
v 7�! Œv�n:

is a closed embedding, called the n-th Veronese embedding.

Proposition 7.2. Let V be a finite-dimensional F -vector space. Let n � 1 be an integer.
Consider the n-th Veronese embedding

P .V /
Vern
���! P

�
�n.V /

�
:

The natural arrow

Aut
�
P .V /

�
D PGL.V / �! PGL

�
�n.V /

�
D Aut

�
P
�
�n.V /

��
induces an isomorphism of linear algebraic F -groups

�WPGL.V / �! StabPGL.�n.V //
�
P .V / � P

�
�n.V /

��
:

Proof. Can assume dim.V / � 2, and F infinite. Let A be an F -algebra. Pick

f 2 StabAut.P.�n.V ///
�
P .V /

�
.A/:

Then f restricts to an automorphism of the A-scheme P .V / �F A; that is, to an element
 .f / 2 PGL.V /.A/. By Yoneda’s lemma, this defines an F -morphism

 WStabAut.P.�n.V ///
�
P .V /

�
�! PGL.V /;

which is a retraction of �. Hence, � is an embedding. Since its source is smooth, it suffices
to show that every element

f 2 Ker. /
�
F Œ"�

�
lies in the image of �.F Œ"�/. Since F Œ"� is local, Grothendieck–Hilbert’s Theorem 90
yields H 1.F Œ"�;Gm/ D 0, so that f lifts to

f 0 2 GL
�
�n.V /

��
F Œ"�

�
:
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Since  .f / D Id, there exists a morphism of F -schemes

�W
�
A.V / � ¹0º

�
�! RF Œ"�=F .Gm/ ' Gm �F A1

v 7�! �1.v/C �2.v/";

such that
f 0
�
Œv�n

�
D �.v/Œv�n;

identically on points. Let us check that � is constant. Since dim.V / � 2, and the source of
� is normal, it extends to a morphism of F -varieties

ƒWA.V / �! Gm �F A1 � A2:

Denote by ı the degree of ƒ, as a polynomial map. From the equality

f 0
�
Œv�n

�
D �.v/Œv�n;

also valid on functors of points, we get n D ı C n, whence ı D 0 and ƒ is constant.
Rescaling f 0, we can thus assume ƒ D 1. Since F is infinite, pure symbols Œv�n span the
F -vector space �n.V /, so that f 0 D Id. Hence, f D Id, as desired.

7.2. Characteristic-free polarity

Definition 7.3. Let W be an F -vector space, let X � P .W / be a closed F -subscheme,
defined by a sheaf of ideals

0 �! 	X �! OP.W / �! OX �! 0:

Define

EX;m WD H
0
�
P .W /;	X .m/

�
� H 0

�
P .W /;O.m/

�
D Symm.W _/:

For all sufficiently large m, it generates 	X .m/. For brevity, denote EX;m by EX . Dualiz-
ing the exact sequence F -vector spaces

0 �! EX �! Symm.W _/ �! Symm.W _/=EX �! 0;

one gets an exact sequence, denoted by

0 �! LX �! �m.W / �! E_X �! 0:

Lemma 7.4. Keep notation of Definition 7.3. For m large enough, there is a natural iso-
morphism of F -schemes

PX WX �! P .LX / \ Verm
�
P .W /

�
z 7�! Œz�m;

where \ denotes scheme-theoretic intersection in P .�m.W //.
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Proof. Let R be an F -algebra. Since m� 0, the set X.R/ � P .W /.R/ consists of those
lines, on which all m-linear forms in EX vanish. Using duality between Symm.W _/ and
�m.W /, this translates as

X.R/ D
®
.w/ 2 P .W /.R/; �

�
Œw�m

�
D 0; 8� 2 EW

¯
:

Via the closed immersion Verm, the right side of the equality coincides with P .LX /.R/\
Verm.P .W //.R/. This holds for any R, whence the desired isomorphism PX .

7.3. Morphisms of varieties induced by multiplication of �.V /

The following notion is especially important if char.F / D p.

Definition 7.5 (F -disjointness). Let a1; a2; : : : ; ad be positive integers. Say that a1; a2;
: : : ; ad are F -disjoint if the following holds.

(1) For i D 1; : : : ; d � 1, one has ai C ai�1 C � � � C a1 < aiC1.

(2) If char.F / D p, for i D 1; : : : ; d � 1 one has ai C ai�1 C � � � C a1 < pvp.aiC1/.

Example 7.6. Assume char.F / D p, and ai D pri , with 0 � r1 < r2 < � � � < rd . Then,
a1; a2; : : : ; ad are F -disjoint.

Remark 7.7. If char.F / D p, then (2) implies (1) in Definition above. Thinking in base
p, (2) is equivalent to the following. The position of the least non-zero digit of aiC1, is
strictly bigger than that of the greatest non-zero digit of ai C ai�1 C � � � C a1.

Recall a well-known fact.

Lemma 7.8. Let a1; : : : ; ad be non-negative integers. The p-adic valuation of the mul-
tinomial coefficient

�
a1C���Cad
a1;:::;ad

�
is the number of carryovers, when computing the sum

a1 C � � � C ad in base p. Hence, if char.F / D p and a1; a2; : : : ; ad are F -disjoint,�
a1C���Cad
a1;:::;ad

�
is prime-to-p.

Proof. One can apply induction on r � 2, using the formula�
a1 C � � � C ad

a1; : : : ; ad

�
D

�
a1 C � � � C ad

a1 C a2; a3; : : : ; ad

��
a1 C a2

a1; a2

�
:

The claim to prove when r D 2 is a classical fact, which is also a nice elementary exercise
left to the reader. The second assertion readily follows.

Lemma 7.9. Let V be an F -vector space. The following is true.

(1) Let a; b be F -disjoint integers, and let y 2 V � ¹0º. The multiplication

My W�
a.V / �! �aCb.V /

x 7�! xŒy�b

is an F -linear injection.
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(2) The formula

�WP
�
�a.V /

�
�F P .V / �! P

�
�aCb.V /

�
.x; y/ 7�! xŒy�b

defines a morphism of F -varieties, injective on xF -points.

(3) Let a1; a2; : : : ; ad be F -disjoint integers. Then, the formula

� WP .V / �F � � � �F P .V / �! P
�
�a1C���Cad .V /

�
.x1; x2; : : : ; xd / 7�! Œx1�a1 Œx2�a2 : : : Œxd �ad

defines a morphism of F -varieties, injective on xF -points.

Proof. Can assume F D xF . Let us prove item (1). Pick a basis .e1; : : : ; en/ of V , with
en D y. Work in the standard basis Œe1�a1 : : : Œen�an of �a.V /, indexed by partitions a D
a1 C � � � C an. Similarly, work in the standard basis Œe1�c1 : : : Œen�cn of �aCb.V /, indexed
by partitions aC b D c1 C � � � C cn. Let us compute:�

Œe1�a1 : : : Œen�an
�
Œy�b D

�
an C b

b

�
Œe1�a1 : : : Œen�1�an�1 Œen�anCb :

If char.F / D 0, it readily follows that My is injective. Assume char.F / D p. Since an �
a < pvp.b/, computing anC b in base p occurs without carryovers. Thanks to Lemma 7.8,�
anCb
b

�
2 F is non-zero. Consequently, My is still injective. Let us prove that (2) implies

(3). If d � 3, � factors as the composite of

P .V / �F � � � �F P .V / �F P .V / �! P
�
�a1C���Cad�1.V /

�
�F P .V /

.x1; : : : ; xd / 7�!
�
Œx1�a1 : : : Œxd�1�ad�1 ; xd

�
and

P
�
�a1C���Cad�1.V /

�
�F P .V /

�
��! P

�
�a1C���Cad .V /

�
.x; y/ 7�! xŒy�ad :

By induction, item (3) thus indeed follows from (2). It remains to prove (2). That � is well
defined, follows from (1) (injectivity of My , for y ¤ 0). Let us check injectivity of � on
F -points. Let y; y0 2 V � ¹0º and x; x0 2 �a.V /� ¹0º, be such that �.x; y/D �.x0; y0/.
Rescaling, one can assume

xŒy�b D x
0Œy0�b 2 �

aCb.V /:

Suppose that .y/ ¤ .y0/ 2 P .V /.F /. Pick a basis .e1 D y; e2 D y0; e3; : : : ; en/ of V .
Working in the monomial basis .Œe1�a1 : : : Œen�an/ of �a.V /, and using a < b, one sees
that Im.My/\ Im.My0/ D ¹0º, contradictingMy.x/ DMy0.x

0/ ¤ 0. Hence y and y0 are
collinear. Rescaling them, one can assume y D y0. Using item (1), one concludes that
x D x0, which finishes the proof.
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Remark 7.10. In general, morphisms in items (2) and (3) above, are not injective on
tangent spaces: they are not closed immersions.

Remark 7.11. If char.F /D 0, one can then replace �a.V / by Syma.V /, and accordingly
replace symbols Œx�a by xa

aŠ
. Using that the polynomial F -algebra Sym.V / is a UFD, the

proof of Lemma 7.9 is then easier.

8. Concrete Tannakian construction

The goal of this section is Proposition 8.3, a key tool for proving the main theorem. It is
related to a result found in [11]: every linear algebraic F -group is isomorphic to the sta-
biliser of a single tensor of type .2; 1/ (also known as a non-associative finite-dimensional
F -algebra). Indeed, both statements improve on a classical fact in Tannakian formalism:
every linear algebraic F -group is isomorphic to the stabiliser of a finite number of tensors.

At first glance, the reader may think that Proposition 8.3 is a reformulation of the
following standard result of Chevalley: for every embedding of linear algebraic F -groups
H ,! G, there exists a finite-dimensional representation V of G, together with a line L 2
P .V /.F /, such thatH D Stab.L/�GL.V /. However, let it be clear that this resemblance
is misleading. To the knowledge of the author, there is no reasonably simple way to deduce
Proposition 8.3 from Chevalley’s theorem.

8.1. Explicit action of PGLd with trivial stabilisers

Lemma 8.1. Let d � 3, and let V be a d -dimensional F -vector space. Let 1; a1; a2; : : : ;
adC1 be F -disjoint integers. Choose a basis .e1; : : : ; ed / of V , and define

r WD a1 C � � � C adC1;

edC1 WD e1 C e2 C � � � C ed ;

x WD Œe1�a1 Œe2�a2 : : : Œed �ad ŒedC1�adC1 2 �
r .V /:

Then x ¤ 0, and
StabPGL.V /..x// D ¹1º;

for the natural action of PGL.V / on P .�r .V //.

Proof. That x¤ 0 follows from item (3) of Lemma 7.9. The natural extension ofF -groups

1 �! Gm D Z
�

GL.V /
�
�! GL.V / �! PGL.V / �! 1

gives rise to the extension of F -groups

1 �! �r �! StabGL.V /.x/ �! StabPGL.V /..x// �! 1:

(Observe thatZ.GL.V //\StabGL.V /.x/D�r�Gm.) Its kernel is not étale if char.F /Dp.
To show triviality of StabPGL.V /..x//, one may assume F D xF . Pick f 2 GL.V /.F /.
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Assume that f .x/ D x. Using the injectivity statement of Lemma 7.9 (3), one sees that
f fixes each ei up to scalars, implying that f is homothetic. In other words, the group
StabPGL.V /..x//.F / is trivial. If char.F / D 0, this finishes the proof. If char.F / D p, it
remains to prove triviality of Lie.StabPGL.V /.x//. In computations that will follow, one
typically uses the formula

Œx�aŒx�b D

�
aC b

a

�
Œx�aCb;

for various a; b 2 N, and one checks whether or not
�
aCb
a

�
is divisible by p. Observe that

p divides a1; : : : ; adC1, because 1; a1; a2; : : : ; adC1 are F -disjoint. Pick u 2 End.V /,
with matrix .ui;j /1�i;j�d in the basis .e1; : : : ; ed /. Set ui WD u.ei /. If i � d , then ui DPd
jD1 uj;iej , and udC1 D u1 C � � � C ud . Set

f WD .IdC "u/ 2 GL.V /
�
F Œ"�

�
:

Assume there exists c 2 F , such that

f .x/ D .1C c"/x:

To conclude the proof, one needs to show u 2 F Id. Note that f .x/ reads as

x D Œe1 C "u1�a1 Œe2 C "u2�a2 : : : ŒedC1 C "udC1�adC1 :

Expanding divided powers, and comparing coefficients of ", one gets

.E/W cŒe1�a1 : : : ŒedC1�adC1 D

dC1X
iD1

Œui �1Œe1�a1 Œe2�a2 : : : Œei �ai�1 : : : ŒedC1�adC1 :

In the monomial basis of �r .V / furnished by e1; : : : ; ed , consider the coefficient of

M WD Œe1�a1�1Œe2�a2C1Œe3�a3CadC1 Œe4�a4 Œe5�a5 : : : Œed �ad ;

of both sides of this equality. It vanishes on the left side. In the sum on the right side, only
i D 1 can contribute. Let us expand the corresponding term, reading as

Œu1;1e1 C : : :C ud;1ed �1Œe1�a1�1Œe2�a2 Œe3�a3 : : : Œed �ad Œe1 C e2 C e3 C � � � C ed �adC1 :

In the decomposition

Œe1 C e2 C e3 C � � � C ed �adC1 D
X

b1C���CbdDadC1

Œe1�b1 Œe2�b2 Œe3�b3 : : : Œed �bd ;

the only two partitions that may contribute to a non-zero multiple of M , are

.b1; b2; b3; b4; : : : ; bd / D .0; 0; adC1; 0; : : : ; 0/;

.b1; b2; b3; b4; : : : ; bd / D .0; 1; adC1 � 1; 0; : : : ; 0/:
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These terms are given, respectively, by

u2;1Œe2�1Œe1�a1�1Œe2�a2 Œe3�a3 : : : Œed �ad Œe3�adC1D

�
a3 C adC1

a3

�
.a2 C 1/u2;1M;

u3;1Œe3�1Œe1�a1�1Œe2�a2 Œe3�a3 : : : Œed �ad Œe2�1Œe3�adC1�1D

�
a3 C adC1

1; a3; adC1�1

�
.a2C1/u3;1M:

Gathering the information above, one gets

0 D

�
a3 C adC1

a3

�
.a2 C 1/u2;1 C

�
a3 C adC1

1; a3; adC1 � 1

�
.a2 C 1/u3;1:

Since 1;a1; a2; : : : ; adC1 are F -disjoint, it follows from Lemma 7.8 that p does not divide�
a3CadC1

a3

�
.a2 C 1/, but divides

�
a3CadC1

1;a3;adC1�1

�
(for the latter fact, observe that adding 1 and

.adC1 � 1/ in base p, occurs with carryovers). Thus u2;1 D 0. One can reproduce this
argument, with any triple of distinct indices 2 ¹1; : : : ; dº, in place of .1; 2; 3/. One thus
gets ui;j D 0 for all i ¤ j . Thus, ui D ˛iei , i D 1; : : : ; d . In .E/, put the term of index
i D d C 1 on the other side of the equation. This gives

.E 0/W cŒe1�a1 : : : ŒedC1�adC1 � Œ˛1e1 C � � � C ˛ded �1Œe1�a1 : : : Œed �ad ŒedC1�adC1�1

D

dX
iD1

ai˛i Œe1�a1 Œe1�a2 : : : Œei �ai : : : ŒedC1�adC1 D 0:

To finish, let us work in the following basis of V :

.f1 WD �e2; f2 WD �e3; : : : ; fd�1 WD �ed ; fd WD edC1/;

and in the induced monomial basis of �r .V /. Note that

e1 D f1 C � � � C fd :

Equality .E 0/ gives

cŒe1�a1 Œf1�a2 : : : Œfd �adC1 D Œ˛1e1 C � � � C ˛ded �1Œe1�a1 Œf1�a2 : : : Œfd�1�ad Œfd �adC1�1:

Express both sides in the monomial basis, and consider the coefficient of

Œf1�a2C1Œf2�a3 : : : Œfd �adC1 :

On the left side, it is c.a2 C 1/ D c. Since

Œfd �1Œfd �adC1�1 D adC1Œfd �adC1 D 0;

it is 0 on the right side, so that c D 0. Thus,

.E 00/W Œ˛1e1 C � � � C ˛ded �1Œe1�a1 Œf1�a2 : : : Œfd�1�ad Œfd �adC1�1 D 0:
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Let ˇi 2 F be such that

˛1e1 C � � � C ˛ded D ˇ1f1 C � � � C ˇdfd :

Computing the coefficient of Œf1�1Ca1Ca2 Œf2�a3 Œf3�a4 : : : Œfd�1�ad Œfd �adC1�1 in .E 00/,
one gets

ˇ1

�
1C a1 C a2

1; a1; a2

�
D 0 2 F;

where the multinomial coefficient is prime-to-p by Lemma 7.8. Thus ˇ1 D 0. In the same
fashion, ˇ2 D � � � D ˇd�1 D 0. In other words: all ˛i are equal to ˇd , so that u D ˇd Id,
as was to be shown.

8.2. Linear algebraic groups as stabilisers of symbols

Proposition 8.2. Let G be a linear algebraic group over F . There exists a representation
G ,! GL.W /, such that the composite G ,! GL.W / ! PGL.W / is faithful, together
with the following data.

(1) A closed subscheme Z � P .W /, such that G D StabPGL.W /.Z/.

(2) A G-fixed rational point .w0/ 2 P .W /.F / �Z.F /.

Proof. Pick n � 2 and a faithful representation G ,! GLn�1. Note that the natural com-
posite

G ,! GLn�1 � GLn �! PGLn

is still an embedding. This way, one gets a faithful representation G ,! PGLn, such that
the action of G on Pn�1 has .en/ as an F -rational fixed point. Define

d WD 2n; V1 D V2 WD F
n; V WD V1 ˚ V2:

Pick n large enough, so that d � 1 > dim.G/. Consider the diagonal composite

G ,! GL.V1/
x 7!.x;x/
,! GL.V /;

inducing

G ,! PGL.V1/
x 7!.x;x/
,! PGL.V /:

Consider the canonical basis .e1; : : : ; en; enC1; : : : ; e2n/ of V , obtained by putting together
two copies of the canonical basis of V1. Let .a1; a2; : : : ; adC1/, r D a1 C � � � C adC1 and
x 2 �r .V / be as in the premises of Lemma 8.1. Setting W WD �r .V /, this lemma states
that StabPGL.V /..x/ 2 P .W /.F // is trivial. Since PGL.V / is a smooth F -group, acting
on the smooth F -variety P .W /, it is known that the PGL.V /-orbit

O
�

PGL.V /; x
�
WD PGL.V /:x

is a locally closed subscheme of P .W /. Indeed, its closure

O
�

PGL.V /; x
�
� P .W /
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equipped with its reduced induced scheme structure, is a PGL.V /-stable closed subs-
cheme, and the orbit O.PGL.V /; x/ � O.PGL.V /; x/ is open in its closure. Denote by
Z � O.PGL.V /; x/ its complement, considered with its reduced induced structure. Set
U WD P .W / �Z. One has G-equivariant embeddings

G
closed
,! PGL.V /

g!g:x
�����!
�

O.PGL.V /; x/
closed
,! U

open
,! P .W /:

Thus, the G-orbit map
˛WG

g!g:x
�����! P .W /

is a locally closed immersion (even though G may not be smooth). Consider its scheme-
theoretic image X

closed
,! P .W /. Let us check that X is G-stable. Let R be an F -algebra.

Since formation of scheme-theoretic image of a quasi-compact morphism commutes to
flat base-change [13, Lemma 101.38.5], the R-scheme XR WD X �Spec.F / Spec.R/ is
the scheme-theoretic image of the GR-orbit map ˛R. Pick  2 G.R/. Then :XR is the
scheme-theoretic image of the R-morphism

.:˛R/WGR
g!.g/:x
�������! P .W /R:

This morphism factors as

GR
g!g
����! GR

˛R
��! P .W /R:

Since g 7! g is an isomorphism, we conclude that .:˛R/ and ˛R share the same scheme-
theoretic image. Equivalently, :XR D XR, proving that X is G-invariant. Let us check
that inclusion of linear algebraic F -groups

G � StabPGL.V /.X/

is an equality. Set
Y WD X �O.G; x/ � P .W /:

It is a closed subset of X . Consider it as a closed subscheme of X , using the reduced
induced structure (as such, it may not be G-invariant). Let R be a finite local xF -algebra,
and let � 2 StabPGL.V /.X/.R/. Arguing by contradiction, suppose that �:x …O.G;x/.R/.
Denote by �0 2 StabPGL.V /.X/. xF / the special fiber of �. Since R is local and O.G; x/ �
X is open, one has �0:x … O.G; x/. xF /. The monomorphism of F -schemes

ˇWG �! X

g 7�! .g�0/:x

would then, set-theoretically, take values in Y . Indeed, suppose that there exists g 2G. xF /,
such that .g�0/:x 2 O.G; x/. xF /. Because O.G; x/ is a principal homogeneous space
of G, there exists  2 G. xF /; such that .g�0/:x D :x. Then

�1g�0 2 StabPGL.V /.x/. xF / D ¹1º;
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implying �0 2G. xF /, hence �0:x 2O.G;x/. xF /, contradicting �0:x …O.G;x/. xF /. Thus,
set-theoretically, the monomorphism ˇ takes values in Y . This is impossible because
dim.G/ > dim.Y /, as Noetherian topological spaces. One concludes that �:x 2O.x/.R/,
implying � 2 G.R/. This proves G D StabPGL.V /.X/.

It remains to prove that X does not intersect Verr .P .V // � P .W /. Recall that V D
V1 ˚ V2, V1 D V2, and that the G-action on P .V / occurs via the composite

G ,! PGL.V1/
diag
��! PGL.V /:

By choice of the basis .e1; : : : ; ed /, the orbitO.PGL.V1/;x/ is thus contained in the image
of the composite F -morphism

� WP .V1/
n
�F P .V2/

n
�F P .V / ,! P .V /n�F P .V /n�F P .V /

�
�! P

�
�a1C���CadC1.V /

�
.x1; x2; : : : ; xdC1/ 7! Œx1�a1 Œx2�a2 : : : ŒxdC1�adC1 :

Here the first arrow is obtained by taking products of the natural closed immersions
P .Vi / ,! P .V /, i D 1; 2. The arrow � is that of item (3) of Lemma 7.9. Observe that
Verr is the composite F -morphism

P .V /
diag
��! P .V /dC1

�
�! P

�
�a1C���CadC1.V /

�
x 7�! Œx�a1 Œx�a2 : : : Œx�adC1 :

By item (3) of Lemma 7.9, � is injective on xF -points. Since P .V1/ and P .V2/ intersect
trivially as linear subspaces of P .V /, it follows that

Im.�/. xF / \ Verr
�
P .V /

�
. xF / D ¿:

Since the source of � is proper, one gets

O
�

PGL.V1/; x
�
. xF / � Im.�/. xF /;

so that
O
�

PGL.V1/; x
�
\ Verr

�
P .V /

�
D ¿;

and a fortiori
X \ Verr

�
P .V /

�
D ¿:

Next, consider the closed subscheme

Z WD X t Verr
�
P .V /

�
� P .W /;

which is indeed a disjoint union. Let us check that the natural embedding

G ,! StabPGL.W /.Z/

is an isomorphism. To do so, let R be a finite local xF -algebra, and let

� 2 StabPGL.W /.Z/.R/:
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Then �.Verr .P .V //R/ � ZR is an irreducible smooth clopen R-subscheme, of dimen-
sion d � 1 > dim.G/ D dim.X/. It thus intersects XR � ZR trivially. In other words:
�.Verr .P .V //R/ D Verr .P .V //R, and consequently �.XR/ D XR. By Proposition 7.2,
� belongs to PGL.V /.R/. Since G D StabPGL.V /.X/, one then gets � 2 G.R/, as was to
be shown. Item (1) is proved. For (2), recalling that en 2H 0.G;V1/ and e2n 2H 0.G;V2/,
one may take

.w0/ WD Œen�a1 Œe2n�r�a1 D �.en; e2n; e2n; : : : ; e2n/ 2 H
0
�
G;P .W /.F /

�
:

The injectivity of � (already used above to prove X \ Verr .P .V // D ¿) then guarantees
that .w0/ … Verr .P .V //. xF / and .w0/ … Im.�/. xF /. Hence .w0/ … Z.F /.

Proposition 8.3. Let G be a linear algebraic group over F . There exists an F -vector
space W , integers n; l � 1, and a linear subspace

L 2 Gr
�
l; �n.W /

�
.F /;

such that
G
�
��! StabPGL.W /.L/;

as group schemes over F . Moreover, one can take L such that the closed subvarieties

P .L/
lin
,! P .�n.W // and P .W /

Vern
,! P .�n.W // do not intersect.

Proof. Pick aG-representationW , a closed subvarietyZ � P .W / and .w0/ 2 P .W /.F /
as in Proposition 8.2. Form 2 N, consider the F -subspaces EZ 2 Gr.l;Symm.W _//.F /

andLZ 2Gr.l;�m.W //.F /, introduced in Definition 7.3. These areG-stable. Fixm large
enough, so that m ¤ �1 2 F , and

G D StabPGL.W /.EZ/

(see Lemma 7.4). Considering the exact sequences of Definition 7.3, one sees that

StabPGL.W /.EZ/ D StabPGL.W /.E
_
Z/ D StabPGL.W /.LZ/;

so that
G D StabPGL.W /.LZ/:

If char.F /D 0 (resp. char.F /D p), set q WDmC 1 (resp. q WD ps >m, the smallest p-th
power greater than m). Set n WD mC q. Consider the F -linear map

Mw0 W�
m.W / �! �n.W /

x 7�! xŒw0�q :

It is injective by Lemma 7.9. Set

L WDMw0.LZ/ � �
n.W /:
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Since .w0/ 2 H 0.G;P .W //, there is a natural inclusion of F -groups

StabPGL.W /.LZ/ D G � StabPGL.W /.L/:

Let us show it is an equality. To do so, one may assume F D xF . Let A be a finite local
F -algebra with maximal ideal M, and let g 2 StabPGL.W /.L/.A/. We need to show that
g 2 StabPGL.W /.LZ/.A/. Let us first show that g fixes .w0/ 2 P .W /.F / � P .W /.A/.
Assume that A D F . If w0 and g.w0/ are not F -collinear, complete them into an F -basis
.w0; w1 D g.w0/; w2; : : : ; wd / of W . By assumption, the two subspaces

g.L/ D Œw1�q :g.LZ/ � �
n.W /

and
L D Œw0�q :LZ � �

n.W /

are equal. Work in the natural basis of �n.W / induced by .w0; w1; w2; : : : ; wd /. Then,
elements of L are linear combinations of symbols of the shape

(A)W Œw0�a0 : : : Œwd �ad ;

with a0 � q and a0 C � � � C ad D n < 2q. Similarly, elements of g.L/ are linear combin-
ations of symbols of the shape

(B)W Œw0�b0 Œw1�b1 : : : Œwd �bd ;

with b1 � q and b0 C � � � C bd D n < 2q. But no symbol is of both shapes (A) and
(B) – a contradiction. Hence g fixes .w0/. If char.F / D 0, this is enough to conclude.
It remains to treat the case char.F / D p, q D ps > m and A arbitrary. Denote by Ng 2
StabPGL.W /.L/.F / the residue of g. Pick z ¤ 0 2W , such that .z/ 2Z.F /, so that Œz�m 2
LZ and .z/ ¤ .w0/. Define

w1 WD Ng.z/ 2 W:

By the case A D F dealt with before,�
Ng.w0/

�
D .w0/ 2 P .W /.F /;

so that .w0/ ¤ .w1/. Complete w0; w1 into an F -basis .w0; w1; w2; : : : ; wd / of W . Res-
caling g by an element of A�, one can assume

g.w0/ D w0 C "1w1 C � � � C "dwd ;

where "i 2M. Assume first, that "iMD 0 for i D 1; : : : ; d . There exists �2�m.W /˝F M

such that �
g.z/

�
m
D Œw1�m C � 2 �

m.W /˝F A;

and a little computation gives�
g.w0/

�
q
D Œw0�q C "1Œw0�q�1Œw1�1 C � � � C "d Œw0�q�1Œwd �1 2 �

q.W /˝F A:
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Developing the product, rearranging terms, one gets

�
g.w0/

�
q

�
g.z/

�
m
D .mC 1/"1Œw0�q�1Œw1�mC1 C

dX
iD2

"i Œw0�q�1Œw1�mŒwi �1 C Œw0�qE;

for someE 2 �m.W /˝F A. Recall that all elements ofL are linear combinations of sym-
bols of shape (A) above. Observe that symbols Œw0�q�1Œw1�mC1 and Œw0�q�1Œw1�mŒwi �1
are not of shape (A). Since L D g.L/, it must be the case that "i D 0 for i D 2; : : : ; d .
Since m ¤ �1 2 F , one also has "1 D 0. It remains to remove the assumption "iM D 0.
This is a straightforward induction on k � 1, such that Mk D 0. If k D 1 there is nothing
to do. Assume that MkC1 D 0. By induction applied to A=Mk , one gets "i 2 Mk , so
that "iM D 0 and the above applies, yielding "i D 0. We have proved g..w0// D .w0/ 2
P .W /.A/. By item (1) of Lemma 7.9, the A-linear map

Mw0 W�
m.W /˝F A �! �mCq.W /˝F A

x 7�! xŒw0�q

is injective. Since

Mw0.LZ/ DMg.w0/

�
g.LZ/

�
DMw0

�
g.LZ/

�
;

it is then straightforward to see that g.LZ/ D LZ . We have proved

G D StabPGL.W /.LZ/ D StabPGL.W /.L/:

To conclude, it remains to prove that P .L/ and Vern.P .W // intersect trivially.
By item (2) of Lemma 7.9, the morphism

�WP
�
�m.V /

�
�F P .V / �! P

�
�n.V /

�
.x; y/ 7�! xŒy�q

is injective on xF -points. Introduce the graph of Verm,

�WP .V / �! P
�
�m.V /

�
�F P .V /

v 7�!
�
Œv�m; v

�
:

Observe that
P .L/ D �

�
P .LZ/ � ¹w0º

�
and

Vern
�
P .W /

�
D �

�
�
�
P .V /

��
:

Because .w0/ … Z. xF /, one has Œw0�m … LZ , so that�
P .LZ/ � ¹w0º

�
\�

�
P .V /

�
D ¿:

Thus, P .L/ \ Vern.P .W // D ¿, as desired.
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Question 8.4. In Proposition 8.3, can one take l D 1?

Remark 8.5. We suspect that the answer to Question 8.4 is yes, and sketch an optimistic
strategy to investigate it. Let W; l; n and L be furnished by Proposition 8.3. By inspection
of its proof, one may assume that n is odd. Then, there is a well-defined F -linear map

‰Wƒl
�
�n.W /

�
�! �n

�
ƒl .W /

�
Œw1�n ^ � � � ^ Œwl �n 7�! Œw1 ^ � � � ^ wl �n:

Assume that l < dim.W / (which does not at all follow from the proof above). Then ‰ is
injective. Set W 0 WD ƒl .W / and consider the composition of closed embeddings

Gr
�
l; �n.W /

� Pl
,! P

�
ƒl
�
�n.W /

�� ‰
,! P .�n.W 0/

�
;

where Pl is the Plücker embedding. Denote by L0 2 P .�n.W 0// the image of L under this
composite. One may then hope that, for a suitable choice of the data, the composite arrow

G
�
��! StabPGL.W /.L/ �! StabPGL.W 0/.L

0/

is an isomorphism.

Remark 8.6. A positive answer to Question 8.4 would not simplify the proof of The-
orem 2.1. It may, however, be useful in other contexts.

9. Proof of Theorem 2.1

Let W , n, L and l > dim.W / be as in Proposition 8.3. Put w WD dim.W /. Define

V WD �n.W /

Denote by
Z � P .V /

the disjoint union of the closed subvarieties P .L/ ' P l�1 and Vern.P .W // ' Pw�1. In
the proof of Proposition 8.3, W is fixed from the beginning, where w can be picked arbit-
rarily large. The construction then works for all n sufficiently large. It is straightforward
to check that, when n goes to infinity, so do l and dim.V / � l (whereas w stays fixed). In
particular, one may assume that w ¤ l and w ¤ .dim.V / � l/.

Proposition 9.1. The natural inclusion

G ,! StabPGL.V /
�
Z � P .V /

�
is an isomorphism of algebraic F -groups.
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Proof. We first show that

StabPGL.V /.Z/ D StabPGL.V /
�

Vern
�
P .W /

��
\ StabPGL.V /

�
P .L/

�
:

Inclusion � is clear. To get equality, as both sides are linear algebraic groups over F , it
suffices to prove equality of their points, with values in a finite local F -algebra A, which
reads as

StabPGL.V /.Z/.A/ D StabPGL.V /
�

Vern
�
P .W /

��
.A/ \ StabPGL.V /

�
P .L/

�
.A/:

Pick f 2 StabPGL.V /.Z/.A/. It induces an automorphism of theA-schemeZA WDZ �F A,
which is the disjoint union of its irreducible clopen subschemes Ver.P .W //A and P .L/A.
These are projective spaces of distinct dimensions, hence non-isomorphic. Thus f pre-
serves them both (which is a purely topological fact), proving the claim.

To conclude, apply Proposition 7.2 combined to equality G D StabPGL.W /.P .L//,
provided by Proposition 8.3.

Define
X WD BlZ

�
P .V /

�
:

The action of G on P .V / stabilizes Z; hence an embedding of F -group schemes

ˆWG �! Aut.X/

Proposition 9.2. The arrow ˆ is an isomorphism.

Proof. We may assume F D xF . By Proposition 9.1, we know that

G
�
��! StabAut.P.V //

�
Z � P .V /

�
:

Using Proposition 5.1, we thus know that ˆ induces an isomorphism

J.G; �/ �! J
�
Aut.X/; �

�
;

for every finite F -algebra A, with residue homomorphism �WA! F .
To conclude, it remains to prove that

ˆ.F /WG.F / �! Aut.X/.F /

is onto, as a homomorphism of abstract groups. Denote by E1 � X (resp. E2 � X ) the
exceptional divisor lying over Pw�1 (resp. P l�1). Since w ¤ l and w ¤ .dim.V / � l/,
Lemma 6.5 implies that E1 and E2 are non-isomorphic F -varieties. Proposition 6.2 then
applies, concluding the proof.
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