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Group actions on monoidal triangulated categories
and Balmer spectra

Hongdi Huang and Kent B. Vashaw

Abstract. Let G be a group acting on a left or right rigid monoidal triangulated category K which
has a Noetherian Balmer spectrum. We prove that the Balmer spectrum of the crossed product cat-
egory of K by G is homeomorphic to the space of G-prime ideals of K, give a concrete description
of this space, and classify the G-invariant thick ideals of K. Under some additional technical condi-
tions, we prove that the Balmer spectrum of the equivariantization of K by G is also homeomorphic
to the space of G-prime ideals. Examples of stable categories of finite tensor categories and perfect
derived categories of coherent sheaves on Noetherian schemes are used to illustrate the theory.

1. Introduction

Classifications of thick ideals for tensor-triangulated categories have been a problem of
major importance for the past 30 years, since the pioneering work of Hopkins [26], Nee-
man [43], Thomason [57], Benson—Carlson—Rickard [8], Friedlander—Pevtsova [20], and
others. These problems, arising in the disparate areas of representation theory, algebraic
geometry, and homotopy theory, were put into a common framework by Balmer in the
early 2000s [1]: for a tensor-triangulated category K, there exists a topological space, the
Balmer spectrum Spc K, whose Thomason-closed sets parametrize the thick ideals of K. A
tensor-triangulated category by definition is a monoidal triangulated category with isomor-
phisms A ® B = B ® A for all objects A and B; for generally noncommutative monoidal
triangulated categories, a version of the Balmer spectrum was introduced in [15, 39].

Many computations of Balmer spectra for monoidal triangulated categories have in-
volved some sort of group action on the category in question, and in many examples the
Balmer spectrum is realized as a quotient of another Balmer spectrum by a group action,
see [11, Theorem 5.2.2], [39, Theorem 9.3.2], [46, Theorem 10.4], [42, Theorem 9.1.1].
However, a systematic approach to the situation where a group G acts on a monoidal
triangulated category K has been lacking; the present paper is an attempt to address this
issue directly. A group action on a monoidal category C (see Section 3 for the precise
definition) is a choice of monoidal autoequivalences

T, :C—>C
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for each g € G, together with natural isomorphisms
TgoTy =Tgy

satisfying standard compatibility properties. When a group G acts on a finite-dimensional
Hopf algebra H by Hopf automorphisms, we get just such an action of G on the tensor
category of finite-dimensional modules mod(H ) of H. When K is monoidal triangulated,
we additionally require that each T is an equivalence of monoidal triangulated categories.
When H is a finite-dimensional Hopf algebra with an action of G as above, then there is
an action of G on the monoidal triangulated category mod(H ), the stable category of
mod(H).

The starting point of tensor-triangular geometry is the analogy between a tensor-
triangulated category and a ring; the tensor product corresponds to multiplication. If G
is a group acting on a ring R, then there is a natural way of defining a new ring, called
the crossed product of R by G, where multiplication is skewed by the action of G;
closely related are the familiar construction of Ore extensions. Prime ideals of crossed
product rings have received significant attention in noncommutative ring theory, see e.g.
[21,22,34,48-50].

When a group G acts on a monoidal triangulated category K, we can analogously
define the crossed product category K x G (see Section 5). Crossed product categories
have recently been used by Bergh—Plavnik—Witherspoon to show that every finite tensor
category satisfying some mild assumptions can be embedded in a finite tensor category
where the tensor product property for cohomological support varieties fails [10]. Exam-
ples of crossed product categories include the smash coproduct Hopf algebras studied
by Benson—Witherspoon and Plavnik—Witherspoon [7, 51]. Balmer spectra for Benson—
Witherspoon smash coproducts, as well as some additional Plavnik—Witherspoon smash
coproducts, were determined in [39,42], and it was shown in [58] that Balmer spectra for
certain Benson—Witherspoon smash coproducts coincide with the Balmer spectra of their
Drinfeld centers. In all of these cases, the group G acting on the monoidal triangulated
category was assumed to be finite. In this paper, we consider the case that G is possibly
infinite.

In ring theory, in addition to the crossed product, the invariant subring also plays a
critical role in studying group actions on rings (in particular in relation to prime ideals,
see e.g. [33,38,56]). The analogue in the categorical setting is that of an equivariantization
(see Section 6). Objects of the equivariantization are defined to be pairs consisting of an
object from the original category, and a family of isomorphisms which trivialize the G-
action in a compatible way.

When a group G acts on a ring R, the third related concept to the crossed product
and invariant subring one considers is that of a G-prime ideal, which is defined to be a
G-invariant ideal which satisfies the prime condition on the level of G-invariant ideals.
We make the analogous definition in the monoidal triangulated setting, and denote by
G- Spc K the G-Balmer spectrum of K, that is, the collection of G-prime ideals under
a suitable topology. The relationship between the prime spectrum of R and the G-prime
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spectrum of R has also attracted significant attention, including the celebrated Goodearl—
Letzter Stratification Theorem [23,31]. Motivated by classical ring theory, the following
are now natural questions that we wish to explore, when G is a group acting on a monoidal
triangulated category K:

(1) What is the Balmer spectrum of the crossed product category K x G? Does it
parametrize the thick ideals of K < G?

(2) What is the Balmer spectrum of the equivariantization K¢? Does it parametrize
the thick ideals of K&?

(3) What is the G-Balmer spectrum G- Spc K of K? Does it parametrize the G-
invariant thick ideals of K?

Here we say that a topological space X parametrizes thick ideals when there is a
bijection between thick ideals and Thomason-closed or specialization-closed subsets of X .
Specialization-closed means arbitrary union of closed sets, and Thomason-closed means
union of closed sets with quasicompact complement. It is known that the Balmer spectrum
parametrizes thick ideals in many cases: when the tensor product of K is commutative,
more generally when all prime ideals of K are completely prime, when K has a thick
generator, and when Spc K is Noetherian (see Theorem 2.1 below). Part of the difficulty
in question (1) above is that the crossed product category K x G does not satisfy, a priori,
any of these conditions (when G is infinite). One difficulty in question (2) is that in general
we do not know a systematic way to endow K¢ the structure of a triangulated category;
however, the triangulated structure exists under a few additional conditions, thanks to work
of Elagin [18]. We are able to answer the above questions in the following way in terms
of Spc K.

Theorem 1.1 (See Propositions 5.4, 6.5, 7.3, and 7.4). Let G be a group acting on a
monoidal triangulated category K. Then

(1) Spc(K x G) is homeomorphic to G- Spc K;

(2) if G is finite, K is k-linear with |G| # 0 in k, and K@ is canonically triangulated
(e.g. K is the stable category of a finite tensor category, or more generally admits
a DG enhancement), then Spc K€ is homeomorphic to G- Spc K;

3) if K is left or right rigid and Spc K is Noetherian, then specialization-closed sub-
sets of G- Spc K are in bijection with G -invariant thick ideals, points of G- Spc K
are in bijection with G-orbits of points of Spc K, and closed sets of G- Spc K are
generated by all orbits of closed sets of Spc K.

The assumptions on K in part (3) of this theorem are not too restrictive. Indeed, in our
primary motivating example, K = mod(H) for a finite-dimensional Hopf algebra H, we
have that K is rigid and it is a conjecture that Spc K is Noetherian (see Example 2.3 below
for details).
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2. Monoidal triangular preliminaries

We review the basics of monoidal triangulated categories and their underlying geometry.
A monoidal triangulated category is a triangulated category (cf. [44]) with a compatible
tensor product ® and unit 1, as in [39]. Throughout, we will denote the shift on a tri-
angulated category K by ¥ : K — K. We do not require any braiding condition on the
monoidal product. We have standard definitions below which follow the noncommutative
generalization [39] of Balmer’s tensor triangular geometry [1].

(1) A subcategory I of K is called a triangulated subcategory if for any distinguished
triangle
A— B —C — XA,
if Aand B areinl, then sois C, and 4 isin I if and only if ¥ A4 isin L.
(2) A triangulated subcategory I is called thick if A @ B € Iimplies A and B are both
inL
(3) A thick subcategory I is called a two-sided thick ideal if A € I implies A ® B

and B ® A are in I, for any object B € K. “Two-sided thick ideal” will often be
shortened to “thick ideal”.

(4) Given a collection of objects S, we write (S) for the smallest thick ideal contain-
ing S.

(5) A thick ideal I of K is called principal if it can be written I = (A4) for some
object A. If an ideal has a finite generating set, then it is principal, since the
smallest thick ideal containing a direct sum of objects is the smallest thick ideal
containing the union of those objects.

(6) A proper thick ideal P will be called prime if A @ K® B C P implies Aor B € P,
or equivalently if I ® J C P implies that either I or J € P, for all thick ideals I
and J of P [39, Theorem 3.2.2].

(7) The Balmer spectrum of K, denoted Spc K, is the topological space consisting of
the set of prime thick ideals, where closed sets have the form
Vk(S) :={P e SpcK:SNP = g},
where S is a collection of objects of K. When the category K is clear from context,
we write V(S) := Vk(S).
(8) The support of an ideal I in K is defined as
@y := | JV(4) = {P eSpcK:1ZP}.
A€l
By definition, this is a specialization-closed subset of Spc K.

(9) We call K left rigid if every object A of K has a left dual A*, as in [19, Sec-
tion 2.10]. Right rigid monoidal triangulated categories are defined similarly. We
call K half-rigid if it is either left or right rigid.
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(10) A thick ideal is called semiprime if it can be written as an intersection of prime
ideals. When K is half-rigid, all thick ideals are semiprime [40, Proposition 4.1.1].

(11) We call K Spc-Noetherian if Spc K is Noetherian, as a topological space.

In many cases, there is a bijection between Thomason-closed subsets of Spc K and
thick ideals of K. We recall these results now for reference.

Theorem 2.1. Let K be a monoidal triangulated category. In each of the following cases,
the support map @y induces an order-preserving bijection between semiprime thick ideals
of K and Thomason-closed subsets of Spc K:

(1) when A ® B =~ B ® A for all objects A and B of K [1, Theorem 4.10];

(2) when all prime ideals of K are completely prime (that is, when A ® B € P implies
A or B is in P, for any objects A and B € K and any prime ideal P of K) [37,
Theorem 3.11];

(3) when Spc K is Noetherian [53, Theorem 4.9];
(4) when K has a thick generator [41, Theorem A.7.1].

When K is half-rigid, the bijection in each case restricts to a bijection between principal
ideals and closed subsets of the form V(A), for A € K.

There are also various lattice-theoretic instantiations of Theorem 2.1, see [15, Proposi-
tion 2.7], [29, Corollary 10], [24, Theorem 6.4.5]. The bijection between semiprime ideals
and specialization-closed sets can be used to show the following.

Corollary 2.2. Let K be a half-rigid Spc-Noetherian monoidal triangulated category.
Then principal ideals of K satisfy the descending chain condition.

We end the section by reminding the reader of some of the standard monoidal triangu-
lated categories that we are interested in studying, which will serve as running examples
throughout the paper.

Example 2.3. Let C be a finite tensor category, that is, C is an abelian rigid monoidal
category with finite-dimensional morphism spaces, finitely many simple objects, enough
projectives, and the unit is simple. For example, C = mod(H ), the category of finite-
dimensional modules for a finite-dimensional Hopf algebra H, is a finite tensor category.
The stable category of C, denoted C, is defined as having the same objects as C, and mor-
phism spaces are quotients by those morphisms factoring through projective objects. Then
C is a rigid monoidal triangulated category (cf. [25]). There is a conjectural description
of the Balmer spectrum of C [42, Conjecture E]. In particular, Spc C is conjectured to be
Noetherian.

Example 2.4. Let X be a topologically Noetherian scheme. Denote by perf(X) the derived
category of perfect complexes of coherent sheaves on X (cf. [52, Section 3.2.3]). Note
that perf(X) is the subcategory of compact objects in the full unbounded derived category
of coh(X), [52, Lemma 3.5] or [13, Theorem 3.1.1]. Then perf(X) is a rigid symmetric



H. Huang and K. B. Vashaw 1060

monoidal triangulated category, and its Balmer spectrum is homeomorphic to X, by [,
Theorem 6.3 (a)], using work of Thomason [57]. The Thomason isomorphism will be
denoted _

nx : X = Spcperf(X).

When R is a commutative ring, we will typically abbreviate perf(R) := perf(Spec R), and
the Thomason isomorphism as 7 : Spec R — Spc perf(R).

3. Group action preliminaries

We now recall the definition of a group action on a monoidal category, following closely
[17, Definition 4.13] and [19, Section 2.7]. Let C be a monoidal category and G a group.
We will typically denote e for the identity element of G, and will denote the group oper-
ation in G using multiplicative notation. An action of G on C consists of the following
data:

(1) for each g € G, amonoidal autoequivalence Ty : C — C;

(2) for each pair g, n € G, a natural isomorphism yg , : TgTh = Tgp, such that for
any three elements g, h,k € G, the diagram

T,
TeTnTi —22%5 Ty Tk

Ygh Tkl lyg,hk

Tgh T W Tghk

commutes.

Remark 3.1. Note that it is a consequence of (1) and (2) that 7T, is naturally isomorphic
to the identity functor Id : C — C [18, Remark 3.2].

These conditions can alternatively be packaged together in the following way. To the
group G, we define a monoidal category Cat(G) where objects are elements of G, the
only morphisms are identity morphisms g — g, and the monoidal product is given by
multiplication in G. Recall we also have a monoidal category Autg (C) where objects are
monoidal autoequivalences of C, and the monoidal product is the composition of functors.
Then an action of G on C is just a monoidal functor

Cat(G) — Autg (C).

Now let K be a monoidal triangulated category. In this case, we require each Ty to be
a triangulated functor; in other words, we replace the category of monoidal autoequiva-
lences Autg (C) with the category of autoequivalences of monoidal triangulated categories.
Recall that this means we have natural isomorphisms T ¥ =~ T, for each g € G such
that if
A—-B—>C— XA
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is a distinguished triangle, then the corresponding triangle
TeA—TegB - T,C - 2Tz A

is also distinguished.
We now give a few examples of actions of groups on monoidal triangulated categories
that are of natural interest.

Example 3.2. Suppose G acts on a finite tensor category C (cf. Example 2.3). Since any
equivalence of abelian categories is exact and preserves projectives, it is straightforward
that there is an induced G-action on C.

Example 3.3. In particular, if H is a finite-dimensional Hopf algebra, and G a group
acting on H by Hopf algebra automorphisms, then G acts on mod(H ) via setting T (M)
to be the module with H -action * given in terms of the H-action . on M by h x m :=
g 1 (h).m. In particular, if G is an algebraic group and H is an @ (G)-comodule Hopf
algebra, then G acts on H by Hopf automorphisms. A natural example is the Drinfeld
double D(O(G)*) of the dual of the coordinate ring of a finite group scheme G, which is
a O(G)-comodule Hopf algebra.

Example 3.4. Not all group actions on mod(H ) arise from actions at the level of algebras,
however; if H is a cocleft extension of @ (G), then G also acts on mod(H ). For example,
by [16, Section 2.3], if G is a simple algebraic group over an algebraically closed field k
of characteristic 0 with Lie algebra g, then G acts on the category mod(u¢(g)); this action
does not arise from an action on the level of Hopf algebras. Here u;(g) is Lusztig’s small
quantum group associated to a primitive £th root of unity ¢, where £ is an odd integer
compatible with the Cartan data of G [36].

Example 3.5. Let G be a discrete group acting on a topologically Noetherian scheme X,
and consider the action of G on perf(X) via derived pullback, as in [18, Example 3.4].
The induced action of G on the Spc perf(X) corresponds to the original action of G on
X via the Thomason isomorphism 7y : X — Spc perf(X), by an argument of Stevenson
[54] which we include here.

Let x be a point of X. Pick an affine open Spec Ox (U) = U < X which contains x.
We have an equivalence of monoidal triangulated categories

(perf(X)/L(X\U))* = perf(U),

where I(X'\U) is the ideal consisting of objects in perf(X) supported on the complement
of U, by [57, Theorem 2.13] (see also [52, Lemmas 3.4 and 3.10]), induced by the restric-
tion functor Ry : perf(X) — perf(U). Here (—)h is the idempotent-completion operation
(see [5]); note however that, working on the level of Spc, the idempotent completion does
not affect one’s calculation [1, Corollary 3.14]. It follows that

nx(x) = {4 €K: RyA € ny(x)}. 3.1)
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Recall that by [3, Proposition 8.1], we have a functorial comparison map

Spc perf(U) 2 U~ Spec Ox (U)
P+ (f € Ox(U) : cone(f) €P),

which is an isomorphism (indeed, the inverse of the Thomason isomorphism 7y ). Here
we use implicitly the identification

Ox (U) = Hompert() (Ou, Ov)

when we refer to cone(f) for f € Ox(U). We also have a functor Ry : perf(U) —
perf(Ox,x) induced by the ring homomorphism Ox (U) — Oy, . By the functoriality of
Spc for braided monoidal triangulated categories [1, Proposition 3.6], we have induced
maps on spectra

Spe perf(Ox,x) — Spc perf(U) — Spc perf(X).

By the functoriality of the comparison map, we have a commutative diagram

pOXx
Spc perf(Ox,x) — Spec Ox x

| |

Spc perf(U) —

where the vertical arrows are the usual maps. The right hand side of this diagram sends
the unique closed point of Spec Ox x to x € U. The top row of the diagram sends the
0-ideal of perf(Ox,x) to the unique closed point in Spec Oy, since perf(X) is rigid, and
hence the unique closed point of Spc perf(OQx,,) must be the 0-ideal. The left column, by
definition, sends the 0-ideal to the collection of objects P := {A € perf(U) : Ry A = 0}.
By commutativity of the diagram, we have py (P) = x, thatis, P = ny (x). It follows from
(3.1) that

nx(x) = {A € perf(X) : RyA € P} = {A € perf(X) : R, A = 0},

where we denote R, = RxRy : perf(X) — perf(Qx,x) the standard restriction functor.
Let g € G. Now we can compute

Tenx(x) = TgP'
= {TyA: R.A =0}
= {A: R, Ty A =0}
={A: R, A=0}
= nx (g.x),

that is, the Thomason isomorphism is G-equivariant. Here the fourth equality follows from
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the commutative diagram

T,
perf(X) ——— perf(X)

I3 [ R

perf(Ox,x) —— perf(Ox,g.x)

where the bottom row is the functor induced by the action of G on X.

Example 3.6. Let K be any rigid monoidal triangulated category. Recall the Picard group
PicK of K, defined as the collection of isomorphism classes tensor-invertible objects of K
[2, Definition 2.1], with group operation given by the tensor product. Then Pic K acts on
K by conjugation. That is, if A is a tensor-invertible object of K, i.e., A ® A* =~ 1, then
denoting the isomorphism class of A in Pic K by [A], the action of Pic K on K is given by
TiqB:=A® B® A*.

4. G-ideals and G -prime ideals

Throughout this section, let G be a group acting on a monoidal triangulated category K.
We introduce some of the primary objects of study in this paper, namely G-ideals and
G-primes, and prove some elementary properties which will be useful going forward.

It is straightforward to verify that if I is a thick ideal of K and g € G, then

T, J:={T,A: Acl}
is another thick ideal, since T is a monoidal triangulated functor.

Definition 4.1. A thick ideal I of K will be called a G-ideal if it is G-invariant, that is,
T,I CIforall g € G. A G-ideal Q will be called a G-prime if for any G-invariant ideals
Iand J of K, we have I ® J € Q implies I or J € Q. The collection of G-primes of K
will be denoted G- Spc K, and be considered as a topological space where closed sets are

V9(S):={QeG-SpcK:SNQ =g}

for any collection S of objects in K. We have the G-Balmer support @, which sends a
G-ideal I to the specialization-closed subset

o6 (M) = JV9(4)
A€l

of G-SpcK.

Remark 4.2. Since thick ideals are closed under isomorphism, and since there is a natural
isomorphism T, Ty-1 = T, = Id, if I'is a G-ideal then TgI = I forall g € G.
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Example 4.3. Let K be a rigid monoidal triangulated category, and consider the action of
G :=PicK on K as in Example 3.6. For [4] € PicK, we have Tj 4B € (B), and it follows
that every thick ideal of K is a G-ideal of K, hence Spc K = G- Spc K.

The following lemma gives a natural way of constructing G-ideals of K.

Lemma 4.4. Let G be a group acting on a monoidal triangulated category K. Let S be a
G-invariant collection of objects of K. Then (S) is a G-ideal of K.

Proof. Set
I:'={Aec(S):TgA € (S)Vg € G}.

Since S is itself G-invariant, it follows that S € I. We claim that I in fact is a thick ideal,
and hence (S) C I; since the opposite containment holds by definition, it will follow that
I = (S). Itis clear that I is a thick subcategory, using the fact that each Ty is a triangulated
functor; for example, if

A—->B—-C — XA

is a distinguished triangle with A and B both in I, then since
TeA—TeB - T,C - 2Tz A

is a distinguished triangle with both Ty A and T, B in (S), it follows that 7, C € (S}, that
is, C € I. The ideal property for I follows from the fact that each 7, is monoidal: if 4 € I
and B € K, then we see that

Te(A® B) = Tg(A) ® T, (B)
isin (S) since Ty A € (S), and it follows that A ® B € L. |

Note that if P is a prime ideal of K, then T, P is also a prime ideal of K. Hence we
have a natural action of G on Spc K, via

gP =T, P={T;A: AcP}.
We now connect G-invariance on the level of ideals with G-invariance on the level of Spc.

Lemma 4.5. Let G be a group acting on a monoidal triangulated category K. If L is a
G-ideal, then the support ®y (1) of L is a G-invariant subset of Spc K. If 1 is a semiprime
ideal, and if @y (1) is G-invariant, then 1 is a G-ideal.

Proof. Recall that by Section 2 (8)
Oy (M) ={PeSpcK:1ZP}.

If Iis G-invariant, then I & P for P a prime ideal implies that I & T, P for any g € G, that
is, if P is in @y (I) then T, P is in ®y (I) as well. Thus ®y (I) is G-invariant.
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On the other hand, if I is semiprime and ®y (I) is G-invariant, and if P D I, then
TzP D Iforall g € G as well. Hence, since

I=\P.
P/oI
if A € I'then A € P’ for all P’ over I, hence by the above Ty A is in P’ for all P over I, and
soTgI CIforallg € G. [
We give a useful reformulation of the G-prime condition.
Lemma 4.6. Let G be a group acting on a monoidal triangulated category K. Let Q be a
G-ideal of K. Then the following are equivalent:
(1) Qisa G-prime;
(2) Q satisfies
T, AQK®TRBCQ Vg heG = AorBeQ;
3) Q satisfies
T,ARK®B CQ VgeG=AorBeQ;
4) Q satisfies
AQK®T,B<CQ VheG= AorBeqQ.

Proof. We first check that (1) and (2) are equivalent. Suppose Q is G-prime, and that
T, A® K® Ty B € Q for some objects A and B € K, and all g and & € G. Then it is
straightforward that

(TeA: g€ G)R(TpB:heG)<Q.

Since both ideals are G-ideals by Lemma 4.4, it follows that either A or B is in Q.
For the other direction, assume Q satisfies (2), and suppose that

I®J<CQ

for two G-ideals I and J. Assume I Z Q; then there exists some A € I with A ¢ Q. But
then
T, AQK®TBCI®JICQ

forall B € Jand g and & € G, and by assumption either A or B is in Q. Since A4 & Q by
assumption, B € Q for all B € J, thatis, J € Q. It follows that (1) and (2) are equivalent.
It is clear that (3) implies (2), by definition. To see that (2) implies (3), just note that if

T,AQKQ® B CQ
for all g in G, then using the fact that Q is a G-ideal,
Tth®K®ThB EQ

for all g, h € G, and so by (2) either A or B is in Q. The equivalence of (2) and (4) is
similar. ]
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Finally, we prove that under a Noetherian assumption, a principal or prime ideal is
invariant under a functor Tg, for g € G, if and only if it is equal to its image under that
functor. A ring theory analogue of the lemma below may be found in [22, Section 2].

Lemma 4.7. Let G be a group acting on a half-rigid Spc-Noetherian monoidal triangu-
lated category K. IfLis a principal ideal so that Tg1 C 1 for some g € G, then Tg1 =1

Proof. Since Lis principal, T, I is principal. Thus we obtain a descending chain of princi-
pal ideals
IDT 2Tl Do 2 Tignl--- .

Since principal ideals of K satisfy DCC by Corollary 2.2, there exists n with Tgn (I) =
Tyn+1(I). By applying the equivalence Ty-n to this identity, the result is obtained. |

Lemma 4.8. Let G be a group acting on a half-rigid Spc-Noetherian monoidal triangu-
lated category K. If P € Spc K satisfies T,P C P for some g € G, then T,P = P.

Proof. Let P be a prime with TP C P. Since Spc K is Noetherian and K is half-rigid, by
Theorem 2.1 there exists an object A with

V(A) :={P € SpcK: A ¢ P} ={P} ={P €SpcK:P CP}.

Since TgP C P, we have A ¢ T¢P, in other words, T,-1 4 ¢ P. That is, P € V(Tz-14).
Hence L
{P} = V(A) CV(T,-1 A).

Now again by Theorem 2.1, since there is a containment preserving bijection between
principal ideals of K and closed subsets of the form V(B), we have 4 € (Tz-14). By
Lemma 4.7, we have (4) = (Tg-14), and so

{P} = V(A) = V(Tg-14) = {T,—1P}.

This implies that P = T,-1P, and by applying the autoequivalence T, we observe that
P=T,P |

5. Ideals and primes in the crossed product category

Let C be a monoidal category, and G be a group acting on C. As in [19, Section 4.15], we
set the crossed product category of C by G to be a direct sum

CxG:=Pc
geG

indexed by elements of G, as additive categories. If A is an object of C, then the cor-
responding object of C x G in the copy of C indexed by g will be denoted by A X g
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(the notation is meant to reflect the fact that if C is a k-linear category, then C x G
is given by the familiar Deligne tensor product [19, Section 1.11]). That is, objects of
C x G are formal direct sums of objects of the form A X g, for 4 € C and g € G, and
Homgxg (A X g, B X h) := Homg (A, B) if g = h, and 0 otherwise. A monoidal product
is then defined via

(AR ) ® (BR ) := (A® T;(B)) K gh.
The monoidal unit for C x G is the object 1 X e, where e is the identity of G.

Lemma 5.1. Let G be a group acting on a monoidal category C. If the object A in C has
a left (resp. right) dual, then A X g has a left (resp. right) dual in C x G. In particular, if
C is half-rigid, then so is C x G.

Proof. We give the argument for left duals. Let A be in C with left dual A*. We claim that
AN g has left dual Tg-1(A™) X g~ . In particular, we define evaluation by

. 1 . Tg—l (evq)Xe
(Tgfl(A )X g )®(A&g) 2Tg1(A" @A) Ke ———— 1Xe

and coevaluation by

coevy Ke

IRe —— (A A" ) Rex= (AR Q) ® (T-1(A*) Rg™).

Now note that

(coevy XRe)®idgxg idAgg®Tg_1(evA)IXe

ARG ——————— (ARG ® (T,-1 (A*)Kg ) ® (ARg) AR g

corresponds to the morphism

v ®idg )X idg ®evyg)X
A&g(COCA A)g(A®A*®A)|Zg(A eA)gA&g
by the definition of tensor product of morphisms in C x G, and this morphism is id4xg by
the duality between A* and A in C. This gives one of two identities required for duality;
the other follows similarly. [ ]

If K'is a monoidal triangulated category, and G is a group acting on K, then we observe
that K x G has the natural structure of a monoidal triangulated category, since it is (as an
additive category) simply a direct sum of triangulated categories.

Example 5.2. Let G be a group acting on a finite tensor category C. As in Example 2.3,
we can form the stable category C, which is monoidal triangulated, and the action of G on
C defines an action of G on C, so we may form C x G. On the other hand, we may also
form C x G. Since C x G is simply a direct sum of copies of C as an additive category, it is
straightforward to check that the indecomposable projective objects of C x G are precisely
objects of the form P X g for P a projective object of C and g € G. It follows that the
natural functor C x G — C x G is an equivalence of monoidal triangulated categories.
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Example 5.3. Let H be a finite-dimensional Hopf algebra, and G a finite group acting
on H by Hopf algebra automorphisms. Recall that G acts on mod(H ) and mod(H ) as in
Example 3.3. At the abelian level, we have

mod(H) x G = mod((H *#kG)*).

Furthermore,
mod((H*#kG)*) = mod(H) x G

as above in Example 5.2. Here (H *#kG)* is the Plavnik—Witherspoon Hopf algebra con-
sidered in [7,51]. There is a conjectured description of the Balmer spectrum for the stable
category of such a Hopf algebra [42, Conjecture E], which has been verified for several
large families of examples ([39, Theorem 9.2.3], [42, Theorem 9.1.1]).

Given an action of a group G on a monoidal triangulated category K, we now connect
G-ideals and G-primes with ideals and primes in the crossed-product category. We set
some notation: if I is a G-ideal of K, we denote I x G to be the collection of objects of
K x G generated additively by objects of the form A X g forall A e I and g € G. We
embed K into K x G by sending A — A X e; hence, J N K will refer to the subcategory
of K consisting of objects A such that A X e € J, if J is a thick ideal of K x G.

We now check that these maps give bijections between appropriate collections of
thick and prime ideals. Parts (1)-(3) may be viewed as an analogue of [34, Lemma 1.1],
although the analogue of part (3) for rings is not a bijection, but rather, just a surjection in
one direction.

Proposition 5.4. Let G be a group acting on a monoidal triangulated category K. Let 1
be a G-ideal of K and J be a thick ideal of K x G. We have:

(1) IxG is athick ideal of K %< G;

) JNKisa G-ideal of K;

(3) the maps given by (1) and (2) define a bijection between G-ideals of K and thick
ideals of KX G, thatis, IXxG)NK=Tand JNK)x G =]J;

@) Qisa G-prime of Kif and only if Q x G is a prime ideal of K x G;
(5) the bijection from (3) restricts to a homeomorphism Spc(K x G) =~ G-Spc K.
Proof. First we show (1). By the definition of the triangulated structure on K x G, it is

straightforward that I x G is triangulated, and in fact thick. To check the ideal property,
note that by the definition of the tensor product,

(ARG ® (BRh) = (AQ Tg(B)) R gh

forall 4, BinKand g, h e G;if AKgelIxG,ie,Ael then A ® T,(B) €I and
consequently (A ® T (B)) X gh €Ix G.Ontheotherhand,if BRK A eIxG,ie, Bel,
then T, B € I'since it is a G-ideal, and again

(ARG ®(BRh) =(A® T, (B) K gheIxq.
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For (2), it is similarly straightforward to show that J N K is a thick ideal of K. It
remains to show that it is G-invariant. Let A € JN K, i.e., A X e € J. Then

(1IN RARe) (IR g ) =T (A Re e,

hence T, A € JNK.
For (3), just note
(IxG)NK = {direct sums of elements of the form AKX g for Acl, ge G}NK
= {A : A € {direct sums of objects of the form AX g for A€l, ge G}}
=1,

and

JNK)xG ={A:AReeJ}xG
= {direct sums of objects of the form A X g for A with A K e € J}
=J.
The last equality holds due to the fact that if e Ag W g € ], then since J is thick,

each A; g e Jandso A; Ke = (4, Kg)®@ AR g™ el.
(4) follows from (3) since for any G-ideals I, J, and Q of K, we have

IRJCQ&ARNNGCQXG & (IxG)®IxG)SQxG.

For part (5), the only thing we need to verify is that the restriction of the maps from
(3) are continuous. Let Q € G-Spc K and S be a collection of objects of K x G. Then we
check

QxGeVkuo(S) &V P A Mg €8S, Jiwith4; Kg; Q=G

iel
VP AiRg €S, Jiwith4; ¢Q
iel
Qe VI?({@ A @ A; X g; €8 for some collection of g; € G})

iel iel
On the other hand, if P € Spc(K x G) and R is a collection of objects in K, then we
similarly check

PNKeVSR) & VAR ARe ¢P & Pe Vkug(ARe: A€R). -

Corollary 5.5. Let G be a group acting on a half-rigid monoidal triangulated category K.
Then every G-ideal of K is an intersection of G-primes.

Proof. By Lemma5.1, K G is half-rigid. Recall that this implies every thick ideal of K x
G is semiprime, i.e., is an intersection of prime ideals (see Section 2 (10)). The corollary
then follows by Proposition 5.4. ]
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We end this section with a consequence with regards to the tensor product property on
G- Spc K. The Balmer support V' is said to have the tensor product property if

Ve(A® B)=V9A)nVY9B)

for all objects A and B, or, equivalently, if every prime ideal is completely prime. The
tensor product property for various support varieties has been intensely studied recently,
see [7,9,10,40,47,51].

Corollary 5.6. Let G be a group acting on a half-rigid Spc-Noetherian monoidal trian-
gulated category K. If the induced action of G on Spc K is nontrivial on closed points,
then K x G has a nonzero nilpotent element. As a consequence, V' does not satisfy the
tensor product property. On the other hand, if all closed points of Spc K are fixed under
the action of G, then K x G has nilpotent objects if and only if K does.

Proof. Suppose P is a closed point of Spc K (that is, a minimal prime) such that 7z P # P.
We have an object A such that V(A) = {P} by Theorem 2.1. Then

V(A® Ty A) € V(A) N V(TgA) = {P} N {T P} = @,

hence A ® Ty A = 0. Therefore, A X g in K x G is nilpotent (of order 2), and by [40,
Theorem 4.2.1], the Balmer support for K x G does not satisfy the tensor product property.
By Proposition 5.4, V¢ does not satisfy the tensor product property.

It is clear that if K has a nilpotent object, then so does K x G. Suppose that K x G
has a nonzero nilpotent object, and that the action of G on Spc K fixes all closed points.
In particular, then, there exists some A X g which squares to 0, hence A ® Tg A = 0. Let
P be some closed point of V(A). Then note

| V(T A® B ® A) = V(T A) N V(4) 2 (P},
BeK

so there exists some B in K so that C := T A® B® A is nonzero. But since AQ Ty A =0,
we have C ® C = 0, so K has a nonzero nilpotent. [

6. Ideals and primes in the equivariantization

Let K be a monoidal triangulated category and G a group acting on K. In this section
we connect (under some technical conditions) the G-Balmer spectrum of K to the Balmer
spectrum of K@, the equivariantization of K, which plays the role analogous to the invari-
ant subring in ring theory.

We begin by recalling the standard definitions, see [17, Section 4.1.3] or [19, Sec-
tion 2.7]. Suppose that G is a group acting on a monoidal category C (we will not use any
triangulated structure until later in the section). A G-equivariant object in C is defined as
a pair (A4, ¢) consisting of A € C and a family of isomorphisms ¢ = {¢¢ : g € G} where
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>~

¢g is an isomorphism Ty A — A, such that the diagrams

A
Y
T, Thd —=" Ty

ng o l‘bgh
[

TeAd ——— A,
commute, where yg 5 is the natural isomorphism T o T}, = Ty The equivariantization
CY of C the category where objects are equivariant objects of C and morphisms (A4, ¢) —
(B, ¥) are defined as morphisms A — B in C which commute with the equivariant struc-
ture. The equivariantization inherits a monoidal product from C in the straightforward
way.
Suppose G is finite. We have two natural functors between C and C%:

Ar— (Byeq To A, t4)
Ind

T T

¢ \_/ CG
For

(4. 9¢)

where 74 = {t;l" : h € G} is the straightforward equivariant structure given explicitly by

=P, Th(@ TgA) 5 P4
g g

geG

A

The functors Ind and For are both left and right adjoint to one another [ 17, Lemma 4.6 (a)].
We obtain the following familiar tensor identity.

Lemma 6.1. Let C be a monoidal category and G a finite group acting on C. Suppose A
and (B, ¢) are objects in C and CC, respectively. Then

Ind (A ® For(B, $)) = Ind(4) ® (B, ).

Proof. We claim that the map D, ¢ (id7, 4 ® ¢) from Ind(A®For(B, ¢)) = Ind(A® B)
to Ind(4) ® (B, ¢) is an isomorphism in C®. Indeed, this map is compatible with the
equivariant structures, since the diagram

(A®B
Th(@gec Th15(A ® B)) L Dy Te(A® B)
l_ EBgeg(y;l“,h_l ®y£h_1 ) l_
Die (ThTi-15(A) & ThTj-14(B)) - : Deec (Te(A) ® Tg(B))
l@geG(idThTh_lg(A)®Th(¢h71g)) l@geG A7y 4@y
r,f®¢h

Deec ThTh-14(A) ® Ty(B) PByec Te(A) @ B




H. Huang and K. B. Vashaw 1072

commutes: the top square commutes since each y is a natural transformation of monoidal
functors [19, Definition 2.4.8], and the bottom square commutes by the fact that ¢ is an
equivariant structure for B. ]

At this point, we will now assume that K is monoidal triangulated and G is a finite
group acting on K. We need to make some additional assumptions, in order to ensure that
K¢ has a standard triangulated structure. That is, we wish to call a triangle in K€ distin-
guished if and only if its image under the forgetful functor For is distinguished in K. By
a theorem of Elagin [18, Theorems 6.5 and 6.9], using work of Balmer [4], the following
assumptions are enough to verify that K¢ endowed with the distinguished triangles as
above is indeed triangulated.

Assumption 6.2. The group G is finite, the triangulated category K is k-linear for some
ring k with |G| # 0 in k, and K is the homotopy category of some stable model category
(or, in particular, K admits a DG enhancement).

For the remainder of the section, the conditions of Assumption 6.2 are in effect.

Example 6.3. Let G be a finite group acting on a finite tensor category C over a field k as
in Example 2.3 with |G| # 0 in k. The equivariantization C¢ of C by G is again a finite
tensor category [19, Section 4.15], and indeed C% = QG (here the former category is the
stable category of the equivariantization of C, whereas the latter is the equivariantization
of the stable category of C) [55, Theorem 3.14]. That is, taking the stable category com-
mutes with taking the equivariantization. Note that this situation satisfies Assumption 6.2
since C has a DG enhancement [28, Theorem 3.8].

Example 6.4. Let G be a group acting on a Noetherian scheme X with the induced action
on perf(X), as in Example 3.5. Assume this action satisfies Assumption 6.2 (note that
perf(X) does have a DG enhancement, by e.g. [35, Section 3.1]). Denote by C := coh(X),
the category of coherent sheaves on X. Then by [55, Example 3.20] (or alternatively
by [18, Remark 7.2] in conjunction with [12, Proposition 3.2]), we have perf(X)G o~
D(CY)¢ the compact part of the derived category of the equivariantization of C. Under
some conditions (see e.g. [18, Introduction]), the category CC is the category of coherent
sheaves on the quotient variety X/ G; more generally, it can be constructed as the category
of coherent sheaves on the quotient stack X //G. When coh(X)® = coh(X/G), it follows
that perf(X)¢ = perf(X/G), that is, taking the perfect derived category commutes with
taking the equivariantization.

Suppose 1 is a thick ideal of K. Then we write
I°:={(4,¢9) eK% : 4 1}
On the other hand, suppose J is a thick ideal of K¢. Then we write
JNK:={4eK:nd(4) € J}.

Here the notation is meant to reflect the fact that Ind embeds K as a subcategory of K©.
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Via these maps, we obtain a bijection between G-ideals of K and ideals of K¢ in the
following proposition. In the analogous ring theoretic setting no such bijection exists, but
rather there is a bijection between G-primes and a certain quotient of the spectrum of the
invariant subring [38, Proposition 4.2].

Proposition 6.5. Let G be a group acting on a monoidal triangulated category K satisfy-
ing Assumption 6.2 and let I be a G-ideal of K and J be an ideal of KC. We have:

(1) 19 is a thick ideal of K

) JNKisa G-ideal of K;

(3) the maps given by (1) and (2) define a bijection between G-ideals of K and thick
ideals of KO, that is, 1) NK = Tand (J N K)% = J;

4) Pisa G-prime of K if and only if PC is a prime ideal of K%;

(5) the bijection from (3) restricts to a homeomorphism Spc KC ~ G- Spc K.
Proof. (1) is straightforward, since For is a monoidal triangulated functor. For (2), we have
that Ind is a triangulated functor, but no longer monoidal, so that it is still straightforward
to check that J N K is a thick subcategory; it remains to show the ideal property. Let
A e JNK,andlet B € K. Since B is a summand of For(Ind(B)), we have Ind(4 ® B)

is a summand of
Ind (A ® For (Ind(B))) = Ind(A4) ® Ind(B),

using Lemma 6.1. Since Ind(4) € J by assumption, and J is a thick ideal, Ind(4) ®
Ind(B) € J, and hence Ind(A ® B) € J, and it follows that J N K is a thick ideal. Since
Ind(A) = Ind(7, A) for all g € G, it follows that J N K is a G-ideal.

(3) We may compute

I°NK={(4,¢)eK°: 41} nK
={B eK:Ind(B) € {(4,¢) e K : A e1}}
= {B € K: ForInd(B) € I} =L
The last step follows from the fact that I is a G-ideal. For the other direction, note that
ANK)C = {4 cK:nd4) € J}°¢
= {(B.$) €K : B e {4 €K :Ind(4) € J}}
= {(4,¢) € K% : Ind(4) € J};

we must show that this is equal to J. Let (4, ¢) be an object with Ind(A) € J. We have
that (A4, ¢) is a summand of Ind(A) by [17, Lemma 4.6 (b)]; hence (A4, ¢) € J, and so

ANK? <.
Now let (4, ¢) € J. Then
Ind(1) ® (4,¢) = Ind(1 ® A) = Ind(A)
by Lemma 6.1, and so Ind(A4) € J. It follows that (J N K)¢ = J.



H. Huang and K. B. Vashaw 1074

Using the bijection from (3), one can check (4) and (5) similarly to Proposition 5.4(4)
and (5). [

Remark 6.6. When K is the stable category of a finite tensor category C over a field k,
and G is a finite group with |G| # 0 € k acting on C as in Example 3.2, an alternate proof
of the surjectivity of the map in Proposition 6.5 (5) can be approached by the arguments
in [6], using Example 6.3 and the fact that K is the compact part of a compactly-generated
monoidal triangulated category (the “big” stable category, cf. [42, Appendix A]).

7. The core map and a description of G - Spc

Throughout the section, we assume G is a group acting on a monoidal triangulated cat-
egory K. In the previous sections, we have connected G- Spc K with Spc K x G, and
with Spc K@ (under certain assumptions). In this section, we give a complete description
of G-SpcK, in terms of the induced action of G on Spc K. We first give analogues of
G-cores of ideals and prime ideals from ring theory, cf. [32, Section 11.7.1].

Definition 7.1. Let I be a thick ideal of K. Then the G-core of 1, denoted (I: G), is
defined as the largest G-ideal contained in I.

It is straightforward to verify that
I:G)= ()Tl
geG

Here, recall that T, I refers to the thick ideal consisting of elements of the form T, A4, for
A € L It is also straightforward to observe that if P is a prime ideal of K, then (P : G) is
a G-prime ideal of K. Hence we have an induced core map

SpcK 5 G- SpcK

P~ (P:G).

Here we consider ¢ only as a set map.

Just as in the ring-theoretic case (see [30, Section 0.2]), it is clear that ¢ factors through
the topological quotient (Spc K)/ G, whose points are G-orbits of primes in Spc K, via

SpcK

(SpcK)/G 2 » G-SpcK

GP: s (P:G)

where G.P denotes the orbit of P in Spc K under the induced G-action.
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We next prove the bijectivity of the map ¢, when Spc K is Noetherian. This result
shows a deviation of tensor-triangular geometry from ring theory, since for even very well-
behaved group actions on rings, the map from G-orbits of primes to the G-prime spectrum
typically fails to be injective. On the other hand, surjectivity of the core map is satisfied
in ring theory under Noetherianity assumptions, see [21, p. 338] and [14, Lemma I1.1.10]
(although the proofs are quite different than the ones we provide in the monoidal trian-
gulated case). In the ring theory case, this gives a bijection between finite orbits of prime
ideals and G-prime ideals, whereas in the monoidal triangulated case below we obtain a
bijection between arbitrary orbits of prime ideals and G-primes.

Proposition 7.2. Let G be a group acting on a half-rigid Spc-Noetherian monoidal trian-
gulated category K. Then the map ¢, : (SpcK)/G — G-SpcK given by GP— (P: G)
is bijective.

Proof. We first show injectivity of c,. For the sake of contradiction, suppose that ¢(P) =
c(P’) for some P, P’ € SpcK with G.P # G.P’. Suppose that T,P C P’ for some g € G
and T,P’ C P for some & € G. In that case, we would have that

TyeP C T,P C P,
and so by Lemma 4.8 this would imply
TheP = TP =P,

hence that G.P = G.P, a contradiction. Thus, without loss of generality we may assume
that T, P Z P’ for all g € G, that is, for each g € G, we can find A, €P such that T, Az &P’

We now construct a descending chain of closed subsets of Spc K, by choosing i such
that at each step the containment is strict (if it is possible to do so):

V(Tg, A1) 2 V(Tg, A1) N V(Ty,A2)
22 V(T A) NV (Tg, A2) NN V(Tg Ai) 2 -+ .

By the Noetherianity assumption, this process must terminate, say at step n. Also by
Noetherianity, there exists an object A such that

V(A) = V(Tg, A1) N V(Tgy A2) N+~ N V(Tg, An).

We claim that this A satisfies (1) 4 € ¢(P), and (2) A & c(P’), showing that ¢ (P) # c(P’).
For (1), we note that by assumption, for any g € G, we have

V(A) N V(TgAg) = V(A).

In other words, V' (4) C V(T3 Ag), which implies, by the order-preserving bijection between
closed subsets and principal ideals Theorem 2.1, that A € (T, Ag). Since Tg Az € T¢P,
we have A € TP for all g, and it follows 4 € c(P).
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For (2), to show that A & ¢(P’) it suffices to note that A & P’: if A was in P/, we would
have P’ & V(A). But that would imply that

P & V(Tg, A1) N V(TgyAz) NN V(Tg, Apn).

which would mean by definition that for some i = 1---n, we would have Tg, A; € P'.
This is a contradiction, and completes the proof that c; is injective.

Next we show surjectivity of ¢, or, equivalently, surjectivity of c. Let Q € G-SpcK;
we will produce a prime P € Spc K such that ¢(P) = Q. To do this, we will inductively
define a collection of objects {A1, ..., A;} satisfying the following properties for i > 2:

1) A48 ®A4; ¢Q;

(2) there exists a prime ideal P; € Spc K with Q € P;;
(3) Aj ¢P;forall j =1,...,1;

4 A;€eP;i_,.

For the first step of the induction, one may simply pick any object A; which is not in Q;
then since Q is semiprime, we can pick a prime ideal Py containing Q and not contain-
ing Aj.

Now we describe the inductive step (if it is possible). Suppose we have chosen objects
Ai,...,Aj—1,suchthat 4] ® --- ® A;—1 € Q, and such that we have a prime ideal P;_; €
SpcKwithQ € P;_jand A; ¢P;_; forall j =1,...,i — 1. Suppose there exists 4] ¢ Q
satisfying Tg A} € P;_; forall g € G, thatis, A} € ¢(P;—). Using Lemma 4.6, since both
A1 ®---® A;_1 and A; are not in Q, there exists an object B € K and an element g € G
such that

A1Q®A,® - ®Ai-1 ® BT A; Q.

Set A; := B ® Tg A}. Note that A; € P;_y,since Ty A; € P;_j,andthat 4; ® - - ® 4; ¢ Q
by construction. Then using again semiprimeness of Q, we can find a prime ideal P; with
QCP;,and

A1 ® Ar---® A; €Py;

this implies that each A; & P;, for j = 1,...,i. This completes the inductive step.
To complete the proof, we now consider the descending chain of closed subsets

V(A1) 2 V(A NV(A2) 2.2 V(A NV(A2) N---NV(A;) 2.

These inclusions are strict, since by construction we have P; € V(4;) N --- V(4;), but
Aij4+1 € P;, that is, P; & V(A;+1). By Noetherianity, this process must terminate; that is,
at some step, say 7, we cannot find A, , | with A}, | #Qand T, 4; ,, € P, forall g € G.
In other words, we cannot find A4, € c¢(P,) with 47, ; ¢ Q, so c(P,) € Q. But since
Q C P, by construction, we have c(P,) = Q. [ ]

We are now ready to complete the proof of the main theorem (Theorem 1.1). That is,
by the previous result, we have a bijection between points of G- Spc K and G-orbits of
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points of Spc K; it remains to describe G- Spc K as a topological space. We proceed to
describe the closed sets of G- Spc K in terms of orbits, and show that the specialization
closed sets parametrize the G-ideals of K.

Proposition 7.3. Let G be a group acting on a half-rigid Spc-Noetherian monoidal trian-
gulated category K. Using the bijection c; : (SpcK)/G — G- Spc K o identify points of
G- Spc K with orbits of points of Spc K, if W is a closed subset of Spc K, then the orbit of
W in (Spc K)/ G corresponds to a closed subset of G- Spc K. Furthermore, these closed
subsets generate the topology on G- Spc K.

Proof. We check that

V9(A4) ={Q e G-SpcK: A4 ¢ Q)
= {c(P):P e SpcK, 4 &c(P)}
= {C(P) :PeSpcK, T, A ¢P forsome g € G}
= {c(P):P e SpcK, 4 ¢P}
= {c(P) : P € V(4)}.

The second equality follows since the core map c¢ is surjective, by Proposition 7.2. The
fourth equality follows since ¢ (P) = ¢ (T, P) for any g € G. Under the bijection c; between
the sets (Spc K)/G and G- Spc K, we see that closed subsets of G- Spc K are generated
by the sets corresponding to the subsets

(GP:P e V(4)) C (SpcK)/G.

Recall that a general closed set 149 (S), for a collection S of objects of K, is the intersection
of closed sets V9 (A) for A € S. |

Note in particular that if G is finite, or more generally if the ideal (Tg A : g € G)
is finitely-generated for all A € K, then G- SpcK is precisely the topological quotient
of Spc K by the action of G. This recovers the results [39, Theorem 9.2.3], [46, Sec-
tion 10 (C)], and [42, Theorem 9.1.1], by Example 5.3 and Proposition 5.4.

Lastly, we show that under our standard assumptions the G-ideals of K are paramet-
rized by specialization-closed subsets of G- Spc K.

Proposition 7.4. Let G be a group acting on a half-rigid Spc-Noetherian monoidal trian-
gulated category K. The G-Balmer support ®g on G- Spc K induces a bijection between
G-ideals of K and specialization-closed subsets of G- Spc K.

Proof. On one hand, by definition, if I is a G-ideal of K, then its support is

oc = JVe(.

A€l

which is a specialization-closed set. The map which sends a specialization-closed subset
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S of G- SpcK to the G-ideal
N Q
Q&eG-SpcK with Q&S
is a left inverse to P, using the fact that every G-ideal is an intersection of G-primes
by Corollary 5.5. Indeed, it follows from Lemma 4.5 that G-ideals are in bijection with
arbitrary unions of closed sets of the form V¢ (A), for A € K.

It remains to be shown that every specialization-closed subset of G- Spc K is a union
of closed subsets of the form V¥ (A), that is, that an arbitrary closed subset V ¢ (S), for
S a collection of objects of K, is a union of closed sets of the form V¢ (A). We set the
notation that if S is a collection of objects, then GS is the collection of set maps S — G.
For ¢ € G5, we set T(S) to be the collection of objects

T¢(S) = {T¢(A)A 1A e S}.

Note that by Theorem 2.1, we know that for any collection of objects S, there exists
some object, say Ag, such that in Spc K we have V(S') = V(Ag). Hence

ves) =V
AeS
= () {c®):Pe V()
AeS
{c(P):PeSpcK, andVA €8, 3¢ € G with T, A ¢ P}
| {e®@) :Pev(Ty)}

peGS

= U {c(P):P e V(Ag,s))

¢eGS

= |J v9r,s). .
<GS

One should note that thick ideals are parametrized by specialization-closed sets and
not by Thomason-closed subsets, since there is no guarantee that G- Spc K is Noetherian.
In particular, this means that if G- Spc K is non-Noetherian (we provide an example below
in Example 7.7), the G-ideal lattice of K (equivalently, the ideal lattice of K x G) cannot
be equivalent to the ideal lattice of any symmetric or braided monoidal triangulated cat-
egory, by Theorem 2.1. This gives potentially one of the first “purely noncommutative”
examples of Balmer spectra, in light of [46, Question 4.2].

Example 7.5. Let C be a finite tensor category and K := C its stable category. Recall
that there is a comparison map p : Spc K — Proj Cg (see [42, Section 6.2]), where Cg
is a particular subalgebra of the cohomology ring P; ., Homk (1, Y1) (see [42, (1.1)]),
under a weak finite-generation assumption (see [42, Section 1.5]). Suppose that p is an
isomorphism; recall that this is conjectured to always hold [42, Conjecture E]. Suppose
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also that G is a finite group acting on K. By a similar argument to [42, Theorem 5.2.1],
we have Cg, o = (Clz)G. Then by Proposition 5.4 and Proposition 7.3, we have

Spc(K x G) 2 G-SpcK = (Proj CR)/G == Proj(Cg)% = Proj Cyg-

That is, under our assumption that C satisfies [42, Conjecture E], it follows that C x G
also satisfies [42, Conjecture E]. This generalizes [42, Theorem 9.1.1], which proved the
corresponding theorem for smash coproduct Hopf algebras.

Example 7.6. Let g be the Lie algebra of a simple algebraic group G over an algebraically
closed field k of characteristic 0 and u¢ (g) be the small quantum group at a root of unity, as
in Example 3.4. It is a conjecture of Negron and Pevtsova that Spc mod(u¢(g)) = P(N),
where N is the nilpotent cone of g [45, Section 17.4]. This is proven for G = SL,
[45, Corollary 17.2]. In the SL; case, N = AZ, so that Spc mod(u¢(g)) = P/, and
the action of G is transitive on closed points. By Proposition 5.4 and Proposition 7.3,
it follows that G- Spc mod (u¢ (g)) = Spc(mod(u¢(g))  G) has one closed point and one
generic point. More generally, assuming the Negron—Pevtsova conjecture, closed points
of G- Spc mod(u¢(g)) would be in bijection with nilpotent orbits, a finite set [27, Sec-
tion 2.5].

Example 7.7. Let X := Aé = Spec C[x, y] be the affine scheme of complex affine
2-space. Recall that we have the rigid monoidal triangulated category perf(X) as in Exam-
ple 2.4. Consider G = Z acting on X via

Z — Aut(C[x, y])
Il> (x> x+1,y- ).

Hence the action of n € Z on a closed point (a,b) = (x —a,y — b) fora,b € C is given
by
n:(a,b)— (a+n,b).

We have an action of Z on perf(X) by Example 3.5, and the induced action of Z on
Spc perf(X) corresponds to the original action of G on X when we identify Spc perf(X)
and X via the Thomason isomorphism. Let V' be the closed subset of Z-Spc perf(X) cor-
responding to the orbit of the closed set Z(x) of Spc perf(X), and W be the closed subset
of Z-Spc perf(X) corresponding to the orbit of the closed set Z(mx — y) of Spc perf(X),
for some integer m. Then W N V corresponds to the orbits of the closed points (0, ma) for
any a € Z; denote this closed subset Y (). Then we can construct an infinite descending
chain
Y(m) 2 Y(m?) 2 Y(m?) 2 -

Hence Z-Spc perf(X) is non-Noetherian, and so perf(X) x Z gives one of the first known
examples of a monoidal triangulated category whose thick ideals are not parametrized by
Thomason-closed subsets of its Balmer spectrum.
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