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The low-dimensional homology of projective linear group
of degree two

Behrooz Mirzaii and Elvis Torres Pérez

Abstract. In this article we study the low-dimensional homology of the projective linear group
PGL2.A/ over a commutative ring A. In particular, we prove a Bloch–Wigner type exact sequence
over local domains. As application we prove that

H2
�
PGL2.A/;Z

�
1
2

��
' K2.A/

�
1
2

�
and H3

�
PGL2.A/;Z

�
1
2

��
' Kind

3 .A/
�
1
2

�
;

provided jA=mAj ¤ 2; 3; 4; 8.

1. Introduction

Let A be a commutative ring with 1. Let GE2.A/ be the subgroup of GL2.A/ generated
by elementary and diagonal matrices. We say that A is a GE2-ring if GE2.A/ D GL2.A/.
This is equivalent to the condition that E2.A/ D SL2.A/.

A ring A is called universal for GE2 if the unstable K-group K2.2;A/ is generated by
Steinberg symbols (see Section 3). We say thatA is a universal GE2-ring if it is a GE2-ring
and is universal for GE2. If G is any subgroup of GL2.A/ containing the central subgroup
Z D A�I2 of scalar matrices, then we will let PG denote the quotient group G=Z.

As our first main result we show that for any commutative ring A, we have the exact
sequence

H2
�
PGE2.A/;Z

�
!

�
K2.2; A/
C.2; A/

�ab

PGE2.A/
!AA�!H1

�
PGE2.A/;Z

�
!GA!1; (1.1)

where C.2; A/ is the central subgroup of K2.2; A/ generated by Steinberg symbols, GA is
the square class group of A, i.e., GA WD A

�=.A�/2, and AA� WD A=ha � 1 W a 2 A�i (see
Theorem 4.1). It follows from this that if A is a universal GE2-ring, then

H1
�
PGL2.A/;Z

�
' GA ˚ AA� :

As our second main result we show that if A is a universal GE2-ring, then we have the
exact sequence

H3
�
PGL2.A/;Z

�
!P .A/

�
�!H2

�
PB2.A/;Z

�
!H2

�
PGL2.A/;Z

�
!�2.A/!1; (1.2)
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where P .A/ is the scissors congruence group ofA and PB2.A/ is the group of upper trian-
gular matrices in PGL2.A/ (for the general statement see Theorem 8.4 and Corollary 8.6).

Let A be a local ring such that jA=mAj ¤ 2; 3; 4. Then H2.PB2.A/;Z/ ' A� ^ A�

(Proposition 9.7) and we show that the map � is given by

�
�
Œa�
�
D 2

�
a ^ .1 � a/

�
(Proposition 10.1). As an application we show that if A is a local domain (local ring) such
that jA=mAj ¤ 2; 3; 4 (jA=mAj ¤ 2; 3; 4; 5; 8; 9; 16), then

H2
�
PGL2.A/;Z

�
1
2

��
' K2.A/

�
1
2

�
: (1.3)

Let BE .A/ be the kernel of �. Then as our third main result we show that if A is a
local domain such that jA=mAj ¤ 2; 3; 4; 8, then we obtain the sequence

0! TorZ
1

�
�.A/; �.A/

�
! H3

�
PGL2.A/;Z

�
! BE .A/! 0; (1.4)

which is exact at every term except possibly at the term H3.PGL2.A/;Z/, where the
homology of the sequence is annihilated by 4 (see Theorem 11.7 for the general state-
ment). As an application we prove the Bloch–Wigner exact sequence

0! TorZ
1

�
�.A/; �.A/

��
1
2

�
! H3

�
PGL2.A/;Z

�
1
2

��
! B.A/

�
1
2

�
! 0; (1.5)

where B.A/ � P .A/ is the Bloch group of A. As an application of this exact sequence
we show that

H3
�
PGL2.A/;Z

�
1
2

��
' Kind

3 .A/
�
1
2

�
:

The earliest version of the celebrated Bloch–Wigner exact sequence that we found in
the literature is the exact sequence

0! TorZ
1

�
�.C/; �.C/

�
! H3

�
PGL2.C/;Z

�
! B.C/! 0

(see [5, Theorem 4.10]). The exact sequence (1.5) can be seen as a generalization of this
classical result to local domains. As we will see, in general the coefficients ZŒ1

2
� cannot

be replaced with integral coefficients Z, even over infinite fields (see for example Propo-
sition 11.9). Moreover, we study the sequence (1.4) over quadratically closed fields, real
closed fields, finite fields and non-dyadic local fields (see Propositions 11.5 and 11.9).
Finally, we prove a Bloch–Wigner type exact sequence for PGL2.Z/ and PGL2.ZŒ12 �/.

Here we outline the organization of the present paper. In Section 2, we recall some
needed results from the literature over algebraicK-groups, the scissors congruence group
and the Bloch–Wigner exact sequence. In Section 3, we recall the Steinberg group St.2;A/,
the K-group K2.2; A/ and give some of its basic properties. In Section 4, we give a
detailed account of the action of PGE2.A/ over K2.2; A/, construct the important map

� W

�
K2.2; A/
C.2; A/

�ab

PGE2.A/
! AA�
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and prove our first main result, i.e., the exactness of the sequence (1.1). In Section 5,
we study two chain complexes Y�.A2/ � L�.A2/ made out of unimodular vectors in A2

which are columns of matrices in GE2.A/ and GL2.A/, respectively, and study the con-
nection between their homology groups. In Section 6, we study the connection between
the first homology group of these complexes and the group .K2.2;A/

C.2;A/ /
ab
PGE2.A/

. In Section 7,
we introduce and study a spectral sequence which will be our main tool in handling the
second and the third homology groups of PGE2.A/. In Section 8, we study certain terms
of the spectral sequence and prove the exactness of the sequence (1.2). In Section 9, the
homology groups of PB2.A/ have been studied. In Section 10, we calculate the map � and
prove the isomorphism (1.3). In Section 11, we prove our claim about the sequence (1.4)
and present the proof of the Bloch–Wigner exact sequence (1.5). Moreover, we prove a
Bloch–Wigner type exact sequence over finite fields, real closed fields, non-dyadic local
fields and the Euclidean domains Z and ZŒ1

2
�.

Notations. In this paper all rings are commutative, except possibly group rings, and have
the unit element 1. For a commutative ring A let GL2.A/ be the group of invertible matri-
ces of degree two. If G.A/ is a subgroup of GL2.A/ which contains A�I2 D Z.GL2.A//,
by PG.A/ we mean G.A/=A�I2. Let �.A/ denote the group of roots of unity in A, i.e.

�.A/ WD ¹a 2 A W there is n 2 N such that an D 1º;

and �2.A/ WD ¹a 2 A W a2 D 1º. Let GA WD A
�=.A�/2. The element of GA represented by

a 2 A� is denoted by hai. If B ! A is a homomorphism of abelian groups, by A=B we
mean coker.B ! A/. For an abelian group A, by AŒ1

2
� we mean A˝Z ZŒ1

2
�.

2. Algebraic K -theory and scissors congruence group
Let A be a commutative ring. For any non-negative integer n � 1, we associate two type
K-groups to A: Quillen’s K-group Kn.A/ and Milnor’s K-group KMn .A/.

Quillen’sK-group Kn.A/ is defined as the n-th homotopy group of the plus-construc-
tion of the classifying space of the stable linear group GL.A/, with respect to the perfect
elementary subgroup E.A/:

Kn.A/ WD �n
�
B GL.A/C

�
:

Since B E.A/C is homotopy equivalent to the universal cover of B GL.A/C, for n � 2 we
have

Kn.A/ ' �n
�
B E.A/C

�
:

The Hurewicz map in algebraic topology induces the commutative diagram (for n � 2)

Hn
�
E.A/;Z

�
Kn.A/

Hn
�
GL.A/;Z

�
:

hn

h0n
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If A0 is another commutative ring, there is a natural anti-commutative product map

Km.A/˝Z Kn.A0/! KmCn.A˝Z A
0/; x ˝ y 7! x ? y:

When A0 D A and � W A˝Z A! A is given by a ˝ b 7! ab, then we have the product
map

Km.A/˝Z Kn.A/
��ı?
���! KnCm.A/; x ˝ y 7! ��.x ? y/:

For more on these K-groups and the construction of the product map see [26, Chapter 2].
The n-th Milnor K-group KMn .A/ is defined as the abelian group generated by sym-

bols ¹a1; : : : ; anº, ai 2 A�, subject to the following relations

(i) ¹a1; : : : ; aia
0
i ; : : : ; anº D ¹a1; : : : ; ai ; : : : ; anº C ¹a1; : : : ; a

0
i ; : : : ; anº, for any

1 � i � n,

(ii) ¹a1; : : : ; anº D 0 if there exist i; j , i ¤ j , such that ai C aj D 0 or 1.

Clearly we have the anti-commutative product map

KMm .A/˝Z KMn .A/! KMmCn.A/;

¹a1; : : : ; amº ˝ ¹b1; : : : ; bnº 7! ¹a1; : : : ; am; b1; : : : ; bnº:

It can be shown that

K1.A/
h1
' H1

�
GL.A/;Z

�
' GL.A/=E.A/; K2.A/

h02
' H2

�
E.A/;Z

�
:

For n D 1, we have the natural homomorphism

KM1 .A/! K1.A/; ¹aº 7!
�
a 0

0 1

�
:

The determinant induces the isomorphism

K1.A/ ' A� � SK1.A/ ' KM1 .A/ � SK1.A/;

where
SK1.A/ WD SL.A/=E.A/:

If A is a local ring, then SK1.A/ D 1 and thus

K1.A/ ' KM1 .A/:

For n D 2 we have the natural homomorphism

KM2 .A/! K2.A/; ¹a; bº 7! ��

0@0@a 0 0

0 a�1 0

0 0 1

1A ?0@b 0 0

0 1 0

0 0 b�1

1A1A :
The following result is well known.
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Theorem 2.1 (Matsumoto–van der Kallen). Let A be either a field or a local ring such
that its residue field has more than five elements. The natural homomorphism

KM2 .A/! K2.A/

is an isomorphism

.A� ˝Z A
�/=

˝
a˝ .1 � a/ W a.1 � a/ 2 A�

˛
' KM2 .A/ ' K2.A/:

Proof. See [26, Theorem 1.14] and [18, Proposition 3.2].

Using products of K-groups, one can show that for any positive integer n, there is a
natural map

 n W KMn .A/! Kn.A/:

For the group K3.A/ we have the following general result.

Theorem 2.2 (Suslin). For any ring A we have the exact sequence

K1.Z/˝Z K2.A/
?
�! K3.A/

h03
�! H3

�
E.A/;Z

�
! 0:

Proof. See [28, Corollary 5.2]

Let WA WD ¹a 2 A W a.1� a/ 2 A
�º. By definition, the classical scissors congruence

group P .A/ of A is the quotient of the free abelian group generated by symbols Œa�,
a 2 WA, by the subgroup generated by the elements

Œa� � Œb�C

�
b

a

�
�

�
1 � a�1

1 � b�1

�
C

�
1 � a

1 � b

�
;

where a; b; a=b 2 WA. Let

S2Z.A
�/ WD .A� ˝Z A

�/=ha˝ b C b ˝ a W a; b 2 A�i:

The map
� W P .A/! S2Z.A

�/; Œa� 7! a˝ .1 � a/

is well defined. The kernel of � is called the Bloch group of A and is denoted by B.A/.
If A is either a field or a local ring such that its residue field has more than five elements,
then we have the exact sequence

0! B.A/! P .A/! S2Z.A
�/! KM2 .A/! 0:

The group K3.A/ is closely related to the Bloch group of A. Over a local ring, the
indecomposable part of K3.A/ is defined as follows:

Kind
3 .A/ WD K3.A/=KM3 .A/:
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Theorem 2.3 (A Bloch–Wigner exact sequence). LetA be either a field or a local domain
such that its residue field has more than 9 elements. Then there is a natural exact sequence

0! TorZ
1

�
�.A/; �.A/

��
! Kind

3 .A/! B.A/! 0;

where TorZ
1 .�.A/; �.A//

� is the unique non-trivial extension of TorZ
1 .�.A/; �.A// by

�2.A/.

Proof. The case of infinite fields has been proved by Suslin in [28, Theorem 5.2] and the
case of finite fields has been settled by Hutchinson in [7, Corollary 7.5]. The case of local
rings has been dealt in [18, Theorem 6.1].

Let A be either a field or a local domain such that its residue field has more than
five elements. Then by Theorem 2.1, K2.A/' KM2 .A/. Since K1.Z/' ¹˙1º [26, Exam-
ple 1.9 (vii)], we have

im
�

K1.Z/˝Z K2.A/
?
�! K3.A/

�
� im

�
KM3 .A/! K3.A/

�
:

Let ˛A be the following composite

H3
�

SL2.A/;Z
�
A�
! H3

�
SL.A/;Z

�
' K3.A/=

�
K1.Z/˝Z K2.A/

�
! Kind

3 .A/:

Note that over local rings E.A/DSL.A/ andA�'GL.A/=E.A/ acts trivially on the group
H3.SL.A/;Z/. The following question was asked by Suslin (see [24, Question 4.4]).

Question 2.4. For an infinite field F , is the map ˛F W H3.SL2.F /;Z/F � ! Kind
3 .F / an

isomorphism?

Hutchinson and Tao proved that ˛F always is surjective [11, Lemma 5.1]. The answer
of the above question is true for all finite fields except for F D F2; F3; F4; F8 (see [18,
Proposition 6.4, Example 6.6]). For more on the above question see [17].

Theorem 2.5. Let A be a local domain such that jA=mAj ¤ 2; 3; 4; 8. Then the map

˛A W H3
�

SL2.A/;Z
�
1
2

��
A�
! Kind

3 .A/
�
1
2

�
is an isomorphism.

Proof. See [16, Theorem 3.7], [18, Theorem 5.4] and [14, Theorem 6.4].

3. Elementary matrices and the Steinberg group of degree two

Let A be a commutative ring. The elementary group of degree two over A, denoted by
E2.A/, is the subgroup of GL2.A/ generated by the elementary matrices

E12.a/ WD

�
1 a

0 1

�
; E21.a/ WD

�
1 0

a 1

�
; a 2 A:

The elementary matrices satisfy the following relations

(a) Eij .x/Eij .y/ D Eij .x C y/ for any x; y 2 A,
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(b) Wij .u/Ej i .x/Wij .u/
�1 D Eij .�u

2x/, for any u 2 A� and x 2 A,
where Wij .u/ WD Eij .u/Ej i .�u�1/Eij .u/.

The Steinberg group of A, denoted by St.2; A/, is the group with generators x12.r/ and
x21.s/, r; s 2 A, subject to the relations

(˛) xij .r/xij .s/ D xij .r C s/ for any r; s 2 A,

(ˇ) wij .u/xj i .r/wij .u/�1 D xij .�u2r/, for any u 2 A� and r 2 A,
where wij .u/ WD xij .u/xj i .�u�1/xij .u/.

The natural map
� W St.2; A/! E2.A/; xij .r/ 7! Eij .r/

is a well-defined epimorphism. The kernel of this map is denoted by K2.2; A/:

K2.2; A/ WD ker.�/:

Always there is a natural map

K2.2; A/! K2.A/;

which in general neither is surjective nor injective. If A is a local ring, then this map
always is surjectve [27, Theorem 2.13].

For any u 2 A�, let
hij .u/ WD wij .u/wij .�1/:

It is not difficult to see that hij .u/�1 D hj i .u/ [10, Corollary A.5]. For any u; v 2 A�, the
element

¹u; vºij WD hij .uv/hij .u/
�1hij .v/

�1

lies in K2.2; A/ and in the center of St.2; A/ [4, Section 9]. It is straightforward to check
that ¹u; vºj i D ¹v; uº�1ij . An element of form

¹v; uº WD ¹v; uº12 D h12.uv/h
�1
12 .u/h12.v/

�1

is called a Steinberg symbol in K2.2; A/.
Let C.2; A/ be the subgroup of K2.2; A/ generated by the Steinberg symbols ¹u; vº,

u; v 2 A�. Then C.2; A/ is a central subgroup of K2.2; A/.
We say that A is universal for GE2 if K2.2;A/D C.2;A/. This definition of universal

for GE2 is equivalent to the original definition of Cohn in [3, p. 8]. For a proof of this fact
see [10, Appendix A]. A commutative semilocal ring is universal for GE2 if and only if
none of the rings Z=2 � Z=2 and Z=6 is a direct factor of A=J.A/, where J.A/ is the
Jacobson radical of A [13, Theorem 2.14].

The elementary group E2.A/ is generated by the matrices

E.a/ WD

�
a 1

�1 0

�
; a 2 A:
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In fact,

E12.a/ D E.�a/E.0/
�1; E21.a/ D E.0/

�1E.a/;

E.0/ D E12.1/E21.�1/E12.1/:

For any a 2 A�, let

D.a/ WD

�
a 0

0 a�1

�
2 D2.A/:

SinceD.�a/D E.a/E.a�1/E.a/, we haveD.a/ 2 E2.A/. It is straightforward to check
that

(1) E.x/E.0/E.y/ D D.�1/E.x C y/,

(2) E.x/D.a/ D D.a�1/E.a2x/,

(3) D.ab/D.a�1/D.b�1/ D 1,

where x; y 2 A and a; b 2 A�. Let C.A/ be the group generated by symbols ".a/, a 2 A,
subject to the relations

(i) ".x/".0/".y/ D h.�1/".x C y/ for any x; y 2 A,

(ii) ".x/h.a/ D h.a�1/".a2x/, for any x 2 A and a 2 A�,

(iii) h.ab/h.a�1/h.b�1/ D 1 for any a; b 2 A�,

where
h.a/ WD ".�a/".�a�1/".�a/:

Note that by (iii), h.1/ D 1 and h.�1/2 D 1. Moreover, ".�1/3 D h.1/ D 1 and ".1/3 D
h.�1/. There is a natural surjective map

C.A/! E2.A/; ".x/ 7! E.x/:

We denote the kernel of this map by U.A/. Thus we have the extension

1! U.A/! C.A/! E2.A/! 1:

Proposition 3.1 (Hutchinson). Let A be a commutative ring. Then the homomorphism

St.2; A/! C.A/

given by x12.a/ 7! ".�a/".0/3 and x21.a/ 7! ".0/3".a/ induces isomorphisms

St.2; A/
C.2; A/

' C.A/;
K2.2; A/
C.2; A/

' U.A/:

Proof. See [10, Theorem A.14, Appendix A].

It follows from this theorem that A is universal for GE2 if and only if U.A/ D 1.
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4. The group K2.2 ; A/ and the abelianization of GE2.A/

LetA be a commutative ring. Let D2.A/ be the subgroup of GL2.A/ generated by diagonal
matrices and let GE2.A/ be the subgroup of GL2.A/ generated by D2.A/ and E2.A/. It is
easy to see that E2.A/ is normal in GE2.A/ [3, Proposition 2.1] and the center of GE2.A/
is A�I2. Observe that we have the split extensions

1! SL2.A/! GL2.A/
det
�! A� ! 1; 1! E2.A/! GE2.A/

det
�! A� ! 1;

and thus
GL2.A/ D SL2.A/ Ì d.A�/; GE2.A/ D E2.A/ Ì d.A�/;

where
d.A�/ D

®
d.a/ WD diag.a; 1/ W a 2 A�

¯
' A�:

We say that A is a GE2-ring if GE2.A/ D GL2.A/ (or equivalently E2.A/ D SL2.A/).
Semilocal rings and Euclidean domains are GE2-rings [25, p. 245], [3, Section 2].

A ring A is called an universal GE2-ring if it is a GE2-ring and is universal for GE2. A
semilocal ring is a universal GE2-ring if none of the rings Z=2 � Z=2 and Z=6 is a direct
factor of A=J.A/. In particular, any local ring is a universal GE2-ring. For more example
of GE2-rings and rings universal for GE2 see [3, 10].

There is a natural action of PGE2.A/ on K2.2;A/. Here we give a detailed description
of this action. From the extension

1! K2.2; A/! St.2; A/! E2.A/! 1;

we see that E2.A/ acts naturally on K2.2; A/. More explicitly, E12.t/ acts as conjugation
by x12.t/ and E21.t/ acts as conjugation by x21.t/. Note that D.a/ D diag.a; a�1/ acts
as conjugation by h12.a/. It is straightforward to check that

x12.t/
h12.a/ D x12.a

�2t /; x21.t/
h12.a/ D x21.a

2t /:

In particular, the scalar matrix �I2 D D.�1/ 2 E2.A/ acts trivially on K2.2; A/.
For a 2 A�, let d.a/ WD diag.a; 1/ 2 GE2.A/. For any t 2 A,

E12.t/
d.a/
D E12.a

�1t /; E21.t/
d.a/
D E21.at/:

It is straightforward to verify that there is a compatible well-defined action of d.A�/ on
St.2; A/ determined by

x12.t/
d.a/
WD x12.a

�1t /; x21.t/
d.a/
WD x21.at/:

One verifies easily that this proposed action preserves the two defining families of relations
of St.2; A/.

This implies that
GE2.A/ D E2.A/ Ì d.A�/
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acts on St.2; A/ via the conjugation formula given above. Using this action we define

GSt.2; A/ WD St.2; A/ Ì d.A�/

and extend the canonical epimorphism � W St.2; A/! E2.A/ to a surjective homomor-
phism

ˆ W GSt.2; A/! GE2.A/:

Furthermore, the inclusion St.2; A/! GSt.2; A/ induces an isomorphism

K2.2; A/ D ker� ' kerˆ:

Thus we have the extension

1! K2.2; A/! GSt.2; A/! GE2.A/! 1:

Thus GE2.A/ acts by conjugation on K2.2;A/ which is compatible with the above action
of E2.A/.

The matrix d.a/ acts by the formula given above. If we let d 0.a/ WD diag.1; a/, then
d 0.a/ D diag.a�1; a/d.a/ which lifts to .h12.a�1/; d.a// in GSt.2; A/. Then this matrix
acts on St.2; A/ via the formulas

x12.t/
d 0.a/
D x12.at/; x21.t/

d 0.a/
D x21.a

�1t /:

It follows in turn that the scalar matrices aI2 D d.a/d 0.a/ act trivially. Hence the above
action descends to an action of PGE2.A/ on K2.2; A/.

Since C.2; A/ is central in St.2; A/, the action by conjugation of St.2; A/ on C.2; A/
is trivial and hence E2.A/ acts trivially on the image, xC.2;A/, of C.2;A/ in K2.2;A/ab. It
can be easily verified that the action of d.A�/ on K2.2; A/ induces an action on C.2; A/
given by

¹u; vºd.a/ D ¹u; a�1º�1¹u; a�1vº:

Hence the action of PGE2.A/ on K2.2; A/ induces an action on the group

K2.2; A/ab

xC.2; A/
'

�
K2.2; A/
C.2; A/

�ab

:

Let AA� WD A=ha � 1 W a 2 A�i. Since �2D .�1/� 1, we have 2D 0 in AA� . Hence
we have a natural map

A=2A! AA� :

There is a natural homomorphism

f W St.2; A/! AA�

which sends both x12.t/ and x21.t/ to (the class of) t , for t 2 A. Observe that this map
sends the elements wij .a/ to 1. Thus it sends hij .a/ to 2 D 0. Therefore f extends to a
homomorphism

f W GSt.2; A/ D St.2; A/ Ì d.A�/! AA� ; .x; d/ 7! f .x/:
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For example x12.t/d.a/ D x12.a�1t / and both sides map to t . Now the diagram

GSt.2; A/

AA� PGE2.A/ab
f

commutes: Here the map
AA� ! PGE2.A/ab

sends t to E12.t/ and observe that in PGE2.A/ab we have

E12.t/ D E12.t/
W12.1/ D E21.�t / D E21.�t /

d.�1/
D E21.t/:

We denote the restriction of f to K2.2; A/ again by f :

f W K2.2; A/! AA� :

Note that since f .hij .u// D 0 for all u 2 A�, then f .¹u; vº/ D 0 for all u; v 2 A�. Thus
f naturally defines a map

� D Nf W

�
K2.2; A/
C.2; A/

�ab

! AA� :

Using the action of d.A�/ on St.2; A/, we can define an action of d.A�/ on C.A/.
More precisely, for any a 2 A� and x 2 A we have

E.x/d.a/ D D.a/E.a�1x/:

Thus the compatible action of d.A�/ ' A� on C.A/ is determined by

".x/d.a/ D h.a/".a�1x/:

It is easy to verify that h.b/d.a/ D h.b/. If GC.A/ WD C.A/ Ì d.A�/, then we have the
extension

1! U.A/! GC.A/! GE2.A/! 1:

Observe that we have the natural morphism of extensions

1 K2.2; A/ GSt.2; A/ GE2.A/ 1

1 U.A/ GC.A/ GE2.A/ 1:

It is easy to check that the action of aI2 on GC.A/ is trivial. Note that

aI2 D D.a
�1/d.a2/:
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Let L.A/ be the subset of GC.A/ consisting of the elements .h.a�1/; d.a2//, a 2 A�.
Note that .h.a�1/; d.a2// lies in the center of GC.A/:�

h.a�1/; d.a2/
��
".x/; d.b/

�
D
�
h.a�1/".x/d.a

2/; d.a2b/
�

D
�
h.a�1/h.a2/".a�2x/; d.a2b/

�
D
�
h.a/h.a�1/".x/h.a�1/; d.a2b/

�
D
�
".x/h.a�1/; d.a2b/

�
D
�
".x/h.a�1/d.b/; d.ba2/

�
D
�
".x/; d.b/

��
h.a�1/; d.a2/

�
:

Thus L.A/ is a central subgroup of GC.A/. Now set

PGC.A/ WD GC.A/=L.A/:

Then we have the extension

1! U.A/! PGC.A/! PGE2.A/! 1:

Theorem 4.1. For any commutative ring A, we have the exact sequence

H2c
�
PGE2.A/;Z

�
!

�
K2.2; A/
C.2; A/

�ab

PGE2.A/

�
�! AA� ! H1

�
PGE2.A/;Z

�
! GA ! 1;

where the map on the right has a splitting GA ! H1.PGE2.A/;Z/.

Proof. From the Lyndon/Hochschild–Serre spectral sequence associated to the above ex-
tension we obtain the five term exact sequence

H2
�

PGC.A/;Z
�
! H2

�
PGE2.A/;Z

�
! H1

�
U.A/;Z

�
PGE2.A/

! H1
�

PGC.A/;Z
�
! H1

�
PGE2.A/;Z

�
! 0

(see [2, Corollary 6.4, Chapter VII]). By Theorem 3.1,

H1
�

U.A/;Z
�

PGE2.A/
'

�
K2.2; A/
C.2; A/

�ab

PGE2.A/
:

We prove that
H1
�

PGC.A/;Z
�
' GA ˚ AA� :

From the split extension 1! C.A/! GC.A/! A�! 1 we get the split exact sequence

0! H1
�

C.A/;Z
�
A�
! H1

�
GC.A/;Z

�
! A� ! 1:

We show that
H1
�

C.A/;Z
�
' A=M;
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where M is the additive subgroup of A generated by x.a2 � 1/ and 3.b C 1/.c C 1/,
x 2 A, a; b; c 2 A�. Consider the map

ˆ W C.A/! A=M;
Y

".ai / 7!
X

.ai � 3/:

This map is well defined: In A=M we have a D a�1 and 12 D 0. Hence

ˆ
�
h.a/

�
D �3a � 9 D �3.a � 1/:

It is straightforward to check that

ˆ
�
".x/".0/".y/

�
D ˆ

�
h.�1/".x C y/

�
; ˆ

�
".x/h.a/

�
D ˆ

�
h.a�1/".axa/

�
;

ˆ
�
h.ab/h.a�1/h.b�1/

�
D �3.aC 1/.b C 1/:

Thus ˆ is a well-defined homomorphism. Hence we have the homomorphism

x̂ W C.A/=
�

C.A/;C.A/
�
! A=M; ".x/ 7! x � 3:

Now define
‰ W A=M ! C.A/=

�
C.A/;C.A/

�
; x 7! ".x/".0/�1:

This map is a well-defined homomorphism: Consider the items (i), (ii) and (iii) from the
definition of C.A/ (Section 3). If in (i) we put y D�x, then ".x/".0/".�x/D h.�1/".0/.
Thus in C.A/=ŒC.A/;C.A/�, we have h.�1/".x/".�x/ D 1. From this we obtain

h.a/2 D h.�1/h.a/h.�a/ D h.�1/".�a/".�a�1/".�a/".a/".a�1/".a/ D 1:

Therefore
‰.axa/ D ".axa/".0/�1 D h.a/".x/h.a/".0/�1 D ‰.a/:

Using (ii) for x D 0, in C.A/=ŒC.A/;C.A/� we have ".a/ D h.a/".a�1/h.a/ D ".a�1/.
This implies that h.�a/ D ".a/".a�1/".a/ D ".a/3 and hence h.a/ D h.�1/".a/3 D

h.�1/".a�1/3. Furthermore, by (i), we have ".3x/ D h.�1/".x/3. Using this formula we
obtain

"
�
3.aC 1/.b C 1/

�
D ".0/".ab/3".a/3".b/3".1/3

D ".0/".ab/3".a/3".b/3h.�1/

D ".0/h.�1/".ab/3h.�1/".a�1/3h.�1/".b�1/3

D ".0/h.ab/h.a�1/h.b�1/:

Thus

‰
�
3.aC 1/.b C 1/

�
D "

�
3.aC 1/.b C 1/

�
".0/�1 D h.ab/h.a�1/h.b�1/:

This shows that ‰ is well defined. It is easy to see that ‰ is a homomorphism of groups.
Moreover, one can easily show that x̂ and ‰ are mutually inverse. Thus x̂ is an isomor-
phism.
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Now following the action of A� on C.A/, we see that the action of A� on A=M ,
through H1.C.A/;Z/, is given by

a: Nx WD �.a�1x C 3/.a � 1/:

Therefore

H1
�

C.A/;Z
�
A�
' .A=M/A� ' A=

®
y.a � 1/ W y 2 A; a 2 A�

¯
D AA� :

Now it follows from the above exact sequence that

H1
�

GC.A/;Z
�
' A� ˚ AA� :

From the extension 1! L.A/! GC.A/! PGC.A/! 1 we obtain the exact sequence

H1
�
L.A/;Z

�
! H1

�
GC.A/;Z

�
! H1

�
PGC.A/;Z

�
! 0:

Now under the isomorphism H1.GC.A/;Z/ ' A� ˚ AA� , we have�
h.a�1/; d.a2/

�
7!
�
a2;�3.a � 1/

�
D .a2; 0/:

Thus
H1
�

PGC.A/;Z
�
' GA ˚ AA� :

From the above arguments one sees that the above isomorphism is induced by the map

PGC.A/! GA ˚ AA� ;
�
".x/; d.a/

�
7!
�
hai; x � 1

�
:

Composing this with PGSt.2; A/! PGC.A/, we get the map

˛ W PGSt.2; A/! GA ˚ AA� ;
�
xij .t/; d.a/

�
7!
�
hai; Nt

�
:

It follows from this that the restriction of ˛ to St.2; A/ is given by

˛ W St.2; A/! GA ˚ AA� ; xij .t/ 7!
�
h1i; Nt

�
D
�
h1i; f

�
xij .t/

��
:

This shows that the map �
K2.2; A/
C.2; A/

�ab

PGE2.A/
! GA ˚ AA�

is given by x 7! .h1i; �.x//. The determinant det W PGE2.A/! GA induces the map det� W
H1.PGE2.A/;Z/! GA. This map splits the composition

GA ! GA ˚ AA� ! H1
�
PGE2.A/;Z

�
:

All these give the exact sequence of the theorem.
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Let a; b 2 A be any two elements such that 1 � ab 2 A�. We define

ha; biij WD xj i

�
�b

1 � ab

�
xij .�a/xj i .b/xij

�
a

1 � ab

�
hij .1 � ab/

�1:

It is easy to verify that ha; biij 2 K2.2;A/. This element is called a Dennis–Stein symbol.
If u; v 2 A�, then

¹u; vºij D

�
u;
1 � v

u

�
ij

D

�
1 � u

v
; v

�
ij

:

Hence Dennis–Stein symbols generalize Steinberg symbols.

Corollary 4.2. If K2.2; A/ is generated by Dennis–Stein symbols, then

H1
�
PGE2.A/;Z

�
' GA ˚ AA� :

Proof. It is easy to check that �.ha; biij / D 0. This implies that � D 0. Now the claim
follows from the above theorem.

Corollary 4.3. If 2 2 A�, then H1.PGE2.A/;Z/ ' GA.

Proof. Since 2 2 A�, 1D 2� 1 2 ha � 1 W a 2 A�i. Thus AA� D 0 and the claim follows
from the above theorem.

Example 4.4. In this example we calculate the first homology of PGL2.A/ for some rings.

(i) If A is local with maximal ideal mA, then AA� D 0 when jA=mAj ¤ 2 and
AA� D A=mA ' F2 when jA=mAj D 2. Thus

H1
�
PGL2.A/;Z

�
'

´
GA if jA=mAj ¤ 2

GA ˚ Z=2 if jA=mAj D 2:

(ii) Let A be a semilocal ring such that none of Z=2 � Z=2 and Z=6 is a direct
factor of A=J.A/. Then A is a universal GE2-ring and so by the above theorem

H1
�
PGL2.A/;Z

�
' GA ˚ AA� :

(iii) The ring of integers Z is a universal GE2-ring [10, Example 6.12]. Since ZZ� '

Z=2 by the above theorem we have

H1
�
PGL2.Z/;Z

�
' Z=2˚ Z=2:

(iv) Let m be a square free integer. The ring Am WD ZŒ 1
m
� is a GE2-ring and

.Am/A�m '

´
0 if 2 j m;

Z=2 if 2 − m:
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If m is odd, then the inclusion Am � Z.2/ D ¹a=b W a; b 2 Z; 2 − bº induces the commu-
tative diagram with exact rows

.Am/A�m H1
�
PGL2.Am/;Z

�
GAm 0

0 .Z.2//Z�
.2/

H1
�
PGL2.Z.2//;Z

�
GZ.2/ 0:

'

Since the left map is an isomorphism, it follows from this diagram that the map

.Am/A�m ! H1
�
PGL2.Am/;Z

�
is injective. Therefore

H1
�
PGL2.Am/;Z

�
'

´
GAm if 2 j m;

GAm ˚ Z=2 if 2 − m:

This implies that the map � is trivial and it follows from this and the above theorem that
for any m, the natural map

H2
�
PGL2

�
Z
�
1
m

��
;Z
�
!

�
K2.2;ZŒ 1m �/

C.2;ZŒ 1
m
�/

�ab

PGL2.ZŒ 1m �/

is surjective. The K-group K2.2;ZŒ 1m �/ has been studied in many articles. For example
see [8, 20] and their references.

5. The GE2-unimodular vectors

A column vector uuu D . u1u2 / 2 A
2 is called unimodular if there exists vvv D . v1v2 / 2 A

2 such
that .uuu;vvv/ WD . u1 v1u2 v2 / 2 GL2.A/ and it is called GE2-unimodular if .uuu;vvv/ 2 GE2.A/.

Lemma 5.1. If vvv 2 A2 is GE2-unimodular and if M D .vvv; www/ 2 GL2.A/, then M 2
GE2.A/ andwww is GE2-unimodular.

Proof. By definition, vvv is GE2-unimodular if there exists N 2 GE2.A/ with Ne1e1e1 D vvv,
where eee1 WD . 10 /. Hence vvv is GE2-unimodular if and only if there exists P 2 GE2.A/ with
Pvvv D e1e1e1. Thus

PM D .e1e1e1; Pwww/:

It is clear that a matrix of the form .e1e1e1;uuu/ is invertible if and only if it lies in GE2.A/.

For any non-negative integer n, let Ln.A2/ be the free abelian group generated by
the set of all .nC 1/-tuples .hvvv0i; : : : ; hvvvni/ of unimodular vectors vvvi 2 A2 such that for
any i ¤ j , the matrix .vvvi ; vvvj / is invertible. Note that for a vector vvv 2 A2, hvvvi means the
equivalence class up to multiplication by a unit, i.e., hvvvi D vvvA�.
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We consider Ln.A2/ as a left PGL2.A/-module in a natural way. If necessary, we
convert this action to a right action by the definition m:g WD g�1m. We define the n-th
differential operator

@Ln W Ln.A
2/! Ln�1.A

2/; n � 1;

as an alternating sum of face operators which throws away the i -th component of genera-
tors. Then

L�.A
2/ W � � � ! L2.A

2/
@L2
�! L1.A

2/
@L1
�! L0.A

2/! 0

is a complex. This complex has been studied in [10].
Let Yn.A2/ be the free abelian subgroup of Ln.A2/ generated by the set of all

.nC 1/-tuples .hvvv0i; : : : ; hvvvni/ of GE2-unimodular vectors. Thus Y�.A2/ is a PGE2.A/-
subcomplex of L�.A2/. We say that Y�.A2/ (resp. L�.A2/) is exact in dimension k if
Hk.Y�.A

2// D 0 (resp. Hk.L�.A2// D 0).
For a subgroup H of a group G and any H -module M , let IndGH M WD ZŒG�˝H M .

This extension of scalars is called induction from H to G.

Lemma 5.2. The natural inclusion Y�.A2/! L�.A
2/ induces the isomorphism

L�.A
2/ ' IndPGL2.A/

PGE2.A/
Y�.A

2/:

Proof. Clearly

�� W Z
�

PGL2.A/
�
˝PGE2.A/ Y�.A

2/! L�.A
2/

given by

g ˝
�
hv0v0v0i; hv1v1v1i; : : : ; hvnvnvni

�
7!
�
hgv0v0v0i; hgv1v1v1i; : : : ; hgvnvnvni

�
;

is a well-defined morphism of complexes of ZŒPGL2.A/�-modules. In fact, �� is an iso-
morphism with the inverse morphism

 � W L�.A
2/! Z

�
PGL2.A/

�
˝PGE2.A/ Y�.A

2/

defined by �
hv0v0v0i; hv1v1v1i; : : : ; hvnvnvni

�
7! g ˝

�
he1e1e1i; hg

�1v1v1v1i; : : : ; hg
�1vnvnvni

�
;

where ge1e1e1 D v0v0v0. Note that by Lemma 5.1,  � is well defined.

Corollary 5.3. For any non-negative integer n,

Hn
�
L�.A

2/
�
' IndPGL2.A/

PGE2.A/
Hn
�
Y�.A

2/
�
:

Proof. Since the functor IndPGL2.A/
PGE2.A/

is exact on the category of ZŒPGE2.A/�-modules
(since ZŒPGL2.A/� is a free ZŒPGE2.A/�-module), the claim follows from the previous
lemma.
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The group SL2.A/ (resp. E2.A/) acts transitively on the sets of generators of L0.A2/
(resp. Y0.A2/). Let

111 WD heee1i; 000 WD heee2i; aaa WD heee1 C aeee2i; a 2 A�;

where eee1 WD .10 / and eee2 WD .01 /. Let � WL0.A2/!Z be defined by
P
i ni .hvvv0;i i/ 7!

P
i ni .

We denote the restriction �jY0.A2/ W Y0.A
2/! Z again by �.

Proposition 5.4 (Hutchinson). For any commutative ring A, H0.Y�.A2//
�
' Z. In other

words, the complex

Y1.A
2/

@Y1
�! Y0.A

2/
�
�! Z! 0

always is exact. Moreover, H0.L�.A2// ' IndPGL2.A/
PGE2.A/

Z.

Proof. Here we follow the proof of [10, Theorem 3.3]. Clearly � W Y0.A2/! Z is surjec-
tive. Let X 2 ker.�/. We may assume X D .huuui/ � .hvvvi/. Since GE2.A/ acts transitively
on the generators of Y0.A2/, we may assume X D111� E111, where E 2 GE2.A/. For
any x 2 A and a; b 2 A�, we have

E.x/ diag.a; b/ D diag.b; a/E.b�1xa/:

Thus any element of GE2.A/ can be written as product E 0D0, where D0 2 D2.A/ and
E 0 2 E2.A/. Since D0111D111, we may assume that E 2 E2.A/. Let

E D E.a1/
c1 � � �E.an/

cn ;

where ci 2 ¹1;�1º. If Ei WD E.a1/c1 � � �E.ai /ci for 1 � i � n, and E0 D I2, then

Y WD

nX
iD1

.Ei111; Ei�1111/ 2 Y1.A
2/

and �.Y / D X . This proves our claim.

Over the class of local rings we have the following result of Hutchinson.

Proposition 5.5 (Hutchinson). Let A be a local ring. Then the complex Y�.A2/
�
�! Z is

exact in dimension < jA=mAj.

Proof. See [9, Lemma 3.21].

It follows from Lemma 5.2 and Shapiro’s lemma that the inclusion Y�.A2/! L�.A
2/

induces isomorphisms of the homology groups

Hq
�
PGE2.A/; Yp.A2/

�
' Hq

�
PGL2.A/; Lp.A2/

�
(for all p; q), which occur in the spectral sequences in Section 7 and in [10, Section 7].
For any n � 0, let

ZGE2
n .A2/ WD ker.@Yn /; ZGL2

n .A2/ WD ker.@Ln /:
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Now from the above isomorphism and the fact that the functor IndPGL2.A/
PGE2.A/

is exact on the
category of ZŒPGE2.A/�-modules, we obtain the isomorphism

ZGL2
n .A2/ ' IndPGL2.A/

PGE2.A/
ZGE2
n .A2/:

From this we obtain the following lemma.

Lemma 5.6. For all p; q � 0, we have the isomorphism

Hq
�
PGE2.A/;ZGE2

p .A2/
�
' Hq

�
PGL2.A/;ZGL2

p .A2/
�
:

6. The homology group H1.Y�.A2//

Let �.A/ be the graph of unimodular rows introduced and studied in [10, Section 2] and
let �GE.A/ be the analogous graph of GE2-unimodular rows. Then Lemma 5.1 shows
that �GE.A/ is precisely the path component of 111 D he1e1e1i in �.A/. Furthermore, the
transitive action of PGL2.A/ on �.A/ shows that it decomposes into homeomorphic path
components

�.A/ D
G

g2PGL2.A/=PGE2.A/

g:�GE.A/:

If we now let Y.A/ denote the clique complex of �.A/ as in [10, Section 2] and if we let
Y GE.A/ denote the clique complex of �GE.A/, then it follows that

Y.A/ D
G

g2PGL2.A/=PGE2.A/

g:Y GE.A/:

Taking geometric realizations it again follows thatˇ̌
Y.A/

ˇ̌
D

G
g2PGL2.A/=PGE2.A/

g:
ˇ̌
Y GE.A/

ˇ̌
and that jY GE.A/j is the path component at111 of jY.A/j. In particular, it follows that the
inclusion jY GE.A/j ! jY.A/j induces the following result.

Proposition 6.1 (Hutchinson). For any commutative ring A, we have the isomorphism

�1
�ˇ̌
Y GE.A/

ˇ̌
;111

�
D �1

�ˇ̌
Y.A/

ˇ̌
;111

�
'

K2.2; A/
C.2; A/

:

Proof. See [10, Theorem 6.9].

Since the space jY GE.A/j is path-connected, it follows from the above theorem that

H1
�ˇ̌
Y GE.A/

ˇ̌
;Z
�
' �1

�ˇ̌
Y GE.A/

ˇ̌
;111

�
'

�
K2.2; A/
C.2; A/

�ab

:
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Let�GE.A/ denote the standard ordered chain complex of the simplicial complex Y GE.A/.
As in [10, Section 7], the complex Y�.A2/ in the current article is the complex of non-
degenerate ordered simplices of the simplicial complex Y GE.A/ and the natural map of
complexes Y�.A2/! �GE.A/ induces an isomorphism on first homology groups. Thus

H1
�
Y�.A

2/
�
' H1

�
�GE.A/;Z

�
D H1

�ˇ̌
Y GE.A/

ˇ̌
;Z
�
'

�
K2.2; A/

C.2; A/

�ab

:

Thus, we have the following.

Theorem 6.2 (Hutchinson). For any commutative ring A, we have the isomorphisms

H1
�
Y�.A

2/
�
'

�
K2.2; A/
C.2; A/

�ab

; H1
�
L�.A

2/
�
' IndPGL2.A/

PGE2.A/

�
K2.2; A/
C.2; A/

�ab

:

In particular, if A is universal for GE2, then Y�.A2/
�
�! Z and L�.A2/

�
�! Z are exact in

dimension 1.

Remark 6.3. In [10, Theorem 7.2], Hutchinson states thatH1.L�.A2//' .
K2.2;A/
C.2;A/ /

ab. In
fact, this is only valid when the space Y.A/ is path-connected; i.e., when A is a GE2-ring.
Theorem 6.2 above gives a corrected statement valid for all commutative rings.

7. The main spectral sequence

Let A be a commutative ring. The group PGE2.A/ acts naturally onZGE2
i .A2/. By Propo-

sition 5.4, the sequence of PGE2.A/-modules

0! Z
GE2
1 .A2/

inc
�! Y1.A

2/
@Y1
�! Y0.A

2/! Z! 0

is exact. Let E�.A2/ be the sequence

0! Z
GE2
1 .A2/

inc
�! Y1.A

2/
@Y1
�! Y0.A

2/! 0

and B�.PGE2.A//! Z be the bar resolution of PGE2.A/ over Z [2, Chapter I, Section
5]. Let D�;� be the double complex

B�
�
PGE2.A/

�
˝PGE2.A/ E�.A

2/:

From this double complex we obtain the first quadrant spectral sequence

E1p;q D

8̂̂<̂
:̂
Hq
�
PGE2.A/; Yp.A2/

�
p D 0; 1;

Hq
�
PGE2.A/;Z

GE2
1 .A2/

�
p D 2;

0 p > 2

) HpCq
�
PGE2.A/;Z

�
(see [2, Section 5, Chapter VII]).
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The group PGE2.A/ acts transitively on the set of generators of Yi .A2/ for i D 0; 1.
We choose .111/ and .111;000/ as representatives of the orbit of the generators of Y0.A2/ and
Y1.A

2/, respectively. Then

Y0.A
2/ ' IndPGE2.A/

PB2.A/
Z; Y1.A

2/ ' IndPGE2.A/
PT2.A/

Z; (7.1)

where

PB2.A/ WD StabPGE2.A/.111/ D

²�
a b

0 d

�
W a; d 2 A�; b 2 A

³
=A�I2;

PT2.A/ WD StabPGE2.A/.111; 000/ D

²�
a 0

0 d

�
W a; d 2 A�

³
=A�I2:

Note that PT2.A/
'
�!A�, which is given by diag.a; d/ 7!ad�1. The inverse of this map is

A�
'
�! PT2.A/; a 7! diag.a; 1/ D diag.1; a�1/:

Usually in our calculations we identify PT2.A/ with A�. The group PB2.A/ sits in the
split extension

1! N2.A/! PB2.A/! PT2.A/! 1;

where

N2.A/ WD

²�
1 b

0 1

�
W b 2 A

³
' A:

So we have the split extension 0! A! PB2.A/! A� ! 1, where the action of A� on
A is given by a:x WD ax. This implies that

H0.A
�; A/ D AA� D A=ha � 1 W a 2 A

�
i:

By Shapiro’s lemma, applied to (7.1), we have

E10;q ' Hq
�
PB2.A/;Z

�
; E11;q ' Hq

�
PT2.A/;Z

�
:

In particular, E10;0 ' Z ' E11;0. Moreover,

d11;q D �� � inc�;

where
� W PT2.A/! PB2.A/

is given by �.X/ D wXw�1 for w D
�
0 1
�1 0

�
. This easily implies that d11;0 is trivial, d11;1

is induced by the map PT2.A/! PB2.A/, X 7! X�2, and

d11;2 W H2
�
PT2.A/;Z

�
! H2

�
PB2.A/;Z

�
is trivial.



B. Mirzaii and E. Torres Pérez 1178

8. The scissors congruence group

Following Coronado and Hutchinson we define the scissors congruence group of A as
follows:

P .A/ WD H0
�
PGL2.A/;Z

GL2
2 .A2/

�
:

It follows from Lemma 5.6, that

P .A/ ' H0
�
PGE2.A/;Z

GE2
2 .A2/

�
:

Remark 8.1. Let A satisfy the condition that the complex Y�.A2/! Z is exact in dimen-
sion < 4 (for example see Proposition 5.5). Then P .A/ is isomorphic with the classical
scissors congruence group defined in Section 2. In fact, from the exact sequence

Y4.A
2/! Y3.A

2/! Z
GE2
2 .A2/! 0

we obtain the exact sequence

Y4.A
2/PGE2.A/ ! Y3.A

2/PGE2.A/ ! P .A/! 0:

The orbits of the action of PGE2.A/ on Y3.A/ and Y4.A/ are represented by

Œx�0 WD .111; 000;111;xxx/; and Œx; y�0 WD .111; 000;111;xxx;yyy/; x; y; x=y 2 WA;

respectively. Thus Y3.A2/PGE2.A/ is the free abelian group generated by the symbols Œx�0,
x 2 WA and Y4.A2/PGE2.A/ is the free abelian group generated by the symbols Œx; y�0,
x; y; x=y 2 WA. It is straightforward to check that

@Y4
�
Œx; y�0

�
D Œx�0 � Œy�0 C

�
y

x

�0
�

�
1 � x�1

1 � y�1

�0
C

�
1 � x

1 � y

�0
:

This proves our claim.

Lemma 8.2. If A satisfies the condition that Y�.A2/ is exact in dimension one, then

P .A/ ' H1
�

GE2.A/;Z
GE2
1 .A2/

�
:

Proof. Since Y�.A2/ is exact in dimension one, the sequence

0! Z
GE2
2 .A2/! Y2.A

2/! Z
GE2
1 .A2/! 0

is exact. From this we obtain the long exact sequence

� � �!H1
�
PGE2.A/; Y2.A2/

�
!H1

�
PGE2.A/;Z

GE2
1 .A2/

�
!H0

�
PGE2.A/;Z

GE2
2 .A2/

�
!H0

�
PGE2.A/; Y2.A2/

�
! H0

�
PGE2.A/;Z

GE2
1 .A2/

�
! 0:

The group PGE2.A/ acts transitively on the generators of Y2.A2/. We choose .111;000;111/ as
representative of the orbit of the generators of Y2.A2/. Then

Y2.A
2/ ' IndPGE2.A/

¹1º
Z:
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Thus by Shapiro’s lemma,

Hq
�
PGE2.A/; Y2.A2/

�
' Hq

�
¹1º;Z

�
'

´
Z if q D 0;

0 if q > 0:

The map @Y2 W Y2.A
2/! Y1.A

2/ induces the identity map

@Y2 W Z D Y2.A
2/PGE2.A/ ! Y1.A

2/PGE2.A/ D Z:

Since @Y2 factors through

Z
GE2
1 .A2/PGE2.A/ and Y2.A

2/PGE2.A/ ! Z
GE2
1 .A2/PGE2.A/

is surjective, we conclude that the map

Y2.A
2/PGE2.A/ ! Z

GE2
1 .A2/PGE2.A/

must be an isomorphism. Therefore

H1
�
PGE2.A/;Z

GE2
1 .A2/

�
' H0

�
PGE2.A/;Z

GE2
2 .A2/

�
D P .A/:

Lemma 8.3. The differential d12;1 is trivial. In particular, if Y�.A/ is exact in dimension
one, then E22;1 ' P .A/.

Proof. LetD0�;� be the double complex F�˝GE2.A/ E�.A
2/, where F�!Z is a projective

resolution of GE2.A/ over Z. From D0�;� we obtain the first quadrant spectral sequence

E 0
1
p:q D

8̂̂<̂
:̂
Hq
�

GE2.A/; Yp.A2/
�

p D 0; 1;

Hq
�

GE2.A/;Z
GE2
1 .A2/

�
p D 2;

0 p > 2

) HpCq
�

GE2.A/;Z
�
:

The natural map p W GE2.A/! PGE2.A/ induces the morphism of spectral sequences

E 0
1
p;q HpCq

�
GE2.A/;Z

�
E1p;q HpCq

�
PGE2.A/;Z

�
:

p� p� (8.1)

As in case of the spectral sequence E1�;� discussed in the previous section, we can show
that

E 0
1
0;q D Hq

�
B2.A/;Z

�
; E 0

1
1;q D Hq

�
T2.A/;Z

�
;

where

B2.A/ WD
²�

a b

0 d

�
W a; d 2 A�; b 2 A

³
; T2.A/ WD

²�
a 0

0 d

�
W a; d 2 A�

³
:
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From the above morphism of spectral sequences we have the commutative diagram

E 0
1
2;1 H1

�
T2.A/;Z

�
H1
�
B2.A/;Z

�
E12;1 H1

�
PT2.A/;Z

�
H1
�
PB2.A/;Z

�
:

d 0
1
2;1

p�

d 0
1
1;1

p� p�

d12;1 d11;1

The differential d 011;1 can be calculated similar to d11;1. In fact, d 011;1 D �
0
� � inc�, where

� 0 W T2.A/! B2.A/, diag.a; b/ 7! diag.b; a/. It is easy to see that

d 0
1
1;1

�
diag.a; b/

�
D diag.ba�1; ab�1/:

It follows from this that ker.d 011;1/ D A�I2 and thus p� ı d 0
1
2;1 D 0. Since the vertical

maps are surjective [2, Corollary 6.4, Chapter VII], the differential d12;1 must be trivial.
The second part follows from the first part and Lemma 8.2.

Theorem 8.4. Let A be a commutative ring which satisfies the condition that Y�.A2/
is exact in dimension one. Then H1.PGE2.A/;Z/ ' GA ˚ AA� and we have the exact
sequence

H3
�
PGE2.A/;Z

�
! P .A/! H2

�
PB2.A/;Z

�
! H2

�
PGE2.A/;Z

�
! �2.A/! 1:

Proof. Consider the composite

Y2.A
2/

@Y2
�! Z

GE2
1 .A2/

inc
�! Y1.A

2/:

SinceH1.Y�.A2//D0, the left map is surjective. As we discussed in the proof of Lemma 8.2,
the map

@Y2 W Z ' Y2.A
2/PGE2.A/ ! Y1.A

2/PGE2.A/ ' Z

is an isomorphism. This implies that the differential

d12;0 D inc W ZGE2
1 .A2/PGE2.A/ ! Y1.A

2/PGE2.A/ D Z

is surjective. On the other hand Y2.A2/PGE2.A/
@Y2
�! Z

GE2
1 .A2/PGE2.A/ is surjective. Thus

d12;0 is injective too and therefore
E22;0 D 0:

On the other hand, we have

E21;1 ' �2.A/; E20;2 D H2
�
PB2.A/;Z

�
:

From the split extension 0! A! PB2.A/! A� ! 1, we obtain the five term exact
sequence

H2
�
PB2.A/;Z

�
! H2.A

�;Z/! AA� ! H1
�
PB2.A/;Z

�
! A� ! 1;
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(see [2, Corollary 6.4, Chapter VII]). Since the above extension splits, the left-side map in
the above exact sequence is surjective. Thus

H1
�
PB2.A/;Z

�
' A� ˚ AA� :

Since under the differential

d11;1 W A
�
' H1

�
PT2.A/;Z

�
! H1

�
PB2.A/;Z

�
' A� ˚ AA� ;

the element a 2A� maps to .a�2; 0/, we haveE20;1' GA˚AA� . Now the theorem follows
from an easy analysis of the main spectral sequence.

Remark 8.5. Let A be a commutative ring. From the diagram with exact rows

Y2.A
2/ Z

GE2
1 .A2/ H1

�
Y�.A

2/
�

0

Y1.A
2/ Y1.A

2/

@Y2

@Y2 inc

we obtain the commutative diagram with exact rows

Z D Y2.A2/PGE2.A/ Z
GE2
1 .A2/PGE2.A/ H1

�
Y�.A

2/
�

PGE2.A/
0

Z Z

@Y2

idZD@
Y
2

d12;0Dinc

(see the proof of the above theorem). Thus by the Snake lemma we have

E22;0 ' H1
�
Y�.A

2/
�

PGE2.A/
:

Since
E21;1 ' �2.A/; E20;2 D H2

�
PB2.A/;Z

�
; E20;1 ' GA ˚ AA� ;

by an easy analysis of the main spectral sequence, we obtain the exact sequence

H2
�
PGE2.A/;Z

�
! H1

�
Y�.A

2/
�

PGE2.A/
! GA ˚ AA� ! H1

�
PGE2.A/;Z

�
! 0:

Combining this with Theorem 6.2 we obtain the exact sequence

H2
�
PGE2.A/;Z

�
!

�
K2.2; A/
C.2; A/

�ab

PGE2.A/
! AA� ! H1

�
PGE2.A/;Z

�
! GA ! 1:

We believe that this exact sequence coincides with the exact sequence of Theorem 4.1.
It seems very difficult to describe the map .K2.2;A/

C.2;A/
/ab

PGE2.A/
! AA� in the above exact

sequence using the differentials of the spectral sequence, while it was reasonably easy to
describe a similar map in Theorem 4.1.
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Corollary 8.6. If A is universal for GE2, then we have the exact sequence

H3
�
PGE2.A/;Z

�
! P .A/! H2

�
PB2.A/;Z

�
! H2

�
PGE2.A/;Z

�
! �2.A/! 1:

Proof. Since A is universal for GE2, by Theorem 6.2 we have

H1
�
Y�.A

2/
�
'

�
K2.2; A/
C.2; A/

�ab

D 0:

Now the claim follows from the above theorem.

Example 8.7. Let A be a semilocal ring such that none of Z=2 �Z=2 and Z=6 is a direct
factor ofA=J.A/. ThenA is a universal GE2-ring and thus by the above corollary we have
the exact sequence

H3
�
PGL2.A/;Z

�
! P .A/! H2

�
PB2.A/;Z

�
! H2

�
PGL2.A/;Z

�
! �2.A/! 1:

9. The homology groups of PB2.A/

Let study the Lyndon/Hochschild–Serre spectral sequence associated to the split extension

1! N2.A/! PB2.A/! PT2.A/! 1:

This is the extension 0! A! PB2.A/! A� ! 1. Thus we have the spectral sequence

E2p;q D Hp
�
A�;Hq.A;Z/

�
) HpCq

�
PB2.A/;Z

�
:

We showed in the proof of Theorem 8.4 that

H1
�
PB2.A/;Z

�
' A� ˚ AA� ' H1

�
PT2.A/;Z

�
˚ AA� :

Recall that AA� D H0.A�; A/ D A=ha � 1 W a 2 A�i.

Lemma 9.1. Let G be an abelian group, A a commutative ring, M an A-module and ' W
G ! A� a homomorphism of groups which turns A and M into G-modules. If H0.G;A/
D 0, then for any n � 0, Hn.G;M/ D 0.

Proof. See [21, Lemma 1.8].

Corollary 9.2. If AA� D 0, then Hn.A�; A/ D 0 for any n � 0.

Proof. Use the above lemma by considering ' D idA� W A� ! A�.

Corollary 9.3. If 2 2 A�, then Hn.A�; A/ D 0 for any n � 0.

Proof. If 2 2 A�, then AA� D 0. Now use the previous corollary.
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Lemma 9.4. If AA� D 0, then H2.PB2.A/;Z/ ' H2.PT2.A/;Z/˚H2.A;Z/A� .

Proof. By Corollary 9.2, we have H1.A�; A/ D 0. Now the claim follows from an easy
analysis of the above spectral sequence.

Proposition 9.5. If A is a subring of Q, then for any n � 0,

Hn
�
PB2.A/;Z

�
' Hn

�
PT2.A/;Z

�
˚Hn�1.A

�; A/:

In particular, if 2 2 A�, then Hn.PT2.A/;Z/ ' Hn.PB2.A/;Z/.

Proof. It is well known that any finitely generated subgroup of Q is cyclic. Thus the
additive group A is a direct limit of infinite cyclic groups. Since Hn.Z;Z/ D 0 for any
n � 2 [2, p. 58] and since homology commutes with direct limit [2, Exercise 6, Section 5,
Chapter V], we haveHn.A;Z/D 0 for n� 2. Now the claim follows from an easy analysis
of the above Lyndon/Hochschild–Serre spectral sequence. The second claim follows from
Corollary 9.3.

Example 9.6. (i) Since Z� act on Z by .�1/:n D �n, we have .Z/Z� ' Z=2. Moreover,
using the structure of the homology of finite cyclic groups [2, p. 58–59], we have

Hk.Z
�;Z/ '

´
0 if k is odd;

Z=2 if k is even:
:

Therefore, by the above proposition,

Hn
�
PB2.Z/;Z

�
'

´
Hn
�
PT2.Z/;Z

�
if n is even;

Hn
�
PT2.Z/;Z

�
˚ Z=2 if n is odd

'

8̂̂<̂
:̂

Z if n D 0;

0 if n is even;

Z=2˚ Z=2 if n is odd:

(ii) Let Am WD ZŒ 1
m
�, where m is a square free integer. We calculated .Am/A�m in

Example 4.4(iv). Now if 2 j m, then by Corollary 9.3, for any non-negative integer n,
Hn.A

�
m; Am/ D 0. Thus by Proposition 9.5

Hn
�
PB2.Am/;Z

�
' Hn

�
PT2.Am/;Z

�
:

Let p be an odd prime. Then .Ap/A�p ' Z=2. Note that A�p ' ¹˙1º � hpi ' Z=2 � Z.
By an easy analysis of the spectral sequence

E 0
2
r;s D Hr

�
¹˙1º;Hs

�
hpi; Ap

��
) HrCs.A

�
p ; Ap/

and the calculation of the homology of cyclic groups [2, P. 58–59], one can show that for
any n � 0,

Hn.A
�
p ; Ap/ ' Z=2:
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Thus by Proposition 9.5,Hn.PBn.Ap/;Z/'Hn.PT2.Ap/;Z/˚Z=2, n � 1. Finally, by
the Künneth formula applied to

Hn
�
PT2.Ap/;Z

�
' Hn

�
¹˙1º � hpi;Z

�
;

we obtain

Hn
�
PB2.Ap/;Z

�
'

8̂̂<̂
:̂

Z if n D 0;

Z=2˚ Z=2˚ Z if n D 1;

Z=2˚ Z=2 if n � 2:

The following result is known for the inclusion of groups T2.A/ � B2.A/.

Proposition 9.7. Let  q W Hq.PT2.A/;Z/! Hq.PB2.A/;Z/ be induced by the natural
inclusion PT2.A/ � PB2.A/.

(i) Let A be a semilocal ring such that for any maximal ideal m, jA=mj ¤ 2; 3; 4.
Then  q is isomorphism for q � 2.

(ii) Let A be a semilocal domain such that for any maximal ideal m either A=m is
infinite or if jA=mj D pd , then q < .p � 1/d . Then  q is an isomorphism.

(iii) Let A be a semilocal ring such that for any maximal ideal m either A=m is
infinite or if jA=mj D pd , then q < .p � 1/d � 2. Then  q is an isomorphism.

Proof. This can be proved as in [18, Section 2], which the case of local rings is treated.

10. The second homology of PGE2

Let A be a commutative ring. Recall that WA D ¹a 2 A W a.a � 1/ 2 A
�º. The differential

@Y3 W Y3.A/! Z
GE2
2 .A2/ � Y2.A/ induces the map

@Y3 W H0
�
PGE2.A/; Y3.A2/

�
! P .A/:

We choose Xa WD .111; 000;111;aaa/, a 2 WA, as representatives of the orbits of the generators
of Y3.A2/ and set

Œa� WD @Y3 .Xa/ 2 P .A/:

Proposition 10.1. Let A be a ring such that Y�.A2/ is exact in dimension 1. Then under
the composite

d22;1 W P .A/
d22;1
��! H2

�
PB2.A/;Z

�
! H2

�
PT2.A/;Z

�
' A� ^ A�

Œa� 2 P .A/ maps to 2.a ^ .1 � a//.

Proof. It is proved in [15, Lemma 3.2] that E 022;1 ' P .A/ and the composite

P .A/
d 0
2
2;1

���!
H2
�
B2.A/;Z

�
.�� � inc�/

�
H2.T2.A/;Z/

� ! H2
�
T2.A/;Z

�
.�� � inc�/

�
H2.T2.A/;Z/

�
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is given by

Œa� 7!

�
a 0

0 1

�
^

�
1 � a 0

0 .1 � a/�1

�
(see [15, Lemma 4.1] and its proof). We introduced and studies the spectral sequence

E 0
1
p;q ) HpCq

�
GE2.A/;Z

�
in the proof of Lemma 8.3. Observe that in [15] the author works over rings with many
units, which satisfy the condition of this proposition. But [15, Lemma 4.1] (used above)
is also valid in our more general setting here. Now from the commutative diagram

P .A/ H2.B2.A/;Z/
im.���inc�/

H2.T2.A/;Z/
im.���inc�/

P .A/ H2
�
PB2.A/;Z

�
H2
�
PT2.A/;Z

�
d 0
2
2;1

p� p�

d22;1

we obtain the desired result.

Let A satisfy the condition that Y�.A2/ is exact in dimension 1. Then by Lemma 8.3,
E22;1 ' P .A/. We denote the kernel of the differential

d22;1 W P .A/! H2
�
PB2.A/;Z

�
with BE .A/ and we call it the GE2-Bloch group of A. Hence we have

E12;1 ' BE .A/: (10.1)

Corollary 10.2. Let A satisfy the condition that Y�.A2/ is exact in dimension 1. If

Hk
�
PT2.A/;Z

�
' Hk

�
PB2.A/;Z

�
for k � 2;

then we have the exact sequence

A� ^ A�˝
2
�
a ^ .1 � a/

�
W a 2 WA

˛ ! H2
�
PGE2.A/;Z

�
! �2.A/! 1:

Moreover, if Y�.A2/! Z is exact in dimension < 3, then we have the exact sequence

0!
A� ^ A�˝

2
�
a ^ .1 � a/

�
W a 2 WA

˛ ! H2
�
PGE2.A/;Z

�
! �2.A/! 1:

Proof. This follows from Theorem 8.4 and Proposition 10.1. The second part follows
from the first part and the fact that the natural map

@Y3 W H0
�
PGE2.A/; Y3.A2/

�
! P .A/

is surjective.
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Theorem 10.3. Let A be a local domain (local ring) such that

jA=mAj ¤ 2; 3; 4
�
jA=mAj ¤ 2; 3; 4; 5; 8; 9; 16

�
:

Then
H2
�
PGL2.A/;Z

�
1
2

��
' K2.A/

�
1
2

�
:

Proof. Since jA=mAj ¤ 2; 3; 4 (jA=mAj ¤ 2; 3; 4; 5; 8; 9; 16 for the case of local ring),
by Proposition 9.7,

Hk
�
PT2.A/;Z

�
' Hk

�
PB2.A/;Z

�
for k � 2. Moreover, note that A is a GE2-ring and by Proposition 5.5 the complex
Y�.A

2/! Z is exact in dimension < 4. Thus by the above corollary,

H2
�
PGL2.A/;Z

�
1
2

��
'

H2
�
A�;ZŒ1

2
�
�˝

2
�
a ^ .1 � a/

�
W a 2 WA

˛ :
Now it is easy to see that

H2
�
A�;ZŒ1

2
�
�˝

2
�
a ^ .1 � a/

�
W a 2 WA

˛ ' S2Z.A
�/Œ1

2
�˝

a˝ .1 � a/ W a 2 A�
˛ ' KM2 .A/

�
1
2

�
' K2.A/

�
1
2

�
(see Theorem 2.1). Recall that

S2Z.A
�/ ' .A� ˝Z A

�/=ha˝ b C b ˝ a W a; b 2 A�i:

Example 10.4. The ring Z is a universal GE2-ring [10, Example 6.12]. Since ZZ� 'Z=2
and H2.PB2.Z/;Z/ D 0 (Example 9.6), by Corollary 8.6 we have

H2
�
PGL2.Z/;Z

�
' Z=2:

Example 10.5. Let p D 2; 3. Then Ap WD ZŒ 1
p
� is a universal GE2-ring [10, Exam-

ple 6.13]. By Example 9.6, we have

H2
�
PB2.Ap/;Z

�
'

´
Z=2 if p D 2;

Z=2˚ Z=2 if p D 3:

By Corollary 8.6, we have the exact sequence

H3
�
PGL2.Ap/;Z

�
!P .Ap/

�
�!H2

�
PB2.Ap/;Z

�
!H2

�
PGL2.Ap/;Z

�
!�2.Ap/! 1:

From these we obtain the exact sequences

Z=2! H2
�
PGL2.A2/;Z

�
! �2.A2/! 1;

Z=2˚ Z=2! H2
�
PGL2.A3/;Z

�
! �2.A3/! 1:
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11. The third homology of PGE2 and a Bloch–Wigner type theorem

Lemma 11.1. If A satisfies the condition that Y�.A2/ is exact in dimension 1, then

E21;2 '
A� ^ A�

2.A� ^ A�/
' GA ^ GA:

Proof. To prove our claim we must show that the image of the differential

d12;2 W H2
�
PGE2.A/;Z

GE2
1 .A2/

�
! H2

�
PT2.A/;Z

�
' A� ^ A�

is 2.A� ^ A�/. The morphism of spectral sequences E 01p;q ! E1p;q (see diagram (8.1) in
the proof of Lemma 8.3) gives us the commutative diagram

H2
�

GE2.A/;Z
GE2
1 .A2/

�
H2
�
T2.A/;Z

�
H2
�
B2.A/;Z

�
H2
�
PGE2.A/;Z

GE2
1 .A2/

�
H2
�
PT2.A/;Z

�
H2
�
PB2.A/;Z

�
:

d 0
1
2;2 d 0

1
1;2

p�

d12;2 d11;2D0

From the five term exact sequence associated to the Lyndon/Hochschild–Serre spectral of
central extension 1!A�I2!GE2.A/! PGE2.A/! 1 [2, Corollary 6.4, Chapter VII],
with coefficients in ZGE2

1 .A2/ and Lemma 8.2 we obtain the exact sequence

H2
�

GE2.A/;Z
GE2
1 .A2/

�
! H2

�
PGE2.A/;Z

GE2
1 .A2/

�
! H1

�
A�; Z

GE2
1 .A2/

�
PGE2.A/

! H1
�

GE2.A/;Z
GE2
1 .A2/

�
! P .A/! 0:

Since PGE2.A/ acts trivially on A�I2, we have

H1
�
A�; Z

GE2
1 .A2/

�
PGE2.A/

' H1.A
�;Z/˝Z Z

GE2
1 .A2/PGE2.A/:

In the proof of Lemma 8.2, we have proved that ZGE2
1 .A2/PGE2.A/ ' Z. Thus

H1
�
A�; Z

GE2
1 .A2/

�
PGE2.A/

' A�:

The composite Y2.A2/
@2� Z

GE2
1 .A2/

inc
�! Y1.A

2/ gives us the composite

A�'H1
�

GE2.A/;Y2.A2/
�
!H1

�
GE2.A/;Z

GE2
1 .A2/

�
!H1

�
GE2.A/;Y1.A2/

�
'A�

which coincide with the identity map idA� . This shows that the natural map

A� ! H1
�

GE2.A/;Z
GE2
1 .A2/

�
appearing in the above five term exact sequence is injective. Therefore the map

H2
�

GE2.A/;Z
GE2
1 .A2/

�
! H2

�
PGE2.A/;Z

GE2
1 .A2/

�
is surjective, which appears as the left vertical map in the above diagram.
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By the Künneth formula,

H2
�
T2.A/;Z

�
' H2.A

�;Z/˚H2.A
�;Z/˚ A� ˝Z A

�:

A direct calculation shows that ker.d 011;2/ is generated by the elements of the form

.x; x; a˝ b � b ˝ a/; x 2 H2.A
�;Z/; a; b 2 A�:

It is easy to see that p�.ker d 011;2/ D 2H2.PT.A/;Z/. From the above commutative dia-
gram it follows that im.d12;2/ � 2H2.PT.A/;Z/. Finally, it is straightforward to check
that

Y WD

���
a 0

0 1

� ˇ̌̌̌ �
b 0

0 1

��
�

��
b 0

0 1

� ˇ̌̌̌ �
a 0

0 1

���
˝
�
.111; 000/C .000;111/

�
2 H2

�
PGE2.A/;Z

GE2
1 .A2/

�
and

d12;2.Y / D 2.a ^ b/:

This shows that im.d12;2/ D 2H2.PT.A/; Z/. The final isomorphism follows from the
following lemma applied two A D Z! Z=2 D B and M D A�.

Lemma 11.2 (Base change). If A! B is a homomorphism of commutative rings and if
M is any A-module, then the natural map� n̂

A

M
�
˝A B !

n̂

B

.M ˝A B/

is an isomorphism.

Proof. See [6, Proposition A2.2].

Let A be an abelian group. Let �1 W TorZ
1 .A;A/! TorZ

1 .A;A/ be obtained by inter-
changing the copies of A. This map is induced by the involution A˝Z A! A˝Z A,
a ˝ b 7! �b ˝ a (for this use [1, Proposition 3.5]). Let †02 D ¹1; �

0º be the symmetric
group of order 2 and consider the following action of this group on TorZ

1 .A;A/:

.� 0; x/ 7! ��1.x/:

We say that an abelian group A is an ind-cyclic group if A is direct limit of its finite cyclic
subgroups.

Proposition 11.3. Let A be an abelian group and TA be its torsion subgroup. Then

(i) We always have the exact sequence

0!

3̂

Z

A! H3.A;Z/! TorZ
1 .TA; TA/

†02 ! 0:
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(ii) If TA is an ind-cyclic group, then †02 acts trivially on TorZ
1 .TA; TA/ and the

exact sequence

0!

3̂

Z

A! H3.A;Z/! TorZ
1 .TA; TA/! 0

splits naturally.

(iii) For any integer m 2 Z, let m W A ! A be given by a 7! ma. Then the map
m� W H3.A;Z/! H3.A;Z/ induces multiplication by m3 on

V3
Z A and mul-

tiplication by m2 on TorZ
1 .TA; TA/

†02 .

Proof. (i) By [28, Lemma 5.5] or [1, Section 6] we have the exact sequence

0!

3̂

Z

A! H3.A;Z/! TorZ
1 .A;A/

†02 ! 0:

Since
TorZ

1 .A;A/ ' TorZ
1 .TA; TA/;

we obtain the first exact sequence.
(ii) Now let TA be an ind-cyclic group. Since

TorZ
1 .Z=n;Z=n/ ' Z=n;

the action of†02 on TorZ
1 .Z=n;Z=n/ is trivial. Now by passing to the limit, we see that the

action of †02 on TorZ
1 .TA; TA/ is trivial. For the last part note that since TA is ind-cyclic,

3̂

Z

TA D 0:

Now applying the first part to the inclusion TA ,! A, we obtain the following commuta-
tive diagram with exact rows

H3.TA;Z/ TorZ
1 .TA; TA/

0
V3

Z A H3.A;Z/ TorZ
1 .A;A/ 0:

'

'

Now from this diagram we obtain a natural splitting map

TorZ
1 .TA; TA/ ' H3.TA;Z/! H3.A;Z/:

(iii) This part follows from (i) and (ii).

Lemma 11.4. If H3.PT2.A/;Z/ ' H3.PB2.A/;Z/, then E20;3 sits in the exact sequence

3̂

Z

GA ! E20;3 ! TorZ
1

�
�.A/; �.A/

�†02 ! 0:
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Proof. By Proposition 11.3, H3.PT2.A/;Z/ sits in the exact sequence

0!

3̂

Z

A� ! H3
�
PT2.A/;Z

�
! TorZ

1

�
�.A/; �.A/

�†02 ! 0:

Consider the commutative diagram with exact rows

0
V3

ZA
� H3

�
PT2.A/;Z

�
TorZ

1

�
�.A/; �.A/

�†02 0

0
V3

ZA
� H3

�
PT2.A/;Z

�
TorZ

1

�
�.A/; �.A/

�†02 0:

d11;3

It is straightforward to see that d11;3 induces multiplication by 2 on the left vertical map
and 0 on the right vertical map (use Proposition 11.3 for m D 1 and m D �1). Thus by
the Snake lemma we have the exact sequence� 3̂

Z

A�
�
=2! E20;3 ! TorZ

1

�
�.A/; �.A/

�†02 ! 0:

Now the claim follows from this and Lemma 11.2.

Over algebraically closed fields of characteristic zero the following result is called the
classical Bloch–Wigner exact sequence.

Proposition 11.5 (Classical Bloch–Wigner exact sequence). Let F be either a quadrati-
cally closed field, real closed field or a finite field, where jF j ¤ 2; 3; 4; 8. Then we have
the exact sequence

0! TorZ
1

�
�.F /; �.F /

�
! H3

�
PGL2.F /;Z

�
! BE .F /! 0:

Proof. First note that Y�.F 2/! Z is exact in dimension < 4 (Proposition 5.5). Second,
by Proposition 9.7,

Hn
�
PT2.F /;Z

�
' Hn

�
PB2.F /;Z

�
for n � 3. Since jGF j � 2, we have

E21;2 D 0; E20;3 ' TorZ
1

�
�.F /; �.F /

�
(see Lemmas 11.1 and 11.4). Now by an easy analysis of the main spectral sequence we
obtain the exact sequence

TorZ
1

�
�.F /; �.F /

�
! H3

�
PGL2.F /;Z

�
! BE .F /! 0:

Let xF be the algebraic closure of F . Since

TorZ
1

�
�.F /; �.F /

�
! TorZ

1

�
�. xF /; �. xF /

�
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is injective, it is sufficient to prove the claim for xF . The isomorphism

PSL2. xF /
'
�! PGL2. xF /

gives us the morphism of spectral sequences

E 00
1
p;q HpCq

�
PSL2. xF /;Z

�
E1p;q HpCq

�
PGL2. xF /;Z

�
:

This morphism gives us the commutative diagram with exact rows

0! TorZ
1

�
z�. xF /; z�. xF /

�
H3
�
PSL2. xF /;Z

�
P . xF /

V2
Z
xF �

TorZ
1

�
�. xF /; �. xF /

�
H3
�
PGL2. xF /;Z

�
P . xF /

V2
Z
xF �

4: '

Œa� 7! 1
2 .a^.1�a//

4:

Œa� 7!2.a^.1�a//

where z�. xF / D �. xF /=�2. xF /. For the upper exact sequence, see [5, Appendix A]. Note
that the right and the left vertical maps are induced by

xF �
.:/2

��! xF �

and both are isomorphism. Therefore the map

TorZ
1

�
�. xF /; �. xF /

�
! H3

�
PGL2. xF /;Z

�
is injective. This completes the proof of the proposition.

Remark 11.6. Let F be a quadratically closed field. All the groups of the commutative
diagram

SL2.F / PSL2.F /

GL2.F / PGL2.F /:

'

act on the complex L�.F 2/ (see Section 5). So from the above diagram we obtain the
diagram of morphisms of spectral sequences

E 000
1
p;q HpCq.SL2.F /;Z/

E 00
1
p;q HpCq.PSL2.F /;Z/

E 0
1
p;q HpCq.GL2.F /;Z/

E1p;q HpCq.PGL2.F /;Z/
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By studying the spectral sequence in the above diagram, we obtain the following commu-
tative diagram with exact rows

0
�
.F
/

H
3
.S

L
2
/

P
.F
/

V 2 Z
F
�

H
2
.S

L
2
/

0

0
y�
.F
/

H
3
.P

SL
2
/

P
.F
/

V 2 Z
F
�

H
2
.P

SL
2
/

z�
4
.F
/
!
0

0
�
.F
/

z H
3
.G

L
2
/

P
.F
/

V 2 Z
F
�
˚
S
2 Z
.F
�
/

H
2
.G

L
2
/

0

0
�
.F
/

H
3
.P

G
L
2
/

P
.F
/

V 2 Z
F
�

H
2
.P

G
L
2
/

�
2
.F
/
!
0

2
:

Œa
�7!

1 2
.a
^
.1
�
a
//

˛

4
:

'

Œa
�7!

1 2
.a
^
.1
�
a
//

4
:

'

2
:

Œa
�7!
.a
^
.1
�
a
/;
�
a
˝
.1
�
a
//

ˇ
Œa
�7!
2
.a
^
.1
�
a
//
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where

˛.a ^ b/ D 2.a ^ b; a˝ b/; ˇ.a ^ b; c ˝ d/ D a ^ b � c ^ d; y�.F / WD �.F /=�4.F /

and zH3.GL2/ is the cokernel of the composite

3̂

Z

T2.F /! H3
�
T2.F /;Z

�
! H3

�
GL2.F /;Z

�
:

In the above diagram, the exact sequences corresponding to SL2.F / and PSL2.F / are
proved in [5, Appendix A]. For these see also [7, 19]. For the exact sequence related to
GL2.F / see [15, 28]. The exact sequence related to PGL2.F / is the topic of the current
article (but also see [22, Appendix C, (C.3)]). The maps on the right vertical square sit in
the following exact sequences

0! H2
�

SL2.F /;Z
�
! H2

�
PSL2.F /;Z

�
! �2.F /! 1;

0! H2
�

SL2.F /;Z
�
! H2

�
GL2.F /;Z

� det
�! H2.F

�;Z/! 0;

F � ˝Z F
�
! H2

�
GL2.F /;Z

�
! H2

�
PGL2.F /;Z

�
! F �

.:/2

��! F � ! GF ! 1:

These exact sequences can be obtained by analysis of the Lyndon/Hochschild–Serre Spec-
tral sequences associated to the group extensions 1! �2.F /! SL2.F /! PSL2.F /!

1, 1! SL2.F /! GL2.F /
det
�! F � ! 1 and 1! F �I2 ! GL2.F /! PGL2.F /! 1,

respectively.

Theorem 11.7. Let A be a domain satisfying the condition that Y�.A/ is exact in dimen-
sion 1 and H3.PT2.A/;Z/ ' H3.PB2.A/;Z/. Then we have the sequence

0! TorZ
1

�
�.A/; �.A/

�
! H3

�
PGE2.A/;Z

�
! BE .A/! 0;

which is exact at every term except possibly at the term H3.PGL2.A/; Z/, where the
homology of the complex is annihilated by 4.

Proof. The main spectral sequence gives us a filtration

0 � F0H3 � F1H3 � F2H3 � F3H3 D H3
�
PGE2.A/;Z

�
;

where E1p;3�p ' FpH3=Fp�1H3, 0 � p � 3. Since E13;0 D 0, we have F2H3 D F3H3.
From E12;1 ' BE .A/ (see (10.1)) we obtain the exact sequence

0! F1H3 ! H3
�
PGE2.A/;Z

�
! BE .A/! 0:

By Lemma 11.4 and Proposition 11.3 (ii), E20;3 sits in the exact sequence

3̂

Z

GA ! E20;3 ! TorZ
1

�
�.A/; �.A/

�
! 0:
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Let T2 D im.
V3

Z GA ! E20;3/. From the natural inclusion �.A/ ,! A� ' PT2.A/, we
obtain the diagram with exact rows

H3
�
�.A/;Z

�
TorZ

1

�
�.A/; �.A/

�
0 T2 E20;3 TorZ

1

�
�.A/; �.A/

�
0

'

This shows that the bottom exact sequence splits and thus we have the exact sequence

0! TorZ
1

�
�.A/; �.A/

�
! E20;3 ! T2 ! 0:

Now from the surjective map E20;3� E10;3 ' F0H3, we obtain an exact sequence of the
form

TorZ
1

�
�.A/; �.A/

�
! F0H3 ! T 02 ! 0;

where T 02 is a 2-torsion group. Let ˛ be the composite TorZ
1 .�.A/; �.A//! F0H3 ,!

F1H3. From the commutative diagram

TorZ
1

�
�.A/; �.A/

�
TorZ

1

�
�.A/; �.A/

�
0 F0H3 F1H3 E11;2 0

˛

we obtain the exact sequence

0! T 02 ! coker.˛/! E11;2 ! 0:

But by Lemma 11.1, E11;2 ' GA ^ GA. This implies that T4 WD coker.˛/ is a 4-torsion
group. To complete the proof of the theorem we need to prove that the composite

TorZ
1

�
�.A/; �.A/

� ˛
�! F1H3 ,! H3

�
PGE2.A/;Z

�
is injective. Let F be the quotient field of A and xF the algebraic closure of F . By Propo-
sition 11.5, we have the classical Bloch–Wigner exact sequence

0! TorZ
1

�
�. xF /; �. xF /

�
! H3

�
PGL2. xF /;Z

�
! BE . xF /! 0:

Now from the commutative diagram

TorZ
1

�
�.A/; �.A/

�
H3
�
PGE2.A/;Z

�
0 TorZ

1

�
�. xF /; �. xF /

�
H3
�
PGL2. xF /;Z

�
BE . xF / 0

we obtain the injectivity of the map TorZ
1 .�.A/; �.A//! H3.PGE2.A/;Z/. This com-

pletes the proof of the theorem.
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Corollary 11.8. Let A be a semilocal domain such that for any maximal ideal m, jA=mj
¤ 2; 3; 4; 8. Then we have the Bloch–Wigner exact sequence

0! TorZ
1

�
�.A/; �.A/

��
1
2

�
! H3

�
PGL2.A/;Z

�
1
2

��
! B.A/

�
1
2

�
! 0:

Moreover, H3.PGL2.A/;ZŒ12 �/ ' Kind
3 .A/Œ

1
2
�.

Proof. First note that A is a GE2-ring and thus GE2.A/ D GL2.A/. Second, by Proposi-
tion 9.7,Hn.PT2.A/;Z/'Hn.PB2.A/;Z/ for n� 3. Consider the commutative diagram
with exact rows

P .A/ S2Z.A
�/

P .A/ H2
�
PT2.A/;Z

�
;

�




d22;1

where 
.a˝ b/ D 2. a 00 1 / ^ .
b 0
0 1 /: Note that B.A/ WD ker.�/ is the Bloch group of A

(see Section 2). Since S2Z.A
�/Œ1

2
� ' H2.PT2.A/;ZŒ12 �/, we have B.A/Œ1

2
� ' BE .A/Œ

1
2
�.

Now the first claim follows from the above theorem.
The natural map GL2.A/ ,! PGL2.A/, induces the commutative diagram with exact

rows

0 TorZ
1

�
�.A/; �.A/Œ1

2
�
�

H3
�

SL2.A/;ZŒ12 �
�
A�

B.A/Œ1
2
� 0

0 TorZ
1

�
�.A/; �.A/Œ1

2
�
�

H3
�
PGL2.A/;ZŒ12 �

�
BE .A/Œ

1
2
� 0

' '

Note that the first exact sequence can be proved as [15, Corollary 5.4]. By the Snake
lemma,H3.SL2.A/;ZŒ12 �/A� 'H3.PGL2.A/;ZŒ12 �/. Now the second claim follows from
this and the isomorphism H3.SL2.A/;ZŒ12 �/A� ' Kind

3 .A/Œ
1
2
� (see Theorem 2.5).

Proposition 11.9. For any non-dyadic local field F we have the exact sequence

0! TorZ
1

�
�.F /; �.F /

�Ð
! H3

�
PGL2.F /;Z

�
! BE .F /! 0;

where TorZ
1 .�.F /; �.F //

Ð is an extension of Z=2 by TorZ
1 .�.F /; �.F //.

Proof. First note that GF 'Z=2�Z=2 (see [12, Theorem 2.2, Chapter VI]). ThusE11;2'
GF ^ GF 'Z=2. Moreover, since

V3
Z GF D 0, we haveE20;3 ' TorZ

1 .�.F /;�.F //. Now
by an easy analysis of the main spectral sequences we obtain the exact sequences

0!K ! H3
�
PGL2.F /;Z

�
! BE .F /! 0;

TorZ
1

�
�.F /; �.F /

�
!K ! Z=2! 0:

The injectivity of TorZ
1 .�.F /; �.F //! K follows from Theorem 11.7. This completes

the proof of the proposition.
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Proposition 11.10. For the rings Z and ZŒ1
2
� we have:

(i) For the ring of integers Z, BE .Z/ D P .Z/ and we have the exact sequence

0! TorZ
1

�
�.Z/; �.Z/

�
˚ Z=2! H3

�
PGL2.Z/;Z

�
! BE .Z/! 0:

(ii) For the ring ZŒ1
2
�, BE .ZŒ

1
2
�/ D P .ZŒ1

2
�/ and we have the exact sequence

0! TorZ
1

�
�
�
Z
�
1
2

��
;�
�
Z
�
1
2

���Ð
!H3

�
PGL2

�
Z
�
1
2

��
;Z
�
!BE

�
Z
�
1
2

��
! 0;

where TorZ
1 .�.ZŒ

1
2
�/; �.ZŒ1

2
�//Ð is an extension of Z=2 by TorZ

1 .�.ZŒ
1
2
�/; �.ZŒ1

2
�//.

Proof. (i) First observe that E10;2 D H2.PB2.Z/;Z/ ' H2.PT2.Z/;Z/ D 0 (see Exam-
ple 9.6). Thus BE .Z/ D P .Z/. By Example 9.6 and Proposition 11.3

H3
�
PB2.Z/;Z

�
' H3

�
PT2.Z/;Z

�
˚ Z=2 ' TorZ

1

�
�.Z/; �.Z/

�
˚ Z=2:

Note that E11;2 D H2.PT2.Z/;Z/ D 0. Now by an easy analysis of the main spectral
sequence we obtain the exact sequence

TorZ
1

�
�.Z/; �.Z/

�
˚ Z=2! H3

�
PGL2.Z/;Z

�
! P .Z/! 0: (11.1)

Let us study the associated Lyndon/Hochschild–Serre spectral sequence of the split exten-
sion 1! PSL2.Z/! PGL2.Z/! GZ ! 1:

E2r;s D Hr
�
GZ;Hs

�
PSL2.Z/;Z

��
) HrCs

�
PGL2.Z/;Z

�
:

Since PSL2.Z/ is the free product of Z=2 and Z=3, i.e., PSL2.Z/ ' Z=2 �Z=3, we have

Hn
�

PSL2.Z/;Z
�
'

8̂̂<̂
:̂

Z if n D 0;

Z=2˚ Z=3 if n is odd;

0 if n is even

(see [2, Corollary 7.7, Chapter II]). Therefore for any r � 0, E2r;2 D 0. Moreover,

E2r;0 D Hr .GZ;Z/ D

8̂̂<̂
:̂

Z if r D 0;

Z=2 if r is odd;

0 if r is even:

It is known that the isomorphism Z=6! H1.PSL2.Z/;Z/ is induced by N1 7! E12.1/ [3,
Theorem 9.3]. The conjugate action of h�1i 2 GZ on PSL2.Z/ is given by h�1i:E12.1/D
E12.�1/. Thus if we replace Z=6 byH1.PSL2.Z/;Z/, we see that h�1i 2 GZ acts on Z=6
by h�1i: Nr WD �Nr . Now by the known calculation of the homology of finite cyclic groups
([2, p. 58–59]) we have

E2r;1 D Hr .GZ;Z=6/ ' Z=2:
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Since the extension splits, d23;0 W E
2
3;0 ! E21;1 is trivial. Now by an easy analysis of the

spectral sequence we see that ˇ̌
H3
�
PGL2.Z/;Z

�ˇ̌
� 24:

On the other hand, we know that PGL2.Z/ is the free product with amalgamation of the
dihedral group D2 of order 4 and the dihedral group D3 of order 6 amalgamated along
the subgroup D1 of order 2:

PGL2.Z/ ' D2 �D1 D3; (11.2)

(see the proof of [23, Lemma 2]). Note that D1 ' Z=2, D2 ' Z=2 �Z=2 and D3 ' S3.
Since

H2.D1;Z/ D 0; H3.D1;Z/ ' Z=2; H3.D2;Z/ ' .Z=2/
3; H3.D3;Z/ ' Z=6;

from the Mayer–Vietoris exact sequence associated to (11.2) [2, Section 9, Chapter VII]
we obtain the exact sequence

Z=2! .Z=2/3 ˚ Z=6! H3
�
PGL2.Z/;Z

�
! 0:

It follows that jH3.PGL2.Z/;Z/j � 24. Therefore H3.PGL2.Z/;Z/ has 24 elements and
in fact H3.PGL2.Z/; Z/ ' .Z=2/2 ˚ Z=6. Thus the left hand side map of the exact
sequence (11.1) must be injective. This proves our claim.

(ii) Let A2 D ZŒ1
2
�. Then by Lemma 9.5, for any n � 0 we have

Hn
�
PB2.A2/;Z

�
' Hn

�
PT2.A2/;Z

�
:

Since GA2'Z=2�Z=2, we haveE11;2'Z=2 (Lemma 11.1) andE10;3'TorZ
1 .�.A2/;�.A2//

(Lemma 11.4). Now from the main spectral sequence, we obtain the exact sequences

0!K ! H3
�
PGL2.A2/;Z

�
! BE .A2/! 0;

TorZ
1

�
�.A2/; �.A2/

�
!K ! Z=2! 0:

As in the proof of Theorem 11.7, one can show that the map

TorZ
1

�
�.A2/; �.A2/

�
!K � H3

�
PGL2.A2/;Z

�
is injective. This completes the proof of the proposition.

Remark 11.11. LetA be a domain. Then, up to isomorphism, there are at most two exten-
sion of Z=2 by TorZ

1 .�.A/; �.A//: the split and the non-split extensions. This follows
from the isomorphism

Ext1Z
�
Z=2;TorZ

1

�
�.A/; �.A/

��
'

´
0 if �21.F / is infinite or char.F / D 2;

Z=2 if �21.F / is finite and char.F / ¤ 2;
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where F is the quotient field of A and �21.F / is the 2-power roots of unity in F . We
believe the extension

0! TorZ
1

�
�.A/; �.A/

�
! TorZ

1

�
�.A/; �.A/

�Ð
! Z=2! 0

appearing in the above two propositions is the non-split extension. But at the moment we
do not know how to prove this.
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gestions greatly improved the presentation of the present article. The detailed action of
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