
Interfaces Free Bound. 27 (2025), 403–457
DOI 10.4171/IFB/538

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Bifurcation for a sharp interface generation problem

Emilio D. Acerbi, Chao-Nien Chen, and Yung Sze Choi

Abstract. As opposed to the widely studied bifurcation phenomena for maps or PDE problems,
we are concerned with bifurcation for stationary points of a nonlocal variational functional defined
not on functions but on sets of finite perimeter, and involving a nonlocal term. This sharp interface
model (1.2), arised as the �-limit of the FitzHugh–Nagumo energy functional in a (flat) square torus
in R2 of size T , possesses lamellar stationary points of various widths with well-understood stability
ranges and exhibits many interesting phenomena of pattern formation as well as wave propagation.
We prove that when the lamella loses its stability, bifurcation occurs, leading to a two-dimensional
branch of nonplanar stationary points. Thinner nonplanar structures, achieved through a smaller T ,
or multiple layered lamellae in the same-sized torus, are more stable. To the best of our knowledge,
bifurcation for nonlocal problems in a geometric measure theoretic setting is an entirely new result.

1. Introduction

Self-organization mechanisms are of great importance in pattern generation. As been
observed in many fields of science, self-generated patterns [2, 12, 13, 16, 17, 43, 46] may
exist for a wide range of parameters and are robust under certain conditions [3,4,14,15,50],
for instance, in investigating nerve pulses in biological systems, concentration drops in
chemical systems, filament current in physical systems, and copolymers in material sci-
ence [4, 18, 35, 37–39, 41, 44].

Equilibrium models [2, 5, 17, 19, 35, 50] have recently garnered attention as a result of
their self-generated patterns. Such systems are characterized by the presence of coexisting
phases induced by the two potential wells, and the resulting structure of sharp transi-
tion interfaces defines the pattern. These patterns are metastable in certain ranges of the
parameters and can undergo morphological instabilities [47, 49], leading to the formation
of more complex patterns.

One of the well-known equilibrium models is governed by the variational functionalZ
T
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in a periodic torus T . Here, u 2 W 1;2
per is a scalar T -periodic function typically denoting
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density or chemical concentration. The function F represents either a standard double-
well potential (but then ˛ does not show up) or a slightly unbalanced version as [3,
equation (1.6)]
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u2.u � 1/2
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�
with " > 0 measuring the deviation from balanced potential wells. With a small " in (1.1),
there exist spatial patterns resulting from the competition between rival forces operating
at different length scales. In this energy-driven model, the Green’s function G associated
with��C �2 represents a screened Coulomb kernel, so called because the constant � has
the physical meaning of the inverse of the Debye screening length [38, 39]. The critical
points of (1.1) also represent steady-state solutions of FitzHugh–Nagumo equations. Fol-
lowing a fascinating idea of Turing [49], reaction-diffusion systems have been employed
as models for studying pattern formation and wave propagation [9–11, 14, 16, 43, 46, 51].
Historically, the original model [26, 40] was derived as a simplification of the Hodgkin–
Huxley equations [30] for nerve impulse propagation. With many new phenomena being
discovered in recent years, the FitzHugh–Nagumo model has been extensively studied
as a paradigmatic activator-inhibitor system [10, 21, 25]. Such systems are of great inter-
est to the scientific community as breeding grounds to study the generation of localized
structures; these lead to a deeper understanding of the complicated dynamics of reaction-
diffusion systems of activator-inhibitor type. For instance, even when fixing all physical
parameters, reaction-diffusion waves exhibit front propagation in both directions between
two distinct equilibrium states so that both the high and low energy states can be invaded
by one another; at the same time, traveling fronts and pulses co-exist with different speed.
Such localized waves are referred to as dissipative solitons [30, 35, 40], which are charac-
terized by sharp interfaces.

�-convergence is a useful tool in studying pattern formation, in particular, to detect
the location and shape of an interface or free boundary in congregates of distinct phases.
Let T WD Œ0; T �N be a (flat) torus in RN . By setting � D 1 and passing "! 0 in (1.1),
the �-limit is a sharp interface model with a free energy functional J W A! .�1;1�

defined by

J.E/ D PT .E/ � ˛jEj C
�

2

Z
E

NE dx: (1.2)

Here, ˛, � are given positive parameters, A WD ¹E � T W E is Lebesgue measurableº, the
set E has a Lebesgue measure jEj, and its (possibly infinite) perimeter in T is denoted by
PT .E/. If E is of class C1, then PT .E/ is the surface measure of its (periodic) boundary
@E. The last term on the right of (1.2) represents a long range nonlocal effect; N is an
operator that assigns for each set E the solution of the modified Helmholtz equation

��NE CNE D �E in T ; NE is periodic in T :

The operator N is well defined, since NE is the unique T -periodic minimizer of

v 7!
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The �-limit version for a similar problem, namely, the Ohta–Kawasaki model for treating
diblock polymers, has been studied in [4]; this sharp interface model shares some similar-
ity with (1.2) as well as reflects certain significant difference (see the survey article [1]).
In particular, the imposed volumetric constraint requires a determination of the Lagrange
multiplier in a highly nonlinear fashion; its resulting Euler–Lagrange equation bears sim-
ilarity with ours.

Both the empty set and the full torus are critical points of J . The nonlocal interac-
tion term of J contains a positive parameter � , and its effect favors an identically zero
solution as a minimizer; on the other hand, the positive parameter ˛ measures the driving
force towards a non-zero state. When ˛, � are of comparable magnitudes, the competing
mechanisms can result in a simple periodic configuration known as lamella. With suitable
parameters ˛, � in a large torus, it has been shown [2] that a lamella has a lower energy
than both the empty set and the full torus. On the other hand, according to [2, Proposi-
tion 1.5], let � > 0 and cN be the isoperimetric constant in the N -dimensional torus. If
˛ < �=2 satisfies ˛ � cN

N
p
2=T , the unique global minimizer of J is the empty set, and

reciprocally if ˛ > �=2 satisfies ˛ � � � cN
N
p
2=T , the unique global minimizer is the

full torus. A local minimizer or a critical point of J is called a stationary, or critical, set.
To understand stability of critical sets, we recall the definition of the variations of our

functional J at a smooth set E � T . Let X W T ! T be a Cm vector field and consider
the associated flow ˆ W T � .�1;1/! T defined by´

@ˆ
@t
.z; t / D X.ˆ.z; t //;

ˆ.z; 0/ D z:
(1.3)

The global existence and uniqueness of ˆ follow from X being smooth and bounded; see
Lemma 2.1. Suppose @E 2 Cm (which, by definition, is the same as saying E 2 Cm) and
define

Et WD ˆ.E; t/:

The kth variation of J atE with respect to the flow induced byX , denoted by J .k/.E/ŒX�,
is defined as dk

dtk
J.Et /

ˇ̌
tD0

. A critical set E of J satisfies J 0.E/ŒX� D 0 for any X ; a
direct computation [3, Proposition 3.1] of its first variation yields, in a weak sense, the
associated Euler–Lagrange equation

K
ˇ̌
@E
� ˛ C �NE D 0 on @E; (1.4)

where K denotes the mean curvature (defined as the sum of all principal curvatures, and
is taken to be positive for a sphere) at @E \ T ; see, for example, [12, 13]. By elliptic
regularity, see Section 2, sufficiently regular solutions of (1.4) enjoy higher regularity
properties.

Let � be the unit outward normal at @E. For a regular critical E, it has been shown in
[3, Proposition 3.1] that J 00.E/ŒX� depends only on the normal component � D X � � on
@E. For any � 2 W 1;2

per .@E/ WD ¹u 2 W
1;2.@E/ W u is T -periodicº, it is therefore natural
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to write
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Z
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2 dHN�1: (1.5)

Here, kB@Ek2 is the sum of the squares of the principal curvatures at @E; G is the Green’s
function for the Helmholtz operator in T with periodic boundary conditions, and r� is the
tangential gradient on @E. The local stability of E can be inferred from J 00.E/Œ��. As a
reminder, there are additional terms in J 00.E/ŒX� that depend on the tangential component
of X if E is not stationary; see [3, Proposition 3.1].

Let bi be the unit vector along the i th-coordinate axis. As J.E/ D J.E C tb/ for any
constantX D b 2RN and t 2R, it is immediate that J 00.E/Œ��D 0 for �D �.i/E WD bi � �,
and J 00.E/Œ�� D 0 for � 2M.@E/ WD span¹�.1/E ; : : : ; �

.N/
E º � W

1;2
per .@E/. The subspace

M.@E/ can in some circumstances have a dimension less than N as in the case of a
lamella. Now, let

M?.@E/ WD

²
� 2 W 1;2

per .@E/ W

Z
@E

��
.i/
E dHN�1

D 0; i D 1; : : : ; N º;

and we have W 1;2
per .@E/ DM.@E/˚M?.@E/.

Definition 1.1. A regular critical point E of J is stable if

J 00.E/Œ�� > 0 for all � 2M?.@E/ n ¹0º:

Define the L1 distance between sets modulo translations by

ı.E; F / WD min
�
jE4.F C �/j:

When E is a stable critical set in the above sense, it follows from [4, Theorem 1.1],
[3, Theorem 3.5] that E is a strict local minimizer of J , isolated in the ı distance sense.

Besides lamellar critical sets, one natural question is how to find periodic configura-
tions with different shapes of interfaces; that is, to look for the existence of configurations
with higher-dimensional patterns rather than one dimensional. This seems challenging;
nevertheless, the bifurcation method provides a way to reach the goal and this approach
is usually accompanied by stability analysis. In many discrete and continuous models,
there exist multiple solutions with distinct qualitative features; transition of one kind
into another, or merging of two kinds, usually takes place when the stability of such a
state changes. These phenomena are known as (local) bifurcations, and they have been
extensively studied within the framework of models described by maps and differential
equations: the corresponding bifurcations have been investigated for decades [6, 22–24].
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There are far fewer references on bifurcation of geometric problems involving volumes
and perimeters of sets; most of them concentrate on the subject of minimal surfaces and
constant mean curvature surfaces [27, 32, 46, 52]. As been shown (see, e.g., [7, 31, 37]),
without nonlocal interaction in such kind of systems, some interface dynamics are gov-
erned by mean curvature flow, and thus, on convex domains, evolution does not generate
stable steady-state patterns [8, 36]. On the other hand, we show that this nonlocal term
plays an important role in inducing nontrivial periodic structures. In this paper, we con-
sider the bifurcation problem for (1.4), a geometric energy functional involving a nonlocal
term; this seems to be a new venture in treating sharp interfaces. Though we develop for-
mulas to check possible bifurcation in general circumstances, we do focus on a 1-lamella
that allows explicit verification of bifurcation criteria. Recall that a 1-lamella consists of
exactly 1 vertical lamella and 1 empty wedge (space) in the whole torus T . The stabilities
of both the lamella and the non-planar configurations resulting from this bifurcation will
be investigated.

First, we recall facts about this 1-lamella by setting k D 1 in [3, Proposition 2.2]
(which summarizes results from [2]). Let

c WD 1 � 2˛=�: (1.6)

For a lamella L to be stationary, it has to satisfy (1.4); its zero curvature compels NL

ˇ̌
@L
D

˛=� D .1 � c/=2. Since 0 < NL < 1 for any lamella which is not an empty set or a full
torus, see [2, Remark 1.1, Lemma 2.5], it is necessary that �1 < c < 1. We therefore
assume c 2 .�1; 1/. For such c, there is a stationary 1-lamella L WD Œ0; x0�� Œ0; T �N�1 �
T � RN for all � > 0; its thickness is given by (see [3, (2.3)])

x0 D
T

2
� sinh�1

�
c sinh

T

2

�
I (1.7)

clearly, x0 is a strictly decreasing function of c and x0.�c/D T � x0.c/. To prove certain
assertions later, it will sometimes be advantageous to replace the dependence on x0 with
the dependence on other constants, all equivalent. In particular, for every fixed T , using c
is equivalent to using x0, and we can also use a; �, where

T WD
T

2
; a WD

x0

T
; � WD 1 � 2a D

T � 2x0

T
D

T � x0

T
: (1.8)

In addition, we have (see [3, equation (2.4)])
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D
1 � c
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(1.9)

and [3, equation (2.5)]

d0 WD �rNL � �
ˇ̌
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2
: (1.10)
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Note that these quantities identifying stationary 1-lamellae depend only on c (or any of a,
x0, �), but not on � ; however, stability of stationary lamellae depends on both parameters.
For small � , this 1-lamella L is always stable [3, Theorem 5.1]. There is then a critical �crit

such that L is stable for � < �crit and unstable for � > �crit. This lamella loses its stability
at � D �crit when J 00.L/Œ�� D 0 for some appropriate choice of (T -periodic) � D X � �.
This can also be interpreted as follows: a certain linearized operator, namedDtF .L; �crit/

in the future, has a (double) zero eigenvalue with corresponding eigenfunctions � on @L,
i.e., DtF .L; �crit/Œ�� D 0. In the future, depending on which of the quantities in (1.8)
we are using, we will denote this critical �crit as �c or �� or other unmistakable notation.
The most delicate case for stability is c D 0: indeed, by [3, Theorem 5.13], whenever the
critical 1-lamella corresponding to a certain value of c is stable, then the same is true also
for jc0j > jcj.

In Sections 2 and 3, we study the derivatives of the nonlocal term and curvature terms
for general dimension N , general sets E, and all values of c; beginning with Section 4,
we specialize to lamellae in the case N D 2 and flow fields X which are independent of
the first coordinate, but still for any value of c; the bifurcation analysis is carried out in
Sections 5 and 6 for the delicate case c D 0, and Section 7 will deal with the case c ¤ 0.

We generally write x D .x; y/ to designate a point on the 2-dimensional torus, though
in later sections when there is a need to designate two distinct points x; y on the 2-
dimensional torus, we will employ the notation x D .x1; x2/ and y D .y1; y2/. Also, to
save vertical space, we write all vectors and vector fields as rows, even when they should
be written as columns. If L D Œ0; x0� � Œ0; T � is the critical lamella, we denote its sides as

@L D L1 [ L2 with L1 along x D 0 and L2 along x D x0:

For any function f defined on Li , we will simply write f Li instead of fH1 Li .
It is crucial to understand the structure of the destabilizing eigenfunctions on @L: the

lamella L becomes unstable due to the zero-eigenvalue mode

� WD X � � D � .y/ L1 C  .y/ L2;  2 span
²

sin
2�y

T
; cos

2�y

T

³
I

see [3, pp. 580–582] where our � was denoted by �; the fact that � at L1 is exactly the
opposite as � at L2 comes from the fact that .�1; 1/ is the sole eigenvector of the 2 � 2
matrix A.1/ on [3, p. 581] corresponding to its smallest eigenvalue d .1/0 we will document
in (4.5).

Suppose @Lt D .L1/t [ .L2/t . Since �i D X � � on the interface Li , i D 1; 2, to
leading order in time evolutions of .L1/t and .L2/t are governed by such eigenfunctions
so that they are ‘anti-symmetric’ with respect to their outward normal directions; i.e.,
they form ‘parallel’ curves with a translational shift of x0 C o.1/ in the x-direction; up to
vertical translations, they are also symmetric with respect to the center of L. For c D 0, we
will demonstrate that there is exact parallelism for the non-planar solutions resulting from
bifurcation; on the other hand, parallelism between .L1/t and .L2/t is lost when c ¤ 0,
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but symmetry about the center of L is kept. Since lamella stability changes at � D �crit, it
is natural to seek these non-planar solutions of (1.4) in the vicinity of .L; �crit/ as a result
of a local bifurcation.

Functions in span¹sin 2�y
T
; cos 2�y

T
º may be thought of as vertical (i.e., in the y-

direction) translations of multiples of sin 2�y
T

. The latter, besides being periodic, are odd
with respect to y in the sense that

f .y/ D �f .T � y/:

If f is odd, the flow (1.3) associated with X.x; y/ D .f .y/; 0/ transforms L into config-
urations with particular symmetry properties, which we will call “y-odd”.

In Section 5, we prove the following results.

Theorem 1.2. Let c D 0 and N D 2 so that L D Œ0; T=2� � Œ0; T � is a critical 1-lamella.
Suppose that �0 is the critical value in (4.3) at which L loses its stability for � > �0.
Then, a 2-dimensional bifurcation branch arises at .L; �0/ of non-planar critical points
.L� ; �/ of J , which is obtained by vertical translations from a 1-dimensional branch of
volume-preserving y-odd configurations.

Precisely, for small t 2 R, there exist two real functions ˇ.t/ and w.y; t/ of class C2

with ˇ.0/ D ˇ0.0/ D 0 and with w.�; t / orthogonal to sin 2�y
T

in L2Œ0; T � and y-odd such
that for every vertical shift s if

�.t/ D �0 C ˇ.t/;

L.t/ D

²�
x C t sin

2�y

T
C tw.y; t/; y

�
W .x; y/ 2 L

³
;

L.t; s/ D L.t/C .0; s/;

then for all .t; s/ the non-planar configuration
�
L.t; s/; �.t/

�
is a critical point of J .

Theorem 1.3. Under the assumptions of Theorem 1.2, there exists a function S0.T / such
that if S0.T / > 0, bifurcation is supercritical and the branch .L� ; �/ is stable; if S0.T / <
0, bifurcation is subcritical and the branch is unstable.

Section 6 is devoted to the study of the sign of S0.T /: we prove that it is negative
both for T small and large, and numerics indicate that S0.T / < 0 for all T , so bifurca-
tion is always subcritical. In Section 7, we prove a bifurcation theorem in the general
case c ¤ 0; however, the type of bifurcation phenomenon would require a lengthy fur-
ther study. Bifurcation for c ¤ 0 is not attained by y-odd configurations; we remark that
y-odd configurations are also (a special case of) symmetric configurations with respect
to the center of L: if we call such configurations “center symmetric” (see Section 7 for a
precise definition), we have the following theorem.

Theorem 1.4. Let N D 2, jcj < 1 and x0 given by (1.7) so that L D Œ0; x0� � Œ0; T �

is a critical 1-lamella. Suppose that �c is the critical value in (4.2) at which L loses
its stability for � > �c . Then, a 2-dimensional bifurcation branch arises at .L; �c/ of
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non-planar critical points .L� ; �/ of J , which is obtained by vertical translations from a
1-dimensional branch of (not necessarily volume preserving) center symmetric configura-
tions.

Finally, in Section 8, we extend all results to the case of a multiple lamella (a “k-
lamella”), with surprising asymptotic results.

Theorem 1.5. Let k � 2; Theorems 1.2 and 1.4 remain valid also for a k-lamella. In
addition, in the case c D 0, the k-lamella undergoes a supercritical bifurcation for small
values of T and a subcritical bifurcation for large values of T .

Remark 1.6. In a periodic torus, there is no radially symmetric solution. In the whole
space RN [12,13], only saddle-node-type bifurcations take place among all radially sym-
metric solution; however, bifurcation into non-radially symmetric solutions has not been
performed. On the other hand, with an imposed volumetric constraint, bifurcation from
radially symmetric into non-spherical shape has been shown in [28] with nuclear fission
being the motivation behind this study. Similar bifurcation into non-radially symmetric
solution for (1.1)—which is not a sharp interface model—has been treated in [45].

2. Preliminary material and derivatives of the nonlocal term

We begin by making sure smooth domains remain smooth under smooth flows.

Lemma 2.1. Let m 2 N and 0 � ! < 1. Under the flow (1.3) with an autonomous
vector field X 2 Cm;!.T /, we have ˆ 2 Cm;!.T � R/ with respect to .z; t /. In fact,
ˆ 2 CmC1;!.T � R/ except for .m C 1/th partial derivatives entirely computed with
respect to the components of z. In particular, ˆ.�; t / is a Cm;!-diffeomorphism from T to
T for all t , and @Et D .@E/t 2 Cm;! for each small t .

Proof. We focus only on m D 1 and ! D 0. That ˆ is C1.T � R/ follows from [20,
Theorem 7.5] or [29, p. 95, Theorem 3.1]. The right side of (1.3) is C1 with respect to .z; t /
so that @

2ˆ
@t2

is C2. This is also true for the mixed second derivatives @2ˆ
@t@zi

, i D 1; 2; : : : ;N ;
see [29, p. 97, Corollary 3.2]. However, @2ˆ

@zi@zj
may not exist.

To prove the last assertion, without loss of generality, let z D 0 2 @E with @E being
represented by zN D f .z1; : : : ; zN�1/, f 2 C1; f .0/ D 0; rf .0/ D 0, in a small neigh-
borhood around 0 2 RN�1. Define h W RN �R! R such that

h.x; t / WD ˆN .x;�t / � f .ˆ1.x;�t /; : : : ; ˆN�1.x;�t //I

as a result, h 2 C1 and h.0; 0/ D 0. Suppose x 2 @Et . Since

@h

@xN
.0; 0/ D

@ˆN

@xN
.0; 0/ D 1;

the implicit function theorem tells us that xN is a C1 function of .x1; : : : ; xN�1; t / in a
neighborhood of .0; 0/ 2RN�1 �R; in particular, @Et D .@E/t 2 C1 for each small t .
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For any 0 < ! < 1, choose a large enough p > 1 so that NE 2 W
2;p.T / � C1;!.T /.

If a critical set E is a local minimizer of J , elliptic regularity for (1.4) ensures that the
interface @E 2 C3;! when N � 7; see, for example, [4, Theorem 2.8]. We call such a
critical E regular, and it always satisfies (1.4) in the classical sense. In this paper, the
non-planar critical sets Lt created through local bifurcation may not be local minimizers.
However, they are obtained as a result of suitable smooth flows from a lamella so that they
are regular critical sets; in fact, they can be smoother than C3;! when the velocity fields
are very smooth.

To analyze the bifurcation of (1.4), define U WD ¹E � T W E is a C5 domainº, and
F W U �R � .�1; 1/! C3.@E/ such that for each E 2 U

F .E; �; c/ WDK
ˇ̌
@E
�
.1 � c/�

2
C �NE

ˇ̌
@E
: (2.1)

Let Et D ˆ.E; t/ due to a prescribed C5 field X . By Lemma 2.1, it is clear that ˆ is
C5 in .x; t / and Et is a C5 domain. We need to compute up to the third derivatives of
F .Et ; �/ with respect to .t; �/ at t D 0. With @Et 2 C5 in .z; t / 2 @E � .�"; "/, we have
K
ˇ̌
@Et
2 C3.@E � .�"; "// and NEt

ˇ̌
@Et
2 C5 in t for fixed z 2 @E; the latter smoothness

is due to the differentiability requirement (2.2) and (2.6) when expanding ˆ and Jˆ.z; t /
in power series of t ; see the proof of Lemma 2.2 in which X 2 C3 gives a third-order
derivative of the nonlocal term.

For the rest of this paper, observe that the Green’s function G.x; y/ for the modified
Helmholtz operator in a square torus depends only on x � y; therefore, we write

G.x; y/ DW yG.x � y/

for some yG W T ! R. At the same time,DV denotes the usual directional derivative along
V 2 R2. For example, if Z WD DXX D DXŒX�, we mean Zi D XjDjXi with summing
over repeated index; similarly,

Y WD DXZ D DXDXX:

It is clear that

ˆ.z; t / D zC tX.z/C
t2

2
Z.z/C

t3

6
Y.z/CO.t4/: (2.2)

Having finished with preliminaries, we compute up to the third derivatives of the non-
local term NE at any regular set E with respect to any prescribed smooth flow field X
and express the first 2 derivatives as integrals on the boundary of E. For simplicity in
representation, we sum over repeated indices in the following.

Lemma 2.2 (Derivatives of nonlocal term). Suppose E;X 2 C3.T /, and Et D ˆ.E; t/
due to the field X . Let x 2 @E. Then,

@

@t

�
NEt

ˇ̌
@Et

�ˇ̌
tD0
D .X � rNE /

ˇ̌
@E
C

Z
@E

yG.x � y/ .X � �/.y/ dH1
y ; (2.3)
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1

2

@2

@t2

�
NEt

ˇ̌
@Et

�ˇ̌
tD0
D
1

2

Z
@E

Di yG.x � y/.Xi .x/ �Xi .y//Xj .y/ �j .y/ dH1
y

�
1

2

Z
@E

Di yG.x � y/Xi .x/.Xj .x/ �Xj .y//�j .y/ dH1
y

C

�
1

2
Z � rNE

�ˇ̌̌̌
@E

C
1

2

Z
@E

yG.x � y/X � �.y/ divX.y/ dH1
y ; (2.4)

1

6

@3

@t3

�
NEt

ˇ̌
@Et

�ˇ̌
tD0
D sum of RHS of (2.9); (2.12); (2.15); and (2.16): (2.5)

Proof. To reduce integrals on @Et to integrals on @E for comparison, we will use the
Jacobian determinant Jˆ being

Jˆ.y; t / D 1C t divX.y/C
t2

2
div..divX/X/.y/

C
t3

6
div.div..divX/X/X/.y/CO.t4/: (2.6)

Note that Jˆ 2 C.T � .�"; "// since X 2 C3.T /. We fix a point x 2 @E; since formulas
will generally be very long, in the proof of (2.3), we will employ the following shorthand,
where y will denote another generic point in @E:

ıx WD x � y; ıˆ WD ˆ.x; t / �ˆ.y; t /; ıX WD X.x/ �X.y/

and the same for ıY and ıZ. We have, for fixed x 2 @E,

D WD NEt .ˆ.x; t // �NE .x/ D
Z
Et

G.ˆ.x; t /; y/ dy �
Z
E

G.x; y/ dy

D

Z
E

G.ˆ.x; t /; ˆ.y; t // Jˆ.y; t / dy �
Z
E

G.x; y/ dy

D

Z
E

�
yG.ıˆ/ � yG.ıx/

�
dyC t

Z
E

yG.ıˆ/ divX.y/ dy

C
t2

2

Z
E

yG.ıˆ/ div..divX/X/.y/ dy

C
t3

6

Z
E

yG.ıˆ/ div.div..divX/X/X/.y/ dyCO.t4/

WD I C t II C
t2

2
IIIC

t3

6
IV CO.t4/:

We now treat the different terms.

Step 1. The first derivative of the first term is straightforward:

I D

Z
E

�
yG.ıˆ/ � yG.ıx/

�
dy D

Z
E

dy
Z 1

0

d

d�
yG.ıxC �.ıˆ � ıx// d�
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D

Z
E

dy
Z 1

0

D yG.ıxC �.ıˆ � ıx//.ıˆ � ıx/ d�

D

Z
E

dy
Z 1

0

D yG.ıxC �.ıˆ � ıx//
�
tıX C

t2

2
ıZ C

t3

6
ıY CO.t4/

�
d�:

Hence,
@I

@t

ˇ̌̌̌
tD0

D lim
t!0

I

t
D

Z
E

D yG.ıx/ ıX dy: (2.7)

Step 2. From (2.7), we have

I � t
@I

@t

ˇ̌̌̌
tD0

D t

Z
E

dy
Z 1

0

®
D yG.ıxC �.ıˆ � ıx// �D yG.ıx/

¯
ıX dy

C
t2

2

Z
E

dy
Z 1

0

D yG.ıxC �.ıˆ � ıx// ıZ dyCO.t3/:

With yG.z/ D O.log jzj/, D yG.z/ D O.1=jzj/, D2 yG.z/ D O.1=jzj2/, we have

1

2

@2I

@t2

ˇ̌̌̌
tD0

D lim
t!0

I � t @I
@t

ˇ̌
tD0

t2

D lim
t!0

Z
E

dy
Z 1

0

D yG.ıxC �.ıˆ � ıx// �D yG.ıx/
t

ıX d�

C
1

2

Z
E

D yG.ıx/ ıZ dy

D

Z
E

dy
Z 1

0

D2 yG.ıx/Œ�ıX; ıX� d� C
1

2

Z
E

D yG.ıx/ ıZ dy

D
1

2

Z
E

D2 yG.ıx/ŒıX; ıX� dyC
1

2

Z
E

D yG.ıx/ ıZ dy: (2.8)

Note that the two integrands on the right are bounded functions due to the smoothness of
X and Z; both factors ıX D X.x/ �X.y/ and ıZ D Z.x/ �Z.y/ are of O.jx � yj/.

Step 3. The next item requires a more involved calculation:

I�t
@I

@t

ˇ̌̌̌
tD0

�
t2

2

@2I

@t2

ˇ̌̌̌
tD0

D t

Z
E

dy
Z 1

0

�
D yG.ıxC �.ıˆ � ıx// �D yG.ıx/

�
ıX d�

C
t2

2

Z
E

dy
Z 1

0

�
D yG.ıxC�.ıˆ�ıx//�D yG.ıx/

�
ıZ d�

C
t3

6

Z
E

dy
Z 1

0

D yG.ıxC �.ıˆ � ıx// ıY d�

�
t2

2

Z
E

D2 yG.ıx/ŒıX; ıX� dyCO.t4/

WD tA1 C
t2

2
A2 C

t3

6
A3 �

t2

2
A4 CO.t

4/:
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Note that

tA1 �
t2

2
A4

D t2
Z
E

dy
Z 1

0

� d�

Z 1

0

D2 yG.ıxC ˛�.ıˆ � ıx//
h
ıX C

t

2
ıZ CO.t2/; ıX

i
d˛

� t2
Z
E

dy
Z 1

0

� d�

Z 1

0

D2 yG.ıx/ŒıX; ıX� d˛;

which leads to

lim
t!0

tA1 �
t2

2
A4

t3
D

Z
E

dy
Z 1

0

� d�

Z 1

0

˛�D3 yG.ıx/ŒıX; ıX; ıX� d˛

C
1

4

Z
E

D2 yG.ıx/ŒıZ; ıX� dy

D
1

6

Z
E

D3 yG.ıx/ŒıX; ıX; ıX� dyC
1

4

Z
E

D2 yG.ıx/ŒıZ; ıX� dy:

Since

t2

2
A2 D

t2

2

Z
E

dy
Z 1

0

� d�

Z 1

0

D2 yG.ıxC ˛�.ıˆ � ıx//Œıˆ � ıx; ıZ� d˛

and ıˆ � ıx D t ıX CO.t2/, it can now be verified that

1

6

@3 I

@t3

ˇ̌̌̌
tD0

D lim
t!0

1

t3

�
tA1 C

t2

2
A2 C

t3

6
A3 �

t2

2
A4 CO.t

4/

�
D
1

6

Z
E

D3 yG.ıx/ŒıX; ıX; ıX� dy

C
1

2

Z
E

D2 yG.ıx/ŒıX; ıZ� dyC
1

6

Z
E

D yG.ıx/ ıY dy: (2.9)

Step 4. Observe .t II/
ˇ̌
tD0
D 0 so that

@.t II/
@t

ˇ̌̌̌
tD0

D lim
t!0

t II
t
D

Z
E

yG.ıx/ divX.y/ dy: (2.10)

Step 5. It is immediate that

t II � t
@.t II/
@t

ˇ̌̌̌
tD0

D t

Z
E

�
yG.ıˆ/ � yG.ıx/

�
divX.y/ dy

D t2
Z
E

dy
Z 1

0

D yG.ıxC �.ıˆ � ıx//.ıX CO.t// divX.y/ d�;

which yields

1

2

@2.t II/
@t2

ˇ̌̌̌
tD0

D lim
t!0

t II � t @.t II/
@t

ˇ̌
tD0

t2
D

Z
E

D yG.ıx/ ıX divX.y/ dy: (2.11)
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Step 6. Pushing further,

t II � t
@.t II/
@t

ˇ̌̌̌
tD0

�
t2

2

@2.t II/
@t2

ˇ̌̌̌
tD0

D t

Z
E

�
yG.ıˆ/ � yG.ıx/

�
divX.y/ dy � t2

Z
E

D yG.ıx/ ıX divX.y/ dy

D t2
Z
E

dy
Z 1

0

divX.y/D yG
�
ıxC �.ıˆ � ıx/

��
ıX C

t

2
ıZ CO.t2/

�
d�

� t2
Z
E

divX.y/D yG.ıx/ ıX dy

D t3
Z
E

dy
Z 1

0

� d�

Z 1

0

divX.y/D2 yG.ıx/ŒıX; ıX� d˛

C
t3

2

Z
E

divX.y/D yG.ıx/ ıZ dyCO.t4/

so that

1

6

@3.t II/
@t3

ˇ̌̌̌
tD0

D lim
t!0

1

t3

�
t II � t

@.t II/
@t

ˇ̌̌̌
tD0

�
t2

2

@2.t II/
@t2

ˇ̌̌̌
tD0

�
D
1

2

Z
E

divX.y/
�
D2 yG.ıx/ŒıX; ıX�CD yG.ıx/ ıZ

�
dy: (2.12)

Step 7. Observe that . t
2

2
III/

ˇ̌
tD0
D 0; thus, it follows by similar calculations that

@. t
2

2
III/

@t

ˇ̌̌̌
tD0

D lim
t!0

.
t

2
III/ D 0; (2.13)

1

2

@2. t
2

2
III/

@t2

ˇ̌̌̌
tD0

D lim
t!0

t2

2
III
t2
D
1

2

Z
E

yG.ıx/ div..divX/X/.y/ dy; (2.14)

1

6

@3. t
2

2
III/

@t3

ˇ̌̌̌
tD0

D lim
t!0

1

t3

�
t2

2
III � t

@. t
2

2
III/

@t

ˇ̌̌̌
tD0

�
t2

2

@2. t
2

2
III/

@t2

ˇ̌̌̌
tD0

�
D
1

2

Z
E

D yG.ıx/ ıX div..divX/X/.y/ dy: (2.15)

Step 8. We have

t3

6
IV

ˇ̌̌̌
tD0

D
@. t

3

6
IV /

@t

ˇ̌̌̌
tD0

D
@2. t

3

6
IV /

@t2

ˇ̌̌̌
tD0

D 0;

leading to

1

6

@3. t
2

2
IV /

@t3

ˇ̌̌̌
tD0

D lim
t!0

t3

6
IV

t3
D
1

6

Z
E

yG.ıx/ div.div..divX/X/X/.y/ dy: (2.16)
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We now abandon the shorthand with ı. By employing (2.7), (2.10), and (2.13), we now
derive

@

@t

�
NEt

ˇ̌
@Et

�ˇ̌
tD0
D
@D

@t

ˇ̌̌̌
tD0

D

Z
E

D yG.x � y/.X.x/ �X.y// dyC
Z
E

yG.x � y/ divX.y/ dy

D X � rx

�Z
E

yG.x � y/ dy
�

C

Z
E

yG.x � y/ divX.y/ dyC
Z
E

ry
�
yG.x � y/

�
�X.y/ dy:

There is a sign change in the last term above since rx yG.x � y/ D �ry. yG.x � y//. An
application of the divergence theorem to the last 2 terms yields (2.3).

For the second derivative, we obtain

1

2

@2

@t2

�
NEt

ˇ̌
@Et

�ˇ̌
tD0
D sum of RHS of (2.8); (2.11); and (2.14): (2.17)

To cast these terms in an alternate form, observe that

�
1

2

Z
@E

�
Di yG.x � y/.Xi .x/ �Xi .y//

�
.Xj .x/ �Xj .y//�j .y/ dH1

D
1

2

Z
E

@

@yj

®�
�Di yG.x � y/.Xi .x/ �Xi .y//

�
.Xj .x/ �Xj .y//

¯
dy

D
1

2

Z
E

®
Dij yG.x � y/.Xi .x/ �Xi .y//.Xj .x/ �Xj .y//

CDi yG.x � y/DjXi .y/.Xj .x/ �Xj .y//

CDi yG.x � y/.Xi .x/ �Xi .y// divX.y/
¯
dy:

Combining with (2.17), we end up with

1

2

@2

@t2

�
NEt

ˇ̌
@Et

�ˇ̌
tD0

D �
1

2

Z
@E

�
Di yG.x � y/.Xi .x/ �Xi .y//

�
.Xj .x/ �Xj .y//�j .y/ dH1

y

�
1

2

Z
E

Di yG.x � y/DjXi .y/.Xj .x/ �Xj .y// dy

C
1

2

Z
E

D yG.x � y/Œ.Z.x/ �Z.y//C .X.x/ �X.y// divX.y/� dy

C
1

2

Z
E

yG.x � y/ div..divX/X/.y/ dy;
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which further simplifies after we observe that

�

Z
E

D yG.x � y/X.y/ divX.y/ dy D
Z
E

@

@yj
. yG.x � y//Xj .y/ divX.y/ dy

combines with the last term to form a boundary integral and we arrive at

1

2

@2

@t2

�
NEt

ˇ̌
@Et

�ˇ̌
tD0

D �
1

2

Z
@E

�
Di yG.x � y/.Xi .x/ �Xi .y//

�
.Xj .x/ �Xj .y//�j .y/ dH1

y

�
1

2
XjDi

Z
E

yG.x � y/DjXi .y/ dyC
1

2
XiDi

Z
E

yG.x � y/ divX.y/ dy

C

�
1

2
Z � rNE

�ˇ̌̌̌
@E

C
1

2

Z
@E

yG.x � y/X � �.y/ divX.y/ dH1
y : (2.18)

Now, we see that the sum of the integrals in the first two lines may be written as a boundary
integral by employing the following.

Lemma 2.3. Let E and X be regular, x 2 @E, and f W R2! R be a function of class C2

symmetric with respect the origin. Then,

�
1

2

Z
@E

ŒDif .x � y/.Xi .x/ �Xi .y//�.Xj .x/ �Xj .y//�j .y/ dH1
y

�
1

2
XjDi

Z
E

f .x � y/DjXi .y/ dyC
1

2
XiDi

Z
E

f .x � y/ divX.y/ dy

D
1

2

Z
@E

Dif .x � y/
�
Xj .y/ŒXi .x/ �Xi .y/� �Xi .x/ŒXj .x/ �Xj .y/�

�
�j .y/dH1

y :

Proof. Explicitly writing Dxi or Dyi when differentiation is taken with respect to the i th
direction of the x or y variables, we have

Dxi

Z
E

f .x � y/DyjXj .y/ dy D Dxi

Z
E

Dyj Œf .x � y/Xj .y/� dy

�Dxi

Z
E

Dyj .f .x � y//Xj .y/ dy: (2.19)

We work on the last integral: by the symmetry of f ,

�Dxi

Z
E

Dyj .f .x � y//Xj .y/ dy

D Dxi

Z
E

Dxj .f .x � y//Xj .y/ dy D Dxi

Z
E

Dxj .f .x � y/Xj .y// dy

D Dxj

Z
E

Dxi .f .x � y/Xj .y// dy D Dxj

Z
E

Dxi .f .x � y//Xj .y/ dy

D �Dxj

Z
E

Dyi .f .x � y//Xj .y/ dy

D �Dxj

Z
E

Dyi .f .x � y/Xj .y// dyCDxj

Z
E

f .x � y/DyiXj .y/ dy
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so that (2.19) gives

Dxi

Z
E

f .x � y/DyjXj .y/ dy D Dxi

Z
E

Dyj Œf .x � y/Xj .y/� dy

�Dxj

Z
E

Dyi .f .x � y/Xj .y// dy

CDxj

Z
E

f .x � y/DyiXj .y/ dy;

and therefore (we switch indexes in the last two terms below),

Xi .x/Dxi

Z
E

f .x � y/DyjXj .y/ dy D Xi .x/
Z
E

Dyj ŒDxif .x � y/Xj .y/� dy

�Xj .x/
Z
E

Dyj .Dxif .x � y/Xi .y// dy

CXj .x/Dxi

Z
E

f .x � y/DyjXi .y/ dy:

This implies

�
1

2
XjDi

Z
E

f .x � y/DjXi .y/ dyC
1

2
XiDi

Z
E

f .x � y/ divX.y/ dy

D
1

2

Z
@E

Dxif .x � y/ŒXj .y/Xi .x/ �Xi .y/Xj .x/��j .y/dH1
y :

The end of the proof is algebraic, since writing ah D Xh.x/ and bh D Xh.y/ gives

�.ai � bi /.aj � bj /C aibj � aj bi D ai .bj � aj /C bj .ai � bi /:

Then, (2.4) follows from (2.18) by approximating yG with regular functions and apply-
ing Lemma 2.3. Finally, the third derivative is given by (2.5), thus completing the proof of
Lemma 2.2.

3. Derivatives of mean curvature

The first and second derivatives of the area functional PT .E/ at a critical set E are well
known [34, Chapter 1]; they are represented by

R
@E

K�dHN�1 and the first line on RHS
of (1.5), respectively, where � D X � �. As the curvature K appears in the first derivative
of the area functional, it is not a surprise that one can derive the first derivative of K at
E from the second derivative of the area functional. However, we need up to the third
derivative of curvature for a bifurcation analysis. Since we cannot find a ready reference,
we compute these results in this section. Some concepts and tools in geometry will be
needed; for the convenience of non-geometers, they are documented at the beginning of
this section, and the new parts begin after Lemma 3.2. Summing over repeated indices is
assumed throughout this section.
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Recall thatE�T evolves intoEt due to the fieldX . Let r WU !RN be a parametriza-
tion of a neighborhood of p 2 @E withU �RN�1, @i WD @r

@ui
for i D 1;2; : : : ;N � 1 so that

¹@iº
N�1
iD1 is a basis of the tangent space. Without loss of generality, ¹@i

ˇ̌
p
ºN�1iD1 is orthonor-

mal (but not at other points in @E). Let pt WD ˆ.p; t/ 2 @Et and Ut WD ˆ.U; t/ � @Et . It
is clear that ˆ.r.�/; t/ is a parametrization of Ut ; in particular,

ei
ˇ̌
pt
WD

@ˆ.r.�/; t/
@ui

D Dzˆ.p; t/@i ;

and ¹ei jpt º
N�1
iD1 is a basis of the tangent space Tpt @Et .

Suppose that f W RN ! R is a scalar function; then,

@

@ui
f .ˆ.r.�/; t// D .Df /ei

ˇ̌
pt
D Deif

ˇ̌
pt
;

which depends only on the values of f on @Et ; similarly, @
@t
f .ˆ.r.�/; t//D .Df /X

ˇ̌
pt
D

DXf
ˇ̌
pt

. Thus,

DXDeif
ˇ̌
pt
D

@

@t

@

@ui
f .ˆ.r.�/; t// D

@

@ui
@

@t
f .ˆ.r.�/; t// D DeiDXf

ˇ̌
pt
:

Similarly, @
@t

@
@ui
ˆ.r.�/; t/ D @

@ui
@
@t
ˆ.r.�/; t/, which leads to

DXei D DeiX: (3.1)

Evaluating at t D 0 and p 2 @E, this last relation says that how @i
ˇ̌
p

evolves in t depends
only on X in a neighborhood of p on @E. Next, recall that we have employed ¹biºNiD1
in representing the standard basis in RN . Write Q D Qibi for any vector field Q on the
torus; it follows that

DXDeiQ D .DXDeiQ
j /ej D .DeiDXQ

j /ej D DejDXQ:

The first fundamental form is given by gij WD hei ; ej i on @Et . Let .gij / be the inverse
of the matrix .gij / and ei WD gij ej . It is readily verified that hei ; ej i D ıij and gij D
hei ; ej i. With our chosen coordinate system, gij

ˇ̌
p
D ıij ; this relation is false at pt 2 @Et

when t > 0. Let �
ˇ̌
pt

be the unit outward normal vector at pt 2 @Et . For every t and
every pt 2 @Et , define the shape operator (Weingarten map) S W Tpt @Et ! Tpt @Et by
SV WD �DV � for any tangent vector V 2 Tpt @Et [42, p. 406]. Note that we should have
written St;pt , but not to overload the notation we omitted the subscript—anyway the time
and point will always be clear from the context, and no time derivative of S will be taken.
Clearly, SV is a tangent vector as hSV; �i D �hDV �; �i D �12DV h�; �i D 0; at the same
time, S.V iei / D V iSei even when V i depends on pt 2 @Et . In addition,

hSei ; ej i D �hDei �; ej i D h�;Dei ej i D

�
�;
@2ˆ.r.�/; t/
@ui@uj

�
D hSej ; ei iI
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as a result, hSV;W i D hV; SW i for any tangent vectors V;W 2 Tpt @Et . In other words,
the operator S is self-adjoint. Consequently, there are eigenvalues ¹��iºN�1iD1 and corre-
sponding orthonormal eigenvectors ¹ViºN�1iD1 such that SViD��iVi I ¹�iºN�1iD1 and ¹ViºN�1iD1

are known as the principal curvatures and the principal directions, respectively. Without
loss of generality, we can assume that ¹@iºN�1iD1 are the principal directions at p 2 @E when
t D 0. Note that this is only true at a point, rather than for a whole neighborhood of p.

The mean curvature is given by

K WD

N�1X
iD1

�i D �hSei ; e
i
i WD � traceS (3.2)

if ¹eiºN�1iD1 are the orthonormal principal directions of the tangent space. But hSei ; ei i is
independent of coordinate changes; hence, (3.2) is valid for general ¹eiºN�1iD1 . To justify
this last claim, suppose that the surface @Et is described by 2 parametrizations ¹uiºN�1iD1

and ¹ QuiºN�1iD1 with ei D @r
@ui

, Qei D @r
@ Qui

,H˛i D @u˛

@ Qui
, gij Dhei ; ej i, Qgij DhQei ; Qej i, ei D gij ej ,

Qei D Qgij Qej . Then, Qei D H˛ie˛ , and we obtain Qgij D g˛ˇH˛iHˇj , or in term of matrices
Qg D H Tg H . This gives g�1 D H Qg�1H T. On recalling .gij / D g�1 and . Qgij / D Qg�1,
the claim follows from

hS Qei ; Qe
i
i D Qgij hS Qei ; Qej i D H˛iHˇj Qg

ij
hSe˛; eˇ i D g

˛ˇ
hSe˛; eˇ i D hSe˛; e

˛
i:

From (3.2) and the definition of S , we derive

K D div� � D hDei �; e
i
i (3.3)

once we recall div� W WD hDeiW;e
i i for any, including non-tangential, vector fieldW on

the torus; see [48, Chapter 2, subsection 4.20].

Lemma 3.1. Let .gij / be the inverse matrix of .gij / and ei D gij ej ; we have

@ei

@t
D DXei D DeiX; (3.4)

@�

@t
D DX� D �h�;DejXie

j ; (3.5)

@ei

@t
D DXe

i
D gij h�;DejXi� � he

i ;DejXie
j ;

@gij

@t
D DXg

ij
D �gkj hDekX; e

i
i � gki hDekX; e

j
i: (3.6)

Proof. It is immediate that (3.4) is the same as (3.1). Next, observe that @�
@t
D DX� is a

tangent vector. As V D hV; ej iej for any tangent vector V , it follows that

DX� D hDX�; ej ie
j
D �h�;DXej ie

j
D �h�;DejXie

j ;

which is (3.5). Since hei ; ej i D ıij , we have

0 D DX he
i ; ej i D hDXe

i ; ej i C he
i ;DXej i D hDXe

i ; ej i C he
i ;DejXi:
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This leads to

@ei

@t
D DXe

i
D hDXe

i ; �i� C hDXe
i ; ej ie

j
D �hei ;DX�i� � he

i ;DXej ie
j

D gij h�;DejXi� � he
i ;DejXie

j :

Moreover,
@gij

@t
D DX he

i ; ej i D hDXe
i ; ej i C hei ;DXe

j
i

which leads to (3.6).

We need further concepts from geometry to represent results of higher curvature
derivatives. Let X.@E/ represent the collection of all (smooth enough) vector fields on
the manifold @E. The second fundamental form

�!
II W X.@E/ � X.@E/ ! span¹�º is a

symmetric bilinear form defined by

�!
II .W; V / WD hDW V; �i�

for any tangent vectors W;V 2 Tpt @Et ; its symmetry follows from

�!
II .W; V / D hDW V; �i� D �hV;DW �i� D hV; SW i� D hW;SV i� D

�!
II .V;W /:

Note that
�!
II .W; V / is just the normal component of DW V . The tangential component is

called the covariant derivative rW V given by

rW V WD DW V �
�!
II .W; V /:

Immediately, we see that DW V �DVW D rW V � rVW is a tangent vector and

DW V D rW V C hSW; V i�:

Since Dei ej D Dej ei D
@2ˆ.r.�/;t/
@ui@uj

, consequently, rei ej D rej ei . Since

DeiDej f D DejDeif

for any smooth scalar function f , we obtain reirej f Drejrej f if one defines reif WD
Deif . Moreover, the product rule for covariant derivative holds:

rW hV;Qi D hDW V;Qi C hV;DWQi D hrW V;Qi C hV;rWQi

for any tangent vectors W , V , Q.
For any C2 scalar function � on @Et , its tangential gradient is r�� WD .rei�/e

i . Its
(tangential) Hessian at pt 2 @Et is given by

Hess� � W X.@Et /! X.@Et / with .Hess� �/
ˇ̌
pt
W WD rWr��
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for any tangent field W ; note that it depends only on information of � on the manifold
@Et . Thus,

h.Hess� �/ei ; ej i D hreir��; ej i D rei hr��; ej i � hr��;rei ej i

D reirej � � hr��;rej ei i D hei ; .Hess� �/ej i

so that Hess� � is self-adjoint. In addition,

trace.Hess� �/ D h.Hess� �/ei ; ei i D hreir��; e
i
i D div� r�� DW ���:

We note that �� is known as the tangential Laplacian.
By a R-linear operator B W X.@E/! X.@E/ we mean B.c1V C c2W / D c1BV C

c2BW for any tangent vectors V;W 2 X.@E/ and constants c1, c2. If B.f1V C f2W / D
f1BV C f2BW for any scalar functions f1; f2 2 C 1.@E/ as well; then, we say B is
C1.@E/-linear if B involves only first derivatives (see the analogous definition C1.@E/-
linear in [33, p. 262]).

Example. Let B be the covariant derivative in the e1 direction, i.e., BV WD re1V for V 2
X.@E/; then,B is R-linear but notC 1.@E/-linear, becauseB.f V /D f reiV C .reif /V
when f is a scalar field on @E. On the other hand, the shape operator S is C1.@E/-
linear; this is what we will need later on. Another example of C1.@E/-linear operator is
Hess� �.

Lemma 3.2. Let A W X.@E/ ! X.@E/ be R-linear, and let B W X.@E/ ! X.@E/ be
C1.@E/-linear, both not necessarily self-adjoint. Then,

hAei ; e
k
ihBek ; e

j
i D hBAei ; e

j
i; (3.7)

and hV; ekihBek ; W i D hBV;W i for any tangent vectors V , W .

Proof. Write Aei D A˛i e˛ and Bei D B
ˇ
i eˇ . One readily checks that both the LHS and

RHS of (3.7) yield Aki B
j

k
. This is the first statement. Now, take A to be the identity oper-

ator, V D V iei and W D Wj ej ; the second statement follows.

With the above geometry preliminaries, we are ready to compute derivatives of the
curvature K . Suppose ˆ 2 C5.T � R/ and, as before, z D r.u/ with u 2 U � RN�1

represents a parametrization of the manifold @E. From (2.2), it is immediate that

ei D
@

@ui
ˆ.r.u/; t/ D @i C tD@iX C

t2

2
D@iZ CO.t

3/; i D 1; 2; : : : ; N � 1;

with X and Z in the above RHS evaluated at @E. Take any p 2 @E, and let ¹@i jpºN�1iD1 be
orthonormal (and in the principal directions). Assuming X D ��0 on @E for simplicity,
we have D@iX D .D@i�/�0 � �S@i so that

h@j ;D@iXi D ��h@j ; S@i i D h@i ;D@jXi:
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Since Z can have a tangential component Z� even when X does not, it is necessary to
write Z D ��0 CZ� on @E. Hence, at pt 2 @Et ,

gij
ˇ̌
pt
D hei ; ej i D ıij C t .h@i ;D@jXi C h@j ;D@iXi/

C
t2

2
.h@i ;D@jZi C h@j ;D@iZi C 2hD@iX;D@jXi/CO.t

3/

D ıij � 2t�h@j ; S@i i C
t2

2

®
� 2�h@j ; S@i i C h@i ;r@jZ

�
i C h@j ;r@iZ

�
i
¯

C t2
®
D@i�D@j �C �

2
hS@i ; S@j i

¯
CO.t3/;

where the above RHS is evaluated at p. If we now define .gij / WD .gij /�1, recalling that
.I C A/�1 D I � AC A2 C � � � for any (small) matrix A, on using Lemma 3.2 we have

gij
ˇ̌
pt
D ıij C 2t�h@j ; S@i i C t

2
®
�h@j ; S@i i �D@i�D@j �C 3�

2
hS2@i ; @j i

¯
�
t2

2

®
h@i ;r@jZ

�
i C h@j ;r@iZ

�
i
¯
CO.t3/:

Using these Taylor’s expansions for gij and ej , one calculates

ei
ˇ̌
pt
D gij ej

ˇ̌
pt
D @i C tA

.1/
i C

t2

2
A
.2/
i CO.t

3/;

where

A
.1/
i D .D@i�/�0 C �S@i ;

A
.2/
i D D@iZ C 4�h@j ; S@i iD@jX C 2�S@i � 2.D@i�/r��C 6�

2S2@i

�
®
h@i ;r@jZ

�
i C h@j ;r@iZ

�
i
¯
@j I

the above RHS is again evaluated at p.
Turning our attention to the study of the unit normal vector,

� D �0 C t
@�

@t

ˇ̌̌̌
tD0

C
t2

2

@2�

@t2

ˇ̌̌̌
tD0

CO.t3/:

From Lemma 3.1, we see that @�
@t
D �h�;DejXie

j ; this leads to

@2�

@t2
D �

�
@�

@t
;DejX

�
ej � h�;DejZie

j
� h�;DejXi

@ej

@t
:

When X D ��0 on @E, a simple computation yields

B1 WD
@�

@t

ˇ̌̌̌
tD0

D �r��I

at the same time,

B2 WD
@2�

@t2

ˇ̌̌̌
tD0

D �2�Sr�� � h�0;D@jZi @j � jr��j
2�0:
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In other words,

� D �0 C tB1 C
t2

2
B2 CO.t

3/:

As a result,

Dei � D
@�

@ui
D
@�0

@ui
C t

@B1

@ui
C
t2

2

@B2

@ui
CO.t3/

D D@i �0 C tD@iB1 C
t2

2
D@iB2 CO.t

3/

with RHS evaluated at p.

Theorem 3.3. Suppose E 2 C5 (not necessarily a critical set), X 2 C5.T /, X D ��0 on
@E, Z D Z� C ��0 on @E, where Z� and ��0 are its tangential and normal components,
respectively. Then, on @E at t D 0,

@K

@t

ˇ̌̌̌
tD0

D �� traceS2 ����; (3.8)

@2K

@t2

ˇ̌̌̌
tD0

D � div� .Sr��2/ � div� .SZ� / ���� � jr��j2 K

� 2�2 traceS3 C gij hS@i ;r@jZ
�
i

� 2�gij h.Hess� �/@i ; S@j i � � traceS2: (3.9)

Proof. From (3.3), we have

K D hDei �; e
i
i

D

�
D@i �0 C tD@iB1 C

t2

2
D@iB2; @i C t A

.1/
i C

t2

2
A
.2/
i

�
CO.t3/

DK0 C t
®
hD@i �0; A

.1/
i i C hD@iB1; @i i

¯
C
t2

2

®
hD@i �0; A

.2/
i i C hD@iB2; @i i C 2hD@iB1; A

.1/
i i

¯
CO.t3/

WDK0 C t
®
hD@i �0; A

.1/
i i C hD@iB1; @i i

¯
C
t2

2
¹I C II C IIIº CO.t3/:

Hence,

@K

@t

ˇ̌̌̌
tD0

D hD@i �0; A
.1/
i i C hD@iB1; @i i D �hS@i ; �S@i i � div� r��

D �� traceS2 ����;

@2K

@t2

ˇ̌̌̌
tD0

D I C II C III:
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Employing Lemma 3.2, we have

I WD hD@i �0; A
.2/
i i

D �hS@i ; D@iZi C 4�
2
h@j ; S@i ihS@i ; S@j i � 2�hS@i ; S@i i C 2hSr��;r��i

� 6�2hS@i ; S
2@i i C

�
h@j ;r@iZ

�
i C h@i ;r@jZ

�
i
�
hS@i ; @j i

D hS@i ; D@iZ
�
i � � traceS2 � 2�2 traceS3 C 2hSr��;r��iI

II WD hD@iB2; @i i D div� B2 D div�
�
� 2� Sr�� � h�0;D@jZi @j � jr��j

2�0
�

D � div�
�
Sr� .�

2/
�
C div�

�
hD@j �0; Z

�
i @j

�
���� � jr��j

2 K

D � div�
�
Sr� .�

2/
�
� div� .SZ� / ���� � jr��j2 KI

III WD 2hD@iB1; A
.1/
i i D �2hD@ir��; .D@i�/�0 C �S@i i

D 2hr��;D@i ..D@i�/�0/i � 2�h.Hess� �/@i ; S@i i

D �2hr��; .D@i�/ S@i i � 2�h.Hess� �/@i ; S@i i

D �2hr��; Sr��i � 2�h.Hess� �/@i ; S@i i:

On adding up I , II, III, we recover Theorem 3.3 provided ¹@iºN�1iD1 is orthonormal. How-
ever, both (3.8) and (3.9) remain valid in general coordinates as they are coordinate-
invariant.

We now combine results for derivatives of the nonlocal and curvature terms in the
following.

Corollary 3.4. Suppose that E 2 C5 is a critical set; i.e., it satisfies F .�; �; c/ D 0 on
@E; X D ��0 CX � 2 C5.T / with � D X � �0 and a tangential field X � ; Z D ��0 CZ�

on @E with � D Z � �0 and a tangential field Z� . Then,

DtF .E; �; c/ŒX� WD
d

dt
F .Et ; �; c/

ˇ̌
tD0

D ���� � kB@Ek
2�

C �

Z
@E

yG.x � y/�.y/dH1
y C �.rNE ��0/�

ˇ̌
@E
: (3.10)

Proof. If E is a critical set, then DX�F .E; �; c/ D 0 on @E. Hence, we have

DtF .E; �; c/ŒX� D
d

dt
F .Et ; �; c/

ˇ̌
tD0
D DXF .E; �; c/ D D��F .E; �; c/;

which leads to (3.10) once we employ (2.3), (3.8), and kB@Ek2 D traceS2.

Remark 3.5. SupposeE is a critical set; from Corollary 3.4, we see thatDtF .E;�;c/ŒX�

is a linear operator acting on only the normal component � D X � �0. We therefore write
DtF .E; �; c/Œ�� WD DtF .E; �; c/ŒX�. The same clearly applies to D�tF .E; �; c/ŒX�.
This notation will be handy to investigate eigenvalues and eigenfunctions of the opera-
tor DtF .E; �; c/ at a critical set later on. Similarly, one can write Dt�F .E; �/Œ�� for
Dt�F .E; �/ŒX�.
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On the other hand, Dt tF .E; �; c/ŒX; X� depends not only on � but the tangential
component of X as well. Thus, when we take another t -derivative of DtF .E; �; c/Œ�� in
Section 5, we record that as Dt tF .E; �; c/ŒX;X�.

4. Analyzing nonlocal and curvature terms at critical lamellae

Before we start analyzing the contributions of the nonlocal and curvature terms to the
bifurcation phenomena, it is clear that checking explicitly any bifurcation criteria requires
a knowledge of �crit (which we write as �� or �c below to emphasize its dependence on
these parameters); the definitions of the quantities c, x0, T , �, and d0 were given in (1.6)–
(1.10). This critical value of � at which the stationary 1-lamella with thickness 0 < x0 <T
switches stabilities can be deduced by setting k D 1 and h.�1/ � h.�0/ D 0 on [3, p. 587
in the proof of Theorem 5.13], from which, recalling the notation introduced in (1.8), the
condition to be satisfied is

4�2

T 2
D

4

T 2
.�1 � �0/

D
��T

4

 
cosh

�
�
p
�2 C T 2=4

�p
�2 C T 2=4 sinh

�p
�2 C T 2=4

� � cosh
�p
�2 C T 2=4

�p
�2 C T 2=4 sinh

�p
�2 C T 2=4

�
�

cosh.�T=2/
.T=2/ sinh.T=2/

C
cosh.T=2/

.T=2/ sinh.T=2/

!
:

It is useful to introduce the functions

�.s;m; T / WD
cosh

�
s
p
m2 C T 2

�
p
m2 C T 2 sinh

�p
m2 C T 2

� ;
ı.s;m; T / WD �.s;m; T / ��.1;m; T /; (4.1)

so we may write

�� D
2�2

T 3
�
ı.�; �; T / � ı.�; 0; T /

� I (4.2)

in particular, when c D 0,

�cD�D0 WD 8�
2
�

�
T 3
�

tanh.T=4/
T

�
tanh.

p
T 2 C 4�2=4/

p
T 2 C 4�2

���1
D 2�2 �

�
T 3

�
tanh.T =2/

T
�

tanh.
p

T 2 C �2=2/
p

T 2 C �2

���1
I (4.3)

see [3, Theorem 1.2]. This is one of the ingredients that govern the shape of the bifurcation
curves.
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That the 1-lamella loses stability above this value �crit is due to the fact that a certain
matrix depending on � gets a zero eigenvalue. Precisely, (we define here �2; C1; C2 that
we use only at a later stage) let

�1 D
4�2

T 2
; �2 D

16�2

T 2
; Ci D

1

2
p
1C �i sinh.T

2

p
1C �i /

; (4.4)

d
.1/
0 D

1

sinh.T
p
1C�1
2

/
sinh

.T � x0/
p
1C �1

2
sinh

x0
p
1C �1

2
I (4.5)

the matrix [3, p. 581]

A.1/
D

1

2 sinh
�
T
2

p
1C�1

�  cosh
�
T
2

p
1C �1

�
cosh

�
.T=2�x0/

p
1C�1

�
cosh

�
.T=2�x0/

p
1C�1

�
cosh

�
T
2

p
1C �1

� !

has d .1/0 as its least eigenvalue [3, p. 582], with corresponding eigenvector .�1; 1/; the
vector components represent displacement magnitude in the outward normal directions
on L1 and L2, respectively. Since �

ˇ̌
L1
D ��

ˇ̌
L2

, to leading order this destabilizing mode
leads to ‘parallel’ configuration between the two deformed boundaries.

Let �1 < c < 1 and L D Œ0; x0� � Œ0; T � be the critical 1-lamella described in (1.6),
(1.7). Recall that xD .x; y/ designates a point on the 2D torus T . Fix the physical param-
eter c. Suppose that a local bifurcation occurs at a certain �c , resulting in a non-planar
lamellar structure Lt for some � � �c ; it represents a small perturbation of the original L
with @Lt D .L1/t [ .L2/t . Clearly, the new shape .L1/t can be attained by a suitable flow
field Xt .x; y/ D .g1.y/; 0/ defined in a neighborhood of L1 for a small time t ; similarly,
a different flow field Xt .x; y/ D .g2.y/; 0/ governs the new shape .L2/t . When c D 0, it
turns out that the super-symmetry between space and wedge will allow us to seek a non-
planar solution created through bifurcation with g1 D g2 in the next section. Thus, one
can just let Xt D .X1.y/; 0/ in the whole torus, resulting in .L2/t D .L1/t C .T=2; 0/,
see Lemma 5.1 below; i.e., .L2/t is a translation of .L1/t to the right by an amount T=2
in the x-direction; moreover, whenever (1.4) is satisfied on .L1/t , the same will automat-
ically be true at .L2/t ; see Section 5. This resulting ‘anti-symmetric’ configuration (with
respect to their outward normal directions on the boundaries) simplifies the analysis, as
it leads to a bifurcation due to a simple eigenvalue [22] when c D 0. In the following
theorem, we therefore study a flow field Xt D .X1.y/; 0/ in the whole torus to look for
anti-symmetric non-planar solutions with the additional constraint that X1 is y-odd. It is
noted that the flow fields away from neighborhoods of L1 [ L2 have really no impact on
the shape of Lt . Define

'1.y/ WD sin
2�y

T
; �1 WD '1 L2 � '1 L1: (4.6)

Let X.x; y/ D .'1.y/; 0/. Since �0 D .1; 0/ at L2 and .�1; 0/ at L1, we have X D ��0
at @L when t D 0 with � D X � �0 D �1.
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Lemma 4.1. Suppose that the flow field is X.x; y/ D .'1.y/; 0/. Then,

@

@t

�
NLt

ˇ̌
@Lt

�ˇ̌
tD0
D

�
d
.1/
0

p
1C �1

� d0

�
�1.y/: (4.7)

Proof. On setting E D L and X.x; y/D .'1.y/; 0/ in (2.3), we have �D X � �0 D �1 on
@L and

@

@t

�
NLt

ˇ̌
@Lt

�ˇ̌
tD0
D

�
�
@NL

@�

�ˇ̌̌̌
@L

C

Z
@L

yG.x � y/�.y/ dH1
y

D �d0�1
ˇ̌
@L
C

Z
@L

yG.x � y/�1.y/ dH1
y :

In the notation of [3], the above integral term equals VZ.x/ D V1.x/C V2.x/, where Vi is
given in [3, equation (5.7)] with m D 1, ˛11 D �1, ˛21 D 1, `1 D 0, `2 D x0, resulting in

VZ
ˇ̌
@L
D C1

�
cosh

�
T

2

p
1C �1

�
� cosh

��
T

2
� x0

�p
1C �1

��
�1.y/

D
d
.1/
0

p
1C �1

�1.y/;

which yields (4.7).

Lemma 4.2. Suppose that the flow field isX.x;y/D .X1.y/;0/withX1 being T -periodic
(note that X1 needs not be y-odd). Then,Z

@L
�1
@2

@t2

�
NLt

ˇ̌
@L

�ˇ̌
tD0

dH1
D 0:

For the case c D 0, we have a stronger statement:

@2

@t2

�
NLt

ˇ̌
@L

�ˇ̌
tD0
D 0: (4.8)

Proof. With Z D divX D 0 and our chosen X D .X1.y/; 0/, it follows from (2.4) that

@2

@t2

�
NEt

ˇ̌
@Et

�ˇ̌
tD0
D

Z
@E

Di yG.x � y/.Xi .x/ �Xi .y//Xj .y/ �j .y/ dH1
y

�

Z
@E

Di yG.x � y/Xi .x/.Xj .x/ �Xj .y//�j .y/ dH1
y

D

Z
@E

D1 yG.x � y/.X1.x/ �X1.y//X1.y/ �1.y/ dH1
y

�

Z
@E

D1 yG.x � y/X1.x/.X1.x/ �X1.y//�1.y/ dH1
y

D �

Z
@E

D1 yG.x � y/.X1.x/ �X1.y//2�1.y/ dH1
y DW I.x/: (4.9)
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Now, we specialize to E D L and we split I from (4.9) at any point x 2 @L as

I.x/ D IS .x/C IO.x/;

where IS is the integral with y belonging to the same side of L as x and IO.x/ is the
integral with y belonging to the different side on L as x.

Before we proceed, we introduce the following notation which will be useful in this
proof: we denote by z points in L1 and by Oz points in L2; moreover, if z 2 L1, we denote
by y�.z/ the point in L2 with the same y-coordinate, namely, y�.z/ D z C .x0; 0/, and
conversely, �.Oz/ 2 L1 has the same y-coordinate as Oz 2 L2.

The Green functionG.x;y/D yG.x� y/ associated with the modified Helmholtz oper-
ator in T has symmetry properties due to the periodicity: namely,

the values yG.˙x;˙y/ are the same;

yG.x; y/ D yG.T � x; y/ D yG.x; T � y/;

D1 yG.x; y/ D �D1 yG.�x; y/; (4.10)

D11 yG.x; y/ D D11 yG.�x; y/; (4.11)

D1 yG.0; y/ D D1 yG.T=2; y/ D 0: (4.12)

Now, we rewrite for x 2 L1

I.x/ D IS .x/C IO.x/

D

Z
L1

D1 yG.x � y/.X1.x/ �X1.y//2 dH1
y

�

Z
L2

D1 yG.x � Oy/.X1.x/ �X1.Oy//2 dH1
Oy

Œby (4.12)� D �

Z
L2

D1 yG.x � Oy/.X1.x/ �X1.Oy//2 dH1
Oy (4.13)

Œby (4.10) and X1 D X1.x2/� D

Z
L2

D1 yG.y�.x/ � �.Oy//
�
X1.y�.x// �X1.�.Oy//

�2
dH1
Oy

D

Z
L1

D1 yG.y�.x/ � y/
�
X1.y�.x// �X1.y/

�2
dH1

y

D IO.y�.x// D I.y�.x//I (4.14)

this also proves that I.Ox/D I
�
�.Ox/

�
. In the case c D 0, the first coordinate of x� Oy is T=2

so I.x/ D 0 by (4.12) and (4.13), which proves (4.8) by (4.9). In the general case,Z
@L
�1
@2

@t2

�
NLt

ˇ̌
@L

�ˇ̌
tD0

dH1
D

Z
L2

'1. Ox2/ IO.Ox/ dH1
Ox �

Z
L1

'1.x2/ IO.x/ dH1
x D 0

by (4.14).
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Remark 4.3. Taking XD.X1.y/; 0/ on L, we see from (4.9) that @2

@t2
.NEt

ˇ̌
@Et
/
ˇ̌
tD0

depends only on X1, which is � D X � �0 up to a sign. General flow fields can lead to
dependency on input other than �. For example, Z can be non-zero and it makes a non-
zero contribution to the second derivative by (2.4).

To investigate if the bifurcation is supercritical or subcritical, we need to calculate

A� WD

Z
@L
�1.x/

@3

@t3

�
NEt

ˇ̌
x2@L

�ˇ̌
tD0

dH1
x : (4.15)

Here, the subscript � is a value related to the lamella thickness, as indicated in (1.8).

Lemma 4.4. Let X.x; y/ D .X1.y/; 0/ D .'1.y/; 0/. Then,

A� D 2

�Z
z2L2
�

Z
z2L1

�
@2 yG

@x21
.z/ dH1

z

Z
x2L2

.'1.x2/ � '1.x2 � z2//
3 '1.x2/ dH1

x :

Proof. Since divX D Z D Y D 0, the RHS of (2.12), (2.15), and (2.16) are all zero; the
same is true for the 2nd and 3rd terms on RHS of (2.9). From (2.5),

@3

@t3

�
NLt

ˇ̌
@Lt

�ˇ̌
tD0

D

Z
L
D3 yG.ıx/ŒıX; ıX; ıX� dy

D

Z
L

@3 yG

@xi@xj @xk
.x � y/.Xi .x/ �Xi .y//.Xj .x/ �Xj .y//.Xk.x/ �Xk.y// dy

D

Z
L

@3 yG

@x31
.x � y/.X1.x/ �X1.y//3 dy

D �

Z
L

@

@y1

²
@2 yG

@x21
.x � y/

³
.X1.x/ �X1.y//3 dy

D �

Z
L

@

@y1

²
@2 yG

@x21
.x � y/.X1.x/ �X1.y//3

³
dy

D

�Z
L1

�

Z
L2

�
@2 yG

@x21
.x � y/.X1.x/ �X1.y//3 dH1

y

D

�Z
x�L1
�

Z
x�L2

�
@2 yG

@x21
.z/.X1.x/ �X1.x � z//3 dH1

z

D

8̂<̂
:
� R
L2
�
R
L1

�
@2 yG

@x21
.z/.'1.x2/ � '1.x2 � z2//3 dH1

z if x 2 L2;� R
L1
�
R
L2

�
@2 yG

@x21
.z/.'1.x2/ � '1.x2 � z2//3 dH1

z if x 2 L1

because due to periodicity of the integrands and (4.11), upon change of variables from y to
z, we have

R
x�L1 D

R
L2

and
R

x�L2 D
R
L1

when x 2L2; and
R

x�L1 D
R
L1

and
R

x�L2 D
R
L2
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when x 2 L1. In particular,

@3

@t3

�
NLt

ˇ̌
x2L2

�ˇ̌
tD0
D �

@3

@t3

�
NLt

ˇ̌
Ox2L1

�ˇ̌
tD0

with x D .x0; s/ and Ox D .0; s/

for some s 2 Œ0; T /. Hence,

A� WD

Z
@L
�1.x/

@3

@t3

�
NEt

ˇ̌
x2@L

�ˇ̌
tD0

dH1
x D 2

Z
L2

'1.x/
@3

@t3

�
NEt

ˇ̌
x2L2

�ˇ̌
tD0

dH1
x ;

which is the same as (4.15).

The value of A� will play an important role in the shape of the bifurcation curve and
the stability of the resulting non-planar solutions later on; we therefore simplify (4.15) as
much as possible, starting with the following.

Lemma 4.5. Let s 2 R. Then,Z T

0

'1.y/.'1.y/ � '1.y � s//
3 dy D 3T sin4

�s

T
:

Proof. With '1.y/ D sin.2�y=T /, we carry out a direct computation as follows:

LHS D 8 sin3
�s

T

Z T

0

sin
2�y

T
cos3

2�.y � s=2/

T
dy

D 8 sin3
�s

T

Z T�s=2

�s=2

sin
2�.� C s=2/

T
cos3

2��

T
d�

D 8 sin3
�s

T

Z T

0

sin
2�.� C s=2/

T
cos3

2��

T
d�

D 8 sin4
�s

T

Z T

0

cos4
2��

T
d� D 3T sin4

�s

T
:

Using the above lemma, we obtain

A� D 6T

�Z
L2

�

Z
L1

�
@2 yG

@x21
.z/ sin4.

�z2

T
/ dH1

z

D 6T

Z T

0

²
@2 yG

@z21
.x0; z2/�

@2 yG

@z21
.0C; z2/

³�
3

8
�
1

2
cos
�
2�z2

T

�
C
1

8
cos
�
4�z2

T

��
dz2

D 6T

²
@2

@z21

Z T

0

yG.z1; z2/

�
3

8
�
1

2
cos
�
2�z2

T

�
C
1

8
cos
�
4�z2

T

��
dz2

³ˇ̌̌̌z1Dx0
z1D0C

:

From (4.11), [3, equation (3.9)] and the notation in [3], we see thatZ T

0

yG.z/ dz2 D
Z T

0

G.z; 0/ dz2 D G1D.z1; 0/ D G .jz1jT / D G .z1/

D
1

2 sinh.T=2/
cosh

�
z1 �

T

2

�
:
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Let u1, u2 be 1D T -periodic functions satisfying

�u00i C .1C �i /ui D ız1 ; i D 1; 2

so that (see [3, p. 580])

ui .y1/ D Ci cosh.
p
1C �i .jy1 � z1jT � T=2//:

Then,Z T

0

yG.z/ cos
2�z2

T
dz2 D

Z T

0

G.z; 0/ cos
2�z2

T
dz2 D

Z T

0

G.0; z/ cos
2�z2

T
dz2

D u1.0/ cos 0 D C1 cosh.
p
1C �1.z1 � T=2//

because the last integral above equals to V1, where

��V1.x/C V1.x/ D cos.2�x2=T / ¹x1 D z1º;

resulting in V1.x/ D u1.x1/ cos.2�x2=T /. Similarly,Z T

0

yG.z/ cos
4�z2

T
dz2 D u2.0/ cos 0 D C2 cosh.

p
1C �2.z1 � T=2//:

After substituting and carrying the differentiation with respect to z1, recalling (4.1), we
obtain

A� D 6T

²
3

16 sinh.T=2/
cosh.z1 �

T

2
/ �

C1.1C �1/

2
cosh.

p
1C �1.z1 � T=2//

C
C2.1C �2/

8
cosh.

p
1C �2.z1 � T=2//

³ˇ̌̌̌z1Dx0
z1D0C

D 12T

�
3T

16
ı.�; 0; T / �

T

4

�
1C

�2

T 2

�
ı.�; �; T /C

T

16

�
1C

4�2

T 2

�
ı.�; 2�; T /

�
D 3T 2

�
3

4
ı.�; 0; T /�

�
1C

�2

T 2

�
ı.�; �; T /C

1

4

�
1C

4�2

T 2

�
ı.�; 2�; T /

�
: (4.16)

Introducing the functions

�1;0.�; T / WD ı.�; �; T / � ı.�; 0; T /;

�2;0.�; T / WD ı.�; 2�; T / � ı.�; 0; T /; (4.17)

�2;1.�; T / WD ı.�; 2�; T / � ı.�; �; T /;

we rewrite (4.16) as (we drop �; T in the arguments in the first line for clarity)

A� D 3T
2

�
3

4
ı.0/ � ı.�/C

1

4
ı.2�/ �

�2

T 2
ı.�/C

�2

T 2
ı.2�/

�
D 3T 2

�
1

4
�2;0.�; T / ��1;0.�; T /C

�2

T 2
�2;1.�; T /

�
: (4.18)
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Note that we have not emphasized the dependence of A� on � and T for a simpler repre-
sentation. This new notation allows us to rewrite (4.2) as

�� D
2�2

T 3�1;0.�; T /
: (4.19)

For any lamella, the curvature K D 0 and the shape operator S D 0 on @L. From
Theorem 3.3, we obtain @K

@t

ˇ̌
tD0
D ���� and @2K

@t2

ˇ̌
tD0
D ���� for any general flow

field X . In the bifurcation analysis for the critical lamellae below, we need to focus only
when X.x; y/ D .g.y/; 0/ on the whole torus for some T -periodic and smooth function
g; this leads to additional simplification. In particular, � D .X � �0/

ˇ̌
tD0
D g.y/ L2 �

g.y/ L1, Z D DXX D 0, and � D .Z � �0/
ˇ̌
tD0
D 0; thus, @K

@t

ˇ̌
tD0
D �g00.y/ L2 C

g00.y/ L1 and @2K
@t2

ˇ̌
tD0
D 0 atL1 [L2. It turns out that we will need the third derivative

of the curvature with respect to t in the bifurcation analysis; for simplicity, we compute
this only for the case of a lamella with the special flow field in the following lemma.

Lemma 4.6. Suppose that L is a lamella (not necessarily critical) andX.x;y/D.g.y/;0/.
Then,

@K

@t

ˇ̌̌̌
tD0

D �g00.y/ L2 C g
00.y/ L1;

@2K

@t2

ˇ̌̌̌
tD0

D 0 at L1 [ L2; (4.20)

1

6

@3K

@t3

ˇ̌̌̌
tD0

D
3

2
g00.y/.g0.y//2 L2 �

3

2
g00.y/.g0.y//2 L1: (4.21)

Proof. If x 2 T , then under the flow (1.3) one hasˆ.x; t /D xC t .g.y/; 0/; therefore, the
line L2 evolves into ¹.x; y/ W x D H.y/ WD x0 C t g.y/º. Treating it as a graph over the
y-axis, its curvature is

K D �
H 00.y/

.1CH 0.y/2/3=2
D �t g00.y/

²
1 �

3

2
t2.g0.y//2 CO.t4/

³
I (4.22)

the sign in the above curvature formula has been chosen so that it is consistent with our
choice that a circle has positive curvature. In other words, the initial point .x0; y/ with
zero curvature moves to the new location .H.y/; y/ with curvature given by the above
RHS at time t . This Taylor expansion immediately gives (4.20) and (4.21) at L2. For the
corresponding results at L1, the additional negative sign arises since the outward normal
at L1 points in the negative x-direction.

Lemma 4.7. Let X.x; y/ D .'1.y/; 0/ with '1 given by (4.6). Then,

B WD

Z
@L
�1.x/

@3K

@t3

ˇ̌̌̌
tD0

dH1
x D �

9T

4

�
2�

T

�4
D �

9�4

2T 3
: (4.23)

Proof. Substituting g D '1 D sin 2�y
T

in (4.21), we obtain

@3K

@t3

ˇ̌̌̌
tD0

D �9

�
2�

T

�4
'1.y/ cos2

2�y

T
L2 C 9

�
2�

T

�4
'1.y/ cos2

2�y

T
L1:



E. D. Acerbi, C.-N. Chen, and Y. S. Choi 434

A direct computation then yields

B D 2

Z
L2

'1.x2/
@3K

@t3

ˇ̌̌̌
tD0

dH1
x

D �18

�
2�

T

�4 Z T

0

sin2
2�y

T
cos2

2�y

T
dy D �

9T

4

�
2�

T

�4
:

When we study bifurcation for c D � D 0 in the coming Section 5, the sign of the
scalar BC �0A0 will be important.

5. Bifurcation analysis when c D 0

So far, there is no difference in calculating derivatives of curvature and nonlocal term at
critical lamellae when subject to a prescribed flow corresponding to any c 2 .�1; 1/. In
this section, we fix c D 0 and adopt the simpler notation F .Lt ; �/ instead of F .Lt ; �; c/
to study the bifurcation of the Euler–Lagrange equation F .Lt ; �/ D 0, where F is given
in (2.1), in the vicinity of the configuration .L; �0/, where the critical lamella L loses its
stability due to the first eigenmode �1 on @L. The resulting non-planar solutions coming
from a perturbation of critical laminae can be attained by specifying a suitable flow field
around the neighborhood of @L. Recall that the thickness of the lamella is exactly T=2;
thus, volume (which is preserved through the flow) is equally divided among the (evolved)
lamella and the empty space. One may expect that there should be equal importance of
either set even when the configuration breaks into a non-lamellar mode. This prompts us
to look for solutions when .L2/t is a translation of .L1/t by a distance of T=2 in the
x-direction for all (small) t . In other words, the imposed flow field X.x; y/ D .X1.y/; 0/
around L1 is the same as that around L2, and we can employ X.x; y/ D .X1.y/; 0/ in
the whole torus; the resulting configuration is antisymmetric with respect to the outward
normal direction.

Lemma 5.1. Suppose c D 0 and X.x; y/ D .g.y/; 0/ in the whole torus with g 2 C2

being T -periodic. Then,

(a) .L2/t D .L1/t C .T=2; 0/;

(b) if the Euler–Lagrange equation (2.1) is satisfied on one side of Lt , it will be
satisfied on the other;

(c) for points with the same y-coordinate at the left and the right boundaries, the
three quantities K , NLt � 1=2, and F .Lt ; �/ are opposite in sign;

(d) if, moreover, g is y-odd, then

K; NLt � 1=2; F .Lt ; �/

are y-odd at each boundary.
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Proof. If x 2 T , then under the flow (1.3)

xt WD ˆ.x; t / D xC t .g.y/; 0/:

We adopt a notation similar to what was used in Lemma 4.2: define

t WD .T=2; 0/; c WD .T=4; T=2/;

and for every point x 2 L1, let

Ox WD xC t; Qx WD .0; T / � x;

so Ox 2 L2 has the same vertical coordinate as x, while Qx 2 L1 is the symmetric of x with
respect to the horizontal mid-line of T . Both Qx and c, the center of L, will be used only to
prove (d). Also, set

yL WD LC t:

Clearly,
Oxt D xt C t; yLt D Lt C tI

therefore, the function NyLt is a translate by ˙t of NLt (the sign does not matter due to
periodicity):

NyLt .z/ D NLt .z˙ t/:

But NyLt CNLt D NT � 1, so for every point x 2 L1,

NLt .xt /CNLt .Oxt / D NLt .xt /CNyLt .xt / D 1

or equivalently
ŒNLt � 1=2�.xt / D �ŒNLt � 1=2�.Oxt /: (5.1)

We already know from (4.20) that

K.xt / D �K.Oxt /; (5.2)

and the first three assertions are proved since in the case c D 0

F .Lt ; �/ DK C �ŒNLt � 1=2�:

To prove the last, remark that if g is odd and periodic, then g.0/ D g.T=2/ D g.T / D 0;
thus, ct � c and Lt is symmetric with respect to c, so the same applies to K and NLt . In
particular, since Qxt is the symmetric of Oxt ,

K.Qxt / DK.Oxt /; NLt .Qxt / D NLt .Oxt /;

which proves that K and NLt are y-odd at each boundary due to (5.1), (5.2).
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It is not a surprise that one needs information about the Taylor expansion of F eval-
uated at the (possible) bifurcation point .L; �0; 0/. With F being composed of both the
nonlocal and the curvature terms, we can extract the necessary derivatives of F from the
previous sections. As c D 0, we adopt the simpler notation F .Lt ; �/ from now on; in
addition, with L being critical, DtF Œ�� D DtF .L; �/ŒX� WD .

@
@t

F .Lt ; �//
ˇ̌
tD0

, where
� D X � �0, and similar notations for higher derivatives as well.

Lemma 5.2. Let c D 0 and suppose X.x; y/ D .'1.y/; 0/; we have

DtF .L; �0/Œ�1� D 0; (5.3)

D�F .L; �/ D 0 for all �; (5.4)

Dt�F .L; �/Œ�1� D

²
d
.1/
0

p
1C �1

� d0

³
�1.y/ @L for all �; (5.5)

Dt�F .L; �0/Œ�1� D �
�1

�0
�1.y/ @L: (5.6)

Proof. Using (2.1), (4.20), and (4.7), we have

DtF .L; �/Œ�1� D

²
�1 C

�d
.1/
0

p
1C �1

� �d0

³
�1.y/ @L: (5.7)

When � D �0, we have ¹� � � º D 0; see [3, equation (5.12)]; this leads to (5.3). At the same
time in view of (1.9), for all � > 0,

D�F .L; �/ D �
1

2
CNL

ˇ̌
@L
D 0;

which is (5.4). We now take a derivative of (5.7) with respect to � to obtain (5.5). In
turn, (5.5) gives (5.6).

We summarize what we know so far for the case c D 0. For all � > 0, the 1-lamella
L D Œ0; T=2� � Œ0; T � is a critical point of the geometric variational functional J , leading
to F .L; �/ D 0. By Remark 3.5, we write DtF .L; �/Œ�� with � D X � �0 instead of
DtF .L; �/ŒX� at the critical set L. This lamella loses its stability at � D �0 through a
double eigenvalue ƒ D 0, i.e., DtF .L; �0/Œ�� D 0 with, recalling (4.6),

� 2 span
²
� sin

2�y

T
L1 C sin

2�y

T
L2;� cos

2�y

T
L1 C cos

2�y

T
L2

³
D span¹�1.�/; �1.� C T=4/ºI

this 2-dimensional null space arises from the fact that a translation in the y-direction of
the eigenfunction �1 remains an eigenfunction due to periodicity.

The fact that dim.ker.DtF .L; �0/// D 2 induces technical difficulty in local bifur-
cation analysis. To restore bifurcation due to a simple eigenvalue, we focus only on the
bifurcation for an antisymmetric perturbed lamella consisting of y-odd periodic functions
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(this closed subspace is itself a Banach space); this eliminates translation in the y-direction
and results in ker.DtF .L; �0// D span¹�1º in the closed subspace so that

dim.ker.DtF .L; �0/// D 1:

Fix ! 2 .0; 1/ from now on (say ! D 1=2), and let the flow field beX D .X1.x; y/; 0/
with X1.x; y/ D g.y/ WD '1.y/C w.y/ for all .x; y/ 2 T and

w 2W WD

²
u 2C2C!per Œ0;T � W u.y/D�u.T � y/I for 0� y � T;

Z T

0

u.y/'1.y/dy D 0

³
is a y-odd function with zero average

R T
0
w.y/ dy D 0. This ensures that, under the

flow X , the profile .L2/t is a translate of .L1/t by a distance of x0 in the x-direction
for all (small) t � 0; moreover, both .L1/t and .L2/t are y-odd. This flow field can gen-
erate any perturbed antisymmetric profile at any t starting from the lamella. Antisymmetry
allows us to focus only on satisfying the Euler–Lagrange equation at .x; y/ 2 .L2/t .

We now closely follow the idea in Crandall–Rabinowitz simple eigenvalue bifurcation
theorem [6,22–24]. With our choice ofX1 so that �DX � �0D �1Cw WD �1Cw L2 �

w L1, let G W W �R �R! Z1 ˚ span¹�1º such that

G.w; ˇ; t/ WD

8<: F .Lt ;�0Cˇ/
t

for t ¤ 0;

DtF .L; �0 C ˇ/Œ�1 Cw� for t D 0:

Here,

W1 WD

²
u 2 C!per Œ0; T � W u.y/ D �u.T � y/ for 0 � y � T;

Z T

0

u.y/ '1.y/ dy D 0

³
;

Z1 WD ¹�u L1 C u L2 W u 2 W1º:

That the range of G lies in Z1 ˚ span¹�1º is a direct consequence of assertion (d) in
Lemma 5.1. Now,G 2 C2 since F .Lt ; �/ is in C3. Note thatG D 0 for t ¤ 0 corresponds
to non-lamellar solution of the Euler–Lagrange equation F D 0. In fact, for t ¤ 0,

G.w; ˇ; t/

D
1

t

²
F .L; �0 C ˇ/C tDtF .L; �0 C ˇ/ŒX�C

t2

2
Dt tF .L; �0 C ˇ/ŒX;X�C � � �

³
D DtF .L; �0 C ˇ/ŒX�C

t

2
Dt tF .L; �0 C ˇ/ŒX;X�C � � � :

When w D 0, we have X.x; y/ D .'1.y/; 0/ so that G.0; 0; 0/ D 0 by (5.3); we next take
a derivative of G with respect to w by using (2.3) and (4.20) so that at @L

DwG.0; 0; 0/ Ow D DtF .L; �0/Œ Ow�

D �0

�
Ow

0

�
� rNL C �0

Z
@L

yG.x � y/
�
Ow

0

�
� �0.y/ dH1

y � Ow
00 (5.8)
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for all Ow 2 W and Ow WD Ow L2 � Ow L1. At the same time, from (5.6),

DˇG.0; 0; 0/ y̌ D y̌Dt�F .L; �0/Œ�1� D �
y̌�1

�0
�1

for any y̌ 2 R. Since

D.w;ˇ/G.0; 0; 0/Œ Ow; y̌� D DwG.0; 0; 0/ Ow CDˇG.0; 0; 0/ y̌

D DwG.0; 0; 0/ Ow �
y̌�1

�0
�1; (5.9)

we demonstrate that D.w;ˇ/G.0; 0; 0/ is invertible.
First, we check that it is injective. Set D.w;ˇ/G.0; 0; 0/Œ Ow; y̌� D 0. Using a separation

of variable argument, we know thatDwG.0; 0; 0/ Ow is orthogonal to �1 with L2.@L/ inner
product when Ow 2 W1. Hence, by taking the inner product ofD.w;ˇ/G.0; 0; 0/Œ Ow; y̌� with
�1, one immediately sees that y̌ D 0. This leaves behind DwG.0; 0; 0/ Ow D 0. We claim
that this implies Ow D 0. Indeed, multiplying by �D Ow and integrating over @L, we obtain
[3, RHS of (3.2)] for � D �0. We can split �D �C �, the mean part and the zero-average
part, respectively. The mean part � D 0 because

R T
0
w.y/ dy D 0, leaving behind � D Ow.

Now, consider [3, RHS of (3.2)] when � is replaced by �. As � represents 2nd or higher
modes, this inner product

R
@L �.DwG.0; 0; 0/ Ow/dH1 > 0 unless Ow D 0; see calculation

in proving [3, equation (5.16)].
Next, we check surjectivity. For any .u;�/ 2W1 �R, we have to find . Ow; y̌/ 2W �R

such that D.w;ˇ/G.0; 0; 0/Œ yw; y̌� D �u L1 C u L2 C ��1 2 Z1 ˚ span¹�1º, which
reduces to

y̌ D �
�0

�1
�

and

�0

�
Ow

0

�
� rNL C �0

Z
@L

yG.x � y/
�
Ow

0

�
� �0.y/ dH1

y � Ow
00
D �u L1 C u L2:

Both sides just change sign on switching from L1 to L2; it suffices to solve the equation
on L2 alone. This is the same as solving on Œ0; T �

�d0�0 Ow C �0

Z
@L

yG.x � y/ Ow.y/ dH1
y � Ow

00
D u (5.10)

or
.1 �D2/ Ow � .1C d0�0/ Ow C �0

Z
@L

yG.x � y/ Ow.y/ dH1
y D uI

employing the operator .1 � D2/�1 on both sides, one sees that the Fredholm alterna-
tive applies, and the already-proven injectivity ensures surjectivity; thus, the operator
D.w;ˇ/G.0; 0; 0/ is invertible and therefore continuous.

Now, the implicit function theorem gives unique wt 2 W and ˇt 2 R, which are C2

in t , such that G.wt ; ˇt ; t / D 0 for small jt j with wt
ˇ̌
tD0
D 0 and ˇt

ˇ̌
tD0
D 0. This
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represents a bifurcation at a simple eigenvalue, resulting in a unique non-lamellar branch
which is y-odd. Any translation in the y-direction of the non-lamella solution gives a
distinct non-odd solution; hence, they form a 2-dimensional space of bifurcated solutions
in a neighborhood of the lamella L at � D �0, and the proof of Theorem 1.2 is completed,
as all configurations obtained by horizontal flows depending only on the vertical variable
are obviously volume-preserving. Note that we have not excluded the possibility of non-
odd non-planar solutions of (2.1) that cannot be obtained by such vertical translation.

Remark 5.3. Let E� be a critical (non-lamella) set which depends on � , and .E� ; �/ be
described by a 1-dimensional smooth curve. At some �D�0 andEDE0, letDtF .E0;�0/

have a simple eigenvalueƒ D 0 with an eigenfunction �1, i.e.,DtF .E0; �0/Œ�1� D 0. At
the same time, we assumeD�F .E0; �0/D 0. SinceD��F .E; �/D 0 is always valid for
F defined in (2.1), a Taylor expansion of F .Et ; �0 C ˇt / as in (5.12) with

ˇt D tˇ1 CO.t
2/

due to a flow field X D �1� C tw1� CO.t
2/ leads to

DtF .E0; �0/Œw1�C ˇ1D�tF .E0; �0/Œ�1� D �
1

2
Dt tF .E0; �0/ŒX0; X0�CO.t/;

where X0 D �1�. If one can verifies that the above linear equation is uniquely solvable
for any RHS in the domain and range that we impose, then a bifurcation due to a simple
eigenvalue takes place. One can make this argument rigorous by using implicit function
theorem as in the proof of Theorem 1.2.

One can regard F .Et ; �/ as a C3 function of .@E; t; �/ when X 2 C5 is prescribed;
this claim comes from the discussion just below (2.1). Let E be a critical set; by Remark
3.5, both DtF .E; �/ and Dt�F .E; �/ act only on the normal component � D X � �

ˇ̌
@E

.
Another important observation can be drawn from (2.3) and (3.8):Z

@E

�1DtF .E; �/Œ�2� dH1
D

Z
@E

�2DtF .E; �/Œ�1� dH1 (5.11)

for any smooth (normal components) �1; �2. In other words, DtF .E; �/ at a critical E is
a symmetric operator with respect to the inner product over @E.

On the other hand, Dt tF .E; �/ may depend on X and not just on its normal com-
ponent; see Remark 3.5. Though in the special case when X D .X1; 0/ and E D L,
Dt tF .E; �/ acts on � only; we still prefer to write that as Dt tF .L; �/ŒX;X� below.

Upon bifurcation, we have from the above proof of Theorem 1.2 that wt D tw1 C
t2

2
w2 C o.t

2/ with w1; w2 2 W and ˇt D tˇ1 C t2

2
ˇ2 C o.t

2/. For later use, we define
wi WD wi L2 � wi L1, i D 1; 2, on @L. We restrict our attention to the flow field
Xt .x; y; t/ D .'1.y/C wt .y/; 0/. Putting g D '1 C tw1 C t2

2
w2 C o.t

2/ in (4.22), we
obtain

K D t�1'1 � t
2w001 �

t3

2
w002 C

3

2
t3.'01/

2'001 C o.t
3/
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if we view it as a graph over the y-axis. After taking into account the outward normal
direction in deciding the sign of curvature, we have

K D t�1�1 � t
2w001 �

t3

2
w002 � �1

3

2
t3.�01/

2�1 C o.t
3/ on @L:

Remark 5.4. Let s 2R and think ofX.x;y/D .'1.y/C sw1.y/C s2

2
w2.y/C o.s

2/; 0/

as an autonomous flow field. Putting this in F .Lt ; �0C ˇt / results in a Taylor polynomial
in t and s. Now, set s D t to get a polynomial in t only. This polynomial is the same as that
obtained by expanding F .Lt ; �0 C ˇt / with a flow field .'1 C tw1 C t2

2
w2 C o.t

2/; 0/

below. However, this latter procedure is easier to carry out.

Since wt D tw1 C t2

2
w2 C o.t

2/ with w1; w2 2 W , and ˇt D tˇ1 C t2

2
ˇ2 C o.t

2/,
Lemma 5.2 and (4.8) give

0 D F .Lt ; �0 C ˇt /

D F .L; �0/C tDtF .L; �0/ŒX�C ˇtD�F .L; �0/C
t2

2
Dt tF .L; �0/ŒX;X�

C tˇtDt�F .L; �0/ŒX�C
ˇ2t
2
D��F .L; �0/C

t3

6
Dt t tF .L; �0/ŒX;X;X�

C
t2ˇt

2
D�ttF .L; �0/ŒX;X�C

tˇ2t
2
D��tF .L; �0/ŒX�C

ˇ3t
6
D���F .L; �0/C � � �

D t2DtF .L; �0/Œw1 C
t

2
w2�C t

2.ˇ1 C
t

2
ˇ2/D�tF .L; �0/Œ�1 C tw1�

C
t3

6
Dt t tF .L; �0/ŒX;X;X�C

t3ˇ1

2
D�ttF .L; �0/ŒX;X�C o.t

3/: (5.12)

Considering only second-order terms gives

DtF .L; �0/Œw1�C ˇ1D�tF .L; �0/Œ�1� D 0I (5.13)

multiplying the above equation by �1 and integrating over @L, we getZ
@L
�1¹DtF .L; �0/Œw1�C ˇ1D�tF .L; �0/Œ�1�º dH1

D 0:

The first term on LHS is zero becauseZ
@L
�1DtF .L; �0/Œw1� dH1

D

Z
@L

w1DtF .L; �0/Œ�1� dH1
D 0:

Since

Oa WD

Z
@L
�1D�tF .L; �0/Œ�1� dH1

D �
�1

�0

Z
@L
�21 dH1

D �
�1T

�0
¤ 0; (5.14)

we have ˇ1D 0, so (5.13) givesw1D 0 by the same argument in showingD.w;ˇ/G.0;0;0/
is injective.
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Setting O.t3/ terms to zero in (5.12) with ˇ1 D w1 D 0, we obtain for t D 0

0 D
1

2
DtF .L; �0/Œw2�C

1

2
ˇ2D�tF .L; �0/Œ�1�C

1

6
Dt t tF .L; �0/Œ'1; '1; '1�:

(In the last term, we wrote '1 instead of .'1; 0/ to shorten notation.) We prove that ˇ2
and w2 are solvable from this linear equation: the source term Dt t tF .L; �0/Œ'1; '1; '1�
is known; now, multiply by �1 and integrate over @L, so the first term drops out and it
follows that

ˇ2 D �
1

3 Oa

Z
@L
�1Dt t tF .L; �0/Œ'1; '1; '1� dH1; (5.15)

where Oa is defined in (5.14) above. This agrees with a corresponding equation on [6, p. 22].
(Note that ˇ2 D d2�

dt2

ˇ̌
tD0

, and the quantity called “c” in [6] is our ˇ2 here.) Suppose

ˇ2 ¤ 0; since ˇ1 D 0, we have ˇ D t2

2
ˇ2 CO.t

3/ so that

t D ˙

s
2ˇ

ˇ2
CO.ˇ3=2/:

We know non-lamella solution exists. If ˇ2 > 0, this can only be true when ˇ > 0. We
call this phenomenon supercritical bifurcation. On the other hand, when ˇ2 < 0, we need
ˇ < 0, corresponding to a subcritical bifurcation. In both cases, the perturbed lamella
.L1/t is represented by x2 D gt .x1/ WD t'.x2/C t3

6
w2.x2/CO.t

4/, while .L2/t is just
T=2 translate of .L1/t in the x1-direction.

Next, we examine the stability of solutions arising from bifurcation. With

J 0.Lt I �0 C ˇt /ŒX� D

Z
Lt

F .Lt ; �0 C ˇt /.X � �/ dx;

a critical point Lt of J is given by the Euler–Lagrange equation F .Lt ; �0 C ˇt / D 0.
Using this information, another derivative leads to

J 00.Lt I �0 C ˇt /ŒX� D

Z
@Lt

DtF .Lt ; �0 C ˇt /ŒX� � dH1;

where � D X � �
ˇ̌
@L

. From (3.10), DtF .Lt ; �0 C ˇt /ŒX� is a scalar function depending
only on � (including its tangential derivatives) on @Lt , but not the tangential compo-
nent of X . By an eigenvalue �t and a corresponding (non-zero) eigenfunction �t of
DtF .Lt ; �0 C ˇt / we mean DtF .Lt ; �0 C ˇt /Œ�t � D �t�t .

One can decompose � into the mean-value part and the zero-average part [3, Sec-
tion 4]. The mean-value part is always stable. (In fact, from anti-symmetry in our case,
the mean-value part is just a pure x-direction translation.) For zero-average part, eigen-
modes are untangled from one another [3, Section 5]; thus, as long as it is stable for each
eigenmode, we have overall stability. We therefore focus only on the cases when � is a
zero-average eigenfunction.
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Let us first look at how the lamella L changes its stability. When ˇ < 0, all eigenvalues
of DtF .L; �0 C ˇ/ are positive so that J 00.L; �0 C ˇ/ > 0; in such a case, the lamella
L is stable as Lt represents a local energy minimizer. For ˇ D 0, there is a simple zero
eigenvalue with an odd eigenfunction �D �1 2W . When ˇ > 0, this eigenvalue becomes
negative, which leads to an unstable L. Denote this eigenvalue by ƒˇ . Thus, ƒˇ > 0

when ˇ < 0; ƒ0 D 0; and ƒˇ < 0 when ˇ > 0. Let the corresponding eigenfunction
be �ˇ , which is the normal component on @L of a vector field .�ˇ ; 0/, which is a T -
periodic function on both L1 and L2. In addition, �ˇ is normalized so that �0 D �1 andR
@L �ˇ�1 dH1 D T . Using the implicit function theorem, the simple eigenvalue ƒˇ and

the normalized eigenfunction �ˇ
ˇ̌
@L

are C 2 functions of ˇ. Since

DtF .L; �0 C ˇ/Œ�ˇ � D ƒˇ �ˇ

taking a derivative with respect to ˇ and then evaluating at ˇ D 0, we obtain

Dt�F .L; �0/Œ�1�CDtF .L; �0/Œ�
0
ˇ .0/� D ƒ

0
ˇ .0/�1:

Next, multiply by �1 and integrate over @L. The second term on the LHS drops out
by (5.11), and from (5.14), we obtain Tƒ0

ˇ
.0/D ��1T=�0 so thatƒ0

ˇ
.0/D ��1=�0 < 0.

Along the non-lamellar branch with critical points represented by Lt , continuous de-
pendence of the positive eigenvalues for L at ˇt D 0 ensures that they remain stable modes
of Lt for small enough jt j. How the zero-eigenvalue mode evolves along the non-lamellar
branch determines its stability. Denote this ˇt -dependent eigenvalue by �t along the non-
lamellar branch so that �0 D 0; it is a real and simple eigenvalue of DtF .Lt ; �0 C ˇt /
with a corresponding eigenfunction t on @Lt , which is the normal component of a vector
field Yt with Y0 D .'1; 0/ at @L. Here,  t is a T -periodic function of x2 and  t

ˇ̌
.L2/t

D

� t
ˇ̌
.L1/t

. We normalize this eigenfunction so that
R
@Lt

 t�1 dx2 D T with  0 D �1.
This normalization uniquely determines the eigenfunction  t for small jt j; moreover, the
simple eigenvalue �t and the normalized eigenfunction  t

ˇ̌
@Lt

are C 2 functions of t .
Since

DtF .Lt ; �0 C ˇt /Œ t � D �t t ;

taking a derivative with respect to t

Dt tF .Lt ; �0 C ˇt /ŒYt ; Yt �C ˇ
0
tDt�F .Lt ; �0 C ˇt /Œ t �CDtF .Lt ; �0 C ˇt /Œ 

0
t �

D �0t t C �t�
0
t : (5.16)

Recall Remark 3.5 on the notation of Ft t ; evaluating at t D 0, we obtain

Dt tF .L; �0/ŒY0; Y0�C ˇ
0
t .0/Dt�F .L; �0/Œ�1�CDtF .L; �0/Œ 

0
t .0/� D �

0
t .0/�1:

The 1st and 2nd terms on LHS are zero due to (4.8) and ˇ0t .0/ D ˇ1 D 0. Multiplying
by �1 and integrating over @L, we see that �0t .0/ D 0. Putting these piece of information
back into the above equation, we see thatDtF .L;�0/Œ 0t .0/�D 0. In other words, 0t .0/2
span¹�1º.
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We now compute another derivative of (5.16) and set t D 0:

Dt t tF .L; �0/ŒY0; Y0; Y0�C 3Dt tF .L; �0/Œ.DtYt /
ˇ̌
tD0
; Y0�

C ˇ00t .0/Dt�F .L; �0/Œ�1�CDtF .L; �0/Œ 
00
t .0/� D �

00
t .0/�1:

The 2nd term on the LHS is zero because  0t .0/ is parallel to �1 and (4.8). Multiplying by
�1 and integrating over @L, we getZ

@L
�1Dt t tF .L; �0/ŒY0; Y0; Y0� dH1

C ˇ00t .0/

Z
@L
�1Dt�F .L; �0/Œ�1� dH1

D �00t .0/

Z
@L
�21 dH1

which, by (5.15) and (5.14), simplifies to

�3 Oaˇ2 C ˇ2 Oa D �
00
t .0/T

leading to

�00t .0/ D �
2 Oaˇ2

T
D
2�1

�0
ˇ2:

Thus, when ˇ2 > 0 (i.e., on supercritical bifurcation branch), we have �t D
�00t .0/

2
t2 C

o.t2/ > 0. Therefore, Lt is stable (for small non-zero t , irrespective of its sign). Similarly,
a subcritical bifurcation is unstable.

Let S0 WD �0A0 CB. From (5.15) and Oa < 0, we see that

sign of ˇ2 D sign of
Z
@L
�1Dt t tF .L; �0/ŒY0; Y0; Y0� dH1

D sign of S0:

This sign determines the type of bifurcation and the stability of the non-planar branch, and
also the proof of Theorem 1.3 is completed. One can build an intuitive feel on the sign of
S0 by comparing energy levels of L and Lt ; details can be found in the appendix since it
involves a somewhat lengthy calculation.

6. Behavior of S0 as the torus size is small or large

The bifurcation analysis in the previous section pinpoints the importance of the sign for
S0 D �0A0 C B. From (4.18) and (4.19), we see the complicated dependence of both
A� and �� on the parameters � and T , which is to some extent simplified in the case
� D c D 0. A complete understanding of such dependence turns out to be difficult, and
we therefore estimate the terms A0 and �0 as T !C1 and as T ! 0.

Case 1: T !1. We have the trigonometric identity

1 � cosh x
sinh x

D � tanh.x=2/:
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When x is large, on denoting by E.x/ any sum of terms decreasing exponentially,

tanh.x=2/ D
1 � e�x

1C e�x
D 1C E.x/

so that
1 � cosh x
x sinh x

D �
1

x
C E.x/:

Recall definition (4.1); these allow us to write

ı.0; 0; T / D �
1

T
C E.T /;

ı.0; �; T / D �
1

p
�2 C T 2

C E.T /;

ı.0; 2�; T / D �
1

p
4�2 C T 2

C E.T /:

But for small y,
1p

1C y2
D 1 �

y2

2
C
3y4

8
�
5y6

16
C o.y7/I

thus,

1
p
�2 C T 2

D
1

T
�
�2

2T 3
C
3�4

8T 5
�
5�6

16T 7
C o.1=T 8/;

1
p
4�2 C T 2

D
1

T
�
2�2

T 3
C
6�4

T 5
�
20�6

T 7
C o.1=T 8/:

Upon recalling (4.17), we have

�1;0.0; T / D
�2

2T 3
�
3�4

8T 5
C

5�6

16T 7
C o.1=T 8/;

�2;0.0; T / D
2�2

T 3
�
6�4

T 5
C
20�6

T 7
C o.1=T 8/;

�2;1.0; T / D
3�2

2T 3
�
45�4

8T 5
C
315�6

16T 7
C o.1=T 8/:

From (4.19), we may write

�0 D
4

1 � .3�2=4T 2/C o.1=T 3/
D 4C

3�2

T 2
C o.1=T 3/ (6.1)

and A0 from (4.18) as

A0 D 3T
2

�
1

4
�2;0 ��1;0 C

�2

T 2
�2;1

�
D
9�4

8T 3
�
45�6

16T 5
C o.1=T 6/:
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Figure 1. On the left, plot of S0 versus T . On the right, plot of S0 � .T 3=S0 C T 5=S1/.

Joining (6.1), we obtain

�0 �A0 D
9�4

2T 3
�
63�6

8T 5
C o.1=T 6/;

and finally, by (4.23),

S0 D BC �0 �A0 D �
63�6

8T 5
C o.1=T 6/ D �

252�6

T 5
C o.1=T 6/ � �242000 T �5:

Thus, the sign of S0 as the size T of the torus goes to infinity is negative. We define
S1 WD 252�

6.

Case 2: T ! 0. Behavior near T D 0 is far more complicated: while T 3B � �9�4=2,
one may tediously compute the Taylor expansions near zero and check that

T 3S0 D T
3.BC �0A0/! 12�4

 
�7C 4

� � cosh.2�/�1
sinh.2�/

� � 2 cosh��1
sinh�

!
DW �S0 � �509:

The first graph in Figure 1 depicts S0 as a function of T ; the second depicts S0 multiplied
by .T 3=S0/C .T 5=S1/, a positive quantity.

7. Bifurcation analysis when c ¤ 0

Due to the balance between space and wedge (empty space) when c D 0, the two curve
boundaries of a deformed lamella are ‘parallel’ to one another with a distance of T=2 apart
in the x-direction; this also implies that the volume of the lamella (which is equal to the
volume of its complementary set) is preserved. One does not expect the same phenomenon
to hold for general c, since either lamella or empty space might expand at the expense of
the other: thus, one may not restrict only to the y-odd component and need to consider also
a y-even component. However, there is another symmetry that we can exploit; namely, (to
eliminate pure translations in the x-direction) we may fix the center of the lamella. To
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simplify notation, we change coordinate system for this section so that

T D Œ�T=2; T=2� � Œ�T=2; T=2�; L D Œ�x0=2; x0=2� � Œ�T=2; T=2�;

L1 D ¹x D �x0=2º; L2 D ¹x D x0=2º:

In view of the lemma below, which adapts Lemma 4.2, we impose that the deformed pro-
file is symmetric with respect to the (new) origin. If the right profile .L2/t is the graph
over L2 of a (periodic and smooth) function t � g.y/, so its equation is x D tg.y/C x0=2;
we want .L1/t to be the graph with equation x D �tg.�y/ � x0=2: such a choice elimi-
nates translations. This is equivalent to saying that if we split g into its odd and even parts
go, ge , then .L2/t is the image of L2 through the flow associated with X .2/.x; y/ D
.ge.y/ C go.y/; 0/ while .L1/t is the image of L1 through the flow associated with
X .1/.x; y/ D .�ge.y/C go.y/; 0/.

Whenever we are in such a situation, we may choose any smooth periodic field Xg
such that

Xg � X
.i/ in a neighborhood of Li I (7.1)

the bifurcation result will not depend on such extension, as it only considers the behavior
of Xg near Li . We also define, for all periodic functions g,

Qg.y/ D �g.�y/ D �ge.y/C go.y/: (7.2)

Lemma 7.1. Let g be smooth and periodic and Xg be as in (7.1). Then,

(a) .L2/t D �.L1/t ; in particular, if z 2 @Lt , then �z 2 @Lt and there is no trans-
lation in the x-direction;

(b) for every z 2 @Lt ,

K.z/ DK.�z/; NLt .z/ D NLt .�z/;

so if the Euler–Lagrange equation is satisfied on one side of @Lt , it is satisfied on
the other.

The statements are apparent since Lt is invariant by rotation about the origin by 180ı.
Due to the imposed symmetry about the origin,Z

L1

X � � dH1
D

Z
L2

X � � dH1

is not necessarily zero, which leads to a perturbed lamella with volumetric change.
As we have seen in the previous section, DtF .L; �c ; c/Œ�� D 0 through a double

eigenvalue ƒ D 0 with eigenfunctions � 2 span¹�1.�/; �1.� C T=4/º. If we restrict our
attention to the subspace symmetric about the origin, then �2 span¹�1º. This is because all
functions � 2 span¹�1.�/; �1.� C T=4/º satisfy �

ˇ̌
L2
.y/ D ��

ˇ̌
L1
.y/, but symmetry about

the origin entails �
ˇ̌
L1
.y/ D �L2.�y/; thus, �

ˇ̌
L2
.y/ D ��

ˇ̌
L2
.�y/. The last statement
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will be the same at L1. This 1-dimensional eigenspace allows us to employ the Crandall–
Rabinowitz simple eigenvalue bifurcation theorem again.

To prepare us for a bifurcation analysis, analogously to what we did in Section 5, for
every (periodic and smooth) function w let Xg be the field defined in (7.1) with g.y/ D
'1.y/Cw.y/, letˆ be the associated flow, and Lt Dˆ.L; t / so that F .Lt ; �c ; c/ is well
defined. Recalling (7.2), define

W WD

²
u 2 C2C!per Œ�T=2; T=2� W

Z T=2

�T=2

u.y/'1.y/ dy D 0

³
;

W1 WD

²
u 2 C!per Œ�T=2; T=2� W

Z T=2

�T=2

u.y/'1.y/ dy D 0

³
;

Z1 WD

²
� Qu L1 C u L2 W u 2 W1

³
(remark that u 2 W1 ” Qu 2 W1) and for every w 2 W define

w WD � Qw L1 C w L2:

We may finally define G W W �R �R! Z1 ˚ span¹�1º as

G.w; ˇ; t/ WD

8<: F .Lt ;�cCˇ;c/
t

for t ¤ 0;

DtF .L; �c C ˇ; c/Œ�1 Cw� for t D 0:

The fact that the range of G lies in Z1 ˚ span¹�1º is an immediate consequence of
Lemma 7.1. Now, we may repeat verbatim the argument in Section 5 to obtain as in (5.9)

D.w;ˇ/G.0; 0; 0/Œ Ow; y̌� D DwG.0; 0; 0/ Ow �
y̌�1

�c
�1

with DwG.0; 0; 0/ Ow still given by (5.8), clearly with �c instead of �0. To check injec-
tivity, we prove that D.w;ˇ/G.0; 0; 0/Œ Ow; y̌� D 0 implies Ow D 0 and y̌ D 0, but the latter
is immediate by multiplying by �1, and therefore, DwG.0; 0; 0/ Ow D 0. Again, following
Section 5, we multiply by Ow and the RHS of [3, equation (3.2)] decouples into the contri-
butions from the mean part � and zero-average part � of Ow: they are given by [3, equations
(3.12) and (3.13)], but in [3, Section 4], we proved that the contribution of � is positive
for all non-zero translation-free perturbations, and in [3, Section 5], we proved that the
contribution of � is positive for all non-zero � orthogonal to �1; thus, � D � D Ow D 0.

For surjectivity we consider

D.w;ˇ/G.0; 0; 0/Œ Ow; y̌� D z1 C ��1

for any � 2 R and z1 2 Z1. As the RHS is symmetric about the origin, there is no trans-
lation mode in the x-direction. The same argument employed in Section 5 leads to (5.10)
with �0 replaced by �c to be solved on L2. This leads to solvability of . Ow; y̌/ using Fred-
holm alternative. Thus, the implicit function theorem gives rise to Theorem 1.4.
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8. Bifurcation analysis for the k-lamella

Up to now, we considered the case of one lamella inside the torus; the bifurcation study
can be carried out also for multi-lamellar sets: a critical k-lamella in our square torus T
is composed [2, Proposition 2.6] of k equal width vertical lamellae separated by equal
wedges. The arguments employed in the preceding sections may be adapted with little
effort (but a heavier notation) to the k-lamella case, due to a simple observation. Let Lk
be a k-lamella, composed of the single lamellae Li

k
, for i D 0; : : : ; k � 1, and denote by

Li1 and Li2 the left and right sides of Li
k

; also, denote by L1 and L2 the unions of left and
right sides. The total thickness x0 for a stationary k-lamella is given through

x0

k
D
T

2k
� arc sinh

�
c sinh

T

2k

�
(note that this new value of x0 and those of d0, d .1/0 , and Ci below depend on k) and the
outward normal derivative of N at @Lk is �d0 with

d0 D
1

sinh T
2k

sinh
T � x0

2k
sinh

x0

2k
;

and we replace (4.4) and (4.5) by

d
.1/
0 D

1

sinh.T
p
1C�1
2k

/
sinh

.T � x0/
p
1C �1

2k
sinh

x0
p
1C �1

2k
;

Ci D
1

2
p
1C �i sinh. T

2k

p
1C �i /

; i D 1; 2:

Call Tk the rectangular torus Œ0; T=k�� Œ0; T � and Gk.x;y/D yGk.x� y/ the Green func-
tion for the Helmholtz operator in Tk . Then, recalling that b1 D .1; 0/, we have

Gk.x; y/ D
k�1X
iD0

G.x; yC .iT=k/b1/:

Indeed, if f is any Tk-periodic function, for any x 2 Tk , thenZ
Tk

Gk.x; y/f .y/ dy D
Z

T
G.x; y/f .y/ dy

D

k�1X
iD0

Z
TkC.iT=k/b1

G.x; y/f .y/ dy

D

Z
Tk

k�1X
iD0

G.x; yC .iT=k/b1/f .y/ dy:

We prove the generalization of Lemma 4.1—remark that due to our notation we may still
write �1 D �'1 L1 C '1 L2.
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Lemma 8.1. Suppose that the flow field is X.x; y/ D .'1.y/; 0/. Then,

@

@t

�
N.Lk/t

ˇ̌
@.Lk/t

�ˇ̌
tD0
D

�
d
.1/
0

p
1C �1

� d0

�
�1:

In particular, the LHS takes the same value at all points x2Lk1 with the same y-coordinate
(and the opposite value at points in Lk2).

Proof. On setting E D Lk and X.x; y/ D .'1.y/; 0/ in (2.3), we have � D X � �0 D �1
on @Lk and for every x 2 @L0

k

@

@t

�
N.Lk/t

ˇ̌
@.Lk/t

�ˇ̌
tD0
.x/ D

�
�
@NLk

@�

�ˇ̌̌̌
@Lk

C

Z
@Lk

yG.x � y/�.y/ dH1
y

D �d0�1
ˇ̌
@L0

k

C

Z
@L0

k

yGk.x � y/�1.y/ dH1
y I

the value of the RHS will be the same at x0 D xC .iT=k/b1. The rest of the proof follows
exactly Lemma 4.1.

All other proofs follow similar lines; as an example, Lemma 4.2 holds; in the proof,
one simply replaces the integral on the “same” side with the sum of integrals on the k
“same” sides, and analogously for the “other” side; the fact that IS D 0 if x 2 @L0

k
, or

any @Li
k

, depends on the fact that the sum of integrals of D1 yG on the “same” sides is the
integral of D1 yGk on the first of such sides, which is zero by (4.12), replaced in our case
by

D1 yGk.0; x2/ D D1 yGk.T=2k; x2/ D 0I

this last equation will be used again to obtain the finer result in the case c D 0.
Bifurcation occurs exactly as in the case of a 1-lamella, namely, by parallel (and T=k

periodic in x) y-odd configurations when c D 0, and by (suitably defined) center symmet-
ric x-periodic configurations in the case c ¤ 0.

The difference comes when analyzing the shape of the bifurcation curve. We only
examine the case c D 0; the validity of Lemma 4.2 again forces us to compute the third
derivatives to obtain the quantities

Ak0 ; �k0 ; Bk ;

analogous to those already studied with k D 1 (the superscript k does not represent a
power). Clearly,

Bk D kB D �
36k�4

T 3

as there are 2k surfaces in @Lk instead of just two. The number �k0 may be found by
setting to zero for RHS of [3, equation (5.20)], giving

�k0 D
32�2

T 3

�
tanh.T=4k/

T=4
�

tanh.
p
T 2 C 4�2=4k/

p
T 2 C 4�2=4

��1
: (8.1)
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The nonlocal term requires retracing the proof of (4.16) with extensive use of grouping
left and right sides, and passing to yGk , to obtain

Ak0 D �6k

�
3T

16
tanh

T

4k
�

p
T 2 C 4�2

4
tanh

p
T 2 C 4�2

4k

C

p
T 2 C 16�2

16
tanh

p
T 2 C 16�2

4k

�
: (8.2)

It is of interest to study the sign of Sk0 D Bk C �k0A
k
0 ; again, a positive Sk0 designates a

supercritical bifurcation with stable non-planar solutions while a negative value represents
an unstable subcritical bifurcation.

We first examine this sign for fixed T as k increases. After developing in powers of k
for fixed T , one has as k !1

Ak0 �
3�4

8k2
; �k0 �

32 � 12k3

T 3
) Sk0 �

.122 � 36/�4

T 3
kI

thus, for any given torus size, the k-lamella undergoes a supercritical bifurcation for large
k. Other interesting studies are the asymptotic behaviors for fixed k as T !1 and as
T ! 0, as we did in Section 6: in the former case when we develop in powers of T for
fixed k, we get

Ak0 �
9�4

T 3
k �

90�6

T 5
k; �k0 � 4C

12�2

T 2
) Sk0 �

�252�6

T 5
kI (8.3)

thus, for any given k, the k-lamella with c D 0 undergoes a subcritical bifurcation for
large torus size T . Instead as T ! 0 for any given k, we have very simply from (8.2)

Ak0 ! �6k
��
4

tanh
�

k
�
�

2
tanh

�

2k

�
D 3k�

�
tanh

�

2k
�
1

2
tanh

�

k

�
:

Equally easily since

tanh.T=4k/
T=4

�
tanh

�p
T 2 C 4�2=4k

�
p
T 2 C 4�2=4

!
1

k
�
2

�
tanh

�

2k
;

we deduce from (8.1) that as T ! 0

�k0 �
16�3=T 3

�
2k
� tanh �

2k

I

thus,

Sk0 � �
36k�4

T 3
C
48k�4

T 3

tanh �
2k
�
1
2

tanh �
k

�
2k
� tanh �

2k

D
12k�4

T 3

 
�3C 4

tanh �
2k
�
1
2

tanh �
k

�
2k
� tanh �

2k

!
DW

1

T 3
sk :
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Figure 2. Plot of Sk0 versus T for k D 1; 5; 10; 20. On the right, same with k D 1 and 5 which shows
the intersection of the two curves at large enough T .

We prove that the quantity inside brackets is positive for k � 2. Indeed, calling t D �=2k,
the assertion is the same as

tanh t � .1=2/ tanh.2t/
t � tanh t

>
3

4
for 0 < t �

�

4
;

but as both numerator and denominator vanish at t D 0, by using the Cauchy’s mean value
theorem, there exists 0 < � < �=4 such that

tanh t � .1=2/ tanh.2t/
t � tanh t

D
Œtanh t � .1=2/ tanh.2t/�0

Œt � tanh t �0

ˇ̌̌̌
tD�

D
tanh2.2�/ � tanh2 �

tanh2 �

and

tanh2.2�/
tanh2 �

� 1 >
3

4
”

tanh.2�/
tanh �

D
2

1C tanh2 �
>

p
7

2
” tanh2 � <

4
p
7
� 1� 0:5:

But tanh.�=4/ � 0:6 and the assertion is proved. Note that for k D 1 we have s1 < 0, as
we already know from Section 6, so it is clear that (apart for the 1-lamella) bifurcation is
supercritical for small T and subcritical for large T when c D 0; see Figures 2 and 3, thus
proving Theorem 1.5.

We can make a finer comparison between k0-lamella and k00-lamella as follows.

Proposition 8.2. The sequence sk is strictly increasing, so if k0 < k00 [and k0 � 2 for the
first inequality], then

Œ0 <� Sk
0

0 < Sk
00

0 for T � T1.k0; k00/; 0 > Sk
0

0 > Sk
00

0 for T � T2.k0; k00/: (8.4)

Proof. For small T , the assertion is equivalent to proving that

t 7!
tanh t � .1=2/ tanh.2t/

t � tanh t
D

tanh3 t
1Ctanh2 t

t � tanh t
D

1

1Ctanh2 t
t�tanh t
tanh3 t

is decreasing. Since numerator and denominator are positive and the former is decreas-
ing, it is enough to prove that the denominator is increasing. Taking the inverse of the
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Figure 3. Plot of Sk0 � T
5 versus T for large T and k D 1; 5; 10; 20.

hyperbolic tangent, which is increasing, we set for t � 0

tanh t D x so that t D f .x/ WD tanh�1 x with f 0.x/ D
1

1 � x2

and we prove that x 7! x�3f .x/ � x�2 is increasing: indeed its derivative is

�3x�4f .x/C x�3
1

1 � x2
C 2x�3 D x�4

�
3x � 2x3

1 � x2
� 3f .x/

�
DW x�4 Qf .x/I

the function Qf vanishes for x D 0 and its derivative is

.3 � 6x2/.1 � x2/C 2x.3x � 2x3/

.1 � x2/2
�

3

1 � x2
D

2x4

.1 � x2/2
;

so Qf .x/ > 0 for x > 0 and the proof of the monotonicity of sk is completed, thus entailing
the first part of (8.4); the second part for large T was included in (8.3).

A. Appendix

Let c D 0. A positive sign of S0 D �0A0 C B, which is related to J 00.Lt /, implies that
Lt is stable; while a negative sign implies instability. The terms �0A0 and B come from
the nonlocal and the perimeter (or curvature) terms, respectively. It is known that B < 0,
see (4.23); one can also prove A0 > 0. Therefore, the nonlocal term stabilizes while the
perimeter term destabilizes Lt . Their competition results in stability being controlled by
the sign of S0.

It is difficult to build intuition on the sign of the second derivative. However, it can be
shown that a bifurcated Lt is stable iff J.Lt ; �0 C ˇt / < J.L; �0 C ˇt /; thus,

supercritical bifurcation” stable Lt” J.Lt ; �0 C ˇt / < J.L; �0 C ˇt /:
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It is far easier to build intuition on stability by comparing energies J of L versus Lt . The
perimeter of Lt is larger than that of L; this term makes Lt more likely to be unstable.
This reconciles with the fact B < 0.

We now claim that the nonlocal term for Lt has a lower energy than that of L, which
validates A0 > 0. Indeed, recall that a flow field Xt .x; y/D .'1.y/Cwt .y/; 0/ for some
suitable wt D tw1 C t2

2
w2 C o.t

2/ generates Lt when � D �0 C ˇt . Since we need to
compute energy of Lt to leading order of accuracy for small t , it suffices to setXt .x;y/D
.'1.y/;0/D .sin 2�y

T
; 0/ on the torus T D .0;T /� .�T=2;T=2/with the lamella L being

located at .0; T=2/ � .�T=2; T=2/.
For small t > 0, let region

E1 WD
°
.x; y/ W 0 < x < t sin

2�y

T
; 0 < y < T=2

±
; E2 WD E1 C .T=2; 0/

be a shift in the x-direction,E3 WD ¹.x;y/ W t sin 2�y
T
< x < 0; �T=2 < y < 0º, andE4 WD

E3 C .T=2; 0/. Hence, Lt D L[E2 [E3 n .E1 [E4/ to leading order. To compare the
nonlocal energies, it suffices to computeZ

T
.�L��E1C�E2C�E3��E4/.NL�NE1CNE2CNE3�NE4/ dx�

Z
T
�LNL dx

D

Z
T

®
�L.�NE1CNE2CNE3�NE4/CNL.��E1C�E2C�E3��E4/

¯
.1CO.t// dx

D 2

Z
T

NL.��E1 C �E2 C �E3 � �E4/.1CO.t// dx:

Note that E1 and E4 are inside L, while E2 and E3 are outside L. As (the 1D) NL attains
its maximum at xD T=4 and strictly decreases on both sides with jx � T=4j, it is clear thatR

T NL.�E1 C �E4/ dx >
R

T NL.�E2 C �E3/ dx. Such observation leads us to conclude
thatZ

T
.�L��E1C�E2C�E3��E4/.NL�NE1CNE2CNE3�NE4/ dx<

Z
T
�LNL dx;

which proves our above claim.
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