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On convex comparison for exterior Bernoulli problems
with discontinuous anisotropy

William M Feldman and Norbert Požár

Abstract. We give a new, intuitive proof of a convex comparison principle for exterior Bernoulli
free boundary problems with discontinuous anisotropy.

1. Introduction

Let K be a closed convex subset of Rd with nonempty interior. We will consider the
convexity properties of the minimal supersolution of the anisotropic Bernoulli problem8̂<̂

:
�u D 0 in ¹u > 0º nK;

jruj D Q.nx/ on @¹u > 0º;

u D 1 on K:

(1)

Here nx is the inner unit normal to @¹u > 0º at x andQ W Sd�1! .0;1/ is only assumed
to be bounded above and below and upper semi-continuous

Q.n/ � lim sup
n0!n

Q.n0/:

Such problems, with discontinuous anisotropy, naturally arise from periodic homogeniz-
ation scaling limits [5, 7, 9, 10, 14].

In the context of homogenization and other scaling limits, one cannot directly show the
minimality property of the limiting supersolutions. Instead the following weak subsolution
property is natural. Essentially this is a viscosity subsolution property that only allows to
test the free boundary condition with one-dimensional test functions.

Definition 1.1. We say that ' 2 C1.U / is one-dimensional in U if it is of the form
'.x/ D f .x � p/ in U for some f 2 C1.R/ and p 2 Rd , jpj D 1.

Definition 1.2. A weak subsolution of (1) is a nonnegative function u 2 C.Rd / that is
compactly supported, satisfies u � 1 on K, is harmonic in ¹u > 0º n K, and such that,
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whenever U is an open neighborhood and one-dimensional ' with �' < 0 touches u
from above in ¹u > 0º at x 2 @¹u > 0º \ U with strict ordering u < ' on ¹u > 0º \ @U ,
then

jr'.x/j � Q.p/;

where p is from Definition 1.1.

The following supersolution definition is standard.

Definition 1.3. A supersolution of (1) is a nonnegative function u 2 C.Rd / that is com-
pactly supported, u � 1 onK, is harmonic in ¹u > 0º nK, and whenever ' 2 C1.U /, U
open, �' > 0 and r' ¤ 0 in U , touches u from below at x 2 @¹u > 0º \ U then

jr'.x/j � Q
�
r'

jr'j
.x/
�
:

We give a new proof of the following theorem.

Theorem 1.4. A supersolution of (1) is minimal if and only if it satisfies the weak sub-
solution property Definition 1.2. In other words, a supersolution that is also a weak
subsolution is the unique minimal supersolution. Furthermore the minimal supersolution
has convex superlevel sets.

This result has already been proved in [10] by Smart and the first author. This compar-
ison principle, for discontinuous anisotropies, was an important component in the proof
of the homogenization scaling limit of minimal supersolutions in that work and in [9].
This paper gives a new proof which we feel has valuable simplicity and intuition. The
main new ideas in this paper are in Lemma 3.4 and Corollary 3.7 below. We give a brief
explanation about those new ideas here.

The difficulty in using the weak subsolution condition is that, on a facet F (see Sec-
tion 2.1 for definitions) with inward normal n of the free boundary of a quasi-convex
subsolution u, the weak subsolution condition only guarantees that

max
F
jruj � Q.n/:

Unfortunately if a supersolution touches u from above on this facet it may not touch at the
point where the maximum in the subsolution condition is saturated. We would like instead
the strong subsolution condition

min
F
jruj � Q.n/: (2)

The first idea, exploited in Lemma 3.4, is that the weak and strong subsolution conditions
above are the same at exposed points, facets F which are singletons. By Straszewicz’s
Theorem, Theorem 2.2 quoted below, all extreme points are limits of exposed points so,
along with some additional convexity arguments we can show that weak subsolutions
actually satisfy the strong condition (2) on all facets at least when Q is continuous.
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This idea does not directly work in the case of upper semicontinuous Q; if it did,
all facets of a solution would actually be trivial. However it turns out, somewhat unex-
pectedly, that we can use a simple monotone continuous approximation argument of the
upper semicontinuous Q to prove a comparison principle in the discontinuous case too.
This is the content of Corollary 3.7 below.

There have been several works on existence, uniqueness, convexity, and regularity of
solutions of Bernoulli-type problem (1) with Q.n/ � 1 or continuous. Classical work of
Beurling [1], and later Schaeffer [16] and Acker [2], showed the existence/uniqueness of
a convex solution in 2-d. Hamilton [11] gave a different proof in 2-d by a Nash-Moser
implicit function theorem. Later Henrot and Shahgholian [12, 13] gave proofs based on
maximum principle including nonlinear problems with x-dependent boundary conditions
(satisfying a concavity assumption). Bianchini [3] extended this to anisotropic interior
Bernoulli problems and to Finsler metrics [4]. The present paper is most similar to these
works [3,4,12,13]; for us the main difficulty is in proving comparison principle with only
the weak subsolution condition.

2. Convexity properties

2.1. Extreme and exposed points of convex sets

We recall several notions and results from convex analysis; see for example [15, Sec. 18].
For a convex set X , a face is a convex subset Y � X such that every line segment in

X with relative interior point1 in Y has both end points in Y . If a face of X is a point, it is
called an extreme point of X .

The convex set Y D ¹x 2 X W h.x/ D maxX hº for some linear function h is a face of
X , and it is called an exposed face. If an exposed face X is a point, it is called an exposed
point of X . Also we call a facet of X to be a nontrivial exposed face, i.e. not the entire set
X .

The following two results about extreme points and exposed points will play a key
role.

Lemma 2.1 ([15, Cor. 18.5.1]). A closed bounded convex set is the convex hull of its
extreme points.

Theorem 2.2 (Straszewicz’s Theorem[15, Th. 18.6]). LetX be a closed convex set. Every
extreme point of X is the limit of a sequence of exposed points of X .

1.1 � t /x C ty for t 2 .0; 1/ are relative interior points of segment x–y.
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2.2. Convexity properties of a gradient of a harmonic function

Let ; ¤ U �� V be two bounded open convex sets. We also assume that V is inner
regular. Let v be the unique solution of8̂<̂

:
�v D 0 in V n U ;

v D 1 on @U;

v D 0 on @V:

(3)

By [8, Th. 2.1] the super-level sets ¹v > tº are convex for all t 2 .0; 1/. This implies
convexity of the super-level sets of jrvj on the facets of @V .

Lemma 2.3. Let U , V and v be as above and let ƒ be a tangent hyperplane to @V .
Recall that V is uniformly inner regular. Set F D @V \ƒ. Then 1=jrvj is convex on F .
In particular, its sublevel sets

¹x 2 F W 1=jrv.x/j < 1=�º D ¹x 2 F W jrv.x/j > �º

are convex for any � > 0.

Proof. Let n be the unit normal of ƒ so that it is also the inner unit normal of @V on F .
Fix �0; �1 2 F and set �t WD .1 � t /�0 C t�1. For any � > 0 we define

h� .t/ WD inf¹h > 0 W v.�t C hn/ > �º; t 2 Œ0; 1�:

By continuity of v we have h� .t/ > 0. Since ¹v > �º % V as � ! 0 and ¹v > 0º is inner
regular at �t we have h� .t/ < 1 for sufficiently small � > 0 for all t 2 Œ0; 1�. In fact,
h� .t/! 0 as � ! 0. Since ¹v > �º is convex by [8], h� is convex on Œ0; 1�.

Therefore

jrv.�t /j D rv.�t / � n D lim
�!0

v.�t C h� .t/n/

h� .t/
D lim
�!0

�

h� .t/
:

By inner regularity and Hopf’s lemma jrv.�t /j > 0 for all t 2 Œ0; 1� and hence we deduce
that t 7! 1=jrv.�t /j is convex since t 7! h� .t/=� is convex and pointwise limits of convex
functions are convex.

Remark 2.4. It is not in general true that jrvj is concave on F . Here is a counter-example
on an unbounded V .

In d D 2, consider the top half-space V WD ¹x2 > 0º and the potential between a point
charge at .0; 1/ and the plane ¹x2 D 0º D @V :

v.x/ D � log.x21 C .x2 � 1/
2/C log.x21 C .x2 C 1/

2/;

and set U D ¹v > 1º, a convex set. We have

jrv.x/j D
@v

@x2
.x1; 0/ D

4

x21 C 1
; x 2 @V;

which is not convex.
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3. Comparison principle

In this section we establish the proof of comparison between a weak subsolution and a
supersolution when at least one has convex support. When the supersolution has convex
support, we are able to directly show comparison with only semicontinuous Q. However,
if only the weak subsolution has convex support we need to additionally assume that Q
is continuous. To finally use this result to establish uniqueness of function that is both a
supersolution and a weak subsolution with convex support when Q is upper semicontinu-
ous, we monotonically approximate Q by continuous functions.

We recall the notions of sup- and inf-convolutions that we will use to regularize free
boundaries of the solutions. For a set V we define

V r WD V C Br ; Vr WD ¹x W Br .x/ � V º: (4)

For a continuous u, we then define ur as the solution of (3) withKr and ¹u > 0ºr in place
of U and V . Similarly replacing U by Kr and V by ¹u > 0ºr leads to ur .

If u is a weak subsolution so is ur , and furthermore ¹ur > 0º is uniformly inner
regular with radius r . Similarly, if u is supersolution so is ur and ¹ur > 0º is uniformly
outer regular.

Let us recall a stability property of supersolutions.

Lemma 3.1. LetQ be a upper semicontinuous function. Then supersolutions in the sense
of Definition 1.3 are stable under uniform convergence.

Proof. Let ¹ukº be a sequence of supersolutions and let u be its uniform limit. Clearly u
is continuous, u � 1 on K and u is harmonic in ¹u > 0º.

Suppose that ' 2 C1.U /, �' > 0 and r' ¤ 0 in U , touches u from below at
x 2 @¹u > 0º \ U . We can assume that u � ' has a strict minimum at x. By uniform
convergence, all points of minimum of uk � ' converge to x as k !1. By maximum
principle for harmonic functions the minima are located on @¹uk > 0º \ U for suffi-
ciently large k. Let xk be a sequence of such minima. For large k we have r'.xk/ �
Q.r'.xk/=jr'.xk/j/. By sending k ! 1 and by the upper-semicontinuity of Q we
deduce that this also holds at x. Therefore u is a supersolution.

3.1. Outer regular points have a classical normal derivative

First we show a useful technical lemma: the normal derivative is well defined at outer reg-
ular free boundary points, and for a supersolution it satisfies the supersolution condition.

Lemma 3.2. Suppose that u is a supersolution, and x0 2 @¹u > 0º is an outer regular
free boundary point. Then jru.x0/j is well-defined and

jru.x0/j � Q.nx0/:
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Proof. Without loss assume that x0 D 0 and outward normal determined by the exterior
ball is �ed . By [6, Lemma 11.18] the blow-up sequence

ur .x/ D
u.rx/

r
! ˛xd in non-tangential cones for some ˛ 2 Œ0; kruk1�:

On the other hand the blow-up sequence ur .x/ is uniformly Lipschitz continuous with
ur .0/ D 0 and so every subsequence has a subsequence converging uniformly on Rn.
Every subsequential limit must be zero on xn � 0 by the exterior ball condition, and
must agree with ˛xn on xn > 0 by the non-tangential limit. Thus the sequence actually
converges locally uniformly to ˛.xd /C. By Lemma 3.1 for upper semicontinuous Q, the
limit ˛.xn/C is also a viscosity supersolution and so ˛ � Q.ed /.

3.2. Comparison principle: convex supersolution

Lemma 3.3. Assume Q is upper semicontinuous. Suppose that v is supersolution of (1)
with V WD ¹v > 0º convex, and u is a weak subsolution of (1). Then v � u.

Proof. By translation we can assume that the interior of K contains the origin. Since v
and u are harmonic in their positive sets, it is sufficient to show that ¹u > 0º DW U � V WD
¹v > 0º.

Let us suppose that this is not the case. Recall the sup and inf-convolutions (4). There
exist r > 0 sufficiently small and a > 1 such that U r � aVr , @U r \ a@Vr ¤ ; and Kr �
aKr by convexity of K. Set Qv.x/ WD vr .a

�1x/. By maximum principle for harmonic
functions, ur � Qv. Moreover Qv is a strict supersolution.

Let us refer to ur , Qv, U r and aVr as u, v, U , V , respectively, in the following. Let
x0 2 @U \ @V . Since U is inner regular and V outer regular, there is a unique supporting
normal n0 at x0. LetP0 be the supporting hyperplane to V at x0. Then � WD @¹u> 0º \P0
is compact and all points of � are uniformly inner and outer regular points of @V and, by
Lemma 3.2,

jrv.x/j � Q.n0/ � ı for all x 2 �;

for some ı > 0 by the strict supersolution property. By [10, Lemma 3.14]

v.x/ � .Q.n0/ � ı C Cr
1=3/..x � x0/ � n0/C on � C Br .0/

so taking r D cı3 we find that

'.x/ D .Q.n0/ �
1
2
ı/..x � x0/ � n0/C

touches u from above on � with strict ordering on @.� C Br .0//. This contradicts the
weak subsolution property of u.
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3.3. Comparison principle: convex subsolution

Next we consider the case when a supersolution touches a convex weak subsolution from
above. In [10, Lemmas 3.15 and 3.16] this case relied on a geometric argument using
convexity allowing to compare the gradient of the touching supersolution at a sequence
of points with normal �n approaching the touching direction �0 to the gradient of the
subsolution on its �n facet. In place of this argument we are able to take advantage of
well-known results from convex analysis in the case of continuous Q. The idea is that the
weak subsolution condition is not weak at exposed points, and we can exploit the quasi-
convexity of the gradient along with Straszewicz’s Theorem, Theorem 2.2, to derive a
strong subsolution condition on exposed faces.

Lemma 3.4. Suppose that v is a weak subsolution of (1) with continuous Q, harmonic
in ¹v > 0º nK. Further assume that V D ¹v > 0º is convex and uniformly inner regular,
and n is some normal direction with facet Vn D ¹x 2 V W n � x D infx2V x � nº. Then

min
Vn
jrvj � Q.n/:

Note that the weak subsolution property just says maxVn jrvj � Q.n/. Actually this
allows us to conclude, in the setting of the Lemma, that Vn must be trivial (a single point).
If we did not assume that Q.n/ was continuous we would only obtain

min
Vn
jrvj � lim inf

n0!n
Q.n0/:

Proof. Since Vn is the convex hull of its extreme points by Lemma 2.1 and the superlevel
set ¹x 2 Vn W jrvj.x/ � Q.n/º is convex by Lemma 2.3, it is enough to establish the
inequality at the extreme points of Vn.

Let x0 be an extreme point of Vn. By inner regularity, n is the inner unit normal of
@V at x0. Clearly x0 is also an extreme point of V . By Theorem 2.2 there is a sequence
xj ! x0 of exposed points of V . At exposed points of V , we have by the subsolution
condition directly

jrvj.xj / � Q.nxj /:

Since @V is uniformly inner and outer regular

jrvj.x0/ D lim
n!1

jrvj.xj / � lim
j!1

Q.nxj / D Q.n/;

where we used the standard gradient regularity in C 1;1 domains, see [10, Lemma 3.13]
for proof.

Now applying Lemma 3.4 along with a typical dilation argument to create a touching
point we will get a comparison principle.
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Lemma 3.5. Assume Q is continuous. Suppose that u is supersolution of (1), and v is a
weak subsolution of (1) with ¹v > 0º convex. Then v � u.

Proof. By translation we can assume that the interior of K contains the origin. Since v
and u are harmonic in their positive sets, it is sufficient to show that V WD ¹v > 0º � ¹u >
0º DW U .

Let us suppose that this is not the case. Recall the sup and inf-convolutions (4). There
exist r > 0 sufficiently small and a > 1 such that V r � aUr , @V r \ a@Ur ¤ ; andKr �
aKr by convexity of K. Set Qu.x/ WD ur .a

�1x/. By maximum principle for harmonic
functions, vr � Qu.

At any point x 2 @V r \ a@Ur we have jrvr j �Q.n/ by Lemma 3.4. However, this is
a contradiction with the fact that Qu cannot be touched from below by a test function with
a slope larger than Q.n/=a by supersolution property.

3.4. Existence and uniqueness of a quasi-convex solution

Now we can use the comparison principle, in the case of continuous Q, to show unique-
ness and quasi-convexity of solutions.

Theorem 3.6 (cf. [10, Th. 3.10]). Assume that K is nonempty convex compact set with
inner regular boundary and assume that Q is continuous. Then there exists a unique
continuous function u with compact support that is both a supersolution and a weak sub-
solution. Moreover ¹u > 0º is convex.

Proof. The existence follows by Perron’s method taking the infimum u of supersolutions
with convex support. The support of umust be convex since all supersolutions are bounded
from below by a harmonic function with 1 on K with support equal to the intersection of
the convex support of the supersolutions. A standard argument yields that u is also a super-
solution. And u must be a weak subsolution for otherwise we could touch it from above
by a one dimensional C1 test function that is a strong supersolution on a neighborhood
of the contact set. By shifting this test function down a smaller supersolution with convex
support can be created, leading to a contradiction. Finally, uniqueness follows from the
convex comparison in Lemma 3.3 and Lemma 3.5.

The comparison principle and convexity in the case of upper semicontinuous Q now
follows by a monotone approximation argument.

Corollary 3.7. Suppose Q is upper semicontinuous and let u be the minimal supersolu-
tion of (1). Then:

(1) ¹u > 0º is convex

(2) Any supersolution is larger than u, and u is larger than any weak subsolution, and
therefore any supersolution which is also a weak subsolution is identical to u.
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Proof. Since Q is upper semi-continuous there is a monotone decreasing sequence of
continuous Qj W Sd�1 ! .0;1/ with Qj & Q. Let uj be the minimal supersolution of
(1) corresponding to the equation jruj j � Qj .nx/ on @¹uj > 0º, and u be the minimal
supersolution corresponding to jruj � Q.n/.

Since Qj � Q we have u is a supersolution of jruj � Qj .nx/ on @¹u > 0º so

u � uj :

Similarly, since the Qj are monotone decreasing, the uj are a monotone increasing se-
quence.

Call u1 WD limj!1 uj � u. We claim that u1 is a supersolution of (1) which will
mean u1 � u and hence u1 D u. The supersolution condition is standard stability of the
viscosity solution property with respect to uniform convergence, Lemma 3.1.

By Theorem 3.6 the sets ¹uj > 0º are convex for all j . Since they converge monoton-
ically upwards to ¹u > 0º that set is convex as well.

Now let v be a weak subsolution, since we now know that ¹u > 0º is convex we can
apply Lemma 3.3 to find v � u. If v is also a supersolution of (1) then v � u, by the
minimality of u, and so we conclude that v D u.
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