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Numerical analysis of a FE/SAV scheme for a Caginalp
phase field model with mechanical effects

in stereolithography

Xingguang Jin, Kei Fong Lam, and Changqing Ye

Abstract. In this work, we propose a phase field model based on a Caginalp system with mechani-
cal effects to study the underlying physical and chemical processes behind stereolithography, which
is an additive manufacturing (3D printing) technique that builds objects in a layer-by-layer fash-
ion by using an ultraviolet laser to solidify liquid polymer resins. Existence of weak solutions
is established by demonstrating the convergence of a numerical scheme based on a first order
scalar auxiliary variable temporal discretization and a finite element spatial discretization. We fur-
ther establish uniqueness and regularity of solutions, as well as optimal error estimates for the
Caginalp system that are supported by numerical simulations. We also present some qualitative
two-dimensional simulations of the stereolithography processes captured by the model.

1. Introduction

In this work, we study the following system of equations posed on a bounded domain
� � Rd , d 2 ¹2; 3º, with boundary @� and for a fixed terminal time T > 0:

˛@t' D �"�' � �
1

"
W 0.'/ � .� � �c/p.'/ in �T WD � � .0; T /; (1.1a)

ı@t� D p.'/@t' C�� in �T ; (1.1b)

0 D div .C.'/.E.u/ � Ec.'/C ˇ.� � �0/I// in �T ; (1.1c)

u D 0; @n' D @n� D 0 on @� � .0; T /; (1.1d)

'.0; �/ D '0.�/; �.0; �/ D �0.�/ in �: (1.1e)

In the above, the primary variables of the model are ' (the phase field variable), � (the
temperature) and u (the elastic displacement). With n as the outer unit normal of @�, we
denote by @n the outward normal derivative, i.e., @nf D rf � n. The parameters ˛, ˇ,  ,
ı, ", �, and �c are fixed positive constants, and the model (1.1) consists of a phase field
system for .'; �/ that resembles the Caginalp model [10], coupling with a quasi-static
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linearized elasticity system. In (1.1a), W 0 is the derivative of a double well potential W ,
while p D P 0 is the derivative of a non-negative and bounded function P . In the setting
where  D 0, ˛ D " and � D 1 this reduces to the familiar Allen–Cahn equation:

"@t' D "�' �
1

"
W 0.'/;

while in the setting where p.'/D 1, �c D ˛ D ı D 0 and  D �D 1, we obtain the Cahn–
Hilliard equation from (1.1a)–(1.1b) with �� playing the role of the associated chemical
potential for ':

@t' D ���; �� D �"�' C
1

"
W 0.'/:

The classical example for W is the quartic potential

W.s/ D
1

4
.s2 � 1/2;

so that W 0.s/ D s3 � s. In (1.1c), the quantity

E.u/ WD
1

2
.ruC .ru/>/

is the symmetric strain tensor, Ec.'/ is an eigenstrain, I is the second order identity tensor,
and C.'/ is a symmetric and positive definite fourth order elasticity tensor depending on
'. We furnish (1.1a)–(1.1c) with the boundary conditions (1.1d) (homogeneous Neumann
for ' and � , and homogeneous Dirichlet for u) and initial conditions (1.1e).

We propose the system (1.1) as a phenomenological description for the physical pro-
cesses behind stereolithography, which is an additive manufacturing (also colloquially
known as 3D printing) technique that utilizes ultraviolet lasers to cure/solidify photosensi-
tive liquid polymer resin in order to build objects and products in a layer-by-layer fashion.
Despite being one of the earliest forms of additive manufacturing, stereolithography still
remains a popular choice among modern practitioners to fabricate complex geometric
shapes in an inexpensive, rapid and scalable fashion. However, much of the technological
expertise and operating procedures are based on empirical experiments and work expe-
rience, while the understanding of the underlying physical and chemical changes behind
the curing process remained incomplete. These mechanisms are instrumental in improv-
ing the product quality and printing precision in order to address some of the challenges
preventing additive manufacturing as a whole into integrating with existing manufacturing
infrastructures, see, e.g., the review article [1] for more details.

In the literature, there have been several contributions on the development of mathe-
matical models for stereolithography, all of which have the common feature that decom-
pose the physical and chemical processes involved into multiple submodels that are con-
secutively coupled. We provide a derivation of our model (1.1) in Section 2 and a com-
parison with several previous approaches. Our proposal to use a phase field model (1.1a)–
(1.1b) to encode the evolution of the curing process, similarly done in [48], is motivated
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from viewing the photopolymerization of the liquid polymer akin to that of solidifica-
tion in material sciences. Indeed, the liquid polymers polymerized into a solid state only
when a critical temperature is exceeded, and mathematically this can be captured with
models such as the classical Stefan problem employing a sharp interface free boundary
description, or by the Caginalp model (and by close association also the Allen–Cahn and
Cahn–Hilliard equations) employing a diffuse interface description. Included in (1.1a)
is a phenomenological term .� � �c/p.'/ that allows for a mechanism to determine
the energetically favorable phase based on the value of the temperature. We then cou-
pled (1.1a)–(1.1b) to a quasi-static linear elastic system (1.1c) to model the build up of
mechanical properties of the cured polymers.

The main contribution of this work is the proposal and analysis of a fully discrete
numerical scheme for (1.1) based on finite element (FE) spatial discretization and the
recently popularized scalar auxiliary variable (SAV) time discretization approach [35,36].
In order to achieve unconditional numerical stability in the presence of the nonlinear term
W 0.'/ in (1.1a), various approaches have been proposed by many authors, among which
we mention the convex-concave splitting approach [15, 16] (resulting in nonlinear dis-
crete systems), the stabilized linearly implicit approach [37] (requiring large stabilization
parameters and modified potential function), the Lagrange multiplier approach [22], the
invariant energy quadratization approach [12] and the scalar auxiliary variable approach
[35,36]. These aforementioned methods are applicable to a large class of equations arising
as gradient flows of appropriate energy functionals, and we choose the SAV approach pri-
marily due to its implementational advantage where advancing to the next time iteration
for (1.1a)–(1.1b) requires only solving linear systems rather than employing complicated
Newton iterations.

Our numerical analysis demonstrates the convergence of discrete solutions to a weak
solution of (1.1) as the discretization parameters tend to zero. We additionally establish
uniqueness and regularity of the continuous solution, thereby providing a well-posedness
result for our proposed model. This is in contrast to previous works for stereolithogra-
phy where the well-posedness of the models were not addressed. As a consequence, for
the Caginalp submodel we can derive optimal error estimates for our numerical scheme
without assuming additional smoothness of the exact solutions. For related works on the
numerical analysis of the SAV approach applied to Allen–Cahn and Cahn–Hilliard type
systems, we point to [26, 30, 34] for convergence of discrete solutions to weak solutions,
and to [11, 23, 29, 34, 46, 47] for error estimates under additional smoothness of the exact
solutions.

The rest of this paper is organized as follows: in Section 2, we provide a derivation
of (1.1) and give a comparison with existing models in the literature proposed for stere-
olithography. The fully discrete numerical scheme is introduced in Section 3, where we
present stability estimates and discuss the convergence of discrete solution to a weak
solution as the discretization parameters tend to zero. In Section 4, we establish the
well-posedness of the model (1.1) and improve the regularity of weak solutions, so that
in Section 5, we carry out an error analysis to derive error estimates in terms of the



X. Jin, K. F. Lam, and C. Ye 472

Figure 1. Section view of the printing process involved in stereolithography. An object is printed
layer by layer on an adjustable platform submerged in a vat of liquid resin. The resin hardens when
struck by an ultraviolet laser positioned outside the vat, and the platform lowers in order to harden
the next layer of resin directly on top of the previous one.

discretization parameters for the Caginalp submodel. Supporting numerical simulations
are displayed in Section 6.

2. Model derivation

Consider a bounded domain � � R3 containing a partially constructed object positioned
on a platform surrounded by a viscous liquid resin. The object is made of the same type of
material as the resin, but is fully cured (solidified). An ultraviolet laser positioned outside
the domain� serves to trace out the design of the printed object layer-by-layer. The energy
from the laser induces a polymerization reaction that causes the exposed liquid resin to
transition to a cured phase. After a layer has been created on top of the existing object, the
platform which it rests on is then lowered, and a re-coating blade moves across the surface
to level the viscous resin covering the newly cured layer. The laser then traces out the next
layer and the process repeats until the final layer is built. The schematics is summarized
in Figure 1 and more details can be found in [5].

The multiphysical nature of stereolithography has led to a modeling approach coupling
individual physical submodels for each of the following four processes: (i) the irradiation
and absorption of the laser energy; (ii) the conversion of liquid monomers to solid poly-
mers via polymerization; (iii) the propagation of heat from polymerization; and (iv) the
build up of mechanical properties during the curing process.

2.1. Laser irradiation

As the laser is positioned outside the domain �, it is sufficient to focus on the attenuation
(gradual reduction of intensity) inside the domain. Many models have been proposed, see,
e.g., [5, 14, 20, 25, 32, 33, 43] and the references therein. While this part is not the main
focus of the present work, for convenience let us provide the simplest description. We use
the notation that the top layer of the three-dimensional domain where the laser hits the
resin is ¹z D 0º. Assuming a Gaussian beam profile and using the Beer–Lambert law for
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the laser attenuation, the laser intensity I can be modeled as

I.x; t / D I0.t/ exp
�
�.x2 C y2/

w20

�
exp

� z

Dp

�
for x D .x; y; z/ 2 �; t � 0;

with incident laser intensity I0.t/ as a function of time, beam radius w0 and penetration
depthDp >0. Refraction effects can be neglected as the distance between the resin surface
¹z D 0º and the submerged object is typically small. Further extensions can be found in
[5, Chapter 8.2] for refraction effects, in [44] for scattering and diffraction effects, and
in [9] for diffusion and absorption effects. In this work, we assume the laser intensity I is
a prescribed function and enters into the next submodel via a heat source.

2.2. Phase field model for polymerization and heat propagation

In many works, a full reaction kinetic description employing systems of coupled ordinary
differential equations or reaction-diffusion equations has been used for the photopolymer-
ization of monomers in Part (ii), see, e.g., [5, 20, 27, 43, 44], in order to account for the
evolution of the concentrations of different monomers and radicals (molecules with at
least one unpaired valence electron) during the polymerization process. The key variable
that quantifies the amount of monomer conversion to polymer is the degree of conver-
sion [43], defined as the relative difference between the initial and current concentrations
of monomers. However, the complexity of these types of model increases with the number
of distinct monomer and radical species, and from a measurement viewpoint, accurately
quantifying individual monomer and radical concentrations can be difficult in experimen-
tal settings.

Hence, we follow [14, 48] and propose a phenomenological model that encodes the
degree of conversion without accessing individual species concentrations. The degree of
conversion and the status of polymerization can be implicitly summarized by the location
of the interfaces between the liquid resin (sol phase) and the cured resin (gel phase), whose
evolution can be tracked and measured in more accessible ways [33].

In Part (iii), heat propagation during the polymerization process is often modeled using
a heat equation with source term depending on the time evolution of the degree of con-
version [14,20,44]. We take a slightly different approach by combining Parts (ii) and (iii)
into one coupled model, where the primary variables are the phase field variable ' rep-
resenting the degree of conversion and a temperature variable � . We propose an energy
functional of the form

E.'; �/ WD

Z
�

�"

2
jr'j2 C

�

"
W.'/ �

ı

2
j� j2 C P.'/.� � �c/ dx;

where the first two terms constitute the Ginzburg–Landau functional involving a non-
negative potential W with two equal minima at ˙1 and a constant surface tension coeffi-
cient � > 0. We make use of the well-known behavior that for 0 < "� 1, minimizers of
the Ginzburg–Landau functional attain values close to the stable constant minima ˙1 of
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W and transition smoothly from one value to another in thin layers whose thickness scales
with ". Thus, it is expected that the model develops large regions in � where ' is close to
˙1, which allows us to associate the sol phase as the region where ¹' � �1º, and the gel
phase as the region where ¹' � 1º. In particular, ' can be interpreted as the difference in
the volume fractions of the gel phase and of the sol phase.

In the third term ofE the constant ı corresponds to the specific heat coefficient, and we
proposed the fourth term in order to capture the following behavior [48]: the gel phase is
energetically preferable when the temperature � exceeds a constant critical temperature �c ,
while the sol phase is preferred when � < �c . Together with a functionP W Œ�1;1�! Œ0;1/

that has a maximum at s D �1 and a minimum at s D 1, we see that this behavior is
captured when we try to minimize the fourth term in E. Two examples satisfying the
requirements are P.s/ D 1

2
.1 � s/ and P.s/ D 1

4
.1 � s/2.2 C s/ for s 2 Œ�1; 1� with

constant extensionsP.s/D 1 for s <�1 andP.s/D 0 for s > 1. Furthermore, the constant
 corresponds to the latent heat coefficient.

Based on the energy E, the evolution of ' can be obtained with a non-conserving
gradient flow

˛@t' D �
ıE

ı'
D �"�' �

�

"
W 0.'/ � .� � �c/p.'/;

where ˛ > 0 and p.s/ D P 0.s/. For the temperature, we assume an isobaric (constant
pressure) process, and the change in the enthalpy H WD � ıE

ı�
D ı� � P.'/ is captured

by the balance law
@tH D div q C f

with thermal flux q and heat source f . We take Fourier’s law q D �r� , which leads to

ı@t� � p.'/@t' D �� C f:

The term p.'/@t' can be interpreted as the curing rate [14]. This leads to the submodel
(1.1a)–(1.1b), which is also known in the phase field literature as the Caginalp model [10]
when p.s/ D 1. Note that we can incorporate the laser intensity from Part (i) into the
heat source f as a prescribed function, see, e.g., [44]. For the subsequent mathematical
analysis, we set f D 0 for simplicity.

2.3. Mechanical effects

For Part (iv), it is assumed that mechanical properties only develop for the gel phase, and
mechanical stresses do not influence the polymerization process in Parts (ii) and (iii), see
also Remark 2.1 below. However, in order to obtain a non-degenerate system of equations
amenable to further analysis, we make use of the ersatz material approach in phase field-
based structural topology optimization, see, e.g., [7,8,39,49], which treats the sol phase as
a very soft elastic material, so that we can define a displacement vector u over the entirety
of �.
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Similar to [14,44,48] we decompose the total strain tensor e into a sum of an infinites-
imal linear elastic strain E.u/D 1

2
.ruC .ru/>/, a thermal strain E� WD ˇ.� � �0/I with

identity tensor I, initial temperature �0 and thermal expansion coefficient ˇ > 0, and an
induced chemical strain Ec arising from the increase in density due to polymerization that
results in shrinkage of the cured resin counteracting the thermal expansion [5, 14, 44, 48].
This induced strain is assumed to be isotropic and only occurs in the gel phase [44]. One
example we can take is Ec.'/ D �.1 � P.'//I DW m.'/I, where � > 0 is a scalar corre-
sponding to the maximum shrinkage strain, so that Ec.�1/ D 0.

As both the sol and gel phases are modeled elastic materials, let C.0/ and C.1/ denote
their corresponding constant elasticity tensors that are positive definite on symmetric
matrices and fulfil the usual symmetric conditions of linear elasticity (see (A6) below),
respectively. We introduce a interpolation fourth order elasticity tensor C.'/ D .1 �

k.'//C.0/C k.'/C.1/ for some function k W R! Œ0; 1� satisfying k.1/D 1 and k.�1/D
0. Then, the balance of linear momentum in the absence of external body forces yields

div .C.'/.E.u/ � Ec.'/C ˇ.� � �0/I// D 0:

Combining the three derived equations for .'; �; u/ and furnishing initial-boundary con-
ditions lead to our phase field model (1.1).

Let us provide two examples of C.1/ for applications relevant to additive manufac-
turing. Assuming gel phase is an isotropic linearly elastic material, then C.1/ takes the
form

C.1/
ijmn D �ıij ımn C �.ıimıjn C ıinıjm/

D
E�

.1C �/.1 � 2�/
ıij ımn C

E

2.1C �/
.ıimıjn C ıinıjm/

with gel phase Lamè constants � and �, Young’s modulus E and Poisson ratio � that are
related via the relations

� D
E�

.1C �/.1 � 2�/
; � D

E

2.1C �/
; E D

�.3�C 2�/

�C �
; � D

�

2.�C �/
:

For the sol phase that is treated as an ersatz material, we fix 0 < � � 1 and consider
the sol phase Lamè constants to be �� and ��, i.e., C.0/ D �C.1/, and this leads to an
interpolation elasticity tensor of the form

C.'/ijmn D .��C k.'/.1 � �/�/ıij ımn

C .��C k.'/.1 � �/�/.ıimıjn C ıinıjm/:
(2.1)

Assuming as in [14] that the Poisson ratio � is constant throughout polymerization, i.e.,
the Poisson ratios of both sol and gel phases are equal, while setting the Young’s modulus
of the sol phase as �E, then an alternative interpolation elasticity tensor to (2.1) is

C.'/ijmn D
�.�E C k.'/.1 � �/E/

.1C �/.1 � 2�/
ıij ımn

C
�E C k.'/.1 � �/E

2.1C �/
.ıimıjn C ıinıjm/:

(2.2)
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On the other hand, it is well known that objects built by additive manufacturing techniques
exhibit anisotropic material properties due to the layer by layer printing process, which can
be described by modeling both sol and gel phases as orthotropic materials [6,24]. In three
spatial dimensions, the elasticity tensor of such materials has 9 independent components
due to having three mutually orthogonal planes of reflection symmetry.

For orthotropic materials, it is more common to express the compliance tensor (inverse
of elasticity tensor) in terms of materials parameters. Let ¹Eiº3iD1 denote the Young’s
moduli in the three principal directions, ¹�ij º3i;jD1; i¤j denote the Poisson’s ratio charac-
terizing the transverse strain in the j th direction when the material is stressed in the i th
direction, and ¹Gij º3i;jD1; i<j denote the shear modulus characterizing the ratio between
the shear stress in the i th direction and the shear strain in the j th direction. Then, the
fourth order compliance tensor ŒC.1/��1 of an orthotropic material expressed in Voigt
notation reads as

ŒC.1/��1 D

0BBBBBBBBB@

1
E1

�
�21
E2

�
�31
E3

0 0 0

�
�12
E1

1
E2

�
�32
E3

0 0 0

�
�13
E1

�
�23
E2

1
E3

0 0 0

0 0 0 1
2G23

0 0

0 0 0 0 1
2G13

0

0 0 0 0 0 1
2G12

1CCCCCCCCCA
;

where, by symmetry requirements, it holds that

�21

E2
D
�12

E1
;

�31

E3
D
�13

E1
;

�32

E3
D
�23

E2
:

Taking C.0/ D �C.1/ with 0 < � � 1 for the sol phase, we can consider an interpolation
elasticity tensor for orthotropic materials of the form

C.'/ D Œ� C k.'/.1 � �/�C.1/:

2.4. Boundary conditions

From the schematics in Figure 1, we can assume that in a typical set-up the printed
object (gel phase) is completely submerged in the liquid resin (sol phase). Hence, appro-
priate boundary conditions for ' can be the homogeneous Neumann condition @n' D

0 or the Dirichlet boundary condition ' D �1. For the temperature, we can prescribe
homogeneous Neumann condition @n� D 0 to describe thermal isolation of the construc-
tion environment [44]. Alternatively, a Robin boundary condition @n� D �1 � � with
ambient temperature �1 is suitable, see [14, 48]. From the set-up in Figure 1 and on
account of the ersatz material approximation of the sol phase, an appropriate boundary
condition for the displacement is a homogeneous Dirichlet condition u D 0. Another
option is to consider a mixed boundary condition where the boundary @� is decomposed
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into a disjoint union of relatively open subsets �0 [ �1 where traction-free conditions
C.'/.E.u/ � Ec.'/C ˇ.� � �0/I/n D 0 are imposed on �1, while u D 0 is imposed on
�0.

2.5. Comparison with similar phenomenological models

In this section, we provide a comparison between (1.1) and similar phenomenological
models with mechanical effects. Let us comment that in choosing ' to be the difference
in volume fractions of the gel and sol phases means that ' should belong to the physically
relevant interval Œ�1; 1�. Hence, in our model we emphasize the values of the interpo-
lating functions P.'/ and k.'/ at ˙1 in order to capture the relevant physical effects
in the sol phase ¹' � �1º and in the gel phase ¹' � 1º. However, it is also possible to
choose ' as a different physical variable, such as the relative difference between initial and
current monomer concentrations, leading to a different physically relevant interval Œ0; 1�
and with the sol phase now defined as ¹' � 0º and the gel phase remaining as ¹' � 1º.
Mathematically, this only involves a composition of the potential W with a suitable affine
linear function so that the new potential has its minima at 0 and 1. One example of such a
potential is the function W.s/ D s2.s � 1/2.

Our closest counterpart is the model of [48], which also employs a phase field descrip-
tion where ' 2 Œ0; 1� is the volume fraction of the molecules that have undergone the
sol-gel transition. The equation for ' is of a similar Allen–Cahn type as (1.1a), which
can be obtained by setting � D ", and replacing W.'/ with kB

va
�Œ.1 � '/ ln.1 � '/ C

�'.1 � '/� with the Boltzmann constant kB , an interaction parameter �, and the vol-
ume of a single monomer/solvent molecule va, as well as replacing .� � �c/p.'/ with
6'.1� '/.fgel � fsol/ with bulk free energy density at the gel phase fgel and the sol phase
fsol, respectively,

@t' D "
2�' C

kB

va
�.1C ln.1 � '/C �.2' � 1// � 6'.1 � '/.fgel � fsol/:

The main difference with (1.1a) is that the temperature appears in the potential term as a
prefactor, while the temperature equation reads as

�ı@t� D k��

with heat conductivity coefficient k and mass density � D �0
1Cdiv u

where �0 represents the
initial mass density. Notice that there is no explicit terms in ' appearing in the temper-
ature equation, but the coupling with ' enters via the displacement u. In addition to the
decomposition of the total strain into a sum of elastic, thermal and chemical shrinkage
strains, the mechanical behavior considered in [48] is described by a rheological model
also includes viscoelastic effects, which we have neglected in this work.

In [44] (see also [14] for the one-dimensional analogue), ' 2 Œ0; 1� is chosen as the
relative difference between initial and current monomer concentrations, and a phenomeno-
logical model is proposed taking the form of the following differential equation:

@t' D rf .'/I
b;
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with rate constant r that can depend on temperature � , reaction kinetics model function
f (linear in [44] and mth order polynomial in [14]), and laser intensity I with exponent
b 2 Œ0:5; 1�, see [5, Chapter 9.3]. Notice that a similar type of equation can be obtained
from (1.1a) by setting � D 0 and choosing p.s/ appropriately. The temperature equation
adapted from [20] reads as

�ı@t� D div .kr�/ � .�H/@t'

with constant mass density �, thermal conductivity k and heat of polymerization �H ,
which we note the resemblance to (1.1b). For the mechanical response, a linear elastic
behavior is assumed employing a similar decomposition of the total strain into a sum
of elastic, thermal and chemical components. A '-dependent Young’s modulus E.'/ is
prescribed:

E.'/ D

´
e0Epol for ' < 'gel;�
1�e0
1�'gel

.' � 'gel/
�
Epol for ' � 'gel

for constants 0 < e0 � 1, Young’s modulus of the gel phase Epol, and gel-point 'gel for
conversion defined as the point where the liquid resin transforms to a solid polymer. Then,
with a constant Poisson’s ratio �, the phase dependent Lamè constants

�.'/ D
E.'/

.1C �/.1 � 2�/
; �.'/ D

E.'/

2.1C �/

enter into an elasticity tensor C.'/ of the form (2.1) and the resulting momentum balance
equation resembles (1.1c) and (2.2).

Remark 2.1. We note that (1.1) somewhat resembles the Cahn–Larché model [28, 31]
(where we use the notation � to denote the associated chemical potential):

@t' D ��;

� D �"�' C "�1W 0.'/

C
1

2
.E.u/ � Ec.'// W C

0.'/.E.u/ � Ec.'// �C.'/.E.u/ � Ec.'// W E
0
c.'/;

0 D div .C.'/.E.u/ � Ec.'///;

with the associated energy functional

E.';u/ WD

Z
�

"

2
jr'j2 C

1

"
W.'/C

1

2
.E.u/ � Ec.'// W C.'/.E.u/ � Ec.'// dx:

The most significant difference is the inclusion of an elastic contribution in E, leading to
an additional term appear in the equation for � and thus allowing elastic stress to influ-
ence the evolution of '. This elastic influence is not present in (1.1) due to how we build
the model by connecting submodels in a sequence. To the best of our knowledge, it is
not entirely clear if this mechanical feedback is detected in the physical and chemical
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processes of stereolithography, and further investigations would warrant a comprehen-
sive study in model calibration and validation with experimental data. We mention that a
numerical analysis of a finite element scheme for the Cahn–Larché system can be found
in [19].

3. Numerical discretization

3.1. Preliminaries and assumptions

Notation. For any p 2 Œ1;1� and k > 0, the standard Lebesgue and Sobolev spaces
over � are denoted by Lp.�/ and W k;p.�/ with the corresponding norms k � kLp and
k � kW k;p . In the special case p D 2, these become Hilbert spaces and we employ the
notation H k WD H k.�/ D W k;2.�/ with the corresponding norm k � kHk . We denote
the topological dual of H 1.�/ by .H 1.�//� and the corresponding duality pairing by
h�; �i. We use k � k and .�; �/ for the norm and inner product of L2.�/. Furthermore, we
define the Sobolev spacesH 2

n .�/ WD ¹f 2H
2.�/ W @nf D 0 on @�º andX.�/ WD ¹f 2

H 1.�;Rd / W f D 0 on @�º. Then, by [13, Theorem 6.15-4, pp. 409–410] a Korn-type
inequality is valid in X.�/, where there exists a positive constant CK such that

kukH1 � CKkE.u/k 8u 2 X.�/:

The discrete Grönwall inequality will often be invoked: if en; an; bn � 0 for all n� 0, then

en � an C

n�1X
iD0

biei 8n � 0 H) en � an � exp
� n�1X
iD0

bi

�
8n � 0:

We make the following assumptions for the model.

.A1/ � � Rd , d 2 ¹2; 3º, is a bounded convex domain with polygonal (if d D 2) or
polyhedral (if d D 3) boundary @�.

.A2/ The constants ˛, ˇ,  , ı, �, �c , and " are positive and fixed.

.A3/ W WR!R is non-negative withW 2 C 2.R/, and there exist positive constants
c0 > 0, c1 2 R, c2 > 0 and c3 > 0 such that

c0jsj
3
� c1 � jW

0.s/j � c2.1C jsj
3/; W 00.s/ � �c3 8s 2 R:

.A4/ P W R! R is a non-negative function with P 2 W 2;1.R/.

.A5/ The initial conditions satisfy �0; �0 2 H 2
n .�/.

.A6/ The fourth order elasticity tensor C.'/ is of the form

C.'/ D C.0/
C k.'/.C.1/

�C.0// D .1 � k.'//C.0/
C k.'/C.1/;

with constant fourth order tensors C.0/ and C.1/ that are positive definite in
the sense that there exist positive constants c4, c5, c6, and c7 such that for all
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non-zero symmetric matrices A 2 Rd�dsym n ¹0º:

c4jAj
2
� C.0/A W A � c5jAj

2; c6jAj
2
� C.1/A W A � c7jAj

2;

whereA WB D
Pd
i;jD1AijBij , jAj D

p
A W A, and satisfy the usual symmetry

conditions of linear elasticity:

Cijmn D Cijnm D Cj imn; Cijmn D Cmnij 8i; j;m; n 2 ¹1; : : : ; dº;

while k W R! Œ0; 1� satisfies k 2 C 1;1.R/.

.A7/ The induced eigenstrain Ec W R! Rd�d is of the form

Ec.s/ D m.s/I for m 2 W 1;1.R/:

Remark 3.1. The assumption (A5) is only technical for our consideration of the numeri-
cal scheme defined later. One may consider alternate approaches, such as a Faedo–Galerkin
approximation, to show the existence of a solution with regularity stated in Theorem 3.1
under weaker assumptions, such as '0; �0 2 H 1.�/.

3.2. Scalar auxiliary variable (SAV) formulation

The weak formulation of (1.1) is

0 D

Z
�T

�
˛@t' C

�

"
W 0.'/C .� � �c/p.'/

�
 C �"r' � r dxdt; (3.1a)

0 D

Z
�T

�
ı@t� � p.'/@t'

�
‚Cr� � r‚ dxdt; (3.1b)

0 D

Z
�T

C.'/.E.u/ �m.'/I C ˇ.� � �0/I/ W E.v/ dxdt (3.1c)

holding for all  ;‚ 2 L2.0; T IH 1.�// and v 2 L2.0; T IX.�//. As W is non-negative,
we introduce a scalar auxiliary variable q and a function Q defined as

q.t/ WD
�1
"

Z
�

W.'.t; x// dxC 1
�1=2

;

Q.�/ WD
�1
"

Z
�

W.�/ dxC 1
�1=2 (3.2)

so that q.t/ D Q.'/.t/ holds. Differentiating in time formally yields an ordinary differ-
ential equation

q0.t/ D
1

2"Q.'/.t/

Z
�

W 0.'.t; x//@t'.t; x/ dx
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furnished with the initial condition q.0/ D Q.'0/. Then, an equivalent weak formulation
for (1.1) based on the scalar auxiliary variable approach of [35, 36] is

0 D

Z
�

�
˛@t' C

�q

"Q.'/
W 0.'/C .� � �c/p.'/

�
 C �"r' � r dx; (3.3a)

0 D

Z
�

�
ı@t� � p.'/@t'

�
‚Cr� � r‚ dx; (3.3b)

0 D q0 �
1

2"Q.'/

Z
�

W 0.'/@t' dx; (3.3c)

0 D

Z
�

C.'/.E.u/ �m.'/I C ˇ.� � �0/I/ W E.v/ dx; (3.3d)

holding for a.e. t 2 .0;T /, for all  ;‚ 2H 1.�/ and v 2X.�/. Our numerical discretiza-
tion of (1.1) is based on (3.3).

3.3. Fully discrete finite element approximation

Dividing the time interval Œ0; T � into a uniform partition of subintervals Œtn�1; tn� for
n D 1; 2; : : : ; N� with � D tn � tn�1 as the time step and N�� D T . Let ¹Thºh>0 denote
a regular family of conformal quasiuniform triangulations that partition � into disjoint
open simplices K such that maxK2Th diam.K/ � h. Let �h be the finite element space of
continuous and piecewise linear functions

�h WD
®
fh 2 C

0.x�/ W fhjK 2 P1.K/8K 2 Th
¯
� H 1.�/;

where P1 is the set of affine linear functions on K. Associated to �h is the set of basis
functions

¹�hkºkD1;:::;Zh ; Zh WD dim.�h/;

which forms a dual basis to the set of nodes ¹xkºkD1;:::;Zh . For the approximation of the
elasticity system, we introduce the function space

�h;0 D
®
fh 2 .�h/

d
W fh D 0 on @�

¯
:

We recall the nodal interpolation operator Ih W C 0.x�/! �h defined as

Ih.�/.x/ D
ZhX
kD1

�.xk/�
h
k.x/

so that
Ih.�/.xk/ D �.xk/

for all nodes ¹xkºkD1;:::;Zh of Th.

Remark 3.2. The consideration of linear finite elements in this work is to simplify the
resulting numerical analysis and implementation of the proposed model. We remark that
higher order finite elements can also be utilized, as in [18, 45], to yield higher accuracy.
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Let us recall some well-known results concerning the nodal interpolation operator:
there exist positive constants c and C independent of h such that

ckfhkLp.�/ �
� Z

�

Ih.jfhjp/ dx
�1=p

� CkfhkLp.�/ 8fh 2 �h; p 2 Œ1;1/; (3.4)

kf � Ih.f /k C hkr.f � Ih.f //k � Ch2kf kH2 8f 2 H 2.�/; (3.5)

kf � Ih.f /kLq C hkr.f � Ih.f //kLq � Chkf kW 1;q 8f 2 W 1;q.�/; q 2 .2;1�;

(3.6)

lim
h!0
kf � Ih.f /kL1 D 0 8f 2 C 0.x�/: (3.7)

We also note that for any � 2 C 0.R/ such that �.s/ 2 Œk0; k1� with constants k0 < k1 and
s 2 R, by the definition of the nodal interpolation operator, for any x 2 x�,

k0 D k0

ZhX
kD1

�hk.x/ � Ih.�/.x/ D
ZhX
kD1

�.xk/�
h
k.x/ � k1

ZhX
kD1

�hk.x/ D k1: (3.8)

Let us recall the discrete Neumann–Laplacian �h W �h ! �h for a function qh 2 �h as

.�hqh; �h/ WD �.rqh;r�h/ 8�h 2 �h: (3.9)

Under (A1), we have from [3, Lemma 3.1] that for any fh 2 �h,

krfhkLr � Ck�hfhk where

´
r <1 if d D 2;

r D 6 if d D 3:
(3.10)

For the error analysis in Section 5, we will make use of the Ritz projection operator Rh W
H 1.�/! �h defined as

.rf � r.Rhf /;r h/ D 0 8 h 2 �h

satisfying Z
�

Rhf dx D
Z
�

f dx:

Then, the following properties hold (see, e.g., [41]):

kf �Rhf k C hkr.f �Rhf /k � Ch
s
kf kH s ; (3.11)

kf �Rhf kL1 � Ch
s`hkf kW s;1 ; (3.12)

where `h WD max.1; log.1=h// and 1 � s � 2.
Then, our proposed numerical scheme for (1.1) reads as follows: for n D 1; : : : ; N� ,

given .'n�1
h

; �n�1
h

; qn�1
h

/ 2 �h � �h � R, find .'n
h
; �n
h
; qn
h
/ 2 �h � �h � R such that for
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all  h 2 �h,

0 D
˛

�
.'nh � '

n�1
h ;  h/C

�qn
h

"Qn�1
h

.W 0.'n�1h /;  h/C ..�
n
h � �c/p.'

n�1
h /;  h/

C �".r'nh ;r h/; (3.13a)

0 D
ı

�
.�nh � �

n�1
h ; ‚h/ �



�
.p.'n�1h /.'nh � '

n�1
h /;‚h/C .r�

n
h ;r‚h/; (3.13b)

0 D qnh � q
n�1
h �

.W 0.'n�1
h

/; 'n
h
� 'n�1

h
/

2"Qn�1
h

; (3.13c)

where

Qk
h WD

�1
"

Z
�

W.'kh / dxC 1
�1=2

: (3.14)

This fully discrete finite element scheme is linear with respect to .'n
h
; �n
h
; qn
h
/ and can

be initialized with the choices '0
h
D Rh'0, �0

h
D Rh�0 and q0

h
D Q.'0

h
/. Then, we find

un
h
2 �h;0 such that for all vh 2 �h;0,�

Ih.C.'nh //E.u
n
h/;E.vh/

�
D
�
Ih.k.'nh /.m.'

n
h / � ˇ.�

n
h � �

0
h ///C

.1/I;E.vh/
�

C
�
Ih.Œ1 � k.'nh /�.m.'

n
h / � ˇ.�

n
h � �

0
h ///C

.0/I;E.vh/
�
: (3.15)

Remark 3.3. We remark that high order time marching approaches based on, e.g., Adams–
Bashforth [35, 42] or Runge–Kutta [2, 40] can also be utilized for (3.13).

3.4. Unique solvability

Proposition 3.1. For any n D 1; : : : ; N� , given .'n�1
h

; �n�1
h

; qn�1/ 2 �h � �h �R, there
exists a unique quadruple .'n

h
; �n
h
; qn
h
;un
h
/ 2 �h � �h �R� �h;0 satisfying (3.13)–(3.15).

Proof. Suppose we have two quadruple of solutions ¹.'n
h;i
; �n
h;i
; qn
h;i
; un
h;i
/ºiD1;2 satisfy-

ing (3.13)–(3.15). Denoting their differences by .'; �; q;u/ 2 �h � �h �R� �h;0, we see
that .'; �; q/ fulfill

0 D
˛

�
.';  h/C

�q

Qn�1
h

.W 0.'n�1h /;  h/C .p.'
n�1
h /�;  h/C �".r';r h/; (3.16a)

0 D ı.�;‚h/ � .p.'
n�1
h /';‚h/C �.r�;r‚h/; (3.16b)

0 D q �
.W 0.'n�1

h
/; '/

2"Qn�1
h

: (3.16c)

Choosing  h D ' in (3.16a), ‚h D � in (3.16b), and multiplying (3.16c) with 2�q, then
summing the resulting equalities gives

˛

�
k'k2 C 2�jqj2 C ık�k2 C �"kr'k2 C �kr�k2 D 0:
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It is clear that ' D � D q D 0, i.e., 'n
h;1
D 'n

h;2
, �n
h;1
D �n

h;2
, and qn

h;1
D qn

h;2
. Then, the

difference u satisfies
0 D

�
Ih.C.'nh //E.u/;E.vh/

�
:

Choosing vh D u yields

0 D

Z
�

.1 � Ih.k.'nh ///C
.0/E.u/ W E.u/C Ih.k.'nh //C

.1/E.u/ W E.u/ dx

�

Z
�

.1 � Ih.k.'nh ///c4jE.u/j
2
C Ih.k.'nh //c6jE.u/j

2 dx � min.c4; c6/kE.u/k2;

where we have used that 0� Ih.k.'nh //� 1 inferred from (A6) and (3.8). Hence, E.u/D 0

and by Korn’s inequality we deduce that u D 0, i.e., un
h;1
D un

h;2
. This gives uniqueness

of the fully discrete solutions.
For existence, we express (3.13) in a matrix-vector form. Using the basis functions

¹�h
k
ºkD1;:::;Zh , we introduce the mass matrix and stiffness matrix

Mi;j D .�
h
i ; �

h
j /; Si;j D .r�

h
i ;r�

h
j /:

With the dual basis of nodes, we introduce

'nh WDM�1Œ.'nh ; �
h
k/�

Zh
kD1
D .'nh .x1/; : : : ; '

n
h .xZh//

>;

�nh WDM�1Œ.�nh ; �
h
k/�

Zh
kD1
D .�nh .x1/; : : : ; �

n
h .xZh//

>;

bn�1 WD
�W 0.'n�1

h
/

"Qn�1
h

; cn�1 WD �cM
�1Œ.p.'n�1h /; �hk/�

Zh
kD1

;

Pn�1i;j WD .p.'
n�1
h /�hi ; �

h
j /;

where the nonlinearities are applied component-wise. Then, choosing  h D �hk for k D
1; : : : ; Zh in (3.13) leads to

0 D ˛M.'nh � '
n�1
h /C �qnhMbn�1 C �Pn�1�nh � �c

n�1
C �"�S'nh; (3.17a)

0 D ıM.�nh � �
n�1
h / � Pn�1.'nh � '

n�1
h /C �S�nh ; (3.17b)

0 D qnh � q
n�1
h �

1

2
Mbn�1 � .'nh � '

n�1
h /: (3.17c)

Expressing (3.17b) as

�nh D .ıMC �S/�1.ıM�n�1h C Pn�1.'nh � '
n�1
h // (3.18)

and substituting this and (3.17c) into (3.17a) yield the following:

.˛MC �"�SC �2Pn�1.ıMC �S/�1Pn�1/'nh C
�

2
.Mbn�1 � 'nh/Mbn�1

D ˛M'n�1h � �qn�1h Mbn�1 C
�

2
.Mbn�1 � 'n�1h /Mbn�1 C �cn�1

� �Pn�1.ıMC �S/�1.ıM�n�1h � Pn�1'n�1h /

DW dn�1:
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We define the matrix Xn�1 WD .˛MC �"�SC �2Pn�1.ıMC �S/�1Pn�1/, which can
be verified to be positive definite. Then, applying the inverse of Xn�1 to both sides, and
taking the product of the resulting equality with Mbn�1 yield

.Mbn�1 � 'nh/
�
1C

�

2
.Xn�1/�1Mbn�1 �Mbn�1

�
D .Xn�1/�1dn�1 �Mbn�1:

This yields an expression for Mbn�1 � 'n
h

as

.Mbn�1 � 'nh/ D
.Xn�1/�1dn�1 �Mbn�1

1C �
2
.Xn�1/�1Mbn�1 �Mbn�1

;

which then provides the update formula for 'n
h

,

'nh D .X
n�1/�1dn�1 �

�

2
.Mbn�1 � 'nh/.X

n�1/�1Mbn�1;

while �n
h

and qn
h

can be computed via (3.18) and (3.17c), respectively. This yields the
existence of the discrete solutions .'n

h
; �n
h
; qn
h
/ for (3.13).

For the existence of un
h
2 �h;0, it suffices to show that when expressing (3.15) into

matrix-vector form its left-hand side involves an invertible matrix with the global nodal
displacement vector U 2 Rd �Zh;0 defined as the concatenation of the (interior) nodal eval-
uations of un

h
:

U D .u1;1; u2;1; : : : ; ud;1; u1;2; : : : ; ud;2; : : : ; u1;Zh;0 ; : : : ; ud;Zh;0/
>;

where dim.�h;0/ D Zh;0. We focus on the case d D 3 as the case d D 2 can be treated
similarly. For a fourth order tensor C and a second order tensor A, we denote their cor-
responding representation in Voigt notation as yC and yA, respectively. We introduce a
geometrical matrix B 2 R6�3Zh;0 of the form B D

�
B1 B2 � � � BZh;0

�
such that

yE.un
h
/ D

0BBBBBBBBB@

"1;1

"2;2

"3;3
1
2
."2;3 C "3;2/

1
2
."1;3 C "3;1/

1
2
."1;2 C "2;1/

1CCCCCCCCCA
D BU ; where Bi D

0BBBBBBBBB@

@1�
h
i 0 0

0 @2�
h
i 0

0 0 @3�
h
i

0 1
2
@3�

h
i

1
2
@2�

h
i

1
2
@3�

h
i 0 1

2
@1�

h
i

1
2
@2�

h
i

1
2
@1�

h
i 0

1CCCCCCCCCA
for i 2 ¹1; : : : ; Zh;0º and "i;j denotes the .i; j /th entry of the second order tensor E.un

h
/.

Then, by choosing vh as appropriate combinations of the basis functions in (3.15), we
obtain the following linear system:

KnU D Fn
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with global stiffness matrix Kn and load vector Fn defined as

.Kn/i;j D .k.'
n
h /; 1/

hŒB>bC.1/B�i;j C .1 � k.'
n
h /; 1/

hŒB>bC.0/B�i;j ;

.Fn/k D .k.'
n
h /.m.'

n
h / � ˇ.�

n
h � �

0
h //; 1/

h.B>bC.1/bI/k
C .1 � k.'nh /.m.'

n
h / � ˇ.�

n
h � �

0
h //; 1/

h.B>bC.0/bI/k
for 1 � i; j; k � 3Zh;0. In the above, we used the notation .f; g/h WD

R
�

Ih.fg/ dx. It is
straightforward to see that for any arbitrary vector V 2 R3Zh;0 corresponding to v 2 �h;0
via the relation yE.v/ D BV , it holds that

V >KnV D .Ih.C.'nh //E.v/;E.v//:

Hence, using that Ih.C.'nh // is positive definite on symmetric matrices we deduce that Kn

is invertible, which in turn leads to the existence of a solution un
h

satisfying (3.15).

Remark 3.4. The computational cost for each update step in (3.13) amounts to solving
three linear systems: .ıMC �S/�1 in Xn�1, .Xn�1/�1dn�1 and .Xn�1/�1Mbn�1. Once
these three quantities are computed, the update for .'n

h
; �n
h
; qn
h
/ no longer involves any

matrix inversions.

3.5. Stability estimates

For a better presentation, we set the constants ˛, ˇ,  , ı, �, and " to be equal to 1 as their
values have no bearing on the analysis.

Lemma 3.1. There exists a positive constantC depending only on model parameters such
that for any � 2 .0; 1/ and n D 1; : : : ; N� , the following estimate holds for the discrete
solutions ¹'n

h
; �n
h
; qn
h
;un
h
º to (3.13)–(3.15):

max
kD1;:::;N�

�
k'khk

2
H1 C k�

k
h k
2
H1 C ku

k
hk
2
H1 C jq

k
h j
2
�

C

N�X
nD1

�
�
k�h'

n
hk
2
C k'nhk

2
W 1;r C k�h�

n
h k
2
C k�nh k

2
W 1;r

�
C

N�X
nD1

�
k'nh � '

n�1
h k

2
H1 C k�

n
h � �

n�1
h k

2
H1 C jq

n
h � q

n�1
h j

2
�

C

N�X
nD1

1

�

�
k'nh � '

n�1
h k

2
C k�nh � �

n�1
h k

2
�
� C;

(3.19)

with exponent r as in (3.10), and for arbitrary l 2 ¹1; : : : ; N�º,

N��lX
nD0

�
�
k'nCl
h
� 'nhk

2
C k�nCl

h
� �nh k

2
�
� Cl�: (3.20)
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Proof. In the sequel the symbol C denotes positive constants independent of h, � and
n 2 ¹1; : : : ; N�º, whose values may change line from line and within the same line.

First estimate. Taking  h D 'nh � '
n�1
h

in (3.13a),‚h D �.�nh � �c/ in (3.13b) and mul-
tiplying (3.13c) with 2qn

h
, upon summing and using the identity .a � b/a D 1

2
.a2 � b2 C

.a � b/2/ lead to

1

2

�
kr'nhk

2
� kr'n�1h k

2
C kr.'nh � '

n�1
h /k2

�
C

�
jqnh j

2
� jqn�1h j

2
C jqnh � q

n�1
h j

2
�

C
1

2

�
k�nh � �ck

2
� k�n�1h � �ck

2
C k�nh � �

n�1
h k

2
�

C �kr�nh k
2
C
1

�
k'nh � '

n�1
h k

2
D 0:

Summing from n D 1 to n D k for arbitrary k 2 ¹1; : : : ; N�º and using (3.11) yield

1

2

�
kr'khk

2
C

kX
nD1

kr.'nh � '
n�1
h /k2

�
C

�
jqkh j

2
C

kX
nD1

jqnh � q
n�1
h j

2
�

C
1

2

�
k�kh � �ck

2
C

kX
nD1

k�nh � �
n�1
h k

2
�
C

kX
nD1

�kr�nh k
2
C

kX
nD1

1

�
k'nh � '

n�1
h k

2

D
1

2
kr'0hk

2
C jq0hj

2
C
ı

2
k�0h � �ck

2
� C C Ck'0k

4
H2 C Ck�0 � �ck

2
H2 � C:

(3.21)
In the above, we used the quartic growth assumption (A3) on W and the estimate (3.11)
to deduce that jq0

h
j2 D jQ.'0

h
/j2 � C.1C kW.'0

h
/kL1/ � C.1C k'0k

4
H2/.

Second estimate. Taking  h D 'nh in (3.13a) gives

1

2

�
k'nhk

2
� k'n�1h k

2
C k'nh � '

n�1
h k

2
�
C �kr'nhk

2

D ��
qn
h

Qn�1
h

.W 0.'n�1h /; 'nh / � �.p.'
n�1
h /.�nh � �c/; '

n
h /

D �2� jqnh j
2
C 2�qnhq

n�1
h � �

qn
h
.W 0.'n�1

h
/; 'n�1

h
/

Qn�1
h

� �.p.'n�1h /.�nh � �c/; '
n
h /;

where we have used (3.13c). From (A3), it follows that there exists a positive constant C
such that

jW 0.s/sj � C.1C jsj4/ � C.1CW.s// 8s 2 R;

and so, ˇ̌̌ .W 0.'n�1
h

/; 'n�1
h

/

Qn�1
h

ˇ̌̌
�

C

Qn�1
h

� Z
�

W.'n�1h / dxC 1
�
� C:

Then, using the boundedness of jqk
h
j2 and k�k

h
� �ck

2 from (3.21) and also (A4), we see
that

1

2

�
k'nhk

2
� k'n�1h k

2
C k'nh � '

n�1
h k

2
�
C �kr'nhk

2
� C� C

1

2
�k'nhk

2:
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Summing from n D 1 to n D k for arbitrary k 2 ¹1; : : : ; N�º yield

1

2
.1 � �/k'khk

2
C

kX
nD1

1

2
k'nh � '

n�1
h k

2
C �

kX
nD1

kr'nhk
2
� C

kX
nD1

� C C

k�1X
nD0

�k'nhk
2:

For � < 1, invoking the discrete Grönwall inequality provides

k'khk
2
H1 C

kX
nD1

k'nh � '
n�1
h k

2
� C: (3.22)

Third estimate. Taking ‚h D �nh � �
n�1
h

in (3.13b) gives

1

�
k�nh � �

n�1
h k

2
C
1

2

�
kr�nh k

2
C kr.�nh � �

n�1
h /k2 � kr�n�1h k

2
�

D
1

�
.p.'n�1h /.'nh � '

n�1
h /; �nh � �

n�1
h / �

C

�
k'nh � '

n�1
h k

2
C

1

2�
k�nh � �

n�1
h k

2:

Summing from n D 1 to n D k for arbitrary k 2 ¹1; : : : ; N�º and applying (3.21) yield

kr�kh k
2
C

kX
nD1

kr.�nh � �
n�1
h /k2 C

kX
nD1

1

�
k�nh � �

n�1
h k

2
� C: (3.23)

Fourth estimate. With discrete Neumann–Laplacian (3.9), equations (3.13a) and (3.13b)
can be expressed as

0 D
�'n

h
� 'n�1

h

�
C
qn
h
W 0.'n�1

h
/

"Qn�1
h

C .�nh � �c/p.'
n�1
h / ��h'

n
h ;  h

�
;

0 D
��n

h
� �n�1

h

�
� p.'n�1h /

'n
h
� 'n�1

h

�
��h�

n
h ; ‚h

�
:

Employing (3.21) for qk
h

and k�k
h
� �ck

2, (3.22) for 'k
h

, and (A4), upon choosing  h D
��h'

n
h

and ‚h D ��h�nh , respectively, we obtain

k�h'
n
hk �

1

�
k'nh � '

n�1
h k C C; k�h�

n
h k �

1

�
k�nh � �

n�1
h k C

C

�
k'nh � '

n�1
h k:

Squaring and multiplying by � on both sides, then summing from n D 1 to n D k for
arbitrary k 2 ¹1; : : : ; N�º lead to

kX
nD1

�k�h'
n
hk
2
C

kX
nD1

�k�h�
n
h k
2
� C: (3.24)

By (3.10), we also infer for r <1 if d D 2 and r D 6 if d D 3,

kX
nD1

�kr'nhk
2
Lr C

kX
nD1

�kr�nh k
2
Lr � C: (3.25)
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Fifth estimate. For l D 1; : : : ;N� andmD 0; : : : ;N� � l , we consider hD �.'mClh
�'m

h
/

in (3.13a), leading to

0 D .'nh � '
n�1
h ; 'mCl

h
� 'mh /C �.r'

n
h ;r.'

mCl
h
� 'mh //

C �
qn
h

Qn�1
h

.W 0.'n�1h /; 'mCl
h
� 'mh /C �..�

n
h � �c/p.'

n�1
h /; 'mCl

h
� 'mh /:

Summing this identity from n D mC 1 to mC l gives

k'mCl
h
� 'mh k

2
� C�

mClX
nDmC1

�
k'nhkH1 C k'n�1h k

3
H1 C j�

n
h � �c jh

�
k'mCl
h
� 'mh kH1

� Cl�k'mCl
h
� 'mh kH1 � Cl�;

on account of (3.21) and (3.22). Hence, we obtain after multiplying by � and summing
from m D 0 to N� � l that

�

N��lX
mD0

k'mCl
h
� 'mh k

2
� Cl�: (3.26)

Similarly, by considering ‚h D �.�mClh
� �m

h
/ in (3.13b), we have

0 D .�nh � �
n�1
h ; �mCl

h
� �mh /C �.r�

n
h ;r.�

mCl
h
� �mh //

� .p.'n�1h /.'nh � '
n�1
h /; �mCl

h
� �mh /:

Then, summing from n D mC 1 to mC l gives

k�mCl
h
� �mh k

2
� C�

mClX
nDmC1

�
kr�nh k C k'

n
h � '

n�1
h k

�
k�mCl
h
� �mh kH1

� Cl�k�mCl
h
� �mh kH1 � Cl�;

on account of (3.21), (3.23). Hence, analogous to (3.26) we obtain for any l D 1; : : : ; N� ,

�

N��lX
mD0

k�mCl
h
� �mh k

2
� Cl�: (3.27)

Sixth estimate. Turning to (3.15), choosing vh D unh yields with (A6) and (3.8)

min.c4; c6/kE.unh/k
2
� CkE.unh/k.1C k�

n
h � �

0
hk/:

By (3.21) and Korn’s inequality, we deduce that for arbitrary k 2 ¹1; : : : ; N�º,

kukhkH1 � C:



X. Jin, K. F. Lam, and C. Ye 490

3.6. Compactness and convergence of fully discrete solutions

Let us recall the following compactness result from [38, Section 8, Corollary 4]: for
Banach spaces X , B and Y with compact embedding X b B and continuous embedding
B � Y , then®

� 2 Lp.0; T IX/ W @t� 2 L
1.0; T IY /

¯
b Lp.0; T IB/ for any 1 � p <1;®

� 2 L1.0; T IX/ W @t� 2 L
r .0; T IY /

¯
b C 0.Œ0; T �IB/ for any r > 1: (3.28)

Moreover, we also require [38, Section 8, Theorem 5]: ifF is a bounded set inLp.0;T IX/
for 1 � p � 1 and

kf .� C s/ � f .�/kLp.0;T�sIY / ! 0 as s ! 0 (3.29)

uniformly for f 2 F , then F is relatively compact in Lp.0; T IB/ if 1 � p <1, and in
C 0.Œ0; T �IB/ if p D1.

Introducing the piecewise linear and piecewise constant extensions of time discrete
functions ¹anºN�nD0:

a� .�; t / WD
t � tn�1

�
an.�/C

tn � t

�
an�1.�/ for t 2 Œtn�1; tn�; n 2 ¹1; : : : ; N�º;

a�.�; t / WD an�1.�/ for t 2 .tn�1; tn�; n 2 ¹1; : : : ; N�º;

aC.�; t / WD an.�/ for t 2 .tn�1; tn�; n 2 ¹1; : : : ; N�º:

Then, multiplying (3.13a), (3.13b), and (3.15) by � and summing from nD 1; : : : ;N� , we
obtain for arbitrary test functions  h; ‚h 2 L2.0; T I �h/ and vh 2 L2.0; T I�h;0/ that

0 D

Z
�T

�
@t'

�
h C

qC
h
W 0.'�

h
/

Q.'�
h
/
C .�C

h
� �c/p.'

�
h /
�
 h Cr'

C

h
� r h dxdt; (3.30a)

0 D

Z
�T

�
@t�

�
h � p.'

�
h /@t'

�
h

�
‚h Cr�

C

h
� r‚h dxdt; (3.30b)

0 D

Z
�T

�
IhŒC.'Ch /�E.u

C

h
/ � Ih

�
C.'C

h
/..�C

h
� �0h / �m.'

C

h
//I
��
W E.vh/ dxdt:

(3.30c)

Note that for t 2 .tn�1; tn�, we have the relations

a� .t/ � a�.t/ D
t � tn�1

�
.an � an�1/;

aC.t/ � a� .t/ D
tn � t

�
.an � an�1/;
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and together with Lemma 3.1, we deduce that (using a�;˙ to denote ¹a� ; a�; aCº and a˙

to denote ¹a�; aCº)

k'
�;˙
h
k
2
L1.0;T IH1/

C kq
�;˙
h
k
2
L1.0;T / C k�

�;˙
h
k
2
L1.0;T IH1/

C ku
�;˙
h
k
2
L1.0;T IH1/

C k@t'
�
hk
2
L2.0;T IL2/

C k@t�
�
hk
2
L2.0;T IL2/

C k�h'
˙
h k

2
L2.0;T IL2/

C k�h�
˙
h k

2
L2.0;T IL2/

C k'
�;˙
h
k
2
L2.0;T IW 1;r /

C k�
�;˙
h
k
2
L2.0;T IW 1;r /

C
1

�
k'�h � '

˙
h k

2
L2.0;T IH1/

C
1

�
k� �h � �

˙
h k

2
L2.0;T IH1/

C
1

�
kq�h � q

˙
h k

2
L2.0;T /

� C; (3.31)

while (3.20) translates to

k'
�;˙
h
.� C l�/ � '

�;˙
h
.�/k2

L2.0;T�l� IL2/

C k�
�;˙
h
.� C l�/ � �

�;˙
h
.�/k2

L2.0;T�l� IL2/
� Cl�

(3.32)

for any l 2 ¹1; : : : ; N�º.

Proposition 3.2 (Compactness). There exists a non-relabelled subsequence .h;�/!.0;0/
and functions ', � , u, and q satisfying

'; � 2 L1.0; T IH 1.�// \ L2.0; T IH 2
n .�// \H

1.0; T IL2.�//;

u 2 L1.0; T IX.�//; q 2 L1.0; T /

such that for f 2 ¹'; �º and any r 2 Œ2;1/; s 2 Œ0; 1/ if d D 2 and r 2 Œ2; 6�; s 2 Œ0; 1
2
/

if d D 3,

f
�;˙
h
! f weakly* in L1.0; T IH 1.�//; (3.33a)

f
�;˙
h
! f weakly in L2.0; T IW 1;r .�//; (3.33b)

@tf
�
h ! @tf weakly in L2.0; T IL2.�//; (3.33c)

u
�;˙
h
! u weakly in L2.0; T IH 1.�//; (3.33d)

q
�;˙
h
! q weakly* in L1.0; T /; (3.33e)

�hf
�;˙
h
! �f weakly in L2.0; T IL2.�//; (3.33f)

f
�;˙
h
! f strongly in L2.0; T IC 0;s.x�// and a.e. in �T ; (3.33g)

Q.'
�;˙
h
/! Q.'/ strongly in L2.0; T /; (3.33h)

with
'.0/ D '0 and �.0/ D �0:
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Proof. We first note from (3.31) that

k'�h � '
˙
h kL2.0;T IH1/ C k�

�
h � �

˙
h kL2.0;T IH1/ C kq

�
h � q

˙
h kL2.0;T / � C

p
�;

which shows that the limits of '�;˙ (likewise for � �;˙
h

and q�;˙
h

) coincide as .h; �/ !
.0; 0/. Then, (3.33a), (3.33b), (3.33c), (3.33d), and (3.33e) are consequences of the uni-
form estimate (3.31) and standard compactness results in Bochner spaces. For (3.33f), we
argue similarly as in [4, Lemma 3.1], where for � 2 L2.0; T IH 2.�//, it holds thatZ T

0

.�h'
�;˙
h
; �/ dt

D

Z T

0

.�h'
�;˙
h
; .1 � Ih/.�// dtC

Z T

0

.�h'
�;˙
h
; Ih.�// dt

D

Z T

0

.�h'
�;˙
h
; .1 � Ih/.�// dtC

Z T

0

.r'
�;˙
h
;rŒ.1 � Ih/.�/�/ dt

�

Z T

0

.r'
�;˙
h
;r�/ dt

DW A1 C A2 �

Z T

0

.r'
�;˙
h
;r�/ dt:

By (3.5) and the uniform bound (3.31) on �h'
�;˙
h

, we see that

jA1j � Ck.1 � Ih/.�/kL2.0;T IL2/ � Ch
2
k�kL2.0;T IH2/;

jA2j � CkrŒ.1 � Ih/.�/�kL2.0;T IL2/ � Chk�kL2.0;T IH2/:

Together with (3.33a), we deduce thatZ T

0

.�h'
�;˙
h
; �/ dt! �

Z T

0

.r';r�/ dt

along a non-relabelled subsequence .h; �/! .0;0/. By the denseness ofL2.0;T IH 2.�//

in L2.0; T IH 1.�//, we infer that �' 2 L2.0; T IL2.�//, and by elliptic regularity on
bounded convex domains [21, Theorem 2.4.2.7] we obtain that ' 2 L2.0; T IH 2

n .�//. An
analogous argument shows � 2 L2.0; T IH 2

n .�//.
With the compact embeddingW 1;r .�/bC 0;s.x�/ for s 2 Œ0; 1/ if d D 2 and s 2 Œ0; 1

2
/

if d D 3, substituting X D W 1;r .�/, B D C 0;s.x�/ and Y D L2.�/ in (3.28), we obtain
the strong convergence of '�

h
(resp., � �

h
) to ' (resp., � ) in L2.0; T IC 0;s.x�//. On the other

hand, the estimate (3.32) fulfils the requirement (3.29) for '˙
h

(resp., �˙
h

). This establishes
the strong convergence for '˙

h
(resp., �˙

h
) to ' (resp., � ) in L2.0; T IC 0;s.x�//, whence

along a further non-relabelled subsequence we also have the a.e. convergence in �T , i.e.,
(3.33g).
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Lastly, by (A3) there exists a positive constant C such that

jW.s1/ �W.s2/j � C.1C js1j
3
C js2j

3/js1 � s2j 8s1; s2 2 R; (3.34)

jW 0.s1/ �W
0.s2/j � C.1C js1j

2
C js2j

2/js1 � s2j 8s1; s2 2 R: (3.35)

Then, by the definition (3.2) of Q, it is easy to see that

jQ.'
�;˙
h
/ �Q.'/j �

kW.'
�;˙
h
/ �W.'/kL1

Q.'
�;˙
h
/CQ.'/

� C
�
1C k'

�;˙
h
k
3
H1 C k'k

3
H1

�
k'

�;˙
h
� 'k � Ck'

�;˙
h
� 'k:

(3.36)
Invoking the strong convergence of '�;˙

h
to ' in L2.0; T IL2.�//, we deduce the strong

convergence of Q.'�;˙
h
/ to Q.'/ in L2.0; T /, i.e., (3.33h).

For the attainment of initial conditions, let � 2 C 1.Œ0; T �IH 1.�// with �.T / D 0 be
arbitrary. Then, by integrating by parts in time,

.'0h; �.0// D �

Z T

0

.@t'
�
h; �/ dt �

Z T

0

.'�h; @t�/ dt:

Passing to the limit .h; �/! .0; 0/ we deduce with the help of (3.33a) and (3.33c) that

.'0; �.0// D �

Z T

0

.@t'; �/ dt �
Z T

0

.'; @t�/ dt D .'.0/; �.0//;

where for the right-most equality we applied integration by parts in time. This leads to the
identification '.0/ D '0. The identification �.0/ D �0 can be achieved analogously.

Theorem 3.1 (Convergence). Under assumptions (A1)–(A7), the functions ', � , u and
q obtained from Proposition 3.2 is a weak solution to (1.1) in the sense of (3.1) holding
for arbitrary  ;‚ 2 L2.0; T IH 1.�// and v 2 L2.0; T IX.�//. Moreover, we have the
identification

q.t/ D Q.'.t// D
� Z

�

W.'.t// dxC 1
�1=2

holding for a.e. t 2 .0; T / with q.0/ D Q.'0/.

Proof. Let � 2 C 0.Œ0; T �IC1.x�// be an arbitrary test function. We choose  h D Ih.�/ in
(3.30a) and ‚h D Ih.�/ in (3.30b), keeping in mind that Ih.�/! � in L2.0; T IH 1.�//.
Then, for the time derivative term in (3.30a), we haveˇ̌̌ Z T

0

.@t'
�
h; Ih.�// � .@t'; �/ dt

ˇ̌̌
�

ˇ̌̌ Z T

0

.@t'
�
h; Ih.�/ � �/ dt

ˇ̌̌
C

ˇ̌̌ Z T

0

.@t'
�
h � @t'; �/ dt

ˇ̌̌
! 0 as .h; �/! .0; 0/
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due to the uniform estimate (3.31), the weak convergence of @t'�h in L2.0; T IL2.�//,
and (3.5). For the coupled term in (3.30a), we have similarlyˇ̌̌ Z T

0

..�C
h
� �c/p.'

�
h /; Ih.�// � ..� � �c/p.'/; �/ dt

ˇ̌̌
�

ˇ̌̌ Z T

0

..�C
h
� �c/p.'

�
h /; Ih.�/ � �/ dt

ˇ̌̌
C

ˇ̌̌ Z T

0

..�C
h
� �c/p.'

�
h / � ..� � �c/p.'//; �/ dt

ˇ̌̌
DW B1 C B2 ! 0 as .h; �/! .0; 0/:

Indeed, invoking (3.5), the boundedness of p and (3.31), we see that

B1 � Ck�
C

h
� �ckL2.0;T IL2/kIh.�/ � �kL2.Q/ � Ch

2
k�kL2.0;T IH2/;

and so,B1! 0 as .h;�/! .0;0/. On the other hand, using the boundedness and continuity
of p, the a.e. convergence of '�

h
to ', invoking the dominated convergence theorem, we

infer that p.'�
h
/ ! p.'/ strongly in L2.0; T IL2.�//. Hence, together with the weak

convergence of �C
h

in L2.0; T IL2.�//, we deduce that B2! 0 as .h; �/! .0; 0/. Then,
via a similar argument, for (3.30b), we infer that as .h; �/! .0; 0/,Z T

0

.@t�
�
h � p.'

�
h /@t'

�
h; Ih.�// dt!

Z T

0

.@t� � p.'/@t'; �/ dt:

Meanwhile, for the gradient term in (3.30a), it holds thatˇ̌̌ Z T

0

.r'C
h
;rIh.�// � .r';r�/ dt

ˇ̌̌
�

ˇ̌̌ Z T

0

.r'C
h
;r.Ih.�/ � �// dt

ˇ̌̌
C

ˇ̌̌ Z T

0

.r'C
h
� r';r�/ dt

ˇ̌̌
� Chkr'C

h
kL2.0;T IL2/k�kL2.0;T IH2/ C

ˇ̌̌ Z T

0

.r'C
h
� r';r�/ dt

ˇ̌̌
! 0;

as .h; �/! .0; 0/. The gradient term in (3.30b) can be treated analogously.
Turning now to (3.30c), where for � 2 C 0.Œ0; T �IC 1.x�;Rd // we choose vh D Ih.�/.

Then, using the boundedness and continuity of C.�/, the a.e. convergence of 'C
h

to ' and
the dominated convergence theorem, we have

kC.'C
h
/ �C.'/kLs.0;T ILs/ ! 0 as .h; �/! .0; 0/ for any s <1: (3.37)

By the norm equivalence (3.4), it holds that

kIh.C.'Ch // �C.'/kL2.0;T IL2/

� kIh.C.'Ch / �C.'//kL2.0;T IL2/ C kIh.C.'// �C.'/kL2.0;T IL2/

� CkC.'C
h
/ �C.'/kL2.0;T IL2/ C CkIh.C.'// �C.'/kL2.0;T IL1/

! 0 as .h; �/! .0; 0/;

(3.38)
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where on the right-hand side for the first term we used (3.37), while for the second term
we used the fact that ' 2 L2.0; T IC 0.x�// and the property (3.7). Hence, along a further
non-relabelled subsequence,

Ih.C.'Ch //! C.'/ a.e. in �T as .h; �/! .0; 0/:

Using the boundedness of C.�/ once again and the fact that

Ih.�/! � strongly in L2.0; T IH 1.�;Rd //;

together with

Ih.C.'Ch //E.Ih.�//! C.'/E.�/ a.e. in �T as .h; �/! .0; 0/;

jIh.C.'Ch //E.Ih.�//j � C jE.Ih.�//j a.e. in �T for all h; � > 0;

C jE.Ih.�//j ! C jE.�/j strongly in L2.0; T IL2.�// as .h; �/! .0; 0/;

by the generalised Lebesgue dominated convergence theorem, we deduce that

Ih.C.'Ch //E.Ih.�//! C.'h/E.�/ strongly in L2.0; T IL2.�// as .h; �/! .0; 0/:

Together with the weak convergence E.uC
h
/ to E.u/ in L2.0; T IL2.�//, we haveZ

�T

�
IhŒC.'Ch /�E.u

C

h
/;E.Ih.�//

�
dxdt!

Z
�T

�
C.'/E.u/;E.�/

�
dxdt

as .h; �/ ! .0; 0/. Similarly, by the boundedness and continuity of m.�/, upon replac-
ing C.'C

h
/ with C.'C

h
/m.'C

h
/ in (3.38), we immediately infer that Ih.C.'Ch /m.'

C

h
//!

C.'/m.'/ strongly in L2.0; T IL2.�//, andZ
�T

�
IhŒC.'Ch /m.'

C

h
/I�;E.Ih.�//

�
dxdt!

Z
�T

�
C.'/m.'/I;E.�/

�
dxdt

as .h; �/! .0; 0/. On the other hand, employing (3.37), the uniform estimate (3.31) for
�C
h

, the strong convergence of �C
h

to � inL2.�T /, and (3.11) for �0
h
DRh.�0/, we deduce

that

kC.'C
h
/.�C

h
� �0h / �C.'/.� � �0/kL2.0;T IL2/

� Ck�C
h
� �0hkL4.0;T IL4/kC.'

C

h
/ �C.'/kL4.0;T IL4/

C Ck.�C
h
� �0h / � .� � �0/kL2.0;T IL2/

! 0 as .h; �/! .0; 0/:

Then, analogous to (3.38), we have for Y C
h
WD C.'C

h
/.�C

h
� �0

h
/ and Y WD C.'/.� � �0/,

kIh.C.'Ch /.�
C

h
� �0h // �C.'/.� � �0/kL2.0;T IL2/

� kIh.Y Ch � Y /kL2.0;T IL2/ C kIh.Y / � Y kL2.0;T IL2/
� CkY C

h
� Y kL2.0;T IL2/ C CkIh.Y / � Y kL2.0;T IL1/

! 0 as .h; �/! .0; 0/;
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on account of the fact that ';� 2L2.0;T IC 0.x�// and �0 2H 2
n .�/� C

0.x�/. This yieldsZ
�T

�
IhŒC.'Ch /ˇ.�

C

h
� �0h /I�;E.Ih.�//

�
dxdt!

Z
�T

�
C.'/ˇ.� � �0/I;E.�/

�
dxdt

as .h; �/! .0; 0/. It remains to consider the term involving the scalar auxiliary variable
in (3.30a), where we haveˇ̌̌ Z T

0

qC
h

Q.'�
h
/
.W 0.'�h /; Ih.�// �

q

Q.'/
.W 0.'/; �/ dt

ˇ̌̌
�

ˇ̌̌ Z T

0

qC
h

Q.'�
h
/
.W 0.'�h /; Ih.�/ � �/ dt

ˇ̌̌
C

ˇ̌̌ Z T

0

qC
h

� 1

Q.'�
h
/
�

1

Q.'/

�
.W 0.'�h /; �/ dt

ˇ̌̌
C

ˇ̌̌ Z T

0

qC
h

Q.'/
.W 0.'�h / �W

0.'/; �/ dt
ˇ̌̌
C

ˇ̌̌ Z T

0

.qC
h
� q/

.W 0.'/; �/

Q.'/
dt
ˇ̌̌

DW D1 CD2 CD3 CD4:

Using the uniform estimate (3.31), lower bound on Q, interpolation property (3.5), and
the fact thatW 0.'�

h
/ is bounded uniformly in L1.0; T IL2.�// deduced from the growth

assumption (A3) on W 0, we infer that

D1 � CkW
0.'�h /kL1.0;T IL2/kIh.�/ � �kL2.0;T IL2/ � Ch

2
! 0;

as .h; �/! .0; 0/. On the other hand, using (3.34) and (3.35), and the uniform estimate
(3.31), we infer that

kW.'�h / �W.'/kL1 � C
�
1C k'�h k

3
H1 C k'k

3
H1

�
k'�h � 'k � Ck'

�
h � 'k; (3.39)

kW 0.'�h / �W
0.'/k

L
6
5
� C

�
1C k'�h k

2
L6
C k'k2

L6

�
k'�h � 'k � Ck'

�
h � 'k; (3.40)

and so, we obtain the estimates

D2 � CkW
0.'�h /kL1.0;T IL2/k�kL2.0;T IL2/kW.'

�
h / �W.'/kL2.0;T IL1/

� Ck'�h � 'kL2.0;T IL2/;

D3 � CkW
0.'�h / �W

0.'/k
L2.0;T IL

6
5 /
k�kL2.0;T IH1/

� Ck'�h � 'kL2.0;T IL2/;

which in turn implies D2; D3 ! 0 as .h; �/! .0; 0/ thanks to the strong convergence
(3.33g). Lastly, D4 ! 0 as .h; �/! .0; 0/ due to the weak* convergence (3.33e) and the
fact that .W

0.'/;�/
Q.'/

2 L1.0; T /. Hence, we haveZ T

0

qC
h

Q.'�
h
/
.W 0.'�h /; Ih.�// dt!

Z T

0

q

Q.'/
.W 0.'/; �/ dt

as .h; �/! .0; 0/.
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Passing to the limit .h; �/! .0; 0/ in (3.30) and using a standard density argument
shows that the limit functions .'; �; q; u/ satisfy (3.3a)–(3.3d) for a.e. t 2 .0; T / and for
arbitrary test functions  2H 1.�/ and v 2 X.�/. The identification q.t/ DQ.'.t// for
a.e. t 2 .0; T / can be adapted analogously from [26, 30], so that (3.3a) is equivalent to
(3.1a) and the limit functions .'; �;u/ is a weak solution to (1.1) in the sense of (3.1).

4. Well-posedness and regularity of solutions

Theorem 3.1 provides the existence of weak solutions for the model (1.1). In this section,
we complete the well-posedness of (1.1) by establishing continuous dependence on initial
data and derive higher regularity for the solutions.

Theorem 4.1 (Continuous dependence on initial data). Let ¹.'i ; �i ;ui /ºiD1;2 denote weak
solutions to (1.1) in the sense of (3.1) corresponding to initial conditions ¹.'0;i ; �0;i /ºiD1;2
respectively. Then, there exists a positive constant C independent of the differences O' WD
'1 � '2, O� WD �1 � �2 and Ou D u1 � u2 such that

sup
t2.0;T �

�
k O'k2

H1 C k
O�k2
�
C

Z T

0

k O'k2
H2 C k

O�k2
H1 C k@t O'k

2
C k Ouk2

H1 dt

� C
�
k O'0k

2
H1 C k

O�0k
2
�
:

Consequently, the solution to (1.1) is unique.

Proof. We first consider the equation for O', which reads in strong form as

@t O' �� O' C p.'1/ O� D �.W
0.'1/ �W

0.'2// � .�2 � �c/.p.'1/ � p.'2//:

Testing this with O', @t O' and �� O', then using the boundedness and Lipschitz continuity
of p, as well as the inequality (3.35) for W 0 yield

1

2

d

dt
k O'k2 C kr O'k2 � C

�
k O'k C k�2kL1k O'k C k O�k C k'ik

2
L1k O'k

�
k O'k; (4.1)

k@t O'k
2
C
1

2

d

dt
kr O'k2 C .p.'1/ O�; @t O'/ � C

�
1C k�2kL1 C k'ik

2
L1

�
k O'kk@t O'k;

(4.2)

1

2

d

dt
kr O'k2 C k� O'k2 � C

�
1C k�2kL1 C k'ik

2
L1

�
k O'kk� O'k C Ck O�kk� O'k: (4.3)

Next, testing the equation for O� , which reads in strong form

@t O� � p.'1/@t O' � .p.'1/ � p.'2//@t'2 �� O� D 0

with O� yields

1

2

d

dt
k O�k2 � .p.'1/ O�; @t O'/C kr O�k

2
� Ck@t'2kk O'kL6k

O�kL3 : (4.4)
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Invoking the following Gagliardo–Nirenberg inequalities in three dimensions

kf kL1 � Ckf k
1
2

H2kf k
1
2

L6
; kf kL3 � Ckrf k

1
2

L2
kf k

1
2

L2
C Ckf kL2 ;

then upon adding (4.2) and (4.4), noting a cancellation, we arrive at

1

2

d

dt

�
kr O'k2 C k O�k2

�
C kr O�k2 C k@t O'k

2

� C
�
1C k�2k

1
2

H2 C k'ikH2

�
k O'kk@t O'k C Ck@t'2kk O'kH1

�
k O�k

1
2 kr O�k

1
2 C k O�k

�
�
1

2
k@t O'k

2
C
1

2
kr O�k2 C C

�
1C k�2kH2 C k@t'2k

2
C k'ik

2
H2

��
k O'k2

H1 C k
O�k2
�
:

(4.5)
To (4.5) we add (4.1), and after adjusting the constant prefactors, we find that

d

dt

�
k O'k2

H1 C k
O�k2
�
C kr O�k2 C k@t O'k

2

� C
�
1C k�2kH2 C k@t'2k

2
C k'ik

2
H2

��
k O'k2

H1 C k
O�k2
�
;

where by invoking the regularity of solutions listed in Proposition 3.2 and the application
of Grönwall’s inequality leads to the claim

sup
t2.0;T �

�
k O'.t/k2

H1 C k
O�.t/k2

�
C

Z T

0

kr O�k2 C k@t O'k
2 dt � C

�
k O'0k

2
H1 C k

O�0k
2
�
:

This furnishes the uniqueness of ' and � . Returning to (4.3), we see that

1

2

d

dt
kr O'k2 C

1

2
k� O'k2 � C

�
1C k�2kH2 C k'ik

2
H2

��
k O'k2 C k O�k2

�
;

whence by Grönwall’s inequality, as well as elliptic regularity, we deduce thatZ T

0

k O'k2
H2 dt � C

�
k O'0k

2
H1 C k

O�0k
2
�
: (4.6)

Turning now to the equation for Ou, which reads as

0 D

Z
�

C.'1/.E. Ou/ � .m.'1/ �m.'2//I C O�I/ W E.v/ dx

C

Z
�

.C.'1/ �C.'2//.E.u2/ �m.'2/I C .�2 � �0/I/ W E.v/ dx

for arbitrary v 2 L2.0; T IX.�//. Choosing v D Ou, then invoking the regularities stated
in Proposition 3.2 and applying lower bounds in (A6), as well as the Lipschitz continuity
of C and m, lead to

kE. Ou/k2 � C
�
k O'k2 C k O�k2

�
C C

�
1C k�2k

2
C kE.u2/k

2
�
k O'k2L1

� C
�
k O'k2 C k O�k2 C k O'kH2k O'kH1

�
� C

�
k O'k2

H2 C k
O�k2
�
:
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By Korn’s inequality and (4.6), we deduce thatZ T

0

k Ouk2
H1 dt � C

�
k O'0k

2
H1 C k

O�0k
2
�
:

This also provides uniqueness for u.

Theorem 4.2 (Higher regularity). Suppose, in addition to (A1)–(A7), it holds that

.A8/ the initial conditions satisfy '0; �0 2 H 3.�/.

Then, the weak solution .'; �;u/ to (1.1) satisfies the further regularities

'; � 2 L1.0; T IH 2
n .�/ \W

2;6.�//;

@t'; @t� 2 L
2.0; T IH 2.�// \ L1.0; T IH 1.�//;

@t t'; @t t� 2 L
2.0; T IL2.�//;

u 2 W 1;4.0; T IX.�//:

Proof. We present formal calculations that can be made rigorous with a Faedo–Galerkin
approximation.

First estimate. Taking the time derivative of (1.1a):

@t t' D �@t' �W
00.'/@t' � p.'/@t� � .� � �c/p

0.'/@t'; (4.7)

and testing with @t' yield

1

2

d

dt
k@t'k

2
C kr@t'k

2
� c3k@t'k

2

� �.p.'/@t'; @t�/ � ..� � �c/p
0.'/; j@t'j

2/;

(4.8)

where we have used the lower bound forW 00 in (A3). Then, testing (1.1b) with @t� yields

k@t�k
2
C
1

2

d

dt
kr�k2 D .p.'/@t'; @t�/;

and when added to (4.8) we note a cancellation and obtain

1

2

d

dt

�
k@t'k

2
C kr�k2

�
C kr@t'k

2
C k@t�k

2

� Ck@t'k
2
� ..� � �c/p

0.'/; j@t'j
2/ � Ck@t'k

2
C C

�
1C k�k

�
k@t'k

2
L4

� Ck@t'k
2
C Ckr@t'k

3
2 k@t'k

1
2 �

1

2
kr@t'k

2
C Ck@t'k

2;

where we have employed the boundedness of � in L1.0; T IL2.�// and the Gagliardo–
Nirenberg inequality for three dimensions

kf kL4 � Ckrf k
3
4 kf k

1
4 C Ckf k:
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From (1.1a), we see that

k@t'.0/k � C
�
k'0kH2 C k�0k C 1

�
;

and so, by Grönwall’s inequality, we deduce that

k@t'kL1.0;T IL2/ C k@t'kL2.0;T IH1/ � C: (4.9)

Second estimate. Returning now to (1.1a) and by a comparison of terms, we see that

k�'k � C
�
1C k@t'k C kW

0.'/k C k�k
�
:

Using the boundedness of ' in L1.0; T IH 1.�// and (A3) implies W 0.'/ is bounded in
L1.0; T IL2.�//, and hence, we deduce that �' is bounded in L1.0; T IL2.�//. Then,
elliptic regularity allows us to infer that

k'kL1.0;T IH2/ � C: (4.10)

Third estimate. Next, taking the time derivative of (1.1b)

@t t� ��@t� D p
0.'/j@t'j

2
C p.'/@t t'; (4.11)

and testing with @t� yield

1

2

d

dt
k@t�k

2
C kr@t�k

2
D .p0.'/j@t'j

2; @t�/C .p.'/@t t'; @t�/:

On the other hand, testing the time derivative of (1.1a) with @t t' lead to

k@t t'k
2
C
1

2

d

dt
kr@t'k

2
D �.W 00.'/@t' C p.'/@t� C .� � �c/p

0.'/@t'; @t t'/:

Summing the above identities and noting a cancellation leads to

1

2

d

dt

�
k@t�k

2
C kr@t'k

2
�
C k@t t'k

2
C kr@t�k

2

� Ck@t'k
2
L3
k@t�kL3 C CkW

00.'/@t'kk@t t'k C C.1C k�kL1/k@t'kk@t t'k

� Ck@t'kH1

�
k@t�k

1
2 kr@t�k

1
2 C k@t�k

�
C C

�
1C kW 00.'/@t'k

2
C k�k2L1

�
C
1

2
k@t t'k

2;

where we have used the Gagliardo–Nirenberg inequality and the boundedness of @t' in
L1.0; T IL2.�//. From (A3), we see that W 00 has quadratic polynomial growth, and so,Z

�

jW 00.'/@t'j
2 dx � C

Z
�

.1C j'j4/j@t'j
2 dx � C.1C k'k4L1/k@t'k

2
� C
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thanks to (4.9) and (4.10). Hence, we obtain

d

dt

�
k@t�k

2
C kr@t'k

2
�
C k@t t'k

2
C kr@t�k

2

� C
�
1C k�kH2

�
C C

�
1C k@t'k

2
H1

�
k@t�k

2:

From (1.1a) and (1.1b), we see that

k@t�.0/k � Ck@t'.0/k C Ck��0k � C
�
k�0kH2 C k'0kH2

�
;

kr@t'.0/k � C
�
k'0kH3 C k�0kH1 C 1

�
:

Hence, by a Grönwall argument, we deduce that

k@t�kL1.0;T IL2/ C kr@t'kL1.0IT IL2/ C k@t t'kL2.0;T IL2/ C kr@t�kL2.0;T IL2/ � C:

(4.12)

Then, a comparison of terms in (1.1b) leads to

k��k � C
�
k@t�k C k@t'k

�
;

which combining with (4.12) implies

k�kL1.0;T IH2/ � C:

Fourth estimate. We test (4.11) with @t t� to obtain

k@t t�k C
d

dt

1

2
kr@t�k

2
� Ck@t'k

2
L4
k@t t�k C Ck@t t'kk@t t�k

�
1

2
k@t t�k

2
C Ck@t t'k

2
C Ck@t'k

4
H1 :

Invoking Grönwall’s inequality, the estimate (4.12) and the fact that

kr@t�.0/k � C.k�0kH3 C k'0kH3 C 1/;

we infer
kr@t�kL1.0;T IL2/ C k@t t�kL2.0;T IL2/ � C:

With @t t'; @t t� 2 L2.0; T IL2.�//, when we revisit (4.7) and (4.11), we find that

k�@t'k � C
�
k@t t'k C kW

00.'/kL4k@t'kL4 C k@t�k C k� � �ckL1k@t'k
�
;

k�@t�k � C
�
k@t t�k C k@t'k

2
L4
C k@t t'k

�
:

Application of elliptic regularity then yields

k@t'kL2.0;T IH2/ C k@t�kL2.0;T IH2/ � C:
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Fifth estimate. We now take the time derivative of (1.1c), then testing with ut and apply-
ing the coercivity of C, boundedness of C0 and m0, as well as the regularities @t'; @t� 2
L1.0; T IH 1.�// \ L2.0; T IH 2.�// lead to

kE.ut /k
2
� C

�
1C k@t'k

2
C k@t�k

2
C k�k2 C k@t'k

2
L1kE.u/k

2
�

� C
�
1C k@t'kH2k@t'kH1

�
:

Hence, squaring both sides and invoking Korn’s inequality yield

kutkL4.0;T IX.�// � C:

Sixth estimate. By expressing (1.1a) and (1.1b) as elliptic systems with right-hand side
bounded in L1.0; T IL6.�//, we deduce that�',�� are bounded in L1.0; T IL6.�//,
and so, from elliptic regularity theory, we have

k'kL1.0;T IW 2;6/ C k�kL1.0;T IW 2;6/ � C:

5. Error estimates

5.1. Time discretization error estimates

For continuous-in-time functions, we use the notation vk.�/ WD v.tk ; �/. Furthermore, we
introduce the notation

‰.s/ D
W 0.s/

Q.s/

with pk WD p.'k/ and ‰k WD ‰.'k/. Then, we rewrite (3.3a)–(3.3c) (with all parameters
set to unity) for the exact solution .'; �; q/ from Theorem 3.1 evaluated at time tn:

.'n � 'n�1;  /C �.r'n;r /C �..�n � �c/p
n�1;  /C �qn.‰n�1;  /

D �.�@t'
n
� .'n � 'n�1/;  / � �..�n � �c/.p

n
� pn�1/;  /

� �qn.‰n �‰n�1;  /

DW .Xn�1' ;  /; (5.1a)

.�n � �n�1; ‚/C �.r�n;r‚/ � .pn�1.'n � 'n�1/;‚/

D �.�@t�
n
� .�n � �n�1/;‚/ � .pn�1.'n � 'n�1 � �@t'

n/;‚/

� .Œpn�1 � pn��@t'
n; ‚/;

DW .Xn�1� ; ‚/; (5.1b)

qn � qn�1 �
1

2
.‰n�1; .'n � 'n�1//

D �.�@tq
n
� .qn � qn�1// �

1

2
.‰n�1; 'n � 'n�1 � �@t'

n/

�
1

2
.‰n�1 �‰n; �@t'

n/;

DW Xn�1q ; (5.1c)

for arbitrary  ;‚ 2 H 1.�/.
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Lemma 5.1. Under (A1)–(A8), there exists a positive constant C independent of � and
n 2 ¹1; : : : ; N�º such that

kXn�1' k � C�3=2
�
k@t t'kL2.tn�1;tnIL2/ C k@t'kL2.tn�1;tnIL2/

�
;

kXn�1� k� C�3=2
�
k@t t�kL2.tn�1;tnIL2/ C k@t t'kL2.tn�1;tnIL2/

�
C C�7=4k@t'kL4.tn�1;tnIL4/;

jXn�1q j � C�3=2
�
kq00kL2.tn�1;tn/ C k@t t'kL2.tn�1;tnIL2/

�
:

Consequently,

N�X
nD1

1

�

�
kXn�1' k

2
C kXn�1� k

2
C jXn�1q j

2
�
� C�2: (5.2)

Proof. First, using the relation q.t/ D Q.'.t//, by a direct calculation

q00 D
1

2Q.'/

Z
�

W 00.'/.@t'/
2
CW 0.'/@t t' dx �

1

4Q3.'/

� Z
�

W 0.'/@t' dx
�2

for a.e. t 2 .0; T /. Invoking the lower bound on Q and employing the regularity for ' 2
L1.0;T IH 2

n .�//\W
1;1.0;T IH 1.�//\H 2.0;T IL2.�//, we see that q 2H 2.0;T /,

since Z T

0

jq00j2 dt � C
Z T

0

k@t'k
4
L4
C k@t t'k

2 dt � C: (5.3)

Next, using Taylor’s theorem with integral remainder

f .tn/ � f .tn�1/ � �@tf .t
n/ D

Z tn

tn�1
.tn � s/@t tf .s/ ds;

we see that for T n�1
f
WD f .tn/ � f .tn�1/ � �@tf .t

n/, where f 2 ¹'; �; qº, it holds that

kT n�1' k
2
� C�3k@t t'k

2
L2.tn�1;tnIL2/

; kT n�1� k
2
� C�3k@t t�k

2
L2.tn�1;tnIL2/

;

jT n�1q j
2
� C�3kq00k2

L2.tn�1;tn/
:

(5.4)

A short calculation shows

‰k�1 �‰k D
W 0.'k�1/ �W 0.'k/

Q.'k�1/
C

W 0.'k/ŒQ2.'k/ �Q2.'k�1/�

.Q.'k/CQ.'k�1//Q.'k/Q.'k�1/
: (5.5)

From the definition of Q and using (3.34), we see

jQ2.'k/ �Q2.'k�1/j � CkW.'k/ �W.'k�1/kL1

� C.1C k'kk3
L6
C k'k�1k3

L6
/k'k � 'k�1k

� Ck'k � 'k�1k � C�1=2k@t'kL2.tk�1;tk IL2/;
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while invoking the Gagliardo–Nirenberg inequality and (3.35), we have

kW 0.'k/ �W 0.'k�1/k � C.1C k'kk2L1 C k'
k�1
k
2
L1/k'

k
� 'k�1k

� Ck'k � 'k�1k � C�1=2k@t'kL2.tk�1;tk IL2/:

Hence, we obtain

k‰k �‰k�1k � C�1=2k@t'kL2.tk�1;tk IL2/: (5.6)

Likewise, using the Lipschitz continuity of p D P 0, we also have for r 2 Œ2;1/,

kpk � pk�1kLr � Ck'
k
� 'k�1kLr � C�

r�1
r k@t'kLr .tk�1;tk ILr /: (5.7)

Then, from (5.1a)–(5.1c), we infer that

kXn�1' k � kT n�1' k C �k�n � �ckL1kp
n
� pn�1k C � jqnjk‰n �‰n�1k

� C�3=2
�
k@t t'kL2.tn�1;tnIL2/ C k@t'kL2.tn�1;tnIL2/

�
;

kXn�1� k � kT n�1� k C kpn�1kL1kT
n�1
' k C �kpn�1 � pnkL4k@t'

n
kL4

� C�3=2
�
k@t t�kL2.tn�1;tnIL2/ C k@t t'kL2.tn�1;tnIL2/

�
C C�7=4k@t'kL4.tn�1;tnIL4/;

jXn�1q j � jT n�1q j C CkW 0.'n/kkT n�1' k C C�k‰n�1 �‰nkk@t'
n
k

� C�3=2
�
kq00kL2.tn�1;tn/ C k@t t'kL2.tn�1;tnIL2/

�
:

To derive the estimate (5.2) it suffices to square both sides of the above inequalities, divide
by � and sum from n D 1 to n D N� . For the term involving �7=4, we used the Cauchy–
Schwarz inequality to see that

N�X
nD1

�5=2k@t'k
2
L4.tn�1;tnIL4/

� �5=2k@t'k
2
L4.0;T IL4/

p
N� � C�

2:

5.2. Optimal error estimates for the Caginalp system

We introduce the discrete norm

kf kl1.H s/ WD sup
1�n�N�

kf .tn/kH s ;

with the convention that H 0.�/ D L2.�/.

Theorem 5.1 (Error estimates for the Caginalp system). Let .'h; �h; qh/ be the fully dis-
crete solution to (3.13), and let .'; �; q D Q.'// be the unique solution to (1.1) with the
regularity stated in Theorem 4.2. Then, there exists a positive constant C independent of
h and � such that

k' � 'hkl1.L2/ C k� � �hkl1.L2/ C jq � qhj � C.h
2
C �/;

kr.' � 'h/kl1.L2/ C kr.� � �h/kl1.L2/ � C.hC �/:
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Proof. We recall the Ritz projection Rh W H 1.�/ ! �h and define for f 2 ¹'; �º the
decomposition of the error f k

h
.�/ � f .tk ; �/ into

�kf WD f
k
h �Rhf .t

kC1/; �kf WD f .t
kC1/ �Rhf .t

kC1/

so that
f kh � f .t

k/ D �kf � �
k
f ;

while we define en WD qn
h
� qn. Furthermore, we use the notation

pkh WD p.'
k
h / and ‰kh WD ‰.'

k
h /:

Then, taking the difference between the fully discrete scheme (3.13) for .'n
h
; �n
h
; qn
h
/ and

the system (5.1) for .'n; �n; qn/, we find that for arbitrary  h; ‚h 2 �h,

0 D .�n' � �
n
' � �

n�1
' C �n�1' ;  h/C �.r�

n
' ;r h/C .X

n�1
' ;  h/

C �en.‰n�1h ;  h/C �q
n.‰n�1h �‰n�1;  h/

C �..�n� � �
n
� /p

n�1
h ;  h/C �..�

n
� �c/.p

n�1
h � pn�1/;  h/; (5.8a)

0 D .�n� � �
n
� � �

n�1
� C �n�1� ; ‚h/C �.r�

n
� ;r‚h/C .X

n�1
� ; ‚h/

� .pn�1h .�n' � �
n
' � �

n�1
' C �n�1' /;‚h/

� ..pn�1h � pn�1/.'n � 'n�1/;‚h/; (5.8b)

0 D en � en�1 �
1

2
.‰n�1h ; �n' � �

n
' � �

n�1
' C �n�1' /CXn�1q

�
1

2
.‰n�1h �‰n�1; 'n � 'n�1/: (5.8c)

Induction argument. Similar to [11] we invoke a mathematical induction on

k'khkL1 � k'kL1.0;T IL1/ C 1 (5.9)

for all k D 1; : : : ; N� . For n D 0, we use (3.12) and '0
h
D Rh'0 to deduce the existence

of h0 > 0 such that
k'0hkL1 � k'kL1.0;T IL1/ C 1

valid for all h < h0. We now assume (5.9) holds for kD 0;1; : : : ;M � 1, and the induction
argument for k DM for arbitrary M 2 ¹1; : : : ; N�º is established once we demonstrate

max
1�k�M

k�k'k
2
H1 C �

MX
nD1

k�h�
n
'k
2
� C.h4 C �2/ (5.10)

for a positive constant C independent of M .
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First estimate. Choosing hD 1
�
.�n' � �

n�1
' / in (5.8a),‚hD �n� in (5.8b) and multiplying

(5.8c) by 2en, upon summing and noting a cancellation of terms involving .‰n�1
h

; �n' �

�n�1' /en and .pn�1
h

.�n' � �
n�1
' /; �n

�
/, we obtain

1

2
.kr�n'k

2
C k�n� k

2
C 2jenj2/ �

1

2
.kr�n�1' k

2
C k�n�1� k

2
C 2jen�1j2/

C
1

2
.kr.�n' � �

n�1
' /k2 C k�n� � �

n�1
� k

2
C 2jen � en�1j2/

C �kr�n� k
2
C
1

�
k�n' � �

n�1
' k

2

D J1 C J2 C J3;

(5.11)

where

J1 D �2X
n�1
q en C en.‰n�1h ; �n' � �

n�1
' /C en.‰n�1h �‰n�1; 'n � 'n�1/

� qn.‰n�1h �‰n�1; �n' � �
n�1
' /;

J2 D
�
�n' � �

n�1
' �Xn�1' ;

1

�
.�n' � �

n�1
' /

�
C .pn�1h �n� ; �

n
' � �

n�1
' /

C ..�n � �c/.p
n�1
h � pn�1/; �n' � �

n�1
' /;

J3 D �.X
n�1
� C pn�1h .�n' � �

n�1
' / � .pn�1h � pn�1/.'n � 'n�1/; �n� /:

Let us collect a few useful estimates: using (3.11), we have

k�k'k � Ch
s
k'kkH s ; (5.12)

k�n' � �
n�1
' k � Chsk'n � 'n�1kH s D Chs�1=2k@t'kL2.tn�1;tnIH s/: (5.13)

On the other hand, by the Lipschitz continuity of p D P 0, it holds that

kpn�1h � pn�1kLr � Ck�
n�1
' � �n�1' kLr ; (5.14)

and by an analogous calculation to (5.5) where upon employing (3.34), (3.35), and (5.9):

k‰n�1h �‰n�1k � Ck�n�1' � �n�1' k: (5.15)

Furthermore, we use the fact that @t' 2 L1.0; T IH 1.�// to see that for r 2 Œ2; 6�,

1

�
k'n � 'n�1kLr �

1

�

� Z tn

tn�1
k@t'k

r
Lr dt

�1=r
�
r�1
r � k@t'kL1.0;T IH1/ � C; (5.16)

which would be helpful for estimating the third term of J1 and the last term of J3. Then,
using the regularities q 2L1.0;T /, � 2L1.0;T IH 2.�//, the inductive hypothesis (5.9)
so that k‰n�1

h
k � C , the property p 2W 1;1.R/ leading to the boundedness of pn�1

h
, the

right-hand side of inequality (5.11) can be estimated as follows with the help of (5.14),
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(5.15), and (5.16):

J1 � C
�1=2

�1=2
jXn�1q jjenj C k‰n�1h k

�1=2

�1=2
jenjk�n' � �

n�1
' k

C � jenjk‰n�1h �‰n�1k��1k'n�'n�1kCC
�1=2

�1=2
jqnjk‰n�1h �‰n�1kk�n'��

n�1
' k

� C� jenj2C
C

�
jXn�1q j

2
C
C

�
k�n'��

n�1
' k

2
CC�k�n�1' ��n�1' k

2
C
1

4�
k�n'��

n�1
' k

2;

J2�
1

4�
k�n'��

n�1
' k

2
C
C

�

�
kXn�1' k

2
Ck�n'��

n�1
' k

2
C�2k�n�k

2
C�2k�n�1' ��n�1' k

2
�
;

J3�
�1=2

�1=2
.kXn�1� kCk�n' � �

n�1
' k/k�n� kCC�k�

n
� kL3kk�

n�1
' ��n�1' k��1k'n�'n�1kL6

� C�k�n� k
2
C
�

2
kr�n� k

2
C
C

�
kXn�1� k

2
C
C

�
k�n' � �

n�1
' k

2
C C�k�n�1' � �n�1' k

2:

Recalling the discrete Neumann–Laplacian (3.9), as well as the fact that p0 D P 00 2
L1.R/, we obtain from (5.8a) the estimate

�k�h�
n
'k
2
�
1

�
kXn�1' k

2
C
1

�
k�n' � �

n�1
' k

2
C
1

�
k�n' � �

n�1
' k

2

C C� jenj2 C C�k�n�1' � �n�1' k
2;

which after multiplying by 1
4

we add to (5.11). Then, upon neglecting some non-negative
terms and applying the estimates for J1, J2, and J3, as well as (5.12) and (5.13), we infer
that for any � < 1,

1

2
.kr�n'k

2
C k�n� k

2
C 2jenj2/ �

1

2
.kr�n�1' k

2
C k�n�1� k

2
C 2jen�1j2/

C
�

2
kr�n� k

2
C

1

4�
k�n' � �

n�1
' k

2
C
�

4
k�h�

n
'k
2

� C�
�
jenj2 C k�n� k

2
�
C
C

�

�
jXn�1q j

2
C kXn�1' k

2
C kXn�1� k

2
�
C C�k�n�k

2

C
C

�
k�n' � �

n�1
' k

2
C C�k�n�1' � �n�1' k

2

� C�
�
jenj2 C k�n� k

2
�
C
C

�

�
jXn�1q j

2
C kXn�1' k

2
C kXn�1� k

2
�
C C�h4k�nk2

H2

C Ch4k@t'k
2
L2.tn�1;tnIH2/

C C�k�n�1' k
2
C C�h4k'n�1k2

H2 : (5.17)

Recalling the initialization '0
h
D Rh'0, �0

h
D Rh�0 and q0

h
DQ.'0

h
/ for the fully discrete

scheme (3.13), we see that

kr�0'k � Ch
2
k'0kH3 ; k�0�k � Ch

2
k�0kH2 ;

je0j � Ck'0h � '0k � Ck�
0
'k � Ch

2
k'0kH2 :
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Summing (5.17) from n D 1 to n D k for arbitrary k 2 ¹1; : : : ; M º and applying the
discrete Grönwall inequality and Lemma 5.1 lead to

1

2
.kr�k'k

2
C k�k� k

2
C 2jekj2/C

kX
nD1

��
2
kr�n� k

2
C

1

4�
k�n' � �

n�1
' k

2
C
�

4
k�h�

n
'k
2
�

� C.h4 C �2/: (5.18)

Second estimate. Choosing  h D �n' in (5.8a) gives

1

2
.k�n'k

2
� k�n�1' k

2
C k�n' � �

n�1
' k

2/C �kr�n'k
2

� C�k�n'k
2
C
C

�

�
k�n' � �

n�1
' k

2
C kXn�1' k

2
�

C C�
�
jenj2 C k�n�1' � �n�1' k

2
C k�n� � �

n
�k
2
�

� C�
�
k�n'k

2
C k�n�1' k

2
C jenj2 C k�n� k

2
�
C
C

�

�
k�n' � �

n�1
' k

2
C kXn�1' k

2
�

C C�h4
�
k'n�1k2

H2 C k�
n
k
2
H2

�
:

Summing from nD 1 to nD k for arbitrary k 2 ¹1; : : : ;M º, invoking (5.2), (5.13), (5.18)
and the regularities '; � 2 L1.0; T IH 2.�//, @t' 2 L2.0; T IH 2.�// lead to

k�k'k
2
� Ck�0'k

2
C

kX
nD1

C�k�n'k
2
C C.h4 C �2/ �

kX
nD1

C�k�n'k
2
C C.h4 C �2/:

Then, by the discrete Grönwall inequality, we have

k�k'k
2
� C.h4 C �2/: (5.19)

Third estimate. Choosing ‚h D 1
�
.�n
�
� �n�1

�
/ in (5.8b) gives

1

2

�
kr�n� k

2
� kr�n�1� k

2
C kr.�n� � �

n�1
� /k2

�
C

1

2�
k�n� � �

n�1
� k

2

�
C

�

�
kXn�1� k

2
C k�n� � �

n�1
� k

2
C k�n' � �

n�1
' k

2
C k�n' � �

n�1
' k

2
�

C
C

�
k�n�1' � �n�1' k

2
k'n � 'n�1k2L1

�
C

�
kXn�1� k

2
C
C

�
k�n'��

n�1
' k

2
CCh4

�
k@t'k

2
L2.tn�1;tnIH2/

C k@t�k
2
L2.tn�1;tnIH2/

�
C C.h4 C �2/k@t'k

2
L2.tn�1;tnIL1/

;

where in the above, we have used the estimates

k'n � 'n�1k2L1 � �

Z tn

tn�1
k@t'k

2
L1 dt;

k�n�1' � �n�1' k
2
� Ck�n�1' k

2
C Ck�n�1' k

2
� C.h4 C �2/
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due to (5.12) and (5.19). Summing from n D 1 to n D k for arbitrary k 2 ¹1; : : : ;M º and
using the discrete Grönwall inequality lead to

kr�k� k
2
C �

kX
nD1

k�n� � �
n�1
� k

2
� C.h4 C �2/: (5.20)

Induction step. We proceed similarly as in [11]. If � � h, using the inverse inequality (see,
e.g., [41, Lemma 6.4]) and (5.18)–(5.19), we have

k�M' k
2
L1 � C j log.1=h/jk�M' k

2
H1 � Ch

�1.h4 C �2/ � C.h3 C �/:

On the other hand, if h � � then from (5.18), we infer that

k�h�
k
'k
2
�
1

�

kX
nD1

�k�h�
n
'k
2
� C.h4��1 C �/ � C.h3 C �/;

so that by invoking the interpolation estimate for three spatial dimensions (see, e.g., [17])

k�k'kL1 � Ck�
k
'k

1
4 .k�k'k

2
C k�h�

h
'k
2/

3
8 ;

it holds that

k�k'k
2
L1 � Ck�

k
'k
2
C Ck�k'k

1=2
k�h�

k
'k
3=2
� C.h3 C �/:

Using the Sobolev embedding W 2;6.�/ � W 1;1.�/ and (3.12), we have

k'M �Rh'
M
kL1 � Ch`hk'

M
kW 1;1 ;

and so, we can find constants h1 2 .0; h0/ and �1 > 0 such that for all h < h1, � < �1,

k'Mh � '
M
kL1 � k�

M
' kL1 C k'

M
�Rh'

M
kL1 � C.h

3=2
C �1=2/C Ch`h � 1:

This establishes (5.9) for k DM . Hence, the estimates (5.18)–(5.20) hold for k DM for
all h < h1 and � < �1. On the other hand, if h > h1 or � > �1, then from the stability
estimate (3.19) of Lemma 3.1 it holds that

k�k'k
2
H1 C k�

k
� k
2
H1 C je

k
j
2
� C C C

�
kRh'

k
k
2
H1 C kRh�

k
k
2
H1 C jq

k
j
2
�
� C

with constant C independent of k. In particular, we deduce that

k�k'k
2
H1 C k�

k
� k
2
H1 C je

k
j
2
� C � C.��21 C h

�4
1 /.�

2
C h4/ (5.21)

if � > �1 or h > h1. Combining (5.18)–(5.18) and (5.21), we have that for any � and h,

max
1�k�N�

�
k�k'k

2
H1 C k�

k
� k
2
H1 C je

k
j
2
�
� C.h4 C �2/:
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Then, by (3.11) and the triangle inequality, we have

max
1�k�N�

�
k'kh � '

k
k
2
H1 C k�

k
h � �

k
k
2
H1

�
� C.h4 C �2/C max

1�k�N�

�
k'k �Rh'

k
k
2
H1 C k�

k
�Rh�

k
k
2
H1

�
� C.h2 C �2/;

as well as

max
1�k�N�

�
k'kh � '

k
k
2
C k�kh � �

k
k
2
C jqkh � q

k
j
2
�

� C.h4 C �2/C max
1�k�N�

�
k'k �Rh'

k
k
2
C k�k �Rh�

k
k
2
�
� C.h4 C �2/:

Remark 5.1. We are not able to derive estimates for the error u � uh due to the lack of
H 2-spatial regularity for the displacement u. This is despite (1.1c) being a linear elasticity
system with homogeneous Dirichlet conditions, as the spatially varying elasticity tensor
C.'/ complicates the regularity arguments for elliptic systems.

6. Numerical simulations

In this section, we provide numerical simulations of the model (1.1) in a square domain
�D .0; 1/2 discretized into uniform meshes of size h. All simulations are performed until
T D 1:0, employing a uniform time step size � . For the readers’ convenience, we state the
formulae for the nonlinear functions and relevant parameters below:

W.'/ D
1

4
.'2 � 1/2; W 0.'/ D '.'2 � 1/;

P.'/ D
1

2
.1 � '/; p.'/ D P 0.'/ D �

1

2
;

C.'/ D
�
.1 � k.'//� C k.'/

�
C.1/; k.'/ D

´
0 if � 1 � ' � 'gel;
'�'gel
1�'gel

if 'gel � ' � 1;

C.1/
ijmn D

E�

.1C �/.1 � 2�/
ıij ımn C

E

2.1C �/
.ıimıjn C ıinıjm/;

Ec.'/ D m.'/I; m.'/ D �.1 � P.'// D
�

2
.1C '/:

Our implementation is facilitated by the Python packages NumPy and SciPy, and a sample
of the codes including the experiment settings can be found on GitHub1.

We first validate the convergence rates stated in Theorem 5.1. As it is difficult to obtain
the exact solutions of the model (1.1) due to the nonlinearities and the complex coupling

1httpsW//github.com/Laphet/sav-stereolithography

https://github.com/Laphet/sav-stereolithography
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Figure 2. Errors of the phase field ': (a) the x-axis corresponds to the mesh size h; (b) the x-axis
corresponds to the time step size � .

between the phase field, temperature, and elastic variables, we thus introduce source terms
to (1.1a)–(1.1c) such that

'.x; y; t/ D cos t cos.2�x/ cos.�y/;

�.x; y; t/ D sin t cos.�x/ cos.2�y/;

u.x; y; t/ D

"
sin t sin.�x/ sin.2�y/

cos t sin.2�x/ sin.�y/

#
;

(6.1)

is our exact solution that fulfils the boundary conditions. The model parameters are set as

˛ D 1:0; � D 1:0; " D 0:1;  D 1:0; �c D 0:0; ı D 1:2;

� D 0:01; 'gel D 0:5; E D 1:0; � D 0:3; � D 1:0; ˇ D 0:5:

We conducted two groups of experiments to validate the convergence rates with respect to
the mesh size h and the time step size � , respectively. In the first group, we set � to the val-
ues of 1=100 and 1=200, while varying the mesh size h from 1=8, 1=16, 1=32, 1=64, and
1=128. In the second group, we set h to the values of 1=100 and 1=200, while varying the
time step size � from 1=10, 1=20, 1=40, 1=80, and 1=160. To simplify the implementation,
we calculated the errors by comparing the numerical solutions with the nodal interpola-
tions of (6.1) in difference norms, rather than the exact solutions. The results are shown in
Figures 2, 3, and 4, where k � k0 denotes the l1.L2/ norm and j � j1 represents the l1.H 1/

seminorm.
We observe from Figure 2 that the convergence rates of the phase field are well

matched with the theoretical results, i.e., O.h2 C �/ for the l1.L2/ norm and O.hC �/
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Figure 3. Errors of the temperature field � : (a) the x-axis corresponds to the mesh size h; (b) the
x-axis corresponds to the time step size � .
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Figure 4. Errors of the displacement field u: (a) the x-axis corresponds to the mesh size h; (b) the
x-axis corresponds to the time step size � .

for the l1.H 1/ seminorm. The gradual leveling out of the error curves in subplot (a)
can be attributed to the fact that as h! 0 the time discretization error eventually domi-
nates the total discretization error due to the time step � being fixed. From the subplot (a)
in Figure 3, we notice a O.h2/ superconvergence phenomenon for the temperature field,
which may attributed to the structure of (1.1b) that only consists of a homogeneous ellip-
tic operator and uniform meshes are utilized. However, the theoretical convergence rate
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Figure 5. In the fixed heat source simulation, the four subplots display the phase field ' at t D 0:01,
0:05, 0:10, and 0:20.

1:41:21:0

1:0

y

0:0

0:0 x 1:0
� at t D 0:01

1:7
5

1:5
0

1:2
5

1:0
0

1:0

y

0:0

0:0 x 1:0
� at t D 0:05

1:61:41:21:0

1:0

y

0:0

0:0 x 1:0
� at t D 0:10

1:61:41:21:0

1:0

y

0:0

0:0 x 1:0
� at t D 0:20

Figure 6. In the fixed heat source simulation, the four subplots display the temperature field � at
t D 0:01, 0:05, 0:10, and 0:20.

O.h2 C �/ is still satisfied. Even if we did not derive a theoretical convergence rate esti-
mate for the displacement field, nevertheless, based on Figure 4, we can conjecture that
the optimal rates in l1.L2/ and l1.H 1/ are both O.hC �/. Here, we cannot see an opti-
mal rate O.h2 C �/ for l1.L2/ as with the phase field and temperature variables, which
we attributed to the presence of the nonsmooth elasticity tensor C.'/ in the elasticity
equation (1.1c).

We then simulate the gel-sol convention process induced by laser irradiation that
serves as an external heat source, which enters the temperature equation (1.1b) as

I.x; y; t/ D Im exp
�
�
.x � x�.t//2 C .y � y�.t//2

w20

�
;

with the laser center .x�.t/; y�.t// moves along a path to reflect the typical 3D print-
ing process, Im represents the maximum intensity, and w0 controls the width of the heat
source. In the following simulations we set the parameters for the heat source as

Im D 4:0 � 10
4; w0 D 0:015:
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Figure 7. In the fixed heat source simulation, the four subplots in the first/second row display the
first/second component of the displacement field at t D 0:01, 0:05, 0:10, and 0:20, respectively.

As for the other parameters of the model, we choose the following values:

˛ D 0:5; � D 1:0; " D 5:0 � 10�3;

 D 4:0 � 102; �c D 1:0; ı D 1:0 � 102;

� D 10�6; 'gel D 0:5; E D 104;

� D 0:35; � D 103; ˇ D 5:0 � 102:

For the initial conditions, we set

�.x; y; 0/ D �1:0; �.x; y; 0/ D 0:0;

implying that the material is initially in a fully sol phase and in thermal equilibrium. We
take the mesh size h D 1=400 to resolve the interfacial layer between the sol and gel
phases, and the time step size � D 1=100.

In the first simulation, we consider a fixed heat source located at the center of the
domain, i.e.,

.x�.t/; y�.t// � .0:5; 0:5/ for all t 2 Œ0; 1:0�:

The plots for the phase field ', the temperature field � , and the displacement field u
at t D 0:01, 0:05, 0:10, and 0:20 are displayed in Figures 5, 6, and 7, respectively. We
observe that the phase field ' evolves from the sol phase ¹' D �1º to the gel phase
¹' D 1º, and the temperature field � increases around the heat source. The displacement
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Figure 8. In the moving heat source simulation, the four subplots display the phase field ' at t D
0:34, 0:50, 0:67, and 1:00.
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Figure 9. In the moving heat source simulation, the four subplots display the temperature field � at
t D 0:34, 0:50, 0:67, and 1:00.

field u is also affected by the temperature field, and the material is deformed due to the
thermal expansion and shrinkage strains. Notably, the deformation is more pronounced at
the boundary of the heat source, aligning with the physical phenomenon of laser-induced
curing. Ultimately, the physical fields reach their steady states seemingly around t D 0:20.

In the second simulation, we introduce a moving heat source. The movement of the
heat source is as follows: for t 2 Œ0; 1=3�, .x�; y�/ moves from .1=4; 5=6/ to .1=2; 1=2/
at a constant speed; for t 2 .1=3; 2=3�, .x�; y�/ moves from .1=2; 1=6/ to .1=2; 1=2/
at a constant speed; and for t 2 .2=3; 1�, .x�; y�/ moves from .3=4; 5=6/ to .1=2; 1=2/
at a constant speed. The trajectory of the heat source visually resembles the letter “Y”.
Figures 8, 9, and 10 display the phase field ', temperature field � , and displacement field
u, respectively, at time instances t D 0:34, 0:50, 0:67, and 1:0. From Figure 8, we can
observe that as the heat source moves, gel forms along the path of the heat source, and
gel cannot return to the sol phase when the heat source moves away, resulting in the
gradual formation of the letter “Y”. In contrast, the behavior of the temperature field � ,
as depicted in Figure 9, is distinct. We observe an immediate dispersion of � once the
heat source moves away, and the maximum temperature is consistently located at the heat
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Figure 10. In the moving heat source simulation, the four subplots in the first/second row display
the displacement field ux /uy at t D 0:34, 0:50, 0:67, and 1:00, respectively.

source. Similarly, Figure 10 demonstrates that mechanical effects concentrate around the
gel phase.

7. Conclusion

In this contribution, we proposed a new mathematical model for the physical processes
occurring in stereolithography based on a Caginalp phase field system with mechani-
cal effects. A fully discrete unconditionally stable numerical scheme based on the finite
element method for spatial discretization and the scalar auxiliary variable approach for
temporal discretization is proposed and analyzed. We established existence, uniqueness
and convergence of fully discrete solutions, as well as error estimates against the exact
solution to the Caginalp submodel. The implementation of the discrete system is effi-
cient as advancing to the next time iteration requires only solving linear systems, and the
numerical simulations presented support our theoretical findings, as well as reproducing
the expected behaviour during the polymerization processes in stereolithography.
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