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Seit A. M. Legendre, C. F. Gauss und A. L. Cauchy weiss man, dass jede stetige Lösung
f WRn ! R der Cauchy Funktionalgleichung

f .x C y/ � f .x/ � f .y/ D 0; x; y 2 Rn;

die Form x 7! a � x, x 2 Rn, mit einem Vektor a 2 Rn hat. Verzichtet man auf die
Regularitätsforderung „stetig“, so gibt es viele andere Lösungen, die man unter Be-
nutzung einer Hamel Basis erhalten kann. Ähnlich kann man nach allen Lösungen der
polynomialen Cauchy Funktionalgleichung

f .x C y/ � f .x/ � f .y/ D p.x; y/; x; y 2 R;

fragen, wo p ein gegebenes Polynom in x; y ist. Man wird sicherlich erwarten, dass
unter gewissen Regularitätsannahmen für eine Lösung f , diese wieder ein Polynom
ist. Diesem Themenbereich widmen sich die Autoren des vorliegenden Artikels aus-
führlich. Präsentiert wird auch eine notwendige und hinreichende Bedingung, wann es
stetige Lösungen gibt. Zum Beispiel gibt es keine stetige Lösung, wenn man p.x;y/D
x2y2 betrachtet. Es bleibt die Frage, für welche Polynome p.x; y/ es überhaupt Lö-
sungen gibt. Dies ist etwa nicht der Fall für p.x;y/D q.x/C q.y/mit einem Polynom
q in einer Variable, dessen Grad mindestens eins ist.
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1 Introduction

One of the first functional equations considered is the Cauchy functional equation

f .x C y/ D f .x/C f .y/ .x; y;2 R/; (1.1)

whose only continuous solutions are the linear functions x 7! ax for some a 2 R (see
e.g. [6]). In other words, continuous solutions f to the equation

f .x C y/ � f .x/ � f .y/ D 0 .x; y;2 R/

are automatically polynomials. In this note, we discuss a more general question, namely,
what happens if the function 0 on the right side is substituted by a polynomial p.x; y/.

Let xD .x1; : : : ; xn/ 2 Rn and let RŒx� denote the ring of all real-valued polynomials.
Considered are the following functional equations (which we call the polynomial Cauchy
functional equations):

f .x C y/ � f .x/ � f .y/ D p.x; y/;

where p.x; y/ 2 RŒx; y�, or

p.x; y/ 2 RŒx� for each fixed y 2 R and p.x; y/ 2 RŒy� for each fixed x 2 R:

It will be shown in Section 2 that, under each of these conditions, assuming f is
continuous or approximately continuous, f itself is a polynomial1. In Section 3, we relax
the condition of continuity in different ways, and we discuss the set of all solutions. The
latter will be derived in a very simple way from the result on the structure of all solutions
to the classical Cauchy functional equation (1.1), which are commonly called the additive
functions. Finally, in Section 4, we show that any continuous solution f to

f .x C y/ � f .x/ 2 RŒx� for y 2 Y

is already a polynomial whenever the set Y contains two y’s with irrational quotient, a best
possible result.

2 Polynomial Cauchy functional equations

To start with, we first consider functions which are infinitely often differentiable on R, as
in this case, we can give a proof which is entirely different from the one in case where f
is merely continuous. To this end, we define2 the degree of the zero polynomial to be 0.
Recall that N WD ¹0; 1; 2; : : :º.

Proposition 2.1. Let f 2 C1.R/. Suppose that p.x; y/ WD f .x C y/ � f .x/ � f .y/ 2
RŒx; y�. Then f is a polynomial.

1For the case of continuous functions, this was submitted by us as a solution to [12, Problem 12326], but
was not chosen for publication.

2This avoids discussing subcases in our formulas below.
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Proof. Write f .x C y/ � f .x/ DW pd.y/.x/, where d.y/ is the degree of the polynomial
x 7! p.x; y/. As the set D WD ¹d.y/ W y 2 Rº � N is countable, there must exist d 2 D
and uncountably many y 2 R, say y 2 Y � R, such that d.y/ D d for y 2 Y .

Differentiating d C 1 times gives 0, so for all y 2 Y and x 2 R,

f .dC1/.x C y/ D f .dC1/.x/ DW H.x/:

ThusH is a periodic function with period y. Note thatH is independent of y 2 Y . Hence
there exist uncountably many periods forH . A non-constant continuous function, though,
cannot have uncountably many periods (see [2]). Consequently, H D f .dC1/ is constant,
and so f is a polynomial of degree less than or equal to d C 1.

Theorem 2.2. Let f WR! R be continuous. If, for each variable x and y separately, the
function p.x; y/ WD f .x C y/ � f .x/ � f .y/ is a polynomial, then f is a polynomial3.

Proof. First we note that the assumption “p. � ; y/ and p.x; � / are polynomials in their
variables separately” implies that p.x; y/ itself is a polynomial, so p 2 RŒx; y� (see [1] or
[4, Corollary 5.3.4]).

Case 1: f is differentiable on R. Write

p.x; y/ D

nX
i;jD0

ai;jx
iyj

with symmetrical coefficients and a0;0 D �f .0/ (the sum being finite of course). If we
take y D 0, then for all x,

�f .0/ D f .x C 0/ � f .x/ � f .0/ D a0;0 C

nX
iD1

ai;0x
i :

Hence ai;0 D 0 for all i � 1. By symmetry, we also have a0;j D 0 for all j � 1. Thus we
have only coefficients ai;j for i; j � 1. Consequently,

f .x C y/ � f .x/ � .f .y/ � f .0///

y
D

nX
i;jD1

ai;jx
iyj�1:

As f is assumed to be differentiable, we may take y ! 0 and get

f 0.x/ � f 0.0/ D

nX
iD1

ai;1x
i :

This implies that f 0 is continuous. Integration yields

f .x/ � f .0/ � xf 0.0/ D

nX
iD1

ai;1

xiC1

i C 1
: (2.1)

Thus f is a polynomial.

3Due to the symmetry, the assumption of the theorem could as well be x 7! f .xC y/� f .x/ is a polynomial
for all y.
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Case 2: f 2 C.R/. Let F.x/ WD
R x

0
f .t/ dt be a primitive of f . Then, with

G.x; y/ WD F.x C y/ � F.x/ � F.y/;

we have

G.x; y/ D

Z xCy

0

f .t/ dt �

Z x

0

f .t/ dt �

Z y

0

f .t/ dt

D
tDyCs

Z x

�y

f .y C s/ ds �

Z x

0

f .t/ dt �

Z y

0

f .t/ dt

D

Z 0

�y

f .y C s/ ds C

Z x

0

�
f .y C s/ � f .s/

�
ds �

Z y

0

f .t/ dt

D
tDyCs

Z y

0

f .t/ dt C

Z x

0

�
f .y C s/ � f .s/

�
ds �

Z y

0

f .t/ dt

D

Z x

0

p.y; s/ ds C f .y/x;

which is a polynomial in x. Again, by symmetry, and the Carroll argument (see [1]), G is
a polynomial. Hence, by Case 1, F is a polynomial and so is f D F 0.

For completeness, let us mention that a related result to Theorem 2.2 appears in [7,
Lemma 2.5] (restricting the degree of the polynomials), and that was the base for [12,
Problem 12326]. We extend that result in Section 4.

Next we present a nice result we found on Mathematics Stack Exchange [15], and
which yields the possibility to deduce Theorem 2.2 immediately from Proposition 2.1.

Proposition 2.3. Let f be a continuous solution to

f .x C y/ � f .x/ � f .y/ 2 RŒx; y�:

Then f 2 C1.R/.

Proof. Suppose that

f .x C y/ � f .x/ � f .y/ DW p.x; y/; f 2 C.R/: (2.2)

Consider the smooth kernel

k.x/ D

´
0 if jxj � 1;
exp

�
�

1
1�jxj2

�
if jxj < 1;

and the function � D k=
R

R k.x/ dx. The convolution function F WD f � � given by

F.x/ WD

Z
R
f .x � y/�.y/ dy

is well defined and C1.R/ (see e.g. [8, p. 186]). Since, by (2.2),

f .x � y/�.y/ D f .x/�.y/C f .�y/�.y/C p.x;�y/�.y/;
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we obtain that

F.x/ D f .x/

Z
R
�.y/ dy C

Z
R
f .�y/�.y/ dy C

Z
R
p.x;�y/�.y/ dy:

Hence
f .x/ D F.x/ � C C g.x/;

where C is a constant and g 2 C1.R/. We conclude that f 2 C1.R/.

An analysis of the proof of Theorem 2.2 shows that the next assertion holds, too, since
“approximately continuous functions” admit primitives (see [5, Theorem 2.4.1]). Recall
that f WR! R is approximately continuous at x0 if, for every " > 0, the set

¹x 2 R W jf .x/ � f .x0/j < "º

has density 1 at x0 (see [5, Definition 2.3.1]). A very nice feature of these “approximately
continuous functions” is that a function f WR! R is measurable if and only if it is almost
everywhere4 approximately continuous (see [5, Theorem 2.3.13]).

Proposition 2.4. Suppose that f WR! R is everywhere approximately continuous and
locally bounded, and that f satisfies the polynomial Cauchy functional equation. Then f
is a polynomial.

Proof. Just re-use Case 2 in the proof of Theorem 2.2 and the comment preceding the
statement of the present proposition on the existence of primitives.

3 A discussion on all solutions and further refinements
on the presumed “smoothness” of the underlying class

Next we discuss the set of all solutions in case the polynomial Cauchy functional equation
admits at least one continuous solution. Since5 the operator T WRR ! RR2

given by

T .f /.x; y/ D f .x C y/ � f .x/ � f .y/

is linear, the structure of the set � of solutions to the inhomogeneous equation Tf D q has
the canonical form � D f0 C kerT , where f0 is a special solution satisfying Tf0 D q. In
our present situation, this reads as follows.

Proposition 3.1. Let p.x; y/ 2 RŒx; y�. Suppose that the equation

f .x C y/ � f .x/ � f .y/ D p.x; y/

has a continuous solution. Then the set of all solutions f WR! R to the equation is given
by ¹p0 C h W h 2 Cº, where C is the set of all additive functions (the so called Cauchy
functions) and where p0 is a special (polynomial) solution.

4Abbreviated in the sequel by a.e.
5Recall that Y X denotes the set of all functions from X to Y .
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Proof. If f WR! R and g 2 C.R/ satisfy the equation, then with h WD f � g, we get that

h.x C y/ � h.x/ � h.y/ D p.x; y/ � p.x; y/ D 0:

Hence h is a solution to the classical Cauchy functional equation, that is, h is additive.
By Theorem 2.2, g is a polynomial, say g DW p0. Hence f D p0 C h, with h 2 C. The
converse is obvious.

Corollary 3.2. Let p.x; y/ 2 RŒx; y�. The set of continuous solutions f to the equation

f .x C y/ � f .x/ � f .y/ D p.x; y/

is either empty or is given by
¹p0 C c id W c 2 Rº;

where id.x/ D x is the identity function and where p0 is a special (polynomial) solution.

Proof. This follows from Proposition 3.1 and the fact that any continuous additive function
h has the form h.x/ D cx for some c 2 R (see [6]).

Next we discuss under which conditions that are weaker than continuity a solution to
the polynomial Cauchy equation is still a polynomial.

Proposition 3.3. Let p.x; y/ 2 RŒx; y�. Suppose that the equation

f .x C y/ � f .x/ � f .y/ D p.x; y/

has a continuous solution p0 (necessarily a polynomial) and let f WR! R be any other
solution. Then, under each of the following conditions, f is a polynomial:

(1) f is continuous at some point,

(2) f is bounded on some interval,

(3) the graph ¹.x; f .x// W x 2 Rº is not dense in R2,

(4) f is measurable.

Proof. This follows from Proposition 3.1 and the facts (given e.g. in [6]) on the structure of
the non-linear solution to c.xC y/D c.x/C c.y/. In fact, suppose that f is a discontinu-
ous solution to f .xC y/� f .x/� f .y/D p.x;y/. Then h WD f � p0 is a discontinuous
additive function. Hence its graph is dense in R2 (see [6, p. 306] and [3]). As p0 is con-
tinuous, the graph of f itself is dense in R2, contradicting assumptions (3), (2) and (1).
Hence, f is continuous, and so f is a polynomial by Theorem 2.2. Now suppose that f
is measurable. By Proposition 3.1, f D p0 C c, where c is an additive function, which is
measurable, too. By a theorem due to Fréchet, c is continuous (see [6, p. 241], or the proofs
below). Hence f is continuous, and so, again, f is a polynomial by Theorem 2.2.

An nice proof of Fréchet’s result goes as follows6.

6We do not know the original reference, but the proof is mentioned on Mathematics Stack Exchange [16].
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Suppose that c is a Lebesgue measurable additive real-valued function (defined every-
where). Note that c.0/ D 0. Consider the function7 u.x/ WD eic.x/. Then u is measurable
since it is the left composition of a continuous function with a measurable one (see e.g. [10,
Theorem 1.7, p. 10]). Moreover, juj D 1 on R. Since c is additive, u.x C y/ D u.x/u.y/.
Choose a bounded measurable set E � R of finite measure such that

R
E
u.x/dx ¤ 0 (this

is possible since u is not a.e. the zero function; just use [10, Theorem 1.39, p. 30] applied
to X D Œ0; 1�). Note that Z

E

u.x C y/ dx D u.y/

Z
E

u.x/ dx: (3.1)

We claim that
lim

y!0

Z
E

u.x C y/ dx D

Z
E

u.x/ dx: (3.2)

In fact, since E C Œ�1; 1� is bounded, there is a compact interval I with E C Œ�1; 1� � I .
Now put

Qu.x/ D

´
u.x/ if x 2 I;
0 if x 2 R n I:

Then Qu 2 L1.R/ (as it has compact support), and for jyj � 1,ˇ̌̌̌Z
E

u.x C y/ dx �

Z
E

u.x/ dx

ˇ̌̌̌
�

Z
E

ju.x C y/ � u.x/j dx

D

Z
E

j Qu.x C y/ � Qu.x/j dx

�

Z
R
j Qu.x C y/ � Qu.x/j dx

D k Qu. � C y/ � Quk1 ! 0 as y ! 0;

where the latter assertion is a classical result in the theory of the space L1.R/ (see [11,
p. 74])8

Consequently, by combining (3.2) and (3.1), limy!0 u.y/ D 1 D u.0/. Hence u is
continuous9 at 0. Thus the cluster set of c at 0 is contained in the set ¹2k� W k 2 Zº, and
so the graph of c cannot be dense in R2. Hence, as already mentioned, c is continuous
on R.

Another proof, without integration theory, but based on the Steinhaus theorem [13] from
measure theory, runs as follows. Let c be an everywhere defined Lebesgue measurable

7Since c itself may neither be locally bounded, nor locally L1, we must introduce an auxiliary function u
which allows us to integrate.

8Note that this convergence in the norm implies that, for every sequence .yn/! 0, there is a subsequence
.ynk

/ such that u.x C ynk
/! u.x/ for almost every x (see [8, p. 1484]). It seems, though, that we do not have

that a.e. u.x C y/! u.x/ as y ! 0.
9Attention: we cannot immediately deduce that c is continuous at 0; just consider Qc.x/ D 2� if x > 0,

Qc.x/ D �2� if x < 0 and Qc.0/ D 0. Then u D ei Qc � 1.
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additive real-valued function. We claim that c is continuous at 0. In fact, there existsN 2N
such that

E WD ¹x 2 Œ�N;N � W jc.x/j � N º

has positive measure. Then, by Steinhaus’s theorem, there is r > 0 such that Œ�r; r� �
E �E. Given " > 0, choosem 2N with 2N=m< " and let jxj< r=m. Then xm 2E �E,
that is, xm D a � b for a; b 2 E. Hence

jc.mx/j � jc.a/j C jc.b/j � 2N:

Since c is Q-linear,

jc.x/j D
1

m
jc.mx/j �

2N

m
< ":

Proposition 3.3 shows in particular that the non-continuous solutions to the polynomial
Cauchy equation are very wild functions (provided one continuous solution exists). Recall
that the class of non-continuous additive functions can only be shown to exist with the
help of the axiom of choice by using so called Hamel bases (Q-vector space basis for R
viewed as a vector space over Q). See [6].

Next we give a necessary and sufficient condition for the existence of continuous solu-
tions to f .x C y/ � f .x/ � f .y/ D q.x; y/. Obviously, the symmetry of q.x; y/ with
respect to x and y is a necessary condition.

Proposition 3.4. Let q 2 RŒx; y�. Consider the polynomial functional equation

f .x C y/ � f .x/ � f .y/ D q.x; y/: (3.3)

Then (3.3) has a continuous solution if and only if

q.x; y/ D

nX
jD0

aj Œ.x C y/
j
� xj

� yj � (3.4)

for some aj 2 R and n 2 N D ¹0; 1; 2; : : : º. A solution is given by

p0.x/ WD

nX
jD0

ajx
j : (3.5)

Note that, for n � 1, the degree of the polynomial x 7! q.x; y/ is at most n � 1.

Proof. It is straightforward to check that p0 is a solution. Now let f 2 C.R/ be a solution
for (3.3). By Theorem 2.2, we know that f is a polynomial, say

f .x/ D

nX
jD0

ajx
j :

Then

q.x; y/ D f .x C y/ � f .x/ � f .y/ D

nX
jD0

aj Œ.x C y/
j
� xj

� yj �:
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Remark 3.5. Are formulas (3.5) and (2.1) compatible with each other? Let us have a look:

q.x; y/ D

nX
jD0

aj Œ.x C y/
j
� xj

� yj � D �a0 C

nX
jD2

aj

j�1X
kD1

�
j

k

�
xj�kyk

DW

n�1X
i;jD0

aijx
iyj :

In view of formula (2.1), it suffices to calculate the coefficients ai;1. Putting k D 1, these
can be determined from the sum

nX
jD2

aj

�
j

1

�
xj�1

D

nX
jD2

jajx
j�1
D

n�1X
iD1

.i C 1/aiC1x
i :

We conclude that ai;1 D .i C 1/aiC1. Consequently, the polynomial solutions f (modulo
the linear term) satisfy

f .x/ D a0 C

nX
jD2

ajx
j
D �a00 C

n�1X
iD1

ai;1

i C 1
xiC1

D �a00 C

nX
jD2

aj�1;1

j
xj :

We finish this section with the following natural question.

Problem 3.6. Do there exist symmetric polynomials q 2 RŒx; y� not of this form (3.4),
but for which (3.3) nevertheless has a solution, necessarily non-continuous? For instance,
what happens for q.x; y/ D x2y2?

Note that if q.x; y/D p.x/C p.y/ for a polynomial p of degree at least one, then the
equation f .x C y/ � f .x/ � f .y/ D p.x/C p.y/ has no solution. Just take y D 0.

4 Further refinements: Just two y’s with irrational quotient
are needed

The following result is a special case of a result that was mentioned (without proof) by
the editorial board of the problem session in [12] and is due to Omran Kouba. The proof
below is ours and generalizes the one of Proposition 2.1.

Proposition 4.1. Let f 2 C1.R/ satisfy the following conditions:10

p.x; yj /W x 7! f .x C yj / � f .x/ � f .yj / is a polynomial

for two real numbers yj (j D 1; 2), linearly independent in the Q vector space QR of R
over Q. Then f is a polynomial.

10Of course, the constant term f .yj / is superfluous.
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Proof. Write f .x C yj / � f .x/ DW pdj
.x/, where dj is the degree of the polynomial

x 7! p.x; yj /. Let d WD max¹d1; d2º. Differentiating d C 1 times gives 0, so for j D 1; 2
and x 2 R,

f .dC1/.x C yj / D f
.dC1/.x/ DW H.x/:

Thus H is a periodic function with periods yj . Note that H is independent of j . Since
a periodic continuous function on R cannot have two periods yj with y1=y2 2 R n Q
(see [2]), H D f .dC1/ is constant, and so f is a polynomial of degree less than or equal
to d C 1.

Next we give a short proof of an extension of [7, Lemma 2.5]. Let PN be the set of
polynomials of degree less than or equal to N (including the zero polynomial).

Proposition 4.2. Fix N 2 N. Let f 2 C.R/ satisfy the following conditions:

x 7! f .x C yj / � f .x/ 2 PN

for two real numbers yj (j D 1; 2), linearly independent in the Q vector space QR of R
over Q. Then f is a polynomial of degree less than N C 1.

Proof. Consider the set

G WD ¹y 2 R W x 7! f .x C y/ � f .x/ 2 PN º:

ThenG is an additive subgroup of R, as with u;v 2G, we also have u� v 2G. Moreover,
y1Z C y2Z � G. Since y1=y2 … Q, we deduce from Kronecker’s theorem [8, Corol-
lary 35.7] that G is dense in R. Now let u 2 R and choose un 2 G with un ! u. Note
that f .x C un/� f .x/ converges locally uniformly11 to f .x C u/� f .x/. As .C.R/; d/
endowed with the topology of local uniform convergence is a complete linear metric space,
its .N C 1/-dimensional subspace PN is closed with respect to local uniform conver-
gence, as it is linear-isomorphic and homeomorphic to RNC1 (see e.g. [9, 1.21, 1.44]).
See also [14] for a different proof immediately adaptable to our topology here. Hence
x 7! f .x C u/ � f .x/ 2 PN . Consequently, G is closed and the denseness of G now
implies that G D R. Hence, by Theorem 2.2, f is a polynomial, which we denote by p0.

By Corollary 3.2, the set of all continuous solutions is given by p0 C c id, c 2 R. By
Proposition 3.4, there is a solution of degree at most N C 1. Hence degf � N C 1.

We conclude with the most general version of our class of results.

Theorem 4.3. Let f 2 C.R/ satisfy the following conditions:

x 7! f .x C yj / � f .x/ 2 RŒx�

for two real numbers yj (j D 1; 2), linearly independent in the Q vector space QR of R
over Q. Then f is a polynomial.

Proof. Let pj .x/ WD f .xC yj /� f .x/ and letN WDmax¹degp1;degp2º. Then pj 2PN .
By Proposition 4.2, f 2 RŒx�.

11This is a consequence of the fact that the function H.x; u/ WD f .x C u/ � f .x/ is continuous on R �R.



Polynomial Cauchy functional equations: A report 107

Let us point out that the condition y1=y2 2 R nQ is of course necessary to obtain the
desired assertion. In fact, let f be the Dirichlet function

f .x/ D

´
0 if x 2 Q;

1 if x 2 R nQ:

Then pW x 7! f .x C y/ � f .x/ D 0 for every rational number y; hence p is the zero-
polynomial, but f is discontinuous (everywhere), so definitely no polynomial.
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