# Short note On an Erdős inscribed triangle inequality revisited

#### Cezar Lupu and Ştefan Spătaru

**Abstract.** In this note, we give a refinement of an inequality of Torrejon between the area of a triangle and that of an inscribed triangle. Our approach is based on using complex numbers and some elementary facts on geometric inequalities.

Dedicated to the memory of Octavian Ganea, a big enthusiast of complex numbers in geometry

### 1 Introduction and statement of the main result

Let us consider a triangle ABC. On each of the sides BC, CA and AB, fix arbitrary points  $A_1$ ,  $B_1$  and  $C_1$ , respectively. As pointed out in [7,9], the Erdős–Debrunner inequality

$$\min\{\operatorname{area}(AC_1B_1), \operatorname{area}(C_1BA_1), \operatorname{area}(B_1AC)\} < \operatorname{area}(A_1B_1C_1)$$
 (1)

is a topic with a long history. Later, Janous [5] generalized inequality (1) by proving

$$\mathcal{M}_{-1}\{\operatorname{area}(AC_1B_1), \operatorname{area}(C_1BA_1), \operatorname{area}(B_1AC)\} \leq \operatorname{area}(A_1B_1C_1),$$

where  $\mathcal{M}_{-1}$  denotes the harmonic mean of three positive numbers. Moreover, Janous formulated a more general question which was extended and solved by Mascioni [7,8]. Using a different method, Frenzen, Ionaşcu and Stănică [4] proved Janous' conjecture independently of Mascioni. Yet a different method was used by Blatter in [2] for his proof of Janous' conjecture.

The purpose of this note is to extend the result of Torrejon [9] regarding the areas of triangles  $A_1B_1C_1$  and ABC when the points  $A_1$ ,  $B_1$ ,  $C_1$  satisfy a certain metric property. Our main result is given by the following.

**Theorem 1.1.** Let ABC be a triangle and let  $A_1$ ,  $B_1$  and  $C_1$  be on BC, CA and AB, respectively, with none of  $A_1$ ,  $B_1$  and  $C_1$  coinciding with a vertex of ABC. If

$$\frac{AB+BA_1}{AC+CA_1} = \frac{BC+CB_1}{AB+AB_1} = \frac{AC+AC_1}{BC+BC_1} = \alpha,$$

then

$$\operatorname{area}(A_1 B_1 C_1) \le \frac{9abc}{4(a+b+c)(a^2+b^2+c^2)} \left( \operatorname{area}(ABC) + s^4 \left( \frac{\alpha-1}{\alpha+1} \right)^2 \operatorname{area}(ABC)^{-1} \right),$$

where s is the semi-perimeter of triangle ABC.

For  $\alpha = 1$ , we obtain ([6])

$$\frac{\operatorname{area}(A_1B_1C_1)}{\operatorname{area}(ABC)} \le \frac{9abc}{4(a+b+c)(a^2+b^2+c^2)}.$$

As the arithmetic-geometric mean inequality shows  $(a + b + c)(a^2 + b^2 + c^2) \ge 9abc$ , Theorem 1.1 implies the result ([9])

$$4\operatorname{area}(A_1B_1C_1) \le \operatorname{area}(ABC) + s^4 \left(\frac{\alpha - 1}{\alpha + 1}\right)^2 \operatorname{area}(ABC)^{-1}.$$

For  $\alpha = 1$ , this inequality reduces to ([1])

$$4 \operatorname{area}(A_1 B_1 C_1) \leq \operatorname{area}(ABC).$$

Our approach in computing the area of the triangle  $A_1B_1C_1$  will be different from the one used by Torrejon in [9]. It is based on complex numbers in the plane.

Recall that the area of a positively oriented triangle ABC whose vertices have affixes  $z_A$ ,  $z_B$  and  $z_C$  is given by

$$\operatorname{area}(ABC) = \frac{1}{2}\operatorname{Im}(\overline{z_A}z_B + \overline{z_B}z_C + \overline{z_C}z_A).$$

### 2 Proof of Theorem 1.1

First of all, we prove the following equality:

$$area(A_1 B_1 C_1) = 2F \cdot \frac{(s-a)(s-b)(s-c) + s^3 \cdot (\frac{\alpha-1}{\alpha+1})^2}{abc},$$

where a, b, c denote the side lengths of triangle ABC and F its area. Let furthermore  $z_P$  be the (complex) affix of an arbitrary point P.

Firstly,  $2s = a + b + c = (AB + AB_1) + (BC + CB_1) = (\alpha + 1)(c + AB_1)$ , and consequently,  $AB_1 = \frac{2s}{\alpha+1} - c$  and

$$CB_1 = CA - AB_1 = b - \frac{2s}{\alpha + 1} + c = 2s - a - \frac{2s}{\alpha + 1} = \frac{2s\alpha}{\alpha + 1} - a.$$

Analogously, we have

$$BC_1 = \frac{2s}{\alpha + 1} - a$$
,  $CA_1 = \frac{2s}{\alpha + 1} - b$ ,  $BA_1 = \frac{2s\alpha}{\alpha + 1} - c$  and  $AC_1 = \frac{2s\alpha}{\alpha + 1} - b$ .

Therefore, the affixes of  $A_1$ ,  $B_1$ , and  $C_1$  are given by

$$z_{A_1} = \frac{\left(\frac{2s}{\alpha+1} - b\right)z_B + \left(\frac{2s\alpha}{\alpha+1} - c\right)z_C}{a},$$

$$z_{B_1} = \frac{\left(\frac{2s}{\alpha+1} - c\right)z_C + \left(\frac{2s\alpha}{\alpha+1} - a\right)z_A}{b},$$

$$z_{C_1} = \frac{\left(\frac{2s}{\alpha+1} - a\right)z_A + \left(\frac{2s\alpha}{\alpha+1} - b\right)z_B}{c},$$

respectively. Before computing the area of triangle  $A_1B_1C_1$ , we note that the expressions  $z_P\overline{z_P}$  and  $z_P\overline{z_Q} + \overline{z_P}z_Q$  are real numbers for arbitrary points P and Q. Therefore,

$$2 \operatorname{area}(A_1 B_1 C_1)$$

$$= \operatorname{Im} \left( \sum_{\operatorname{cyc}} \overline{z_{A_1}} z_{B_1} \right)$$

$$= \operatorname{Im} \left( \sum_{\operatorname{cyc}} \frac{\left( \frac{2s}{\alpha+1} - b \right) \overline{z_B} + \left( \frac{2s\alpha}{\alpha+1} - c \right) \overline{z_C}}{a} \cdot \frac{\left( \frac{2s}{\alpha+1} - c \right) z_C + \left( \frac{2s\alpha}{\alpha+1} - a \right) z_A}{b} \right)$$

$$= \frac{1}{abc} \cdot \operatorname{Im} \left( \sum_{\operatorname{cyc}} \overline{z_B} z_C \left[ c \left( \frac{2s}{\alpha+1} - b \right) \left( \frac{2s}{\alpha+1} - c \right) + b \left( \frac{2s\alpha}{\alpha+1} - c \right) \right] \right)$$

$$+ \frac{1}{abc} \cdot \operatorname{Im} \left( \sum_{\operatorname{cyc}} \overline{z_C} z_B a \left( \frac{2s\alpha}{\alpha+1} - b \right) \left( \frac{2s}{\alpha+1} - c \right) \right)$$

$$= \frac{1}{abc} \cdot \operatorname{Im} \left( \sum_{\operatorname{cyc}} \overline{z_B} z_C \left[ c \left( \frac{2s}{\alpha+1} - b \right) \left( \frac{2s}{\alpha+1} - c \right) + b \left( \frac{2s\alpha}{\alpha+1} - b \right) \left( \frac{2s\alpha}{\alpha+1} - b \right) \right] \right)$$

$$= \frac{1}{abc} \cdot \operatorname{Im} \left( \sum_{\operatorname{cyc}} \overline{z_B} z_C \left[ b \left( \frac{s(1-\alpha)}{\alpha} + s - b \right) \left( \frac{s(1-\alpha)}{\alpha} + s - c \right) + c \left( \frac{s(\alpha-1)}{\alpha} + s - b \right) \left( \frac{s(\alpha-1)}{\alpha} + s - c \right) - a \left( \frac{s(\alpha-1)}{\alpha} + s - b \right) \left( \frac{s(1-\alpha)}{\alpha} + s - c \right) \right] \right)$$

$$= \frac{1}{abc} \cdot \operatorname{Im} \left( \sum_{\operatorname{cyc}} \overline{z_B} z_C \left[ 2(s-a)(s-b)(s-c) + s \cdot \left( \frac{1-\alpha}{\alpha} \right) (ab-ac+ac-ab) + s^2 \cdot \left( \frac{\alpha-1}{\alpha+1} \right)^2 (a+b+c) \right] \right).$$

Now it can be checked without much difficulty that the coefficient of  $\overline{z_B}z_C$  equals

$$2(s-a)(s-b)(s-c) + 2s^3 \cdot \left(\frac{\alpha-1}{\alpha+1}\right)^2.$$

This results in

$$\operatorname{area}(A_1B_1C_1) = \frac{(s-a)(s-b)(s-c) + s^3 \cdot \left(\frac{\alpha-1}{\alpha+1}\right)^2}{abc} \cdot \operatorname{Im}\left(\sum_{c \neq c} \overline{z_B} z_C\right).$$

This and  $\operatorname{Im}(\sum_{\operatorname{cyc}} \overline{z_B} z_C) = 2F$  readily lead to the stated formula for  $\operatorname{area}(A_1 B_1 C_1)$ . Therefore, we get

$$\frac{abc \cdot s}{2} \cdot \operatorname{area}(A_1 B_1 C_1) = F \cdot \left( s(s-a)(s-b)(s-c) + s^4 \cdot \left( \frac{\alpha - 1}{\alpha + 1} \right)^2 \right),$$

that is (via Heron's formula),

$$\frac{abc \cdot s}{2} \cdot \operatorname{area}(A_1 B_1 C_1) = F^3 + s^4 \cdot \left(\frac{\alpha - 1}{\alpha + 1}\right)^2 \cdot F.$$

At this point, we are only left to prove the inequality

$$\frac{sabc}{2} \ge 4F^2 \cdot \frac{(a+b+c)(a^2+b^2+c^2)}{9abc},\tag{2}$$

that is,

$$a^2b^2c^2 \ge 16F^2\frac{a^2+b^2+c^2}{9}.$$

Using abc = 4RF, we get the equivalent inequality

$$9R^2 > a^2 + b^2 + c^2$$

However, this inequality is evident since the distance between the circumcenter O and the centroid G is given by the Leibniz identity  $OG^2 = 9R^2 - (a^2 + b^2 + c^2)$ .

Finally, we conclude

$$F^3 + s^4 \left(\frac{\alpha - 1}{\alpha + 1}\right)^2 F \ge 4F^2 \cdot \frac{(a + b + c)(a^2 + b^2 + c^2)}{9abc} \operatorname{area}(A_1 B_1 C_1),$$

which is equivalent to the inequality of our theorem.

Remark. It is worth noting that inequality (2) is equivalent to

$$F \le \frac{3}{4} \cdot \frac{abc}{\sqrt{a^2 + b^2 + c^2}}$$

and thus improves the result ([3, Item 4.13])

$$F \le \frac{3\sqrt{3}}{4} \cdot \frac{abc}{a+b+c}.$$

## References

- [1] M. Aassila, Problem 1717. Math. Mag. 78 (2005), 158
- [2] C. Blatter, In Dreiecken einbeschriebene Dreiecke. Elem. Math. 63 (2008), no. 1, 18–22 Zbl 1176.51006 MR 2369033
- [3] O. Bottema, R. Ž. Djordjevič, R. R. Janič, D. S. Mitrinovič, and P. M. Vasic, Geometric Inequalities. Wolters-Noordhoff Publishing, Groningen, 1969 Zbl 0174.52401
- [4] C. L. Frenzen, E. J. Ionascu, and P. Stănică, A proof of two conjectures related to the Erdős–Debrunner inequality. *JIPAM. J. Inequal. Pure Appl. Math.* 8 (2007), no. 3, Article 68, 13 Zbl 1198.51009 MR 2345923
- W. Janous, A short note on the Erdős-Debrunner inequality. Elem. Math. 61 (2006), no. 1, 32–35
   Zbl 1135.51017 MR 2209146
- [6] C. Lupu and T. Lupu, Problem 1857. Math. Mag. 83 (2010), 391
- [7] V. Mascioni, On the Erdős–Debrunner inequality. JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 32, 5 Zbl 1048.26014 MR 2320605
- [8] V. Mascioni, An extension of the Erdős-Debrunner inequality to general power means. JIPAM. J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article 67, 11 Zbl 1163.26335 MR 2476646
- [9] R. M. Torrejón, On an Erdős inscribed triangle inequality. Forum Geom. 5 (2005), 137–141
   Zbl 1119.51018 MR 2195743

### Cezar Lupu

Beijing Institute of Mathematical Sciences and Applications (BIMSA) 101408 Beijing
Yau Mathematical Sciences Center (YMSC)
Tsinghua University
100084 Beijing, P. R.China
lupucezar@gmail.com, lupucezar@bimsa.cn

Ştefan Spătaru Harvard University Cambridge, MA-02138, USA sspataru96@gmail.com