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Short note  Trirectangular equable tetrahedra
with integer face areas

Christian Aebi

Abstract. We prove that there are exactly 9 tetrahedra with one solid right angle, all
faces of integral area, whose sum corresponds to the volume of the tetrahedron.

1 Motivation

The Pythagorean triangles 6, 8, 10 and 5, 12, 13 are said to be equable because their area
has the same value as their perimeter. One can easily prove that they are the only equable
Pythagorean triangles [4]. Extending the concept of equable Pythagorean triangles to space
leads us naturally to consider tetrahedra with a solid right angle (i.e., trirectangular) and
faces of integer area whose sum equals its volume (i.e., equable) [1]. The identification of
all such tetrahedra is conjectured and almost proved in [2]. Hereunder, we offer a complete
proof which is inspired by the appendix of [4] and requires very few calculations compared
to those in [2].

2 De Gua’s theorem and the main result

Consider a trirectangular tetrahedron OA B C labeled as in Figure 1, where
OA=a, OB=b OC=c

are its legs, Ky is the area of the face opposite to X for X = A4, B,C, O and V = abc/6
denotes its volume. For completeness, we give a one-line proof of the generalisation of the
Pythagorean theorem, K(z) = Ki + Klzg + Ké:
4K% = AB*CH? = (0A* + OB*)(OH? + 0C?)
= 4(K; + K3 + OH?*(0A” + OB?)).
(Ki+Kp+ (042 + 0B?))
AB?

The above result, proved in [5], is also called de Gua’s theorem, even if it was known more
than a century before by both J. Faulhaber and R. Descartes [3].

Theorem. There are only 9 trirectangular equable tetrahedra with integer face areas.
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Figure 1. A trirectangular tetrahedron with trirectangular vertex at the origin and legs of length a, b, c.

Proof. Notice first that dividing V by the area of any right-angled face implies that a, b, ¢
are rational. Now, equability of OA BC and de Gua’s theorem give

b
ab + ac + be + Va?h? + a?c? + b2c? = % (1)

Isolating the root, squaring, reducing and dividing by abc implies
abc —6(ab +ac + bc) +18(a+b +c¢) =0. 2)

We recall from [6] that, for a prime p, the p-adic valuation of a natural number n,
denoted v, (n), is the greatest power of p that divides n. If n = 0, then by convention,
vp(0) = oco. By extension, for a rational x = “*, we let v, (x) = v,(m) — vp(n). One can
easily prove the two basic properties below of v, for rationals x and y:

(i) vp(x-y) =vp(x) + vp(y) and

(i) vp(x £y) = min{v,(x), v,(y)}, where equality holds if v, (x) # v, (y).
In our case, for a prime p, if the p-adic valuations of the legs are i < j < k, then redefine
a, b, ¢ in order to have v,(a) =i, v,(b) = j and v,(c) = k. Since the areas of the
three perpendicular triangular faces are integers, then we necessarily have the property
that j,k > —i, and so j, k > 0. Now rewrite (2) as

b
% —3(ab + ac + be) + 9(b + ¢) = —9a, 3)

and suppose first that p = 2. By the above property, and because of the factor % of the area
of a triangle, we must even have j, k > —i + 1. Taking this into account in (3) implies
va(a) > 1 since the 2-adic valuation of each term on the left-hand side of (3) is positive.
Thus, a, b, ¢ are even in the sense that their 2-adic valuation is at least equal to 1. Next,
suppose p > 5 and prime. Then, applying v, on both sides of (3), properties (i) and (ii)
imply i > 0. Indeed,

O0<i+4+j=min{i+j+ki+ji+k j+k jk}=<v,(=9a)=v,(a)=i.
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Hence, for all p # 3, the p-adic valuation of a, b, ¢ is positive or zero. Thus, each of a, b, ¢
is either an even integer or one term is a rational having a power of 3 as denominator.
Finally, let p = 3 and suppose i < —2. When applying v3 on both sides of (3), then
properties (i) and (ii) imply

i+j+l=mni+j+ki+j+lLi+k+1,j+k+1,j+2,k+2}
<i+2

and hence the contradiction j < 1 since j > —i. So if a is a non-integer, then i = —1
and j = 1 < k. Otherwise, if i = 0, then (2) implies that 3 divides b or c. In short, either
a, b, c are all even integers, or two are even integers and one is the third of an even integer.
Therefore, multiplying (1) by 9 and replacing 3a by r, 3b by s, and 3¢ by ¢ gives

rst
rs 4 rt + st + Vr2s? 4+ r22 4+ 5212 = o

and verifies the following.
Condition (C). All three values r, s, ¢ are even and two are divisible by 3.

Once again and after some calculations, we can verify the following:
0=rst—18(rs +rt +st) + 162(r + s + ¢). ()

By symmetry, we suppose 2 < r < s <t. Routine elementary verifications that we illustrate
by an example below — where we leave the other cases to the reader — allow us to eliminate
empty sets of solutions for r = 2,4, ..., 18: for example, if r = 2, then (4) gives

3(25s + 54)
= >y
2s =75 T

which induces s2 — 755 — 81 < 0, since t > s > 0, giving 38 < s < 72. Testing the 17
even values gives no integer solution.
Getting back to our main route, in (4), we replace r by x 4 18, s by y + 18, and ¢ by
z + 18 and obtain
xyz—162(x +y +2z) —2916 =0,

where 2 < x < y < z, and verify the Condition (C). Solving the preceding equation in z
gives
. 162(x + y + 18)

) 5
V= Xy — 162 ©)
which, since 2 < x < y < z, implies that xy > 162 and hence gives the inequality
xy? — 324y — 162x — 2916 < 0.
Once again, the solution produces the inequality
2
<< 9(18 + +/2x2 + 36x + 324) ©

X
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Rearranging, squaring and reducing gives x* — 486x2 — 2916x < 0 which factorises into
x(x + 18)(x2 — 18x — 162), implying x < 9 + 9+4/3 = 24.6. Since the quotient in (6) is
decreasing, taking x = 2 gives us y < 170. Hence, testingall2 <x <24andx <y <170
in (5) that verify Condition (C) and finally evaluating their associated (a, b, ¢) in (1) pro-
duces six integer and three rational solutions

(8,16,168) (8,18,66) (8,24,32) (10,12,54) (12,12,24) (12,14,18)
(20/3,36,336) (28/3,12,144) (32/3,12,36). n
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