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Short note Trirectangular equable tetrahedra
with integer face areas

Christian Aebi

Abstract. We prove that there are exactly 9 tetrahedra with one solid right angle, all
faces of integral area, whose sum corresponds to the volume of the tetrahedron.

1 Motivation

The Pythagorean triangles 6; 8; 10 and 5; 12; 13 are said to be equable because their area
has the same value as their perimeter. One can easily prove that they are the only equable
Pythagorean triangles [4]. Extending the concept of equable Pythagorean triangles to space
leads us naturally to consider tetrahedra with a solid right angle (i.e., trirectangular) and
faces of integer area whose sum equals its volume (i.e., equable) [1]. The identification of
all such tetrahedra is conjectured and almost proved in [2]. Hereunder, we offer a complete
proof which is inspired by the appendix of [4] and requires very few calculations compared
to those in [2].

2 De Gua’s theorem and the main result

Consider a trirectangular tetrahedron OABC labeled as in Figure 1, where

OA D a; OB D b; OC D c

are its legs, KX is the area of the face opposite to X for X D A;B;C;O and V D abc=6
denotes its volume. For completeness, we give a one-line proof of the generalisation of the
Pythagorean theorem, K2
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The above result, proved in [5], is also called de Gua’s theorem, even if it was known more
than a century before by both J. Faulhaber and R. Descartes [3].

Theorem. There are only 9 trirectangular equable tetrahedra with integer face areas.
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Figure 1. A trirectangular tetrahedron with trirectangular vertex at the origin and legs of length a; b; c.

Proof. Notice first that dividing V by the area of any right-angled face implies that a; b; c
are rational. Now, equability of OABC and de Gua’s theorem give

ab C ac C bc C
p
a2b2 C a2c2 C b2c2 D

abc

3
: (1)

Isolating the root, squaring, reducing and dividing by abc implies

abc � 6.ab C ac C bc/C 18.aC b C c/ D 0: (2)

We recall from [6] that, for a prime p, the p-adic valuation of a natural number n,
denoted �p.n/, is the greatest power of p that divides n. If n D 0, then by convention,
�p.0/ D1. By extension, for a rational x D m

n
, we let �p.x/ D �p.m/ � �p.n/. One can

easily prove the two basic properties below of �p for rationals x and y:
(i) �p.x � y/ D �p.x/C �p.y/ and
(ii) �p.x ˙ y/ � min¹�p.x/; �p.y/º, where equality holds if �p.x/ ¤ �p.y/.

In our case, for a prime p, if the p-adic valuations of the legs are i � j � k, then redefine
a; b; c in order to have �p.a/ D i , �p.b/ D j and �p.c/ D k. Since the areas of the
three perpendicular triangular faces are integers, then we necessarily have the property
that j; k � �i , and so j; k � 0. Now rewrite (2) as

abc

2
� 3.ab C ac C bc/C 9.b C c/ D �9a; (3)

and suppose first that p D 2. By the above property, and because of the factor 1
2

of the area
of a triangle, we must even have j; k � �i C 1. Taking this into account in (3) implies
�2.a/ � 1 since the 2-adic valuation of each term on the left-hand side of (3) is positive.
Thus, a; b; c are even in the sense that their 2-adic valuation is at least equal to 1. Next,
suppose p � 5 and prime. Then, applying �p on both sides of (3), properties (i) and (ii)
imply i � 0. Indeed,

0 � i C j D min¹i C j C k; i C j; i C k; j C k; j; kº � �p.�9a/ D �p.a/ D i:
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Hence, for all p ¤ 3, the p-adic valuation of a;b; c is positive or zero. Thus, each of a;b; c
is either an even integer or one term is a rational having a power of 3 as denominator.
Finally, let p D 3 and suppose i � �2. When applying �3 on both sides of (3), then
properties (i) and (ii) imply

i C j C 1 D min¹i C j C k; i C j C 1; i C k C 1; j C k C 1; j C 2; k C 2º
� i C 2

and hence the contradiction j � 1 since j � �i . So if a is a non-integer, then i D �1
and j D 1 � k. Otherwise, if i D 0, then (2) implies that 3 divides b or c. In short, either
a; b; c are all even integers, or two are even integers and one is the third of an even integer.
Therefore, multiplying (1) by 9 and replacing 3a by r , 3b by s, and 3c by t gives

rs C rt C st C
p
r2s2 C r2t2 C s2t2 D

rst

9

and verifies the following.

Condition (C). All three values r; s; t are even and two are divisible by 3.

Once again and after some calculations, we can verify the following:

0 D rst � 18.rs C rt C st/C 162.r C s C t /: (4)

By symmetry, we suppose 2� r � s � t . Routine elementary verifications that we illustrate
by an example below – where we leave the other cases to the reader – allow us to eliminate
empty sets of solutions for r D 2; 4; : : : ; 18: for example, if r D 2, then (4) gives

t D
3.25s C 54/

2s � 75
� s

which induces s2 � 75s � 81 � 0, since t � s � 0, giving 38 � s � 72. Testing the 17
even values gives no integer solution.

Getting back to our main route, in (4), we replace r by x C 18, s by y C 18, and t by
z C 18 and obtain

xyz � 162.x C y C z/ � 2916 D 0;

where 2 � x � y � z, and verify the Condition (C). Solving the preceding equation in z
gives

y � z D
162.x C y C 18/

xy � 162
; (5)

which, since 2 � x � y � z, implies that xy > 162 and hence gives the inequality

xy2
� 324y � 162x � 2916 � 0:

Once again, the solution produces the inequality

x � y �
9.18C

p
2x2 C 36x C 324/

x
: (6)
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Rearranging, squaring and reducing gives x4 � 486x2 � 2916x � 0 which factorises into
x.x C 18/.x2 � 18x � 162/, implying x � 9C 9

p
3 Š 24:6. Since the quotient in (6) is

decreasing, taking x D 2 gives us y � 170. Hence, testing all 2� x � 24 and x � y � 170
in (5) that verify Condition (C) and finally evaluating their associated .a; b; c/ in (1) pro-
duces six integer and three rational solutions

.8; 16; 168/ .8; 18; 66/ .8; 24; 32/ .10; 12; 54/ .12; 12; 24/ .12; 14; 18/

.20=3; 36; 336/ .28=3; 12; 144/ .32=3; 12; 36/:
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