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Stable (r + 1)-th capillary hypersurfaces

Jinyu Guo, Haizhong Li and Chao Xia

Abstract. In this paper, we propose a new definition of stable (r + 1)-th capillary
hypersurfaces from variational perspective for any 1 < r < n — 1. More precisely,
we define stable (r + 1)-th capillary hypersurfaces to be smooth local minimizers
of a new energy functional under volume-preserving and contact angle-preserving
variations. Using this new concept of stable (r + 1)-th capillary hypersurfaces, we
generalize the stability results of Souam (2023) in a Euclidean half-space, and Guo,
Wang and Xia (2022) in a horoball in hyperbolic space for capillary hypersurfaces to
the (r + 1)-th capillary hypersurface case.

1. Introduction

A classical result for constant mean curvature (CMC) hypersurfaces, proved by Barbosa
and do Carmo [5], and Barbosa, do Carmo and Eschenburg [6], states that “any stable
immersed closed CMC hypersurface in a space form is a geodesic sphere”. Here “stable”
means that the second variation of the area functional is nonnegative for any volume-
preserving variations. The following analogous result for stable immersed closed hyper-
surfaces with constant higher-order mean curvature in space forms has been proved by
Alencar, do Carmo and Colares [2], Alencar, do Carmo and Rosenberg [3], and Barbosa
and Colares [7].

Theorem 1.1 ([2,3,7]). Let 0 < r < n — 1. An immersed n-dimensional closed constant
(r + 1)-th mean curvature hypersurface in space forms is stable if and only if it is a
geodesic sphere.

(We regard an open hemi-sphere as a spherical space form in this paper.)

We also mention that Palmer [32] and the second author with He [23] proved analog-
ous result for hypersurfaces with constant (r + 1)-th anisotropic mean curvature.

The study of capillary hypersurfaces has attracted a lot of attention in the last dec-
ades. In fluid mechanics, a capillary surface models the interface between two fluids in
the absence of gravity. In fact, the free surface of the fluids locally minimizes the free
energy functional under a volume constraint. We refer to the book of Finn [13] for more
physical problems about capillary surfaces. From the geometric variational point of view,
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a capillary hypersurface in a domain B is a stationary point of the free energy func-
tional for volume-preserving variations whose boundary freely moves on dB. By the first
variational formula, it is a CMC hypersurface with boundary which intersects dB at a
constant angle. There are plenty of important works on the existence, regularity and their
min-max theory for free boundary or capillary minimal hypersurfaces, see, for example,
[12,15-17,19,24,25,28,36] and the references therein.

The study on the classification for stable capillary hypersufaces has been initiated
by Ros and Vergasta [34] for the free boundary case, and by Ros and Souam [33] for the
general capillary case. When B is a Euclidean unit ball, the classification has been recently
completed by Nunes [31] for the free boundary case in two dimensions and eventually by
the third author with Wang [39] for the general capillary case in all dimensions, by using a
new Minkowski formula involving no boundary term. When B is a Euclidean half-space,
the classification has been recently settled by Souam [35].

Theorem 1.2 ([35]). A compact immersed capillary hypersurface in a Euclidean half-
space is stable if and only if it is a spherical cap.

The anisotropic version in a half-space has been proved by the first and the third
author [22].

Motivated by the concept of higher-order mean curvatures and also the capillary the-
ory, it is natural to ask for a higher-order capillary theory. In [10, 11], Damasceno and
Elbert introduced a notion of stable capillary hypersurfaces with constant higher-order
mean curvature in terms of the associated stability operator, instead of that given by means
of a variational problem.

In this paper, we propose a new notion of stability for higher-order capillary hypersur-
faces from the variational perspective. For any 1 <r <n — 1, an n-dimensional (r + 1)-th
capillary hypersurface in B is a hypersurface with constant (r 4+ 1)-th mean curvature H, 4
and with boundary intersecting dB at a constant angle. It is known that the first vari-
ation of a higher-order mean curvature integral involves curvature terms in the bound-
ary integral, which violates the capillary boundary condition. To overcome this diffi-
culty, we make a restriction on the variation class. Precisely, we define a new (r + 1)-th
energy functional &,4; and show that an (r 4 1)-th capillary hypersurface is a stationary
point of &, for any volume-preserving and angle-preserving variations. We say that an
(r + 1)-th capillary hypersurface is stable if the second variation of &,4; is nonnegative
for any volume-preserving and angle-preserving variations. We emphasize that comparing
with the classical capillary theory (r = 0), we only allow angle-preserving variations in
the higher-order case. Equivalently speaking, we require that the normal components of
variational fields stay in

F = {¢€C°°(M) |/ (pdAanndVM(pzqgoonaM}.
M

This is the key point for this new notion of stability (see Proposition 3.2 below for details).
Our first main result in this paper is the following classification for stable (r + 1)-th
capillary hypersurfaces in an (n + 1)-dimensional Euclidean half-space R:’L‘H.

Theorem 1.3. Let 1 <r <n — 1. A compact immersed (r + 1)-th capillary hypersurface
in RT‘I is stable if and only if it is a spherical cap.
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The proof of Theorem 1.3 is based on the following higher-order Minkowski-type
formula in R’}

(1.1) / [Hy(1 —cosO(Ey+1,v)) — Hry1{x,v)]dA =0 forany0 <r <n-—1.
M

Formula (1.1) has been proved by Wang, Weng and the third author in [37], where was
used to prove Alexandrov—Fenchel inequalities for embedded hypersurfaces with capillary
boundary in @f’fl. Note that (1.1) offers an admissible test function which also satisfies
V,.¢ = qe on oM.

When B is a (n + 1)-dimensional horoball in hyperbolic space H"*!, we see that
its boundary 9B is a horosphere, that is, a non-compact totally umbilical hypersurface
with all principal curvatures equal to 1. In the next part, we study a stability problem for
(r + 1)-th capillary hypersurfaces supported on a horosphere. For r = 0, the classification
of stable capillary hypersurfaces supported on a horosphere has been proved by the first
and the third authors with Wang in [20].

Theorem 1.4 ([20]). A compact immersed capillary hypersurface supported on a horo-
sphere in H*T1 is stable if and only if it is totally umbilical.

We now establish the following result for (r + 1)-th capillary hypersurfaces.

Theorem 1.5. Let 1 <r <n — 1. A compact immersed (r + 1)-th capillary hypersurface
supported on a horosphere in H" 1 with at least one elliptic point is stable if and only if
it is totally umbilical and not totally geodesic.

Here, elliptic point means that all the principal curvatures at this point are positive. The
existence of elliptic point guarantees the ellipticity of operator L, (see Proposition 2.3).
When r = 0, Lo = A is elliptic automatically. If the hypersurface intersects a horosphere
orthogonally, then there must be an elliptic point. Therefore, we have the following clas-
sification for stable free boundary constant (r + 1)-th mean curvature hypersurfaces.

Corollary 1.6. Let 1 <r <n — 1. A compact immersed free boundary constant (r + 1)-th
mean curvature hypersurface supported on a horosphere in "+ is stable if and only if
it is totally umbilical and not totally geodesic.

The proof of Theorem 1.5 is based on the following higher-order Minkowski-type
formula in a horoball in H”*1:

(1.2) / [Hy (V41 —cosOg(x,v))— Hry12(Xp41,v)]dA=0 forany0<r<n-—1,
M

see [8, 20]. This formula induces an admissible test function ¢,4+; € ¥ (see Proposi-
tion 5.13 below). By utilizing the Killing property of position vector field in the hyperbolic
space H" ™1, we obtain the desired rigidity result.

This paper is organized as follows. In Section 2, we collect some basic properties for
elementary symmetric functions. In Section 3, we calculate the first and second variational
formulae of the (r + 1)-th energy functional &, and introduce a new definition of stable
(r 4 1)-th capillary hypersurface in space forms for any 1 < r <n — 1. In Section 4,
we consider a rigidity of stable (r + 1)-th capillary hypersurfaces in a Euclidean half-
space and then prove Theorem 1.3 by the higher-order Minkowski-type formula (1.1). In
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Figure 1. Hypersurface M with contact angle 6 in the half-space R, ™.

Section 5, we focus on the stability of (r + 1)-th capillary hypersurface supported on a
horosphere in hyperbolic space. We prove some useful and powerful geometric formulae
for the (r + 1)-th capillary hypersurfaces supported on a horosphere. By the higher-order
Minkowski-type formula (1.2), we finally construct an admissible test function and prove
Theorem 1.5 and hence Corollary 1.6.

2. Preliminaries

Let (M™*1, Z) be an oriented (n 4 1)-dimensional Riemannian manifold and let B be a
domain in M with smooth boundary 9B in M. Let x: (M", g) — (M, g) be an isometric
immersion of an orientable n-dimensional compact manifold M with boundary oM sat-
isfying x|ypr: 0M — 0B. We say this immersion x (M) is supported on dB. For conveni-
ence, we do not distinguish M with its image x (M) and oM with x(dM), respectively,
through all computations are carried out on M by using the pull-back of x.

We denote by V, A and V2 the gradient, the Laplacian and the Hessian on M with
respect to g, respectively, while V, A and V? denote the gradient, the Laplacian and the
Hessian on M with respect to its induced metric, respectively. We will use the following
terminology for four normal vector fields. We choose one of the unit normal vector field
along x and denote it by v. We denote by N the unit outward normal to B in B and by
the unit outward normal to dM in M. Let v be the unit normal to dM in 0B such that
the bases {J, N} and {v, 11} have the same orientation in the normal bundle of M C M.
See Figure 1, where B = RT'] and 0B = R”, n-dimensional Euclidean space. We denote
by 4 and h?8 the second fundamental form of M and 9B in M, respectively.

Under this convention, along dM, the angle between p and ¥ or equivalently between

v and —N is equal to 6. Precisely, in the normal bundle of dM, we have the following
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relations:
2.1 w=sinON + cos @,
(2.2) v =—cosON + sinf .
Equivalently,
2.3) N = sinfpu —cos O v,
2.4) v =cosfOu + sinfv.
Let « = (k1, ..., k) be the vector of principal curvatures of M. The r-th normalized

mean curvature, for any 1 < r < n, is defined by
n\ ! n\ ! n n!
H, = oy = > Kiy-+-Ki, Wwhere = —-
r r i ) r rl(n —r)!
1<ii<-<ir<n

It is convenient to set og(x) = 1 and o, (k) = 0 for r > n.
The Newton tensors are inductively defined to be

(2.5) Py=1 and P, =o0,1— P_1h.
The following is a collection of basic properties about Newton tensors.
Lemma 2.1 ([18]). Forany0 <r <n — 1, we have

(1) P, is divergence-free, i.e., Z_/ V; Prij =0,

(2) trg(Pr) = Y7/ P}' = (n=1)op,

3) trg(Prh) = Y7,y PP hij = (r + Doy,

) trg(Prh*) =37 vy pY h¥hy; = 010,41 — (1 4+ 2) 0742

Let 1"1+ be the Garding cone defined by
IFi={c eR" |oij(k) > 0,1 <i <I}.

The Newton—MacLaurin inequalities are as follows.

Lemma 2.2 ([18]). Forany k € T;t, we have
(2.6) Hy—1(k)H (k) < He(k)Hj—1(k), 1<k <l =<n.
Equality holds if and only if k = c(1,...,1) for any constant ¢ > 0.
For any 0 < r <n — 1, we define a second-order operator L,: C*®°(M) — C*®(M) as
.7) L, f :=divg(P,Vf) = P,oV*f,

where the divergence free property of P, has been used. If P, is positive definite on each
point of M, then L, is an elliptic operator. In particular, the Laplacian operator is A = L
is elliptic automatically. On the other hand, we have the following sufficient condition for
the ellipticity of L,.
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Proposition 2.3 (Proposition 3.2 in [7]). If H,4 is positive and there exists an elliptic
point on M, then forany0 < j <,

(i) each operator L; = divg(P; V) is elliptic,

(ii) each j-th mean curvature H; is positive.

The following proposition is an elementary fact when M is with capillary boundary
on dB, and 9B is totally umbilical in M.

Proposition 2.4 (Proposition 2.1 in [39]). Assume 3B is totally umbilical in M. Let
x: M — M be an immersion whose boundary x (M) intersects OB at a constant angle
0 € (0, w). Then w is a principal direction of OM in M. Namely, h(e, u) = 0 for any
e € T(OM). In particular, forany 0 <r <n — 1,

(2.8) Pr(e.) =0 foralleeT(OM).

3. (r + 1)-th capillary hypersurfaces and stabilities

In this section, we introduce a new notion of stability of ( + 1)-th capillary hypersurfaces.
Let M = M"*1(K) be a complete simply-connected (7 + 1)-dimensional Riemannian
manifold with constant sectional curvature K and let dB be a totally umbilical hypersur-
face in M"*!(K) with constant principal curvature « € R. By a choice of orientation,
we can assume « € [0, 00). It is a well-known fact that in the Euclidean space and the
spherical space form, geodesic spheres (k > 0) and totally geodesic hyperplanes (x = 0)
are all complete totally umbilical hypersurfaces, while in the hyperbolic space, the fam-
ily of all complete totally umbilical hypersurfaces includes geodesic spheres (k > 1),
totally geodesic hyperplanes (k = 0), horospheres (k = 1) and equidistant hypersurfaces
(0 <k < 1) (see, e.g., [29,30]), among which the horospheres and the equidistant hyper-
surfaces are non-compact ones.

Let x: (—&, &) x M — M"T1(K) be a differentiable map such that x(¢,-): M —
M”"*+1(K) is an immersion satisfying x (¢, 0M) C 9B for every t € (—¢, &) and x (0, -) = x.
We call x (¢, M) an admissible variation of x (0, M) = x(M).

We define the r-th area functional A,: (—¢,&) — R, forany 0 <r <n — 1, by

4,0) = / o dA,.
M

and the volume functional V: (—¢, ¢) — R by

V() = f x*dV,
[0,¢]xM

where d A, is the area element of M with respect to the metric induced by x(z,-) and d V'
is the volume element of M *1(K). A variation is said to be volume-preserving if V() =
V(0) = 0 for each t € (—¢, ¢).
Let Y be an admissible variational vector field of x with normal vector field fv, i.e.,
ax

— =Y =YT ,
5 + fv
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where Y7 is tangent to M. From (A.12) in Appendix A, we have the first variation for-
mulae of A, (¢) and V(¢) as follows:

3.1 AL(t) =(r+ 1)/ ory1fdAy — K(n—r + 1)/ or—1f dA;
M M

do,
&Y, - ~ Vi ds;,
+ [, (ori = g as

(3.2) V'(t) = /MfdA,.

In particular, when r = 0, we see that

A5 = [ ot da+ /aM g(¥. 1) dse.

It follows that Ay(0) = 0 with volume-preserving variation if and only if M is a CMC
hypersurface with boundary intersecting dB orthogonally, which is exactly a free bound-
ary CMC hypersurface.

However, when r > 1, we cannot characterize constant (r + 1)-th mean curvature
hypersurface with a constant perpendicular contact angle only by (3.1) and (3.2) directly,
because the integral boundary terms in (3.1) contain the r-th mean curvature and its deriv-
ative. Therefore, the key point of this problem is how to define higher-order capillary
hypersurfaces by the variational method reasonably. In the following, we will give a nat-
urally geometric variational definition for higher-order capillary hypersurfaces.

We define the r-th wetting area functional W,: (—e, ¢) — R inductively by

1
Wo(r):zf x* dAsp, Wl(t):z—/ dse.
M x[0,t] n Jom

andfor2 <r <n-—1,

W, (t) := l/ Hﬁﬁfl dsy + = (K + k3 W,_5(1),
n Jom n—r+2
where d Ayp is the area element of dB and ds; is the area element of dM with respect to
the metric induced by x|gps (¢, ), and H 3541 is the normalized (r — 1)-th mean curvature
of dM in 0B.
For fixed 6 € (0, ), we define the (r + 1)-th energy functional &,11: (—¢, &) —> R
inductively by

Eo(t) ==+ 1)V(), &1(t) := Ag(t) —cos O Wy(1),

andforl <r <n-—1,

Ern(t) = Orar () + — 5 & ().
n —r

+2
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where

-1
Or+1(t) := (’rl) Ay (1) — cos 6 sin” 0 W, (1)

r—1 (—])r+l -
—cos’ 1Y ——— K’—’( ) [(n —r)cos® @ + (r — )] tan’ 6 Wy (¢).
—n —1 /

The definition for the higher-order energy functional is motivated by the following first
variational formula.

Theorem 3.1. Let x(-,1): M — M" T (K), t € (=&, &), be a family of immersion suppor-
ted on 0B at a constant contact angle 6 € (0, ). Assume

0;x)t = fv for feC®(M).

Then

d
d—8r+1([) = (n —r)f H,-+1f dA;.
! M

This variational formula has been derived by Wang, Weng and the third author in the
Euclidean half-space and ball, see [37,40]. We postpone the proof of Theorem 3.1 to
Appendix A.

Note that we assume all the immersions x (-, ) in the variational class intersect dB at
a constant angle. We call such variation is an angle-preserving variation.

Now, we show an existence theorem for volume-preserving and angle-preserving ad-
missible variations. We define the following function space:

(3.3) F o= {goeCOo(M) )f ¢dA=0and V¢ =gy on aM},
M

where

(3.4 q =kKkcscO + cotOh(u, 1).

Considering a volume-preserving and angle-preserving admissible variation with vari-
ational field having ¢v as its normal part, one can see from (3.2) that /; u 9 dA = 0. For
the capillary boundary condition g(v, N o x) = —cos 6, we can get from (3.6) and (3.7)
below that

Vi —qe = —csch 9;2(v,N ox) =0 along IM.

Therefore, p € F.
Conversely, we have that ¢ € ¥ induces a volume-preserving and angle-preserving
admissible variation:

Proposition 3.2. Let x: M — M = M"Y (K) be an immersion such that its bound-
ary x(0M) intersects OB at a constant angle 0 € (0, 7). Then, for a given ¢ € ¥, there
exists an admissible volume-preserving and contact angle-preserving variation of x with
the variational vector field having @v as its normal part.
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Proof. We argue as in Lemma 2.2 in [6] (see also Proposition 2.1 in [1]). We first assume
that x: M — M is embedded. For each point p € M, let vy = v + cos @N be the pro-
jection of v on Ty () (dB). Denote
1
= — Vo
g, vo)

-,

which is tangential to x (M) along dM. We extend y to a smooth vector field on x (M)
and still denote it by y. We let n = y 4+ v and extend n smoothly to a vector field on
U, which is a §-neighbourhood of x (M) in M such that 7 is tangential to T (dB) along
0BNU. By our construction, we see (1, v) = 1. Consider the local flow ¢; of n in U
satisfying ath = 1. Let ®: (—e,£) x M — M be given by O(t,-) = ;. We shall find a
function p: (—e, &) x M — R such that

é(l» ) = ®(p(tv ')v )
is the desired deformation. B
First, since {; is the local flow of 7 and 7 is tangential to 7'(dB) along dB N U, we
know that ® (¢, dM) C dB. Second, since

3p

o O AV = 2 E(plt.). ) di d Ay,

ot
where E(p(t,-),-) = det(d®|(p(,.),-)), We have

O*dVy =

t
V(@(z,-)):/ 0*dVy :/ / g—pE(p(t,-),-)dtdAM.
[0,61xM M Jo 01

Let p(¢,-): (—&,&) x M — R be the local solution of the following initial value problem:

U
ot E(p(t’)’)

It follows from the condition [, ¢ d4 = 0 that V(O(t,-)) = 0, that is, O(z, -) is a volume
preserving admissible deformation. Now we can easily check that

p(0,-) =0 in M.

— 9 a2 0= —yT
Vi=o| 600 =2| 00 =g+ =¥ +en.
which means the variational vector field of ©(¢, ) has v as its normal part.

In the immersion case, we shall first construct an admissible variation X: (—¢, €)X
M — M and endow (—¢, €) x M with the pull-back metric ¥*(g), and then it is enough
to prove the result for (—¢, €) x M endowed with X*(g), which is the embedded case.

Finally, since (:)(t, -) is an admissible variation, from the appendix of [33] (see also
(A.7)—(A.8) in Appendix A), along M, we have

(.

(3.5) Y =YT 4 ov:=Y"™ 4 cotOpu + v =1 4 57
Sin

Here Y denotes the tangent part of ¥ to dM .
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By (2.1), (2.2) and the fact that 9,v = —V¢ + dv o YT we have
(36 380, N)=g(@v.N)+g(v.0:N)
= g(9,v,sin O — cos Av) + g(sinOp —cosON, 9, N)
= sin 0 g(d,v, ) + sin OR°E (¥, D)
=sinf(=Vuo +h(YT, n) + h2 (v, )

1
sin 6
where in the last equality we used (3.5), Proposition 2.4 and the fact that dB is totally

umbilical.
By the assumption ¢ € ¥, we get

- sin@(—VM(p + cot Oh(p, ) g + —— hPB (5, f))@),

(3.7 9;2(v, N) = sin (Ve +4qp) = 0.
Therefore, the boundary contact angle is preserved along the local flow ;. ]

Next, we define, for any 0 < r < n — 1, the (r 4 1)-th capillary hypersurface and its
stability.

Definition 3.3. An immersion is said to be (r + 1)-th capillary if it is a critical point of
the (r + 1)-th energy functional &, for any volume-preserving and angle-preserving
variation of x.

In view of Theorem 3.1, we see that an ( + 1)-th capillary hypersurface has constant
(r + 1)-th mean curvature H,4; and constant contact angle along its boundary. In partic-
ular, when the contact angle is /2, the hypersurface is called a free boundary constant
(r + 1)-th curvature hypersurface.

Definition 3.4. An (r 4 1)-th capillary hypersurface is called stable if &', ,(0) > O for
all volume-preserving and angle-preserving admissible variations.

For a volume-preserving and angle-preserving admissible variation with variational
field having ¢v as its normal part, we see from Proposition A.1 in Appendix A (see also
Proposition 4.1 in [7]) that

310741 = —Lro —tr(Prh*) 9 — K r(Pr) ¢ + Vige o)t Ort1.-

Here P, is defined by (2.5). Thus, the second variational formula of &, is given by
n \! d
68 g;/H(O) == r)(r + 1) [/M U;H vdA+ /M UrHE‘t:o(q) dAt)]
-1
= (n—r)(r ) [[;40;+1¢dA+0r+1V//(0)]

-1
:_(n_r)(r:l_l) /waﬂ[erﬂ—i-tr(Prhz)(P‘f‘th(Pr)SO]dA,

where we used that o, is constant and x is volume-preserving.
From the above calculation, we have the following proposition.
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Proposition 3.5. An (r + 1)-th capillary hypersurface is stable if and only if
3.9) —/ @[Lro +tr(Ph?) o + Ktr(P)¢]dA >0 forallpeF,
M

where ¥ is the functional space given by (3.3).

Remark 3.6. We have no boundary integral term in the second variation formula because
we restrict to the angle-preserving variations. For the classical capillary theory, that is,
r = 0, the second variation formula involves boundary integral because there is no such
restriction (see, e.g., [4,9,26,27,38]).

4. Rigidity for stable (r + 1)-th capillary hypersurfaces in a
half-space

In this section we consider the case B is a Euclidean half-space ]E'jfl, where
1 1.
Rl—’— Z{X = ()C],)Cz,...,xn+1) ER"+ S Xn+1 >0}

Proposition 4.1. Any spherical caps in the half-space ]I_K'j_ﬂ are stable (r + 1)-th capil-
lary hypersurfaces.

Proof. Let X be a spherical cap in K'J’rﬂ whose principal curvatures are all equal to A > 0.

Then
oy = (n)A’.
r

—1
Lr(pz (I’l )ArA(p
r

It follows from Lemma 2.1 that

and .
(P h2) = 010741 — (r + 2)0rs2 = n(” - )A'“.
]

Hence, from (3.8), for any ¢ € ¥, we have

—1
€/,,(0) = —(n— r)(r i 1) /E(L,<p + (P h?) @) g dA

__(r—i—l)(n—r)Ar (r+Dmn-—r)
n

= f (Ap +nA%@)pdA = ATE€7(0).
n =

Recall that a spherical cap in @Trl is a stable capillary hypersurface and minimize the
energy functional &; (see [14]). Therefore, &{'(0) > 0. It follows that &, ,(0) > 0 and
is a stable (r + 1)-th capillary hypersurface. The proof is complete. ]

We need the following higher-order Minkowski-type formula in ]1_£1+1 from [37].
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Proposition 4.2 (Proposition 2.6 in [37]). Let x: M — K’jr“ be an immersed hypersur-
face whose boundary intersects BIRT'I at a constant contact angle 6 € (0, 7). Then

4.1 / [(1—=cosO{Ey+1,v))H, — (x,v)H,4+1]dA =0 foranyO0O<r <n-—1,
M

where En+1 = (0,...,0,1) € ﬁ'f:‘l and x is position vector field in ﬁ'_ﬁ_‘“.

Next we derive the equations for several geometric quantities. We denote the r-th
Jacobi operator by

Jof =L, f +t(Ph?)f forany0<r <n-—1.

Proposition 4.3. Let x: M — ET” be an immersed hypersurface. Then the following
identities hold on M :

Jr((En+1,v)) = (Ent1,Vor4+1) and  Jr((x,v)) = (x,Vor41) + (r + 1) 0r41.

Proof. The above formulae have been shown in [7]. For the convenience of reader, we
give a direct computation.

For a fixed point p € M, let {¢;}7_, be a local orthonormal basis at p such that
Ve;ejlp = 0. In the following, we calculate at p. We have

Jr((v. Eny1)) = Lr((v, Eng1)) + (v, Eny1) tr(Pr1?)
= (P hjilex. Ens1))i + (v. Eng1) PP B3,
= [(0r4+18ik — P}% ) ex Ent1)]i + (v, Eng1)(0r 118k — PIX Dhik
= 0r41i(ei Ent1) + 0r41((Ves€in Eng1) + (v, Eng) tr(h))
- (Pri-llc-l (Veeks Ent1) + (v, Eny1) tr(Pry1h))
= (Vori1, Ent1),

where in the third equality we used the relation P41 = 0,411 — P, o h and Lemma 2.1.
For the second identity, we have

Jr((x,v)) = Le({x,v)) + (x,v) tr(Prh%) = (PY hjic(x. e))i + (x,v) PY 2,

= [(0r+18ik — PIE D) (x,ex)i + (X 0) 0181k — PIX Dy
= or+1i{x, ) +orp1[({x,€)),i + (x,v) tr(h)]
— [P ((x.ex))i + (x. v} tr(Pry1h)].

Since

Pl ((x.er))i + (x.v) tr(Pryih) = P (81 — hig(x,v)) + (x,v) tr(Pyy1h)
=tr(Pry1) = (n =71 —1)0r41,

we see that

Jr({x,v)) = (x,Vor41) +nors1 —(n—r —1)or+1 = (x,Vor11) + * + 1)0y+1. =
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Next we check the boundary equations of corresponding geometric quantities.

Proposition 4.4 ([22]). Let x: M — ]E’_"_H be an isometric immersion. Assume that M
intersects BRT'I at a constant contact angle 6 € (0, ). Then, along OM, we have

Viulx,v) =q{x,v), V(1 —cos@(Ept1.v)) =q(l —cosB(E,+1,V)),
where ¢ = cot 0 h(u, u).
Proof. By choosing I = 1 in Proposition 2.2 of [22], we get this proposition. ]

For the ease of notation, we denote
w:=1—=cosO(E,4+1,V).

Since 8 € (0, ), we have w > 0 on M. Motivated by the higher-order Minkowski-type
formula (4.1), we let

4.2) ¢ = aw — Hyp1(x,v),

o= (/Ma)dA>_l /M wH, dA.

Proposition 4.5. Let x: M — KT‘I be a compact immersed (r + 1)-th capillary hyper-
surface with a contact angle 0 € (0, ). Then

where

R P L A Y S R !
@H Vg =ae
4.5) / 0dA =0

M

Proof. Equations (4.3) and (4.4) follow from Propositions 4.3 and 4.4, respectively. Equa-
tion (4.5) follows from (4.2) and (4.1). [ ]

Now we prove a rigidity theorem for a stable (r + 1)-th capillary hypersurface in a
half-space.

Theorem 4.6. Let M be a compact immersed (r + 1)-th capillary hypersurface in H_K’_"_H
with a constant contact angle 6 € (0, 7). If M is stable, then it is a spherical cap.

Proof. The proof is similar to that in [23], by the second author with He, for the closed
hypersurface case. We prove it here for reader’s convenience. Since M is compact hyper-
surface in ET‘] with contact angle 6 € (0, ), there exists a point in M where all the
principal curvatures are positive. Thus, H, 4 is positive constant. From Proposition 2.3,
we know that each operator L; is elliptic and H; > 0 for any i € {1,...,r}. Hence, « is
positive constant.



J. Guo, H. Li and C. Xia 1642

From (4.4) and (4.5), we obtain that ¢ is an admissible test function in (3.9). Therefore,
by (4.3), we have

4.6) 05—/ 0JrodA
M
n
—(, 1) [ ettt Hras = 0=y = DBy = 0+ DHE A

_ —a(r i 1) /M 0 H Hyi1 — (n — 1 — 1) Hy42) dA,
where in the last equality we used the fact that H, 4 is constant and (4.5). From (4.2),
4.7) enH 1 Hyy1 —(n—r — 1) Hyr42)
=awmH Hyy1 —(n—1r —1)H,42)
+ (Hr41(x,v)(nH 1 Hy 41 — (n —r — 1) Hy42)
=am—r—Dw(HiHr+1 — Hry2) +a(r + DoHy Hy 41
+ (Hry1{x,v))(nH1Hy 41 — (n — 1 — 1) Hyp 42).
Putting (4.7) into (4.6), we get

0> /M omH\Hy 41— (n—r —1)H,42)dA
=an—r—1) /M w(HiHy 41— Hr12)dA +a(r +1) /M wH{H, 1 dA
+ /M(Hr+1(xa v)(nHHypr — (n—1 — 1)Hry2) dA.
From Lemma 2.2, we have
(4.8) 0>a(r+1) fM wHy Hy 41 dA
+ [ Hrate )@y Hy = 0= = D Hy i) dA
=oa(r+ 1)/M wHi1Hyq1 dA + (r + )HZ /M wdA

1 1
=ot(r+1)Hr2_H[H—+1/MwH1 dA—&/IMC()dA:I
r

Here in the second equality we used the higher-order Minkowski-type formula (4.1) twice.
By the Holder inequality and the Newton—MacLaurin inequality (2.6), we obtain

2
(4.9 ( a)dA) <[ Lwaal o daa< Hr it [ oH a4
M M Hi M M Hri1 M

Hence, from (4.9) and the definition of o, we have

1 1
[ a)HldA——/ wdA
Hyi1 Jm o Jum

- Hr1+1 [/Ma)Hl dA — (/M Hf:l a)dA)ﬂ(/Ma)dA)z] > 0.

(4.10)
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1
Tn+1 (RL’;“@: 5 6)

Tnt1

M
v M
v

H)/l H = {zun =1}
N

0 R"

Figure 2. Hypersurface M supported on horosphere F.

Combining (4.8) and (4.10), we see the above inequality is in fact an equality. It follows
that H, = H,4y1Hy on M and, in turn, M is totally umbilical in ]RT'I, ie, M is a
spherical cap. ]

5. (r + 1)-th capillary hypersurfaces supported on a horosphere

In this section we focus on the stability of (r + 1)-capillary hypersurfaces with boundary
supported on a horosphere in hyperbolic space.

Let (H"*!, g) be a complete simply-connected Riemannian manifold with constant
sectional curvature —1. We use the upper half-space model for H” ™1, which is denoted by

1

2
Xn+1

Hn+l = {X = (X],Xz, ...,Xn_H) (S R{T—l L Xn41 > 0}, g = 5,

where § is a Euclidean metric in R” 1,
A horosphere, a “sphere” in H" ! whose centre lies at dooH" !, up to a hyperbolic
isometry, is written by the horizontal plane

H={xe RT“I S Xpt1 = 1},

We choose N = —E,, 11 = (0,...,0,—1). Then all principal curvatures of a horosphere
are k = 1. By Gauss’ equation, namely, R;;;; = —1 + «;k; = 0 forany i # j, we know
that a horosphere is isometric to the n-dimensional Euclidean space R”.

Letx:(M", g) — (H"T!, g) be an isometric immersion of an orientable n-dimensional
compact manifold M with boundary dM satisfying x|gps: 0M — J€. Such an immersion
is called an immersion supported on a horosphere J¢ (see Figure 2).
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We denote by x the position vector in H**! and by V the Levi-Civita connection
of H"*!. We use (-,-) and g to denote the inner product of R”*! and H"*!, respect-
ively, and D and V to denote the Levi-Civita connection of R”*! and H”*!, respectively.
Let {E4};L! be the canonical basis of R"*! and Eq = xn41E4. Then {E4};L} is an

A=1

orthonormal basis of H”*+! with respect to g.
The relationship of V and D is given by
VyZ =DyZ —Y(Inxy41)Z — Z(In Xy 41)Y + (Y. Z) D(In xp11).
It is easy to check that
(5.1 Vyx = =g(Y, Eny1)x + (Y. X) Ent1,
(5.2) VyE;i = —3(Y,Eni)Ei + §(Y, E))Epy1 foralli =1,2,....n,
- 1
(5.3) VyEpt1 = — Y,
Xn+1

for any vector field Y in H"*!.
The following propositions play a crucial role in this section.

Proposition 5.1 (Proposition 2.2 in [20]).
(i) The vector fields x and { E; }?_, are Killing vector fields in H"*1 e,

| - 1 _ - -
(54) 5(8(Vax. Ep) + &(Vpx. Ea)) = 5(8(VaLi. Ep) + (Vs Ei. E4)) = 0.

(i) En41 is a conformal Killing vector field in H* ™1, i.e.,

1 _ - _ = |
(5.5) E(g(VAEnH, EB) +g(VBEnt+1,Eq)) = — Z4B.
Xn+1

Here V4 = Vg, and gap = §(Ea, Ep).

Now we recall a conformal Killing vector field X, +; and a function V,4; in Hrt!
from [21] that we will use later. Denote

1

Xnt1=x—Epp1 and Vyyy = :
Xn+1

From Proposition 5.1, we have the following important properties.

Proposition 5.2 (Proposition 2.1 in [21]).
(1) Xn+1 is a conformal Killing vector field with %:EX,M g = V418, namely,

1 _ - _ = _
(5.6) 8(VE, Xnt1.EB) + 8(VEz Xn+1, E4)] = Vat1 84B-

5l
(1) Xu+1l|ge is a tangential vector field on J, i.e.,

(5.7) g(Xus 1. N)=0 on¥H.
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Proposition 5.3 (Proposition 2.2 in [21]). The function V,,41 satisfies the following prop-
erties: B
Vi1 = Vup18 in H'L, Va1 = Vag1 on K.

Proposition 5.4. Assume 0 <r <n — 1. Then any totally umbilical hypersurface suppor-
ted on a horosphere ¥ is a stable (r + 1)-th capillary hypersurface.

Proof. Let Y bea totally umbilical hypersurface supported on J¢ with a contact angle 6.
Suppose the principal curvatures of X are all equal to a certain nonnegative constant A. It
is easy to check that

0; = (r_l)[\i foranyi =0,1,...,n.
i
It follows from Lemma 2.1 that
—1\ -~ —1\ - -
Lyg= (” )A’A<p, w(Ph?) = n(” )A’“, w(P,) = (n —r)(")A’.
r r r

Hence, for any ¢ € ¥, by (3.8), we have

—1
&/ 1(0)=—(n— r)(r :l_ 1) /i(p[erp + tr(Prh?) g —tr(P,) ] dA

Hn—r) - ~
:_w,\r[ﬂmﬂ,\%_w)ﬂ
n b

— (r + 121(” _r) ;\rgi/(o)

It follows from Proposition 2.5 in [20] that any totally umbilical capillary hypersurface
supported on the horosphere J is stable. Therefore, we have that X is a stable (r + 1)-th
capillary hypersurface. ]

5.1. Key formulae for (r + 1)-th capillary hypersurfaces supported on a horosphere

In this subsection we show some useful facts about (r 4 1)-th capillary hypersurfaces
supported on a horosphere that we will use later. Let P/ = o, (h|h,,,) be the r-th mean
curvature deleting & (i, ) component from the second fundamental form 4. To simplify
the notation, we will omit writing the volume form d A on M and the area form d's on M .

Proposition 5.5. Let x: M — H"! be an isometric immersion supported on H. Assume
x (M) intersects H at a constant contact angle 0 € (0, ). Then, forany 0 <r <n — 1,

(5.8) —(r + 1)/ g(x,v)o,4+1dA = / P/ (cos B g(x,v) —sin6) ds.
M M

Proof. Let

n
xTi=x—gx,v) = Z(xT)iei,

i=1
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where {e; }_, is an orthonormal basis of M. Thus,
) =g —gx.v)v.e) = g(x.e).
Since x is Killing vector field in H”*1 we see from Lemma 2.1 that
divar (P, o xT) = PIV;(g(x, ;) = —g(x,v) tr(Prh) = =(r + 1)0y11 §(x,v).

Integration by parts gives
[ avur o= [ poTo= [ prrge
M oM oM

=/ P/ g(x,cos 0b + sinON)

oM

=/ PHH(cos B g(x,v) —sin6),
oM

where we have used (2.8), (2.2) and g(x, N) = —1ondM. [ ]

Next we will derive another important integral identity.

Proposition 5.6. Let x: M — H" ! be an isometric immersion supported on J. Assume
x (M) intersects # at a constant contact angle 6 € (0, 7). Then, for any 0 < r <n,

(5.9) (n—r)/ o0rg(x,v)dA =/ PlMg(x,v)ds.
M M

In particular, for r = 0, we have

(5.10) nf g(x,v)dA = / g(x,v)ds.
M oM
Proof. In order to prove (5.9), we consider a vector field Z on M as follows:
Z =g(x.v)Ent1 — §(Ent1.v)x.
Recall that E, 1 = Xpq1Ent1. Along OM, we have

8(Z.pw) =gx.v) g(Ens1. 1) — (Eng1.v) g(x. 1)
=—g(x,v) (N, 1) + &(N,v) g(x, )
= —sinf g(x,v) —cosf g(x,u) = —g(x,v),

where we have used (2.3), (2.4) and the fact that N = —E, 1 on 0M. By integrating by
parts, we obtain

[ e = [ gz = [P0 = [ dvi(e oz,
oM oM oM M
Now we claim that

(5.11) divyr(Pr 0 ZT) = —(n — r) 0, g (x, v).
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Thus, Proposition 5.6 follows from claim (5.11). Next we will show the claim (5.11).
First we observe that Z is tangential, i.e., g(Z, v) = 0, which implies divps (P, o Z Ty =
divps (Pr o Z). From (5.1), we see that Z can be expressed as Z = V, x.

Let {e;}7_, be an othonormal basis of M. By constant sectional curvature of H"+1

being —1, we have
g(vei (6vx)v e]) = g(ﬁv(ﬁeix)’ e]) - g(ﬁ[v,ei])m ej) - g(R(Vv ei)x’ e])
=V, (g(Ve;x,€5)) —8(Ve; x, Vyej) — g(v[v,ei]xv ej) — 8ijg_(x, V)
= VV(g(veix7ej)) - g(veixs Vejv + [Vvej]) - g(v[v,ei]xvej) - Sijg(xs U)
= Vu(g(Vex.€) —hjkg@(Ve,x, ex) — §(Ve,x, [V, €j]) — 8(Viv,e;1x. €7) — 8ij g (x, v).
By utilizing that x is Killing vector field, we obtain
(5.12) PYg(Ve,Z.ej) = =P hjxg(Ve,x.ex) — PP &3 ([v.eil. ) — tr(Pr) g(x. v)
=—(m-r)org(x,v),

where we used the fact that Prij hjk = Prkj hj; from (2.5). Thus, we have claim (5.11) and
the proof is completed. u

As a consequence, we get the following significant integral identity.

Corollary 5.7. Let x: M — H"*! be an immersed constant (r + 1)-th mean curvature
hypersurface supported on JH. Assume x(M) intersects H at a constant contact angle
0 € (0, ). Then, forany0 <r <n—1,

(5.13) / Pl (—sin@ 4 cos 0 g(x, V) + g(x, D) h(u, n)) ds = 0.
oM
Proof. By (5.8) and (5.10), we have

(5.14) / PHM(—sin B + cos 0g(x, V) ds = —(r + 1)/ or+18(x,v)dA
M M

r+1 -
=— 0r+1/ g(x,v)ds.
n oM

Utilizing the fact that 6,11 = P/ + P**h(u, ) from (2.5), we get

(5.15) / P/ h(p, p) g(x,v)ds
oM
— [ (@i P D) s
oM

=0r+1/ gx,v)yds—(n—r— l)/ or+18(x,v)dA,
M M
where we used (5.9) in the last equality. Combining (5.14) and (5.15), we obtain

/ PHE(—sinf + g(x,v)cos 0 + g(x,v) h(u, ) ds
oM

—r—1
= Loﬂrl[/ g(x,v)ds —n/ g(x,v) dA] =0,
n oM M

where in the last equality we used (5.10) again. ]
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Now we can use the conformal Killing vector field X}, 4 to establish a higher-order
Minkowski-type formula, which is very crucial for the study of stable (r + 1)-th capillary
hypersurfaces supported on a horosphere.

Proposition 5.8. Let x: M — H"*! be an isometric immersion supported on J. Assume
X (M) intersects H at a constant contact angle 6 € (0, ). Then, forany 0 <r <n — 1,

(5.16) /M[<Vn+1 007 (. v)) Hy — §(Xns1.v) Hy 1] dA = 0.

Proof. The proof can be found in Proposition 4 of [8]; we include it here for the sake of
completeness. Let X1, | := Xyq1 — §(Xng1.v)v = Y1 (X |)e;, where {¢;}7_, is
an orthonormal basis of M. Then

XTI D) = §(Xnt1 — 8 Xnt1, )0, €) = (X1, €).
From Lemma 2.1 and (5.6), we find
(5.17) divar (Pr 0 X,(y1) = PPV (8(Xus1.€))
= tI'(Pr)Vn+1 — g(Xn+1, l)) tI'(Prh)
=m=r)orVoy1 — (r + 1)0r418(Xnt1,v).

Then, by integration by parts, we get
/ divay (Pr C>XnT+1) = / P,(XnT+1,,u) = / PG (Xng1, 1)
M M oM
(5.18) = cos 9/ P e(Xy41,0) = cos@/ PMrg(x,v),
M oM

where we used (2.8), (2.1), (5.7) and g(E,+1,V) = 0 along M . Combining (5.17), (5.18)
and (5.9), we complete the proof. ]

Denote the r-th Jacobi operator to be J, := L, + tr(P.h?) — tr(P,), where L, is
given by (2.7). Recall the conformal Killing vector X,,4+1 = x — E,+1. In order to invest-
igate stability of (r + 1)-th capillary hypersurface by the above higher-order Minkowski-
type formula (5.16). We next calculate differential equations for g(x, v), g(E,+1,v),
g&(Xn41,v) and Vi41.

Proposition 5.9. Let x: M — H"*! be a constant (r + 1)-th mean curvature hypersur-
face. Then, forany0 <r <n — 1,

(5.19) Jrg(x,v) =0,

(5.20) Jr&(En+1,v) = —(r + D) or41Vay1 — (n —r)0rZ(En+1,v),

(5.21) Jr&(Xn+1,v) = (r + Dors1 Va1 + (n —1r)0,8(Ep+1,v),

(5.22) JrVat1 = (r + D) or418(En+1,v) + (010741 — (r + 2) 0742) Va1

Proof. 1t is clear that (5.21) follows from (5.19) and (5.20). Therefore, we only need to
show (5.19), (5.20) and (5.22) one by one.
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For a fixed point p € M, let {e;}7_, be a local orthonormal basis at p such that
Ve ejlp = 0. By (5.4), we calculate at p:
eig(x,v) = 8(x, V) + Z(Verx,v) = Z(x, Ve,v) — 8(Vox, ).
It follows that
(523)  L;g(x.,v) = PYg(x.v)
= PY[8(Ve,x. Ve v) + 8(x. Ve, (Ve,v)) = 8(Ve, (Vo). e0) = §(Vox Ve e0)]
= P/ [hik&(Ve;x.ex) + §(x. Vhij = hizv) = §(Ve, (Vyx). i) + hizg(Vox.v)]
= §(x. Vor1) —te(Prh?) g(x,v) = P/ g(Ve, (Vyx), 1),
= —tr(Prh?) §(x.v) = P g (Ve, (Vo). &),
where we have used (5.4) and the fact that 0,4 is constant. In (5.12), we have proved that
(5.24) —P/g(Ve,(Vux).ei) = (n =)0, g (x.v).
Now (5.19) follows from (5.23) and (5.24). Using (5.2) and (5.5), we can directly check
that
(5:25)  Lrg(Ent1,v) = PYg(Ens1,v),ij
= PY1e;(@(Ve; Ent1.v) + &(Ent1, Vo)l
= PY(¢j§(Ent1.Ve,v)
= P/ (§(Ve, Ent1. Ve,v) + §(Ent1. Ve, (Ve )
= P7hikg(Ve; Eny1.ex) + P g(Eny1, Vhi; — hi;v)
= —tr(Pr ) Va1 + §(Ens1. VOri1) — w(Prh*) §(Ent,v),
= —tr(Prh) Vot — 0(Prh®) §(Eng1.v),

which implies (5.20). From Proposition 5.3, we see that
(5.26) LyVag1 = PY (Vas1)ij = PV (Vij Vg1 — hij Vo Vag1)
=t (Pp)Vat1 + t(Prh) §(En+1,v),
which obtains (5.22). The proof is complete. ]

Now we compute the boundary equations of the corresponding geometric quantities.

Proposition 5.10 (Proposition 3.6 in [20]). Let x: M — H"*! be an isometric immersion
supported on H. Assume x (M) meets # at a constant contact angle 6 € (0, 7). Then,
along OM, we have

(5.27) Vu(Vag1 —cos 0 g(Ent1,v)) = q(Vag1 —cos 0 g(Ent1,v)),
(5.28) Vi 8(Xnt1,v) = qg(Xn+1,),
(5.29) Vg, ) = g0, 9) + A, ) g (x, o).

where q is defined by (3.4).
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5.2. Rigidity for stable (r + 1)-th capillary hypersurfaces supported on a
horosphere

In this subsection we will show a uniqueness result for stable (r + 1)-th capillary hyper-
surfaces supported on a horosphere #. For notation simplicity, we denote

(5.30) U= Vyp1 —cosOg(x,v).

Proposition 5.11. Assume 0 <r <n — 1. Let x: M — H"! be a constant (r + 1)-th
mean curvature hypersurface with boundary supported on #. Assume x (M) intersects
H at a constant contact angle 6 € (0, ). Then u satisfies

(531 Jru= (T +1)0r+18(Ent1,v) + (010741 — (r +2)0r42) Va1 in M,
(5.32) Vyu =qu ondM.

Proof. The equations (5.31) and (5.32) follow from Propositions 5.9 and 5.10, respect-
ively. ]

Proposition 5.12. Assume 0 <r <n — 1. Let x: M — H"*! be an (r + 1)-th capillary
hypersurface with boundary supported on J at a constant contact angle 0 € (0, ). If M
is stable and there exists at least one elliptic point, then | yudA #0.

Proof. Arguing by contradiction, suppose that | y 4 dA = 0. Combining with (5.32), we
know that u € ¥ . Now we choose u as an admissible test function in (3.9). Thus, by (5.30),
we have

(5.33) 0< —/ uJ,u = —/ (Vag1 —cos0g(x,v))Jru
M M

= —/ V,,_HJru—i—cos@/ glx,v)Jru.
M M

We compute the last term of (5.33) using Green’s formula. From (5.19), (2.8) and (5.32),
we obtain

634 [ geoniu= [ wnao+ [ (g0 B —up, (Ve 0]
= [ Prtug- g = Vg,
oM

By (5.29), (2.2) and (2.3), we see, along M,

(5.35) q-8(x,v) =V, g(x,v)
= (csc O +cot O h(u, 1)) g(x,v) — (g(x,v) + h(p, 1) g(x, )
= —cotfg(x,N)—cscOg(x, N h(u, 1) = cotf + csc O h(u, jn),

where in the last equality, we have used g(x, N) = —1 on dM. Substituting (5.34)—(5.35)
into (5.33), we get

(5.36) / Vat1Jru —cos@ PFu(cotf + csc Oh(p, n)) < 0.
M M
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Now we introduce an auxiliary function
Q= —g(Ent1,v).
By (5.25), we obtain
(5.37) L ®=—L;g(Eny1.v) = Va1 tr(Prh) + Z(Eny1.v) tr(PrR?).
From (2.2) and (5.3), note that
(5.38) ®lgpr = —cosf and V,® =sinbh(u, 1.

Inserting (5.37)—(5.38) into the identity

1
/ [®L, D + P, (VD, VD)) =/ —L,q>2=/ OP, (VO, 1),
M M2 M

we get an integral identity:
(5.39) / (Va1 tr(Prh) — G(Eniro ) (P2 E(Ensr.v) + / P, (V0. V)
M M

= —cos@sin@[ PFER(u, ).
oM

Here we used p is a principal direction by (2.8). Using (2.2), on dM, we have

(5.40) U= V41 —cosBg(x,v) = Vyy1 —cosB(cosf + sinf g(x, v))
= sinf(sinf — cos O g(x, v)).

By adding (5.39) to (5.36) and applying (5.40) and (5.31), we get
(541) 0> [M G(ET, . ET, ) t(Po?) + Py (V. V)]
—cos? 6 / PHH(sin€ — cos 0 g(x,v) — g(x, V) h(, 1))
oM
_ /M[g(EnTH, ET, ) t(Poh2) + P, (VO VD)),

where in the last equality we used (5.13).

Since there exists an elliptic point on M, we know that H,; > 0. From Proposi-
tion 2.3, one can see that L; is elliptic and H; > O foreachi =1,2,...,r.

Thus, by Lemma 2.2, we have

tr(Prhz) =010,41— (r +2)0r42

(542) :(r—i-l)( )HlHr_H-I—(n—r—l)(

n
r+1

n

r+1)(H1Hr+1 — Hy42) > 0.

From (5.41), (5.42) and (5.37), we obtain that ® is a constant on M, i.e.,

(5.43) L:® = (r+ Dorp1Vas1 + (010741 — (r +2)0742) §(Ep41.v) = 0.
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Since M is a compact hypersurface with boundary supported on J¢, we have
—® =g(Ept1,v) =cosf >0 on M.
It follows from (5.43) that
010741 — (r +2)0r42 < 0.

We get a contradiction by (5.42). Therefore, we conclude that

/MudA;zéO. |

In the following part we are ready to prove the classification for stable (r + 1)-
th capillary hypersurfaces supported on a horosphere . Inspired by the higher-order
Minkowski-type formula (5.16) and Proposition 5.12, we have an admissible test function
defined by

Pnt1 = Au — §(Xnt1, V) Hrt1,

A= ([MudA)_l /MuH,dA

is constant and u is given by (5.30).

where

For convenience, we denote
¢ :=A(r +1)or41—(n—r)or Hrt1,
V= A(01074+1 — (r +2)0r42) — (r + 1) 041 Hr41.
In particular, for r = 0, we have A = 1 and ¢ = 0, and ¥ = |h|*> —nH?.

Proposition 5.13. Let x: M — H" ! be a constant (r + 1)-th mean curvature hypersur-
face with boundary supported on H. Assume x (M) intersects H at a constant contact
angle 0 € (0, ). Then @, 41 satisfies

(5.44) JrOnr1 = 0g(Ent1,v) + ¥ Vita,
(5.45) Vi®n+1 = q@n+1,
(5.46) f Oni1 dA = 0.

M

Proof. The first equation, (5.44), follows from (5.31) and (5.21); the second, (5.45), from
(5.32) and (5.28); and the last one, (5.46), from (5.16) and the definition of A. [

Now we are going to prove the rigidity result for stable (» + 1)-th capillary hypersur-
faces with boundary supported on a horosphere in H”*! as follows.

Theorem 5.14. Assume 0 <r <n — 1. Let x: M — H"*! be an (r + 1)-th capillary
hypersurface supported on H at a constant contact angle 60 € (0, ). If M is stable and
there exists at least one elliptic point, then M is totally umbilical.
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Proof. From Proposition 5.12, we know that fM u dA # 0. Thus, by (5.45) and (5.46),
we can choose ¢, 4+ as an admissible test function in (3.9). Therefore,

can 0= [ g
M
= _/ (AVa41 —AcosOg(x,v) — §(x — Eny1,V)Hr1)Jr Ont1
M
= —/ AVag1 + 8(Eng1,vV)Hr 1) Jr 0naa
M

+ (Hy+1 + Acos 0)/ g(x,v)Jrony1.
M

We compute the second term in the right-hand side of (5.47) using Green’s formula.
By (5.19) and (5.45), we have

/g(x»‘))Jr(Pn+l

M
- /M LG () gnst + /3 L) P (T, 10 = g Py (VGG 0), )
- [3 PRt = a1 E )

648 = [ Pl pe) - Vgt

From (5.29), (2.2) and (2.3), we find, along OM,

(5.49) g-8(x,v) —V,g(x,v)
= (csc O + cot Oh(u, 1)) g(x,v) — (&(x, V) + A, 1) g(x, 1))
= —cotfg(x, N) —cscOgz(x, N)h(u, t) = cotf + csc Oh(u, ),

where we used g(x, N) = —1 on dM . Substituting (5.48) and (5.49) into (5.47), we get
650 [ (Va8 Enir D He) g
M

— (Hy41 + Acos 9)/ PHr o, p1(cotf + cscOh(u, n)) < 0.
oM

Next we introduce a powerful auxiliary function to eliminate the integral boundary
term of (5.50). Let

(5.51) Vi=—H 1 Vig1 — Ag(Eny1,v).
By (5.26) and (5.25), we obtain
(5.52) LyV =¢Vpi1 + ¥ 8(Ent1,v).

From (2.2), we have

(5.53) Wigpr = —H,41 — Acosé.
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Using (5.3), we can directly calculate
(5.54) VW = —sin0(Hy 1 — Ah(p, p)),

where we have used g(%EnH, v) =0and g(Ep+1, ) = —sinb on OM.
Inserting (5.51)—(5.54) into the integral identity

1
/ WL,V + P.(VV, V)] =/ —L, W2 =/ WP,.(VW, 1),
M M2 oM

we get that
(5.55) /M (—Hy 1 Vg1 — 22 Ens1 ) @Vasr + V3 (Ens1.0) + /M P, (YW, VW)

= (Hy4+1 + Acosh) sinG/ PHH(Hpyr — Ah(p, ().
oM

Putting (5.55) into (5.50) and applying (5.44), we have
650 0= [ ELLELDWA =gt + [ P(VE.VY)
M M

~ (o 4 cost) [ PP sin0(H, 1~ i )
oM
T (ot + s Oh(L, 1) gn ]

Next we will show that the boundary term in the right-hand side of (5.56) is zero.
Indeed, by (2.2) and (5.7), along M,

On+1 = AVn+1 — Acos 9§(x, \)) - g(Xn+1, I))Hr+1
= A —AcosBO(cosf +sinf g(x,v)) —sinh g(x — Ep41,V)Hr 41
=sinf(Asinf —Acos6 g(x,v) —g(x,v)Hr41).

It follows that

(5.57) sin O (Hyy1 — Ah(u, ) + (cot 6 + csc Oh(p, 1)) gn+1
= (Hy4+1 + Acos8)(sinf —cos 6 g(x,v) — g(x,v)h(u, 1)).

From (5.57) and (5.13), we see that

(5.58) /3M PHM[sin O(Hr41 — Ah(u, 1)) + (cot & + csc Oh(u, 1)) gn+1] = 0.
Putting (5.58) into (5.56), we get

(5.59) 0= [ (BT B = $H0) + P (T9.VW)

Since there exists an elliptic point on M, we have H,;; = constant > 0. From Pro-
position 2.3, the operator L; is elliptic and H; > 0 foreachi = 1,2,...,r.



Stable (r + 1)-th capillary hypersurfaces 1655

By the Newton—Maclaurin inequality (2.6), we have
(5.60) YA —¢Hriy
= 22010741 — (r +2)0742) =240 + Doy g1 Hrp1 + (1 —r) o, HY

n
= (r " 1)[12(” —r — 1) (H\Hy41 — Hry2) + (r + DA Hi Hy 1]

n
S P [V CE VR
n
)

= Az(n —r — 1)( + 1)(H1Hr+1 - Hr+2)

n H, Hy11\2 Hy 44
1 H2 (= (A= =22) + B - =) =0
+(}" + )(}"+ 1) r+1 Hr_|_1 H1 + Hl -

Combining (5.60) and (5.59), we obtain

(5.61) Z(EL 1 El L )(YA—¢H,11) =0 on M,
and W is a constant on M, that is,
(5.62) V=—H1Vy+1—Ag(Ept1,v) = —H,41 —Acos6 on M.

We claim that
(5.63) YA —¢H,41 =0 on M.

In fact, the open set U := {p € M | YA — ¢pH,11 # 0} is empty. If not, we have that
gET ,EI ) =0o0nU from (5.61). By the fact that (En+1, En41) = 1,

(5.64) g(Ep+1,v) = £Vp41 onU.

Since 8 € (0, ) and H,4+; > 0, we combine (5.64) and (5.62) to obtain that V, 41 is a
positive constant ¢; on U, which means U is lying on the horosphere {V;,+1 = ¢1}. On
the other hand, from (5.60) we know that U¢ is a part of the totally umbilical hypersurface.
By the smoothness of M, we imply that V},; is constant on the whole M. Thus, M lies
on a horosphere in H"*1. Using (5.60) again, we have

wk_¢Hr+l =0 onM.

We get a contradiction, so the claim (5.63) is true. From (5.63), (5.60) and Lemma 2.2,
we obtain that M is a totally umbilical hypersurface. ]

A. Proof of the first variational formula

The appendix is devoted to computing the first variational formula of the (r + 1)-th
energy functional &, 4 and to proving Theorem 3.1. Let M" 1 (K) be a complete simply-
connected (n 4+ 1)-dimensional Riemannian manifold with constant sectional curvature K.
We first study the evolution equations for several useful geometric quantities under the fol-
lowing flow in M1 (K):

(A.1) oix = fv+T, whereT € TM,.
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Proposition A.1. Along the general flow (A.1), the following hold:
(1) 0:gij =2fhij + ViT; + V;T;,
(2) 3,dA; = (fH +divT) dA,,
(3) 9rv =—=V[f +h(ei,T)ei,
@) dchij = =V2 f + f(hixh% — Kgij) + Vrhij + BV T + hEV; Ty,
(5) 0,h% = =ViV, f — f(hkhi + Kg}) + Vrhi,
6) 0H = —Af —(nK + |h|*) f + VT H,
(7) 8,F = fFij ViV, f — f(F{ h¥hi + KF/ g\) + V7 F for F = F(h]), where F} :=
IF /oh,
(®) 0:0r = —gzl,'- ViV f = (010, — (r + Dorp1) f =K —r + 1o, f + V7o,

Proof. Let {e;}7_, be an orthonormal basis of T, M for some point p. Denote ¢; (¢) :=
(x(t,-))«(e;)and Y (¢) := d;x(t,-). Then we have g(e; (¢t),v(z)) =0and [e; (¢), Y(¢)] = 0.
Recall the Gauss—Weingarten formula as follows:

Veiej = Veej —hijv,  Ve,v = higer.
‘We calculate that
3:8ij = 0:8(ei(1).¢; (1)) = §(Vyei.ej) + g(ei, Vye))
= g(§einej) + g(ei»ver) = g(@ei(fv + T),Ej) + (g_'(ei,@ej(fv + T))
=2fhij + ViT; + V;T;.
It follows that
1 ..
0:dA; = 5 g atgij dA;
1 .. .
= Egu(thij +ViT; +V;T;)dA; = (fH +divT) dA;.
Since g(d;v,v) = 0, we have
dv = g(0,v,e:(t))ei(t) = —g(v, Vyei)e;
= —g(v, 6eiY)ei =-g(v, 6&' (fv+T)e
= —(Ve, f)ei + h(ei. T)e; = =V f + h(e;, T)e;.
We next compute
(A2) 3hij = 0:8(Veyv (1), ¢ (1))
= g(Vy Ve, v.¢j) + g(Ve,v, Vye))
=g(Ve,Vyv.ej) + §(Vivev. ;) + §(R(Y, ei)v, ej) + §(Ve,v, Ve, Y)
= Z(Ve, (3rv). €j) + R(ej. v, Y.e;) + §(Ve,v, Ve, (fv + T))
= Z(Ve;(=V f + hlex. Thex). ¢;) — K&(Y.v) &ij + [ hf hij + hfV; T
= V2 f —Kf&j+ [hEhe; + §(Ve, (h(ex. T)ex). ;) + h¥V; Ty.
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Using the Codazzi equation in a space form, we have
(A3) g(6ei (/’I(Ek, T)ek)vej)

= [Veih(ek, T) + h(vei ekv T) + h(€k, Vei T)]gk] + h(ek’ T)g(VEz ek’ ej)

= Ve, h(e;. T) + h(Ve,e;, T) + h5Vi Ti — h(ex. T) g(ex. Ve, )

= VTh(ej s €i) + thi Tk.
Combining (A.2) and (A.3), we get (4). It follows that

Ocht = 00(8%hiy) = =2f hihk — V'V, f + fhi¥hi; — Kf g + Vrh!
=-VV, f — fhi*hi; — Kf g + Vrh.

The last three assertions (6)—(8) follow directly from (5); we only need the following fact:

do, _;

do,
Bh;- g =m—r+1)or. |

on

h;‘h}; =010, —(r +1)o,41 and

Next we let 3B be a totally umbilical hypersurface in M"”*!(K) with constant prin-
cipal curvature k € R. Let x: M — M"*1(K) be an immersed hypersurface with boundary
dM supported on dB. Assume the contact angle 6 € (0, ) is constant along IM .

From Proposition 3.2, we choose f€ ¥ . Then there exists an admissible volume-
preserving and contact angle-preserving variation of x with the variational vector field Y
having fv as its normal part. Namely,

(A4) Y=T+ fv onM,
(A.5) g(w,Nox)=—cosf ondiM,

where T is the tangent part of the variational vector field Y.
Applying (2.3), (A.4) and the admissible condition, we get

0=g(Y,N)=g(,sinfu —cosOv) =sinf g(Y,n) — f cosf on IM.
Therefore,
(A.6) g(T,n) =g, u) =cotbf ondM.
So, we can define
(A7) Y =T+ fv:=YM 4L cotffu + fv,

where Y denotes the tangent part of ¥ to dM .
On the other hand, from (2.4) we see that Y can be also expressed as follows:

.f (cos O + sinfv) = YM 4 .Lr;_
sin sin 6

Recall that the r-th wetting area functional W,.: (—¢, &) — R is inductively given by

1
Wol(t) := / ¥ dAyp, Wi() = 1 f ds:,
M x[0,t] n Jom

(A.8) Yy =Yy 4
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and, for2 <r <n—1,
1 r—1

(A.9) Wi (t) = —f HM ds, + ———— (K + £*) Wy (1),
n Jom n—r—+ 2

where H 5’541 is the (r — 1)-th normalized mean curvature of the closed hypersurface dM
in 0B.

Lemma A.2. Forany 0 <r <n — 1, we have the first variational formula of W, (t):

-1 -1
1
(A.10) diWr(t)=(”) [ oMads = (”) [ oMy as.
t r aM sinf \ r M

where G,E’M (fz) is the r-th mean curvature of OM in 0B.

Proof. This is obviously true for » = 0 and r = 1. We next only consider the case r > 2.
Let 0M be an immersed closed hypersurface in 0B with a normal speed f v. From (A.8),

We€ s€e 1

sin 0

f=—f

By the Gauss equation, we know that dB has intrinsic constant sectional curvature 7 =
K + «2. From Proposition A.1, we get

d oM _ 8Uraﬁ/]l(ﬁ) 52 7 M OM oM\
(A]l) E/BMO}_I dSt —AM<—anﬂf (U 0,_; —ro, )f)dSt

+ [ =+ 00 F o ol f s

:r/ oraMfds,—r(n—r—i—l)/ o™, f ds,.
oM oM

By induction, we assume it is true for 7 — 2 in (A.10). Applying (A.9) and (A.11), we have
d 1 /n—1\"'d oM tr—1) d
— W, () = — — d _— —a(t
dt (@) n(r—l) dt</g;MU'_1 s1)+n—r~|—2dt r=2()
1/n—-1 -1 9 ~ 9 ~
:;(r—l) (r/l;Maerdst—t(n—r—}—1)/{;M0,y2fdst)
(r—1) n \7! M F
—_— d
+n—r+2(r—2) /BMUr_zf St
—1n\! -
r(n / o™ 7 ds,
n\r—1 IM
1 (n\! oM
ds;.
sin@(r) /;;Mor S dst

The proof is completed. u
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Proof of Theorem 3.1. The case r = 0 can be found in [33]. In the following proof, we
only consider the case 1 < r <n — 1. By Proposition A.1, using integration by parts and
the fact that w is a principal direction from Proposition 2.4, we obtain

d dor _;
(A12) 5/}”(» dA, :/M[_ah{ ViV, f — f(0107 — (r + 1)0r41)
— K(1=r+1) for1 + Vro, | dA;
+/ or(for +divy T)dA,
M
—+ 1)/ Orir fdAs — K(n— 1 + 1)/ ors f dA;
M M

+ [ @f(T.0) = o9, f) ds.
oM

Utilizing (A.6), (3.3) and the fact that the principal curvature of 9B is k, we get, along dM ,
(A13) 0, 3(T.0) — o'V f =0, f cotf —qfol™

_ i _ o
—f(cotG(U, lofalad | 5 O )

K
— f(cot@ar (h ) = < 0r-1 |hw)).

Here we used the fact that

o/ = P =o,_1(h|hyy) and o (h) = op (W huu) + hpupor—1 (| hu)-
By (2.2), we see, along M,

hap = —Z(Veyep.v) = —g(Ve,ep.sin 00 — cos ON) = sin 0 g — k cos 0 84,
for an orthonormal frame {em}g;l1 of T(0M). Thus,
(A.14) 0 (M) = 0y (sin@h — i cos O 1,_y),

where [, is the (n — 1)-th identity matrix. In general, fora (n — 1) x (n — 1) symmetric
matrix B, we know

ot + 8= Y (170 o,

1=0
When k = 0, from (A.14), we have

cotfa,(hl|hu,) = cotfo,(sin GhA) = cosfsin”" ! Ho, (ﬁ)
When k # 0, from (A.14), we get
or(h|hyy) = 0p(sin@h — i cos 6 I, 1)

= mecony Y077 ) (5
1=0
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and

Or_1(h|hyuy) = 0r_1(sin@h —k cos O 1,_1)
—-[-1 tanf\!
r—1
— (= cos ) Z( o )( ; )o,(h).

Therefore, for any x € R, we have

cotO oy (hlhy,) — or—1(h|hy,) = cos @ sin”™ ! Qor(h)

n9
Z( 1) l[cos 9( _i:i)—i—(n;i;l)]tanlQol(ﬁ).

Putting (A.15) and (A.13) into (A.12), we see

Orl

(A.15)  +

d
—/ ardAt=(r+1)/ or+1fdA,—K(n—r+1)f or 1 f dA,
dt Jy M M
+ cos O sin” ! 0/ fo,(h)ds,
oM

rle

r el n—Il—1
sm@ Z( b [COS e(n—r—l)

- A
+ (n ) tan19/ for(h)ds;.
n—r oM

Since 7 is the second fundamental form of dM as a closed hypersurface in 0B, we
have o, (h) = oaM on M . From (A.10), we have the first variational formula of the r-th
wetting area funct10nal W, as follows:

-1
Sme() [ soviivas

We conclude that for 1 <r <n —1,

d
d_ Wr(t) =

d
(A.16) —{/ ordA; — (n)COSQSin’ OW,(t)
dr Uy r

r—1
r-1 oy =i (1 211 n—Il-1 !
08 elg( 1)+ (l)[cos e(n_r_l)Jr( o ]tan OWI(I)}
— 41 [ ofda-Ko-r+0) [ oifda.
M M

By the combination relationships

() () =()-()
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(0000

and from (A.16), we obtain

%{/Mo, dA, — (”)cosesm’e W, (1)

1 (1)r+lrl() ()
—cos Z [(n—r)cos? 6 + (r—1)] tan 6 Wl(t)}

and

(A1) =@+ 1)/ Or+1fdA; — Kn—r + 1)/ or—1f dA;.
M M
Recall that

Or4+1(0) =/ H,dA; — cos 6 sin” 6W,(t)
( 1)r+l r—I
S 192 ( )[(n—r)cos 0 + (r — )] tan’ O W (1).

Therefore, by (A.17), we have

d
(A.18) d—Qr+1(Z) = (n—r)/ Hr+1fdAt_rK/ Hy_1f dA;.
t M M
Let
K
(A.19) Ert1(t) = Or+1(0) + = Er_1(2).
n+2—-r

One can readily check that forany —1 <s <n — 1,

L i) = (n —s)/M Hy1 f dA.

dt
In fact, it is true for s = —1 and s = 0. By induction, we assume it is true for s = r — 2,
and then we calculate using (A.18) and (A.19):
d d
E8r+l(t) Qr+1( ) + (T) & _1(2)
~w-n Hr+1fdA,—r1</ Hyof dAct 0 (n+2—r>/ Hy 1 f dA,

= (I’l—r)/IuHr+1fdAt.

The proof of Theorem 3.1 is complete. |
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