
Rev. Mat. Iberoam. 41 (2025), no. 5, 1629–1664
DOI 10.4171/RMI/1558

© 2025 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

Stable .r C 1/-th capillary hypersurfaces

Jinyu Guo, Haizhong Li and Chao Xia

Abstract. In this paper, we propose a new definition of stable .r C 1/-th capillary
hypersurfaces from variational perspective for any 1 � r � n � 1. More precisely,
we define stable .r C 1/-th capillary hypersurfaces to be smooth local minimizers
of a new energy functional under volume-preserving and contact angle-preserving
variations. Using this new concept of stable .r C 1/-th capillary hypersurfaces, we
generalize the stability results of Souam (2023) in a Euclidean half-space, and Guo,
Wang and Xia (2022) in a horoball in hyperbolic space for capillary hypersurfaces to
the .r C 1/-th capillary hypersurface case.

1. Introduction

A classical result for constant mean curvature (CMC) hypersurfaces, proved by Barbosa
and do Carmo [5], and Barbosa, do Carmo and Eschenburg [6], states that “any stable
immersed closed CMC hypersurface in a space form is a geodesic sphere”. Here “stable”
means that the second variation of the area functional is nonnegative for any volume-
preserving variations. The following analogous result for stable immersed closed hyper-
surfaces with constant higher-order mean curvature in space forms has been proved by
Alencar, do Carmo and Colares [2], Alencar, do Carmo and Rosenberg [3], and Barbosa
and Colares [7].

Theorem 1.1 ([2, 3, 7]). Let 0 � r � n � 1. An immersed n-dimensional closed constant
.r C 1/-th mean curvature hypersurface in space forms is stable if and only if it is a
geodesic sphere.

(We regard an open hemi-sphere as a spherical space form in this paper.)
We also mention that Palmer [32] and the second author with He [23] proved analog-

ous result for hypersurfaces with constant .r C 1/-th anisotropic mean curvature.
The study of capillary hypersurfaces has attracted a lot of attention in the last dec-

ades. In fluid mechanics, a capillary surface models the interface between two fluids in
the absence of gravity. In fact, the free surface of the fluids locally minimizes the free
energy functional under a volume constraint. We refer to the book of Finn [13] for more
physical problems about capillary surfaces. From the geometric variational point of view,

Mathematics Subject Classification 2020: 53C42 (primary); 53A10 (secondary).
Keywords: stability, capillary hypersurfaces, Minkowski’s formula, higher-order mean curvature.

https://creativecommons.org/licenses/by/4.0/


J. Guo, H. Li and C. Xia 1630

a capillary hypersurface in a domain B is a stationary point of the free energy func-
tional for volume-preserving variations whose boundary freely moves on @B . By the first
variational formula, it is a CMC hypersurface with boundary which intersects @B at a
constant angle. There are plenty of important works on the existence, regularity and their
min-max theory for free boundary or capillary minimal hypersurfaces, see, for example,
[12, 15–17, 19, 24, 25, 28, 36] and the references therein.

The study on the classification for stable capillary hypersufaces has been initiated
by Ros and Vergasta [34] for the free boundary case, and by Ros and Souam [33] for the
general capillary case. WhenB is a Euclidean unit ball, the classification has been recently
completed by Nunes [31] for the free boundary case in two dimensions and eventually by
the third author with Wang [39] for the general capillary case in all dimensions, by using a
new Minkowski formula involving no boundary term. When B is a Euclidean half-space,
the classification has been recently settled by Souam [35].

Theorem 1.2 ([35]). A compact immersed capillary hypersurface in a Euclidean half-
space is stable if and only if it is a spherical cap.

The anisotropic version in a half-space has been proved by the first and the third
author [22].

Motivated by the concept of higher-order mean curvatures and also the capillary the-
ory, it is natural to ask for a higher-order capillary theory. In [10, 11], Damasceno and
Elbert introduced a notion of stable capillary hypersurfaces with constant higher-order
mean curvature in terms of the associated stability operator, instead of that given by means
of a variational problem.

In this paper, we propose a new notion of stability for higher-order capillary hypersur-
faces from the variational perspective. For any 1� r � n� 1, an n-dimensional .r C 1/-th
capillary hypersurface inB is a hypersurface with constant .r C 1/-th mean curvatureHrC1
and with boundary intersecting @B at a constant angle. It is known that the first vari-
ation of a higher-order mean curvature integral involves curvature terms in the bound-
ary integral, which violates the capillary boundary condition. To overcome this diffi-
culty, we make a restriction on the variation class. Precisely, we define a new .r C 1/-th
energy functional ErC1 and show that an .r C 1/-th capillary hypersurface is a stationary
point of ErC1 for any volume-preserving and angle-preserving variations. We say that an
.r C 1/-th capillary hypersurface is stable if the second variation of ErC1 is nonnegative
for any volume-preserving and angle-preserving variations. We emphasize that comparing
with the classical capillary theory (r D 0), we only allow angle-preserving variations in
the higher-order case. Equivalently speaking, we require that the normal components of
variational fields stay in

F D
°
' 2C1.M/

ˇ̌ Z
M

' dA D 0 and r�' D q' on @M
±
:

This is the key point for this new notion of stability (see Proposition 3.2 below for details).
Our first main result in this paper is the following classification for stable .r C 1/-th

capillary hypersurfaces in an .nC 1/-dimensional Euclidean half-space SRnC1C .

Theorem 1.3. Let 1 � r � n� 1. A compact immersed .r C 1/-th capillary hypersurface
in SRnC1C is stable if and only if it is a spherical cap.
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The proof of Theorem 1.3 is based on the following higher-order Minkowski-type
formula in SRnC1C :

(1.1)
Z
M

ŒHr .1 � cos �hEnC1; �i/ �HrC1hx; �i� dA D 0 for any 0 � r � n � 1:

Formula (1.1) has been proved by Wang, Weng and the third author in [37], where was
used to prove Alexandrov–Fenchel inequalities for embedded hypersurfaces with capillary
boundary in SRnC1C . Note that (1.1) offers an admissible test function which also satisfies
r�' D q' on @M .

When B is a .n C 1/-dimensional horoball in hyperbolic space HnC1, we see that
its boundary @B is a horosphere, that is, a non-compact totally umbilical hypersurface
with all principal curvatures equal to 1. In the next part, we study a stability problem for
.r C 1/-th capillary hypersurfaces supported on a horosphere. For r D 0, the classification
of stable capillary hypersurfaces supported on a horosphere has been proved by the first
and the third authors with Wang in [20].

Theorem 1.4 ([20]). A compact immersed capillary hypersurface supported on a horo-
sphere in HnC1 is stable if and only if it is totally umbilical.

We now establish the following result for .r C 1/-th capillary hypersurfaces.

Theorem 1.5. Let 1 � r � n� 1. A compact immersed .r C 1/-th capillary hypersurface
supported on a horosphere in HnC1 with at least one elliptic point is stable if and only if
it is totally umbilical and not totally geodesic.

Here, elliptic point means that all the principal curvatures at this point are positive. The
existence of elliptic point guarantees the ellipticity of operator Lr (see Proposition 2.3).
When r D 0, L0 D � is elliptic automatically. If the hypersurface intersects a horosphere
orthogonally, then there must be an elliptic point. Therefore, we have the following clas-
sification for stable free boundary constant .r C 1/-th mean curvature hypersurfaces.

Corollary 1.6. Let 1� r � n� 1. A compact immersed free boundary constant .r C 1/-th
mean curvature hypersurface supported on a horosphere in HnC1 is stable if and only if
it is totally umbilical and not totally geodesic.

The proof of Theorem 1.5 is based on the following higher-order Minkowski-type
formula in a horoball in HnC1:

(1.2)
Z
M

ŒHr .VnC1� cos� Ng.x;�//�HrC1 Ng.XnC1;�/�dAD 0 for any 0� r �n� 1;

see [8, 20]. This formula induces an admissible test function 'nC1 2 F (see Proposi-
tion 5.13 below). By utilizing the Killing property of position vector field in the hyperbolic
space HnC1, we obtain the desired rigidity result.

This paper is organized as follows. In Section 2, we collect some basic properties for
elementary symmetric functions. In Section 3, we calculate the first and second variational
formulae of the .r C 1/-th energy functional ErC1 and introduce a new definition of stable
.r C 1/-th capillary hypersurface in space forms for any 1 � r � n � 1. In Section 4,
we consider a rigidity of stable .r C 1/-th capillary hypersurfaces in a Euclidean half-
space and then prove Theorem 1.3 by the higher-order Minkowski-type formula (1.1). In
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Figure 1. Hypersurface M with contact angle � in the half-space RnC1
C

.

Section 5, we focus on the stability of .r C 1/-th capillary hypersurface supported on a
horosphere in hyperbolic space. We prove some useful and powerful geometric formulae
for the .r C 1/-th capillary hypersurfaces supported on a horosphere. By the higher-order
Minkowski-type formula (1.2), we finally construct an admissible test function and prove
Theorem 1.5 and hence Corollary 1.6.

2. Preliminaries

Let . NM nC1; Ng/ be an oriented .nC 1/-dimensional Riemannian manifold and let B be a
domain in NM with smooth boundary @B in NM . Let xW .M n; g/! . NM; Ng/ be an isometric
immersion of an orientable n-dimensional compact manifold M with boundary @M sat-
isfying xj@M W @M ! @B . We say this immersion x.M/ is supported on @B . For conveni-
ence, we do not distinguish M with its image x.M/ and @M with x.@M/, respectively,
through all computations are carried out on M by using the pull-back of x.

We denote by Nr, N� and Nr2 the gradient, the Laplacian and the Hessian on NM with
respect to Ng, respectively, while r, � and r2 denote the gradient, the Laplacian and the
Hessian on M with respect to its induced metric, respectively. We will use the following
terminology for four normal vector fields. We choose one of the unit normal vector field
along x and denote it by �. We denote by NN the unit outward normal to @B in B and by �
the unit outward normal to @M in M . Let N� be the unit normal to @M in @B such that
the bases ¹N�; NN º and ¹�; �º have the same orientation in the normal bundle of @M � NM .
See Figure 1, where B DRnC1C and @B DRn, n-dimensional Euclidean space. We denote
by h and h@B the second fundamental form of M and @B in NM , respectively.

Under this convention, along @M , the angle between � and N� or equivalently between
� and � NN is equal to � . Precisely, in the normal bundle of @M , we have the following
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relations:

� D sin � NN C cos � N�;(2.1)

� D � cos � NN C sin � N�:(2.2)

Equivalently,

NN D sin �� � cos � �;(2.3)
N� D cos ��C sin � �:(2.4)

Let � D .�1; : : : ; �n/ be the vector of principal curvatures of M . The r-th normalized
mean curvature, for any 1 � r � n, is defined by

Hr WD

�
n

r

��1
�r D

�
n

r

��1 X
1�i1<���<ir�n

�i1 � � � �ir ; where
�
n

r

�
D

nŠ

rŠ.n � r/Š
�

It is convenient to set �0.�/ D 1 and �r .�/ D 0 for r > n.
The Newton tensors are inductively defined to be

(2.5) P0 D I and Pr D �rI � Pr�1h:

The following is a collection of basic properties about Newton tensors.

Lemma 2.1 ([18]). For any 0 � r � n � 1, we have

(1) Pr is divergence-free, i.e.,
P
j rjP

ij
r D 0,

(2) trg.Pr / D
Pn
iD1 P

i i
r D .n � r/�r ,

(3) trg.Prh/ D
Pn
i;jD1 P

ij
r hij D .r C 1/�rC1,

(4) trg.Prh2/ D
Pn
i;j;kD1 P

ij
r h

k
i hkj D �1�rC1 � .r C 2/�rC2.

Let �C
l

be the Gårding cone defined by

�C
l
WD ¹� 2 Rn j �i .�/ > 0; 1 � i � lº:

The Newton–MacLaurin inequalities are as follows.

Lemma 2.2 ([18]). For any � 2�C
l

, we have

(2.6) Hk�1.�/Hl .�/ � Hk.�/Hl�1.�/; 1 � k < l � n:

Equality holds if and only if � D c.1; : : : ; 1/ for any constant c > 0.

For any 0 � r � n� 1, we define a second-order operator Lr WC1.M/! C1.M/ as

(2.7) Lrf WD divg.Prrf / D Pr ı r2f;

where the divergence free property of Pr has been used. If Pr is positive definite on each
point ofM , then Lr is an elliptic operator. In particular, the Laplacian operator is�D L0
is elliptic automatically. On the other hand, we have the following sufficient condition for
the ellipticity of Lr .
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Proposition 2.3 (Proposition 3.2 in [7]). If HrC1 is positive and there exists an elliptic
point on M , then for any 0 � j � r ,

(i) each operator Lj D divg.Pjr �/ is elliptic,

(ii) each j -th mean curvature Hj is positive.

The following proposition is an elementary fact when M is with capillary boundary
on @B , and @B is totally umbilical in NM .

Proposition 2.4 (Proposition 2.1 in [39]). Assume @B is totally umbilical in NM . Let
xWM ! NM be an immersion whose boundary x.@M/ intersects @B at a constant angle
� 2 .0; �/. Then � is a principal direction of @M in M . Namely, h.e; �/ D 0 for any
e 2T .@M/. In particular, for any 0 � r � n � 1,

(2.8) Pr .e; �/ D 0 for all e 2T .@M/:

3. .r C 1/-th capillary hypersurfaces and stabilities

In this section, we introduce a new notion of stability of .r C 1/-th capillary hypersurfaces.
Let NM DMnC1.K/ be a complete simply-connected .nC 1/-dimensional Riemannian
manifold with constant sectional curvature K and let @B be a totally umbilical hypersur-
face in MnC1.K/ with constant principal curvature � 2R. By a choice of orientation,
we can assume � 2 Œ0;1/. It is a well-known fact that in the Euclidean space and the
spherical space form, geodesic spheres .� > 0/ and totally geodesic hyperplanes .� D 0/
are all complete totally umbilical hypersurfaces, while in the hyperbolic space, the fam-
ily of all complete totally umbilical hypersurfaces includes geodesic spheres .� > 1/,
totally geodesic hyperplanes .� D 0/, horospheres .� D 1/ and equidistant hypersurfaces
.0 < � < 1/ (see, e.g., [29, 30]), among which the horospheres and the equidistant hyper-
surfaces are non-compact ones.

Let xW .�"; "/ �M ! MnC1.K/ be a differentiable map such that x.t; �/WM !
MnC1.K/ is an immersion satisfying x.t; @M/� @B for every t 2 .�"; "/ and x.0; �/D x.
We call x.t;M/ an admissible variation of x.0;M/ D x.M/.

We define the r-th area functional Ar W .�"; "/! R, for any 0 � r � n � 1, by

Ar .t/ D

Z
M

�r dAt ;

and the volume functional V W .�"; "/! R by

V.t/ D

Z
Œ0;t��M

x�dV;

where dAt is the area element of M with respect to the metric induced by x.t; �/ and dV
is the volume element of MnC1.K/. A variation is said to be volume-preserving if V.t/D
V.0/ D 0 for each t 2 .�"; "/.

Let Y be an admissible variational vector field of x with normal vector field f �, i.e.,

@x

@t
WD Y D Y T C f �;
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where Y T is tangent to M . From (A.12) in Appendix A, we have the first variation for-
mulae of Ar .t/ and V.t/ as follows:

A0r .t/ D .r C 1/

Z
M

�rC1f dAt �K.n � r C 1/

Z
M

�r�1f dAt(3.1)

C

Z
@M

�
�r Ng.Y; �/ �

@�r

@hi�
rif

�
dst ;

V 0.t/ D

Z
M

f dAt :(3.2)

In particular, when r D 0, we see that

A00.t/ D

Z
M

�1f dAt C

Z
@M

Ng.Y; �/ dst :

It follows that A00.0/ D 0 with volume-preserving variation if and only if M is a CMC
hypersurface with boundary intersecting @B orthogonally, which is exactly a free bound-
ary CMC hypersurface.

However, when r � 1, we cannot characterize constant .r C 1/-th mean curvature
hypersurface with a constant perpendicular contact angle only by (3.1) and (3.2) directly,
because the integral boundary terms in (3.1) contain the r-th mean curvature and its deriv-
ative. Therefore, the key point of this problem is how to define higher-order capillary
hypersurfaces by the variational method reasonably. In the following, we will give a nat-
urally geometric variational definition for higher-order capillary hypersurfaces.

We define the r-th wetting area functional Wr W .�"; "/! R inductively by

W0.t/ WD

Z
@M�Œ0;t�

x� dA@B ; W1.t/ WD
1

n

Z
@M

dst ;

and for 2 � r � n � 1,

Wr .t/ WD
1

n

Z
@M

H @M
r�1 dst C

r � 1

n � r C 2
.K C �2/Wr�2.t/;

where dA@B is the area element of @B and dst is the area element of @M with respect to
the metric induced by xj@M .t; �/, and H @M

r�1 is the normalized .r � 1/-th mean curvature
of @M in @B .

For fixed � 2 .0; �/, we define the .r C 1/-th energy functional ErC1W .�"; "/! R
inductively by

E0.t/ WD .nC 1/V .t/; E1.t/ WD A0.t/ � cos � W0.t/;

and for 1 � r � n � 1,

ErC1.t/ WD QrC1.t/C
rK

nC 2 � r
Er�1.t/;
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where

QrC1.t/ WD

�
n

r

��1
Ar .t/ � cos � sinr� Wr .t/

� cosr�1 �
r�1X
lD0

.�1/rCl

n � l
�r�l

�
r

l

�
Œ.n � r/ cos2 � C .r � l/� tanl� Wl .t/:

The definition for the higher-order energy functional is motivated by the following first
variational formula.

Theorem 3.1. Let x. � ; t /WM !MnC1.K/, t 2 .�"; "/, be a family of immersion suppor-
ted on @B at a constant contact angle � 2 .0; �/. Assume

.@tx/
?
D f � for f 2C1.M/.

Then
d

dt
ErC1.t/ D .n � r/

Z
M

HrC1f dAt :

This variational formula has been derived by Wang, Weng and the third author in the
Euclidean half-space and ball, see [37, 40]. We postpone the proof of Theorem 3.1 to
Appendix A.

Note that we assume all the immersions x. � ; t / in the variational class intersect @B at
a constant angle. We call such variation is an angle-preserving variation.

Now, we show an existence theorem for volume-preserving and angle-preserving ad-
missible variations. We define the following function space:

(3.3) F WD
°
' 2C1.M/

ˇ̌̌ Z
M

' dA D 0 and r�' D q' on @M
±
;

where

(3.4) q D � csc � C cot �h.�;�/:

Considering a volume-preserving and angle-preserving admissible variation with vari-
ational field having '� as its normal part, one can see from (3.2) that

R
M
' dA D 0. For

the capillary boundary condition Ng.�; NN ı x/ D � cos � , we can get from (3.6) and (3.7)
below that

r�' � q' D � csc � @t Ng.�; NN ı x/ D 0 along @M:

Therefore, ' 2F .
Conversely, we have that ' 2F induces a volume-preserving and angle-preserving

admissible variation:

Proposition 3.2. Let xWM ! NM D MnC1.K/ be an immersion such that its bound-
ary x.@M/ intersects @B at a constant angle � 2 .0; �/. Then, for a given ' 2F , there
exists an admissible volume-preserving and contact angle-preserving variation of x with
the variational vector field having '� as its normal part.
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Proof. We argue as in Lemma 2.2 in [6] (see also Proposition 2.1 in [1]). We first assume
that xWM ! NM is embedded. For each point p 2 @M , let �0 D � C cos � NN be the pro-
jection of � on Tx.p/.@B/. Denote


 D
1

Ng.�; �0/
�0 � �;

which is tangential to x.M/ along @M . We extend 
 to a smooth vector field on x.M/

and still denote it by 
 . We let � D 
 C � and extend � smoothly to a vector field on
U , which is a ı-neighbourhood of x.M/ in NM such that � is tangential to T .@B/ along
@B \ NU . By our construction, we see Ng.�; �/ D 1. Consider the local flow �t of � in NU
satisfying @

@t
�t D �. Let ‚W .�"; "/ �M ! NM be given by ‚.t; �/ D �t . We shall find a

function �W .�"; "/ �M ! R such that

Q‚.t; �/ D ‚.�.t; �/; �/

is the desired deformation.
First, since �t is the local flow of � and � is tangential to T .@B/ along @B \ NU , we

know that Q‚.t; @M/ � @B . Second, since

Q‚�dV NM D
@�

@t
‚�dV NM D

@�

@t
E.�.t; �/; �/ dt dAM ;

where E.�.t; �/; �/ D det.d‚j.�.t;� /;� //, we have

V. Q‚.t; �// D

Z
Œ0;t��M

Q‚�dV NM D

Z
M

Z t

0

@�

@t
E.�.t; �/; �/ dt dAM :

Let �.t; �/W .�"; "/ �M ! R be the local solution of the following initial value problem:

@�

@t
D

'

E.�.t; �/; �/
, �.0; �/ D 0 in M:

It follows from the condition
R
M
' dAD 0 that V. Q‚.t; �//D 0, that is, Q‚.t; �/ is a volume

preserving admissible deformation. Now we can easily check that

Y WD
@

@t

ˇ̌̌
tD0

Q‚.t; �/ D
@�

@t

ˇ̌̌
tD0
� �.0; �/ D '.
 C �/ WD Y T C '�;

which means the variational vector field of Q‚.t; �/ has '� as its normal part.
In the immersion case, we shall first construct an admissible variation QxW .�"; "/�

M ! NM and endow .�"; "/ �M with the pull-back metric Qx�. Ng/, and then it is enough
to prove the result for .�"; "/ �M endowed with Qx�. Ng/, which is the embedded case.

Finally, since Q‚.t; �/ is an admissible variation, from the appendix of [33] (see also
(A.7)–(A.8) in Appendix A), along @M , we have

(3.5) Y D Y T C '� WD Y @M C cot � '�C '� D Y @M C
'

sin �
N�:

Here Y @M denotes the tangent part of Y to @M .



J. Guo, H. Li and C. Xia 1638

By (2.1), (2.2) and the fact that @t� D �r' C d� ı Y T , we have

@t Ng.�; NN/ D Ng.@t�; NN/C Ng.�; @t NN/(3.6)

D Ng.@t�; sin �� � cos ��/C Ng.sin � N� � cos � NN; @t NN i

D sin � Ng.@t�; �/C sin �h@B.Y; N�/

D sin �.�r�' C h.Y T ; �//C h@B.Y; N�//

D sin �
�
�r�' C cot �h.�;�/' C

1

sin �
h@B. N�; N�/'

�
;

where in the last equality we used (3.5), Proposition 2.4 and the fact that @B is totally
umbilical.

By the assumption ' 2F , we get

(3.7) @t Ng.�; NN/ D sin �.�r�' C q'/ D 0:

Therefore, the boundary contact angle is preserved along the local flow �t .

Next, we define, for any 0 � r � n � 1, the .r C 1/-th capillary hypersurface and its
stability.

Definition 3.3. An immersion is said to be .r C 1/-th capillary if it is a critical point of
the .r C 1/-th energy functional ErC1 for any volume-preserving and angle-preserving
variation of x.

In view of Theorem 3.1, we see that an .r C 1/-th capillary hypersurface has constant
.r C 1/-th mean curvature HrC1 and constant contact angle along its boundary. In partic-
ular, when the contact angle is �=2, the hypersurface is called a free boundary constant
.r C 1/-th curvature hypersurface.

Definition 3.4. An .r C 1/-th capillary hypersurface is called stable if E 00rC1.0/ � 0 for
all volume-preserving and angle-preserving admissible variations.

For a volume-preserving and angle-preserving admissible variation with variational
field having '� as its normal part, we see from Proposition A.1 in Appendix A (see also
Proposition 4.1 in [7]) that

@t�rC1 D �Lr' � tr.Prh2/' �K tr.Pr /' Cr.@x=@t/T �rC1:

Here Pr is defined by (2.5). Thus, the second variational formula of ErC1 is given by

E 00rC1.0/ D .n � r/

�
n

r C 1

��1h Z
M

� 0rC1 ' dAC

Z
M

�rC1
d

dt

ˇ̌̌
tD0
.' dAt /

i
(3.8)

D .n � r/

�
n

r C 1

��1h Z
M

� 0rC1 ' dAC �rC1V
00.0/

i
D �.n � r/

�
n

r C 1

��1 Z
M

'ŒLr' C tr.Prh2/' CK tr.Pr /'� dA;

where we used that �rC1 is constant and x is volume-preserving.
From the above calculation, we have the following proposition.
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Proposition 3.5. An .r C 1/-th capillary hypersurface is stable if and only if

(3.9) �

Z
M

'ŒLr' C tr.Prh2/' CK tr.Pr /'� dA � 0 for all ' 2F ;

where F is the functional space given by (3.3).

Remark 3.6. We have no boundary integral term in the second variation formula because
we restrict to the angle-preserving variations. For the classical capillary theory, that is,
r D 0, the second variation formula involves boundary integral because there is no such
restriction (see, e.g., [4, 9, 26, 27, 38]).

4. Rigidity for stable .r C 1/-th capillary hypersurfaces in a
half-space

In this section we consider the case B is a Euclidean half-space SRnC1C , where

RnC1C D ¹x D .x1; x2; : : : ; xnC1/ 2 RnC1 W xnC1 > 0º:

Proposition 4.1. Any spherical caps in the half-space SRnC1C are stable .r C 1/-th capil-
lary hypersurfaces.

Proof. Let† be a spherical cap in SRnC1C whose principal curvatures are all equal toƒ>0.
Then

�r D

�
n

r

�
ƒr :

It follows from Lemma 2.1 that

Lr' D

�
n � 1

r

�
ƒr�'

and

tr.Prh2/ D �1�rC1 � .r C 2/�rC2 D n
�
n � 1

r

�
ƒrC2:

Hence, from (3.8), for any ' 2F , we have

E 00rC1.0/ D �.n � r/

�
n

r C 1

��1 Z
†

.Lr' C tr.Prh2/'/' dA

D �
.r C 1/.n � r/

n
ƒr

Z
†

.�' C nƒ2'/' dA D
.r C 1/.n � r/

n
ƒrE 001 .0/:

Recall that a spherical cap in SRnC1C is a stable capillary hypersurface and minimize the
energy functional E1 (see [14]). Therefore, E 001 .0/ � 0. It follows that E 00rC1.0/ � 0 and †
is a stable .r C 1/-th capillary hypersurface. The proof is complete.

We need the following higher-order Minkowski-type formula in SRnC1C from [37].
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Proposition 4.2 (Proposition 2.6 in [37]). Let xWM ! SRnC1C be an immersed hypersur-
face whose boundary intersects @RnC1C at a constant contact angle � 2 .0; �/. Then

(4.1)
Z
M

Œ.1 � cos �hEnC1; �i/Hr � hx; �iHrC1� dA D 0 for any 0 � r � n � 1;

where EnC1 D .0; : : : ; 0; 1/ 2 SRnC1C and x is position vector field in SRnC1C .

Next we derive the equations for several geometric quantities. We denote the r-th
Jacobi operator by

Jrf WD Lrf C tr.Prh2/f for any 0 � r � n � 1:

Proposition 4.3. Let xWM ! SRnC1C be an immersed hypersurface. Then the following
identities hold on M :

Jr .hEnC1; �i/ D hEnC1;r�rC1i and Jr .hx; �i/ D hx;r�rC1i C .r C 1/�rC1:

Proof. The above formulae have been shown in [7]. For the convenience of reader, we
give a direct computation.

For a fixed point p 2 M , let ¹eiºniD1 be a local orthonormal basis at p such that
rei ej jp D 0. In the following, we calculate at p. We have

Jr .h�;EnC1i/ D Lr .h�;EnC1i/C h�;EnC1i tr.Prh2/

D .P ijr hjkhek ; EnC1i/;i C h�;EnC1iP
ij
r h

2
ij

D Œ.�rC1ıik � P
ik
rC1/hek ; EnC1i�;i C h�;EnC1i.�rC1ıik � P

ik
rC1/hik

D �rC1;i hei ; EnC1i C �rC1.h Nrei ei ; EnC1i C h�;EnC1i tr.h//

� .P ikrC1h
Nrei ek ; EnC1i C h�;EnC1i tr.PrC1h//

D hr�rC1; EnC1i;

where in the third equality we used the relation PrC1 D �rC1I � Pr ı h and Lemma 2.1.
For the second identity, we have

Jr .hx; �i/ D Lr .hx; �i/C hx; �i tr.Prh2/ D .P ijr hjkhx; eki/;i C hx; �iP
ij
r h

2
ij

D Œ.�rC1ıik � P
ik
rC1/hx; eki�;i C hx; �i.�rC1ıik � P

ik
rC1/hik

D �rC1;i hx; ei i C �rC1Œ.hx; ei i/;i C hx; �i tr.h/�

� ŒP ikrC1.hx; eki/;i C hx; �i tr.PrC1h/�:

Since

P ikrC1.hx; eki/i C hx; �i tr.PrC1h/ D P
ik
rC1.ıik � hikhx; �i/C hx; �i tr.PrC1h/

D tr.PrC1/ D .n � r � 1/�rC1;

we see that

Jr .hx; �i/ D hx;r�rC1i C n�rC1 � .n� r � 1/�rC1 D hx;r�rC1i C .r C 1/�rC1:
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Next we check the boundary equations of corresponding geometric quantities.

Proposition 4.4 ([22]). Let xWM ! SRnC1C be an isometric immersion. Assume that M
intersects @RnC1C at a constant contact angle � 2 .0; �/. Then, along @M , we have

r�hx; �i D qhx; �i; r�.1 � cos �hEnC1; �i/ D q.1 � cos �hEnC1; �i/;

where q D cot � h.�;�/.

Proof. By choosing F � 1 in Proposition 2.2 of [22], we get this proposition.

For the ease of notation, we denote

! WD 1 � cos �hEnC1; �i:

Since � 2 .0; �/, we have ! > 0 on M . Motivated by the higher-order Minkowski-type
formula (4.1), we let

(4.2) ' WD ˛! �HrC1hx; �i;

where
˛ D

� Z
M

! dA
��1 Z

M

!Hr dA:

Proposition 4.5. Let xWM ! SRnC1C be a compact immersed .r C 1/-th capillary hyper-
surface with a contact angle � 2 .0; �/. Then

Jr ' D

�
n

r C 1

��
˛.nH1HrC1 � .n � r � 1/HrC2/ � .r C 1/H

2
rC1

�
;(4.3)

r�' D q';(4.4) Z
M

' dA D 0:(4.5)

Proof. Equations (4.3) and (4.4) follow from Propositions 4.3 and 4.4, respectively. Equa-
tion (4.5) follows from (4.2) and (4.1).

Now we prove a rigidity theorem for a stable .r C 1/-th capillary hypersurface in a
half-space.

Theorem 4.6. Let M be a compact immersed .r C 1/-th capillary hypersurface in SRnC1C
with a constant contact angle � 2 .0; �/. If M is stable, then it is a spherical cap.

Proof. The proof is similar to that in [23], by the second author with He, for the closed
hypersurface case. We prove it here for reader’s convenience. Since M is compact hyper-
surface in SRnC1C with contact angle � 2 .0; �/, there exists a point in M where all the
principal curvatures are positive. Thus, HrC1 is positive constant. From Proposition 2.3,
we know that each operator Li is elliptic and Hi > 0 for any i 2 ¹1; : : : ; rº. Hence, ˛ is
positive constant.
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From (4.4) and (4.5), we obtain that ' is an admissible test function in (3.9). Therefore,
by (4.3), we have

0 � �

Z
M

'Jr ' dA(4.6)

D �

�
n

r C 1

�Z
M

'Œ˛.nH1HrC1 � .n � r � 1/HrC2/ � .r C 1/H
2
rC1� dA

D �˛

�
n

r C 1

�Z
M

'.nH1HrC1 � .n � r � 1/HrC2/ dA;

where in the last equality we used the fact that HrC1 is constant and (4.5). From (4.2),

'.nH1HrC1 � .n � r � 1/HrC2/(4.7)
D ˛!.nH1HrC1 � .n � r � 1/HrC2/

C .HrC1hx; �i/.nH1HrC1 � .n � r � 1/HrC2/

D ˛.n � r � 1/!.H1HrC1 �HrC2/C ˛.r C 1/!H1HrC1

C .HrC1hx; �i/.nH1HrC1 � .n � r � 1/HrC2/:

Putting (4.7) into (4.6), we get

0 �

Z
M

'.nH1HrC1 � .n � r � 1/HrC2/ dA

D ˛.n � r � 1/

Z
M

!.H1HrC1 �HrC2/ dAC ˛.r C 1/

Z
M

!H1HrC1 dA

C

Z
M

.HrC1hx; �i/.nH1HrC1 � .n � r � 1/HrC2/ dA:

From Lemma 2.2, we have

0 � ˛.r C 1/

Z
M

!H1HrC1 dA(4.8)

C

Z
M

.HrC1hx; �i/.nH1HrC1 � .n � r � 1/HrC2/ dA

D ˛.r C 1/

Z
M

!H1HrC1 dAC .r C 1/H
2
rC1

Z
M

! dA

D ˛.r C 1/H 2
rC1

h 1

HrC1

Z
M

!H1 dA �
1

˛

Z
M

! dA
i
:

Here in the second equality we used the higher-order Minkowski-type formula (4.1) twice.
By the Hölder inequality and the Newton–MacLaurin inequality (2.6), we obtain

(4.9)
� Z

M

! dA
�2
�

Z
M

1

H1
! dA

Z
M

!H1 dA �

Z
M

Hr

HrC1
! dA

Z
M

!H1 dA:

Hence, from (4.9) and the definition of ˛, we have

1

HrC1

Z
M

!H1 dA �
1

˛

Z
M

! dA(4.10)

D
1

HrC1

h Z
M

!H1 dA �
� Z

M

Hr

HrC1
! dA

��1� Z
M

! dA
�2i
� 0:
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Figure 2. Hypersurface M supported on horosphere H .

Combining (4.8) and (4.10), we see the above inequality is in fact an equality. It follows
that Hr D HrC1H1 on M and, in turn, M is totally umbilical in SRnC1C , i.e., M is a
spherical cap.

5. .r C 1/-th capillary hypersurfaces supported on a horosphere

In this section we focus on the stability of .r C 1/-capillary hypersurfaces with boundary
supported on a horosphere in hyperbolic space.

Let .HnC1; Ng/ be a complete simply-connected Riemannian manifold with constant
sectional curvature �1. We use the upper half-space model for HnC1, which is denoted by

HnC1
D ¹x D .x1; x2; : : : ; xnC1/ 2 RnC1C W xnC1 > 0º; Ng D

1

x2nC1
ı;

where ı is a Euclidean metric in RnC1.
A horosphere, a “sphere” in HnC1 whose centre lies at @1HnC1, up to a hyperbolic

isometry, is written by the horizontal plane

H D ¹x 2 RnC1C W xnC1 D 1º:

We choose NN D �EnC1 D .0; : : : ; 0;�1/. Then all principal curvatures of a horosphere
are � D 1. By Gauss’ equation, namely, Rij ij D �1C �i�j D 0 for any i ¤ j , we know
that a horosphere is isometric to the n-dimensional Euclidean space Rn.

Let xW .M n;g/! .HnC1; Ng/ be an isometric immersion of an orientable n-dimensional
compact manifold M with boundary @M satisfying xj@M W @M ! H . Such an immersion
is called an immersion supported on a horosphere H (see Figure 2).
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We denote by x the position vector in HnC1 and by Nr the Levi-Civita connection
of HnC1. We use h � ; � i and Ng to denote the inner product of RnC1 and HnC1, respect-
ively, andD and Nr to denote the Levi-Civita connection of RnC1 and HnC1, respectively.
Let ¹EAºnC1AD1 be the canonical basis of RnC1 and NEA D xnC1EA. Then ¹ NEAºnC1AD1 is an
orthonormal basis of HnC1 with respect to Ng.

The relationship of Nr and D is given by

NrYZ D DYZ � Y.ln xnC1/Z �Z.ln xnC1/Y C hY;ZiD.ln xnC1/:

It is easy to check that

NrY x D � Ng.Y; NEnC1/x C Ng.Y; x/ NEnC1;(5.1)
NrYEi D � Ng.Y; NEnC1/Ei C Ng.Y; NEi /EnC1 for all i D 1; 2; : : : ; n;(5.2)

NrYEnC1 D �
1

xnC1
Y;(5.3)

for any vector field Y in HnC1.
The following propositions play a crucial role in this section.

Proposition 5.1 (Proposition 2.2 in [20]).
(i) The vector fields x and ¹EiºniD1 are Killing vector fields in HnC1, i.e.,

(5.4)
1

2
. Ng. NrAx;EB/C Ng. NrBx;EA// D

1

2
. Ng. NrAEi ; EB/C Ng. NrBEi ; EA// D 0:

(ii) EnC1 is a conformal Killing vector field in HnC1, i.e.,

(5.5)
1

2
. Ng. NrAEnC1; EB/C Ng. NrBEnC1; EA// D �

1

xnC1
NgAB :

Here NrA D NrEA and NgAB D Ng.EA; EB/.

Now we recall a conformal Killing vector field XnC1 and a function VnC1 in HnC1

from [21] that we will use later. Denote

XnC1 D x �EnC1 and VnC1 D
1

xnC1
�

From Proposition 5.1, we have the following important properties.

Proposition 5.2 (Proposition 2.1 in [21]).
(i) XnC1 is a conformal Killing vector field with 1

2
LXnC1 Ng D VnC1 Ng, namely,

(5.6)
1

2
Œ Ng. NrEAXnC1; EB/C Ng.

NrEBXnC1; EA/� D VnC1 NgAB :

(ii) XnC1jH is a tangential vector field on H , i.e.,

(5.7) Ng.XnC1; NN/ D 0 on H :
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Proposition 5.3 (Proposition 2.2 in [21]). The function VnC1 satisfies the following prop-
erties:

Nr
2VnC1 D VnC1 Ng in HnC1; @ NNVnC1 D VnC1 on H :

Proposition 5.4. Assume 0 � r � n� 1. Then any totally umbilical hypersurface suppor-
ted on a horosphere H is a stable .r C 1/-th capillary hypersurface.

Proof. Let Q† be a totally umbilical hypersurface supported on H with a contact angle � .
Suppose the principal curvatures of Q† are all equal to a certain nonnegative constant Qƒ. It
is easy to check that

�i D

�
n

i

�
Qƒi for any i D 0; 1; : : : ; n:

It follows from Lemma 2.1 that

Lr' D

�
n � 1

r

�
Qƒr�'; tr.Prh2/ D n

�
n � 1

r

�
QƒrC2; tr.Pr / D .n � r/

�
n

r

�
Qƒr :

Hence, for any ' 2F , by (3.8), we have

E 00rC1.0/ D �.n � r/

�
n

r C 1

��1 Z
Q†

'ŒLr' C tr.Prh2/' � tr.Pr /'� dA

D �
.r C 1/.n � r/

n
Qƒr
Z
Q†

'.�' C n Qƒ2' � n'/ dA

D
.r C 1/.n � r/

n
QƒrE 001 .0/:

It follows from Proposition 2.5 in [20] that any totally umbilical capillary hypersurface
supported on the horosphere H is stable. Therefore, we have that Q† is a stable .r C 1/-th
capillary hypersurface.

5.1. Key formulae for .r C 1/-th capillary hypersurfaces supported on a horosphere

In this subsection we show some useful facts about .r C 1/-th capillary hypersurfaces
supported on a horosphere that we will use later. Let P��r D �r .h jh��/ be the r-th mean
curvature deleting h.�; �/ component from the second fundamental form h. To simplify
the notation, we will omit writing the volume form dA onM and the area form ds on @M .

Proposition 5.5. Let xWM !HnC1 be an isometric immersion supported on H . Assume
x.M/ intersects H at a constant contact angle � 2 .0; �/. Then, for any 0 � r � n � 1,

(5.8) �.r C 1/

Z
M

Ng.x; �/�rC1 dA D

Z
@M

P��r .cos � Ng.x; N�/ � sin �/ ds:

Proof. Let

xT WD x � Ng.x; �/� D

nX
iD1

.xT /iei ;
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where ¹eiºniD1 is an orthonormal basis of M . Thus,

.xT /i D Ng.x � Ng.x; �/�; ei / D Ng.x; ei /:

Since x is Killing vector field in HnC1, we see from Lemma 2.1 that

divM .Pr ı xT / D P ijr rj . Ng.x; ei // D � Ng.x; �/ tr.Prh/ D �.r C 1/�rC1 Ng.x; �/:

Integration by parts givesZ
M

divM .Pr ı xT / D
Z
@M

Pr .x
T ; �/ D

Z
@M

P��r Ng.x; �/

D

Z
@M

P��r Ng.x; cos � N� C sin � NN/

D

Z
@M

P��r .cos � Ng.x; N�/ � sin �/;

where we have used (2.8), (2.2) and Ng.x; NN/ D �1 on @M .

Next we will derive another important integral identity.

Proposition 5.6. Let xWM !HnC1 be an isometric immersion supported on H . Assume
x.M/ intersects H at a constant contact angle � 2 .0; �/. Then, for any 0 � r � n,

(5.9) .n � r/

Z
M

�r Ng.x; �/ dA D

Z
@M

P��r Ng.x; N�/ ds:

In particular, for r D 0, we have

(5.10) n

Z
M

Ng.x; �/ dA D

Z
@M

Ng.x; N�/ ds:

Proof. In order to prove (5.9), we consider a vector field Z on M as follows:

Z D Ng.x; �/ NEnC1 � Ng. NEnC1; �/x:

Recall that NEnC1 D xnC1EnC1. Along @M , we have

Ng.Z;�/ D Ng.x; �/ Ng. NEnC1; �/ � Ng. NEnC1; �/ Ng.x; �/

D � Ng.x; �/ Ng. NN;�/C Ng. NN; �/ Ng.x; �/

D � sin � Ng.x; �/ � cos � Ng.x; �/ D � Ng.x; N�/;

where we have used (2.3), (2.4) and the fact that NN D � NEnC1 on @M . By integrating by
parts, we obtain

�

Z
@M

P��r Ng.x; N�/ D

Z
@M

P��r Ng.Z;�/ D

Z
@M

Pr .Z
T ; �/ D

Z
M

divM .Pr ıZT /:

Now we claim that

(5.11) divM .Pr ıZT / D �.n � r/�r Ng.x; �/:
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Thus, Proposition 5.6 follows from claim (5.11). Next we will show the claim (5.11).
First we observe that Z is tangential, i.e., Ng.Z; �/ D 0, which implies divM .Pr ıZT / D
divM .Pr ıZ/. From (5.1), we see that Z can be expressed as Z D Nr�x:

Let ¹eiºniD1 be an othonormal basis of M . By constant sectional curvature of HnC1

being �1, we have

Ng. Nrei .
Nr�x/; ej / D Ng. Nr�. Nreix/; ej / � Ng.

NrŒ�;ei �x; ej / � Ng.
NR.�; ei /x; ej /

D Nr�. Ng. Nreix; ej // � Ng.
Nreix;

Nr�ej / � Ng. NrŒ�;ei �x; ej / � ıij Ng.x; �/

D Nr�. Ng. Nreix; ej // � Ng.
Nreix;

Nrej � C Œ�; ej �/ � Ng.
NrŒ�;ei �x; ej / � ıij Ng.x; �/

D Nr�. Ng. Nreix; ej // � hjk Ng.
Nreix; ek/ � Ng.

Nreix; Œ�; ej �/ � Ng.
NrŒ�;ei �x; ej / � ıij Ng.x; �/:

By utilizing that x is Killing vector field, we obtain

P ijr Ng.
NreiZ; ej / D �P

ij
r hjk Ng.

Nreix; ek/ � P
ij
r Lx Ng.Œ�; ei �; ej / � tr.Pr / Ng.x; �/(5.12)

D �.n � r/�r Ng.x; �/;

where we used the fact that P ijr hjk D P
kj
r hj i from (2.5). Thus, we have claim (5.11) and

the proof is completed.

As a consequence, we get the following significant integral identity.

Corollary 5.7. Let xWM ! HnC1 be an immersed constant .r C 1/-th mean curvature
hypersurface supported on H . Assume x.M/ intersects H at a constant contact angle
� 2 .0; �/. Then, for any 0 � r � n � 1,

(5.13)
Z
@M

P��r .� sin � C cos � Ng.x; N�/C Ng.x; N�/h.�; �// ds D 0:

Proof. By (5.8) and (5.10), we haveZ
@M

P��r .� sin � C cos � Ng.x; N�// ds D �.r C 1/
Z
M

�rC1 Ng.x; �/ dA(5.14)

D �
r C 1

n
�rC1

Z
@M

Ng.x; N�/ ds:

Utilizing the fact that �rC1 D P
��
rC1 C P

��
r h.�;�/ from (2.5), we getZ

@M

P��r h.�;�/ Ng.x; N�/ ds(5.15)

D

Z
@M

.�rC1 � P
��
rC1/ Ng.x; N�/ ds

D �rC1

Z
@M

Ng.x; N�/ ds � .n � r � 1/

Z
M

�rC1 Ng.x; �/ dA;

where we used (5.9) in the last equality. Combining (5.14) and (5.15), we obtainZ
@M

P��r .� sin � C Ng.x; N�/ cos � C Ng.x; N�/h.�; �// ds

D
n � r � 1

n
�rC1

h Z
@M

Ng.x; N�/ ds � n

Z
M

Ng.x; �/ dA
i
D 0;

where in the last equality we used (5.10) again.
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Now we can use the conformal Killing vector field XnC1 to establish a higher-order
Minkowski-type formula, which is very crucial for the study of stable .r C 1/-th capillary
hypersurfaces supported on a horosphere.

Proposition 5.8. Let xWM !HnC1 be an isometric immersion supported on H . Assume
x.M/ intersects H at a constant contact angle � 2 .0; �/. Then, for any 0 � r � n � 1,

(5.16)
Z
M

Œ.VnC1 � cos � Ng.x; �//Hr � Ng.XnC1; �/HrC1� dA D 0:

Proof. The proof can be found in Proposition 4 of [8]; we include it here for the sake of
completeness. Let XTnC1 WD XnC1 � Ng.XnC1; �/� D

Pn
iD1.X

T
nC1/

iei , where ¹eiºniD1 is
an orthonormal basis of M . Then

.XTnC1/
i
D Ng.XnC1 � Ng.XnC1; �/�; ei / D Ng.XnC1; ei /:

From Lemma 2.1 and (5.6), we find

divM .Pr ıXTnC1/ D P
ij
r rj . Ng.XnC1; ei //(5.17)

D tr.Pr /VnC1 � Ng.XnC1; �/ tr.Prh/
D .n � r/�rVnC1 � .r C 1/�rC1 Ng.XnC1; �/:

Then, by integration by parts, we getZ
M

divM .Pr ıXTnC1/ D
Z
@M

Pr .X
T
nC1; �/ D

Z
@M

P��r Ng.XnC1; �/

D cos �
Z
@M

P��r Ng.XnC1; N�/ D cos �
Z
@M

P��r Ng.x; N�/;(5.18)

where we used (2.8), (2.1), (5.7) and Ng.EnC1; N�/D 0 along @M . Combining (5.17), (5.18)
and (5.9), we complete the proof.

Denote the r-th Jacobi operator to be Jr WD Lr C tr.Prh2/ � tr.Pr /, where Lr is
given by (2.7). Recall the conformal Killing vector XnC1 D x �EnC1. In order to invest-
igate stability of .r C 1/-th capillary hypersurface by the above higher-order Minkowski-
type formula (5.16). We next calculate differential equations for Ng.x; �/, Ng.EnC1; �/,
Ng.XnC1; �/ and VnC1.

Proposition 5.9. Let xWM ! HnC1 be a constant .r C 1/-th mean curvature hypersur-
face. Then, for any 0 � r � n � 1,

Jr Ng.x; �/ D 0;(5.19)
Jr Ng.EnC1; �/ D �.r C 1/�rC1VnC1 � .n � r/�r Ng.EnC1; �/;(5.20)
Jr Ng.XnC1; �/ D .r C 1/�rC1VnC1 C .n � r/�r Ng.EnC1; �/;(5.21)
JrVnC1 D .r C 1/�rC1 Ng.EnC1; �/C .�1�rC1 � .r C 2/�rC2/VnC1:(5.22)

Proof. It is clear that (5.21) follows from (5.19) and (5.20). Therefore, we only need to
show (5.19), (5.20) and (5.22) one by one.
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For a fixed point p 2 M , let ¹eiºniD1 be a local orthonormal basis at p such that
rei ej jp D 0. By (5.4), we calculate at p:

ei Ng.x; �/ D Ng.x; Nrei �/C Ng.
Nreix; �/ D Ng.x;

Nrei �/ � Ng.
Nr�x; ei /:

It follows that

Lr Ng.x; �/ D P
ij
r Ng.x; �/;ij(5.23)

D P ijr
�
Ng. Nrej x;

Nrei �/C Ng.x;
Nrej .
Nrei �// � Ng.

Nrej .
Nr�x/; ei / � Ng. Nr�x; Nrej ei /

�
D P ijr

�
hik Ng. Nrej x; ek/C Ng.x;rhij � h

2
ij �/ � Ng.

Nrej .
Nr�x/; ei /C hij Ng. Nr�x; �/

�
D Ng.x;r�rC1/ � tr.Prh2/ Ng.x; �/ � P ijr Ng. Nrej . Nr�x/; ei /;

D �tr.Prh2/ Ng.x; �/ � P ijr Ng. Nrej . Nr�x/; ei /;

where we have used (5.4) and the fact that �rC1 is constant. In (5.12), we have proved that

(5.24) �P ijr Ng.
Nrej .
Nr�x/; ei / D .n � r/�r Ng.x; �/:

Now (5.19) follows from (5.23) and (5.24). Using (5.2) and (5.5), we can directly check
that

Lr Ng.EnC1; �/ D P
ij
r Ng.EnC1; �/;ij(5.25)

D P ijr Œej . Ng.
NreiEnC1; �/C Ng.EnC1;

Nrei �//�

D P ijr .ej Ng.EnC1;
Nrei �//

D P ijr . Ng.
NrejEnC1;

Nrei �/C Ng.EnC1;
Nrej .
Nrei �///

D P ijr hik Ng.
NrejEnC1; ek/C P

ij
r Ng.EnC1;rhij � h

2
ij �/

D �tr.Prh/VnC1 C Ng.EnC1;r�rC1/ � tr.Prh2/ Ng.EnC1; �/;

D �tr.Prh/VnC1 � tr.Prh2/ Ng.EnC1; �/;

which implies (5.20). From Proposition 5.3, we see that

LrVnC1 D P
ij
r .VnC1/;ij D P

ij
r .
NrijVnC1 � hij Nr�VnC1/(5.26)

D tr.Pr /VnC1 C tr.Prh/ Ng.EnC1; �/;

which obtains (5.22). The proof is complete.

Now we compute the boundary equations of the corresponding geometric quantities.

Proposition 5.10 (Proposition 3.6 in [20]). Let xWM !HnC1 be an isometric immersion
supported on H . Assume x.M/ meets H at a constant contact angle � 2 .0; �/. Then,
along @M , we have

r�.VnC1 � cos � Ng.EnC1; �// D q.VnC1 � cos � Ng.EnC1; �//;(5.27)
r� Ng.XnC1; �/ D q Ng.XnC1; �/;(5.28)

r� Ng.x; �/ D Ng.x; N�/C h.�;�/ Ng.x; �/;(5.29)

where q is defined by (3.4).
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5.2. Rigidity for stable .r C 1/-th capillary hypersurfaces supported on a
horosphere

In this subsection we will show a uniqueness result for stable .r C 1/-th capillary hyper-
surfaces supported on a horosphere H . For notation simplicity, we denote

(5.30) u WD VnC1 � cos � Ng.x; �/:

Proposition 5.11. Assume 0 � r � n � 1. Let xWM ! HnC1 be a constant .r C 1/-th
mean curvature hypersurface with boundary supported on H . Assume x.M/ intersects
H at a constant contact angle � 2 .0; �/. Then u satisfies

Jr u D .r C 1/�rC1 Ng.EnC1; �/C .�1�rC1 � .r C 2/�rC2/VnC1 in M;(5.31)
r�u D qu on @M:(5.32)

Proof. The equations (5.31) and (5.32) follow from Propositions 5.9 and 5.10, respect-
ively.

Proposition 5.12. Assume 0 � r � n � 1. Let xWM ! HnC1 be an .r C 1/-th capillary
hypersurface with boundary supported on H at a constant contact angle � 2 .0; �/. If M
is stable and there exists at least one elliptic point, then

R
M
udA ¤ 0.

Proof. Arguing by contradiction, suppose that
R
M
u dA D 0. Combining with (5.32), we

know that u2F . Now we choose u as an admissible test function in (3.9). Thus, by (5.30),
we have

0 � �

Z
M

uJru D �

Z
M

.VnC1 � cos � Ng.x; �//Jru(5.33)

D �

Z
M

VnC1JruC cos �
Z
M

Ng.x; �/Jru:

We compute the last term of (5.33) using Green’s formula. From (5.19), (2.8) and (5.32),
we obtainZ

M

Ng.x; �/Jru D

Z
M

uJr Ng.x; �/C

Z
@M

Œ Ng.x; �/Pr .ru;�/�uPr .r Ng.x; �/; �/�(5.34)

D

Z
@M

P��r u.q � Ng.x; �/ � r� Ng.x; �//:

By (5.29), (2.2) and (2.3), we see, along @M ,

q � Ng.x; �/ � r� Ng.x; �/(5.35)
D .csc � C cot � h.�;�// Ng.x; �/ � . Ng.x; N�/C h.�;�/ Ng.x; �//

D � cot � Ng.x; NN/ � csc � Ng.x; NN/h.�;�/ D cot � C csc � h.�;�/;

where in the last equality, we have used Ng.x; NN/D �1 on @M . Substituting (5.34)–(5.35)
into (5.33), we get

(5.36)
Z
M

VnC1Jru � cos �
Z
@M

P��r u.cot � C csc �h.�;�// � 0:
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Now we introduce an auxiliary function

ˆ WD � Ng.EnC1; �/:

By (5.25), we obtain

(5.37) Lrˆ D �Lr Ng.EnC1; �/ D VnC1 tr.Prh/C Ng.EnC1; �/ tr.Prh2/:

From (2.2) and (5.3), note that

(5.38) ˆj@M D � cos � and r�ˆ D sin �h.�;�/:

Inserting (5.37)–(5.38) into the identityZ
M

ŒˆLrˆC Pr .rˆ;rˆ/� D

Z
M

1

2
Lrˆ

2
D

Z
@M

ˆPr .rˆ;�/;

we get an integral identity:Z
M

.�VnC1 tr.Prh/ � Ng.EnC1; �/ tr.Prh2// Ng.EnC1; �/C
Z
M

Pr .rˆ;rˆ/(5.39)

D � cos � sin �
Z
@M

P��r h.�;�/:

Here we used � is a principal direction by (2.8). Using (2.2), on @M , we have

u D VnC1 � cos � Ng.x; �/ D VnC1 � cos �.cos � C sin � Ng.x; N�//(5.40)
D sin �.sin � � cos � Ng.x; N�//:

By adding (5.39) to (5.36) and applying (5.40) and (5.31), we get

0 �

Z
M

Œ Ng.ETnC1; E
T
nC1/ tr.Prh2/C Pr .rˆ;rˆ/�(5.41)

� cos2 �
Z
@M

P��r .sin � � cos � Ng.x; N�/ � Ng.x; N�/h.�; �//

D

Z
M

Œ Ng.ETnC1; E
T
nC1/ tr.Prh2/C Pr .rˆ;rˆ/�;

where in the last equality we used (5.13).
Since there exists an elliptic point on M , we know that HrC1 > 0. From Proposi-

tion 2.3, one can see that Li is elliptic and Hi > 0 for each i D 1; 2; : : : ; r .
Thus, by Lemma 2.2, we have

tr.Prh2/ D �1�rC1 � .r C 2/�rC2

D .r C 1/

�
n

rC1

�
H1HrC1 C .n � r � 1/

�
n

rC1

�
.H1HrC1 �HrC2/ > 0:(5.42)

From (5.41), (5.42) and (5.37), we obtain that ˆ is a constant on M , i.e.,

(5.43) Lrˆ D .r C 1/�rC1VnC1 C .�1�rC1 � .r C 2/�rC2/ Ng.EnC1; �/ D 0:
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Since M is a compact hypersurface with boundary supported on H , we have

�ˆ D Ng.EnC1; �/ D cos � > 0 on M:

It follows from (5.43) that

�1�rC1 � .r C 2/�rC2 < 0:

We get a contradiction by (5.42). Therefore, we conclude thatZ
M

udA ¤ 0:

In the following part we are ready to prove the classification for stable .r C 1/-
th capillary hypersurfaces supported on a horosphere H . Inspired by the higher-order
Minkowski-type formula (5.16) and Proposition 5.12, we have an admissible test function
defined by

'nC1 WD �u � Ng.XnC1; �/HrC1;

where
� WD

� Z
M

udA
��1 Z

M

uHr dA

is constant and u is given by (5.30).
For convenience, we denote

� WD �.r C 1/�rC1 � .n � r/�rHrC1;

 WD �.�1�rC1 � .r C 2/�rC2/ � .r C 1/�rC1HrC1:

In particular, for r D 0, we have � D 1 and � D 0, and  D jhj2 � nH 2
1 .

Proposition 5.13. Let xWM !HnC1 be a constant .r C 1/-th mean curvature hypersur-
face with boundary supported on H . Assume x.M/ intersects H at a constant contact
angle � 2 .0; �/. Then 'nC1 satisfies

Jr 'nC1 D � Ng.EnC1; �/C  VnC1;(5.44)
r�'nC1 D q'nC1;(5.45) Z
M

'nC1 dA D 0:(5.46)

Proof. The first equation, (5.44), follows from (5.31) and (5.21); the second, (5.45), from
(5.32) and (5.28); and the last one, (5.46), from (5.16) and the definition of �.

Now we are going to prove the rigidity result for stable .r C 1/-th capillary hypersur-
faces with boundary supported on a horosphere in HnC1 as follows.

Theorem 5.14. Assume 0 � r � n � 1. Let xWM ! HnC1 be an .r C 1/-th capillary
hypersurface supported on H at a constant contact angle � 2 .0; �/. If M is stable and
there exists at least one elliptic point, then M is totally umbilical.
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Proof. From Proposition 5.12, we know that
R
M
u dA ¤ 0. Thus, by (5.45) and (5.46),

we can choose 'nC1 as an admissible test function in (3.9). Therefore,

0 � �

Z
M

'nC1J'nC1(5.47)

D �

Z
M

.�VnC1 � � cos � Ng.x; �/ � Ng.x �EnC1; �/HrC1/Jr 'nC1

D �

Z
M

.�VnC1 C Ng.EnC1; �/HrC1/Jr 'nC1

C .HrC1 C � cos �/
Z
M

Ng.x; �/Jr 'nC1:

We compute the second term in the right-hand side of (5.47) using Green’s formula.
By (5.19) and (5.45), we haveZ

M

Ng.x; �/Jr 'nC1

D

Z
M

Jr Ng.x; �/'nC1 C

Z
@M

Œ Ng.x; �/Pr .r'nC1; �/ � 'nC1Pr .r Ng.x; �/; �/�

D

Z
@M

P��r . Ng.x; �/r�'nC1 � 'nC1r� Ng.x; �//

D

Z
@M

P��r 'nC1.q � Ng.x; �/ � r� Ng.x; �//:(5.48)

From (5.29), (2.2) and (2.3), we find, along @M ,

q � Ng.x; �/ � r� Ng.x; �/(5.49)
D .csc � C cot �h.�;�// Ng.x; �/ � . Ng.x; N�/C h.�;�/ Ng.x; �//

D � cot � Ng.x; NN/ � csc � Ng.x; NN/h.�;�/ D cot � C csc �h.�;�/;

where we used Ng.x; NN/ D �1 on @M . Substituting (5.48) and (5.49) into (5.47), we getZ
M

.�VnC1 C Ng.EnC1; �/HrC1/Jr 'nC1(5.50)

� .HrC1 C � cos �/
Z
@M

P��r 'nC1.cot � C csc �h.�;�// � 0:

Next we introduce a powerful auxiliary function to eliminate the integral boundary
term of (5.50). Let

(5.51) ‰ WD �HrC1VnC1 � � Ng.EnC1; �/:

By (5.26) and (5.25), we obtain

(5.52) Lr‰ D �VnC1 C  Ng.EnC1; �/:

From (2.2), we have

(5.53) ‰j@M D �HrC1 � � cos �:
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Using (5.3), we can directly calculate

(5.54) r�‰ D � sin �.HrC1 � �h.�;�//;

where we have used Ng. Nr�EnC1; �/ D 0 and Ng.EnC1; �/ D � sin � on @M .
Inserting (5.51)–(5.54) into the integral identityZ

M

Œ‰Lr‰ C Pr .r‰;r‰/� D

Z
M

1

2
Lr‰

2
D

Z
@M

‰Pr .r‰;�/;

we get thatZ
M

.�HrC1VnC1 � � Ng.EnC1; �//.�VnC1 C  Ng.EnC1; �//C

Z
M

Pr .r‰;r‰/(5.55)

D .HrC1 C � cos �/ sin �
Z
@M

P��r .HrC1 � �h.�;�//:

Putting (5.55) into (5.50) and applying (5.44), we have

0 �

Z
M

Ng.ETnC1; E
T
nC1/. � � �HrC1/C

Z
M

Pr .r‰;r‰/(5.56)

� .HrC1 C � cos �/
Z
@M

P��r Œsin �.HrC1 � �h.�;�//

C .cot � C csc � h.�;�//'nC1�:

Next we will show that the boundary term in the right-hand side of (5.56) is zero.
Indeed, by (2.2) and (5.7), along @M ,

'nC1 D �VnC1 � � cos � Ng.x; �/ � Ng.XnC1; �/HrC1
D � � � cos �.cos � C sin � Ng.x; N�// � sin � Ng.x �EnC1; N�/HrC1
D sin �.� sin � � � cos � Ng.x; N�/ � Ng.x; N�/HrC1/:

It follows that

sin �.HrC1 � �h.�;�//C .cot � C csc �h.�;�//'nC1(5.57)
D .HrC1 C � cos �/.sin � � cos � Ng.x; N�/ � Ng.x; N�/h.�; �//:

From (5.57) and (5.13), we see that

(5.58)
Z
@M

P��r Œsin �.HrC1 � �h.�;�//C .cot � C csc �h.�;�//'nC1� D 0:

Putting (5.58) into (5.56), we get

(5.59) 0 �

Z
M

Œ Ng.ETnC1; E
T
nC1/. � � �HrC1/C Pr .r‰;r‰/�:

Since there exists an elliptic point on M , we have HrC1 D constant > 0. From Pro-
position 2.3, the operator Li is elliptic and Hi > 0 for each i D 1; 2; : : : ; r .
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By the Newton–Maclaurin inequality (2.6), we have

 � � �HrC1(5.60)

D �2.�1�rC1 � .r C 2/�rC2/ � 2�.r C 1/�rC1HrC1 C .n � r/�rH
2
rC1

D

�
n

r C 1

�
Œ�2.n � r � 1/.H1HrC1 �HrC2/C .r C 1/�

2H1HrC1�

C

�
n

r C 1

�
.r C 1/Œ�2�H 2

rC1 CHrH
2
rC1�

D �2.n � r � 1/

�
n

r C 1

�
.H1HrC1 �HrC2/

C .r C 1/

�
n

r C 1

�
H 2
rC1

� H1

HrC1

�
� �

HrC1

H1

�2
CHr �

HrC1

H1

�
� 0:

Combining (5.60) and (5.59), we obtain

(5.61) Ng.ETnC1; E
T
nC1/. � � �HrC1/ D 0 on M;

and ‰ is a constant on M , that is,

(5.62) ‰ D �HrC1VnC1 � � Ng.EnC1; �/ D �HrC1 � � cos � on M:

We claim that

(5.63)  � � �HrC1 D 0 on M:

In fact, the open set U WD ¹p 2 M j  � � �HrC1 ¤ 0º is empty. If not, we have that
Ng.ETnC1; E

T
nC1/ D 0 on U from (5.61). By the fact that Ng. NEnC1; NEnC1/ D 1,

(5.64) Ng.EnC1; �/ D ˙VnC1 on U:

Since � 2 .0; �/ and HrC1 > 0, we combine (5.64) and (5.62) to obtain that VnC1 is a
positive constant c1 on U , which means U is lying on the horosphere ¹VnC1 D c1º. On
the other hand, from (5.60) we know thatU c is a part of the totally umbilical hypersurface.
By the smoothness of M , we imply that VnC1 is constant on the whole M . Thus, M lies
on a horosphere in HnC1. Using (5.60) again, we have

 � � �HrC1 D 0 on M:

We get a contradiction, so the claim (5.63) is true. From (5.63), (5.60) and Lemma 2.2,
we obtain that M is a totally umbilical hypersurface.

A. Proof of the first variational formula

The appendix is devoted to computing the first variational formula of the .r C 1/-th
energy functional ErC1 and to proving Theorem 3.1. Let MnC1.K/ be a complete simply-
connected .nC 1/-dimensional Riemannian manifold with constant sectional curvatureK.
We first study the evolution equations for several useful geometric quantities under the fol-
lowing flow in MnC1.K/:

(A.1) @tx D f � C T; where T 2TMt .



J. Guo, H. Li and C. Xia 1656

Proposition A.1. Along the general flow (A.1), the following hold:
(1) @tgij D 2f hij CriTj CrjTi ,
(2) @tdAt D .fH C divT / dAt ,
(3) @t� D �rf C h.ei ; T /ei ,
(4) @thij D �r2ijf C f .hikh

k
j �K Ngij /CrT hij C h

k
j riTk C h

k
i rjTk ,

(5) @thij D �r
irjf � f .h

k
j h

i
k
CK Ngij /CrT h

i
j ,

(6) @tH D ��f � .nK C jhj2/f CrTH ,

(7) @tF D�F
j
i r

irjf � f .F
j
i h

k
j h

i
k
CKF

j
i Ng

i
j /CrTF for F DF.hji /, where F ij WD

@F=@h
j
i ,

(8) @t�r D � @�r
@h
j
i

rirjf � .�1�r � .r C 1/�rC1/f �K.n � r C 1/�r�1f CrT �r .

Proof. Let ¹eiºniD1 be an orthonormal basis of TpM for some point p. Denote ei .t/ WD
.x.t; �//�.ei / and Y.t/ WD @tx.t; �/. Then we have Ng.ei .t/; �.t//D 0 and Œei .t/;Y.t/�D 0.
Recall the Gauss–Weingarten formula as follows:

Nrei ej D rei ej � hij �;
Nrei � D hikek :

We calculate that

@t Ngij D @t Ng.ei .t/; ej .t// D Ng. NrY ei ; ej /C Ng.ei ; NrY ej /

D Ng. NreiY; ej /C Ng.ei ;
Nrej Y / D Ng.

Nrei .f � C T /; ej /C Ng.ei ;
Nrej .f � C T //

D 2f hij CriTj CrjTi :

It follows that

@t dAt D
1

2
Ngij @t Ngij dAt

D
1

2
Ngij .2f hij CriTj CrjTi / dAt D .fH C divT / dAt :

Since Ng.@t�; �/ D 0, we have

@t� D Ng.@t�; ei .t//ei .t/ D � Ng.�; NrY ei /ei

D � Ng.�; NreiY /ei D � Ng.�;
Nrei .f � C T //ei

D �. Nreif /ei C h.ei ; T /ei D �rf C h.ei ; T /ei :

We next compute

@thij D @t Ng. Nrei .t/�.t/; ej .t//(A.2)

D Ng. NrY Nrei �; ej /C Ng.
Nrei �;

NrY ej /

D Ng. Nrei
NrY �; ej /C Ng. NrŒY;ei ��; ej /C Ng.

NR.Y; ei /�; ej /C Ng. Nrei �;
Nrej Y /

D Ng. Nrei .@t�/; ej /C
NR.ej ; �; Y; ei /C Ng. Nrei �;

Nrej .f � C T //

D Ng. Nrei .�rf C h.ek ; T /ek/; ej / �K Ng.Y; �/ Ngij C f h
k
i hkj C h

k
i rjTk

D �r
2
ijf �Kf Ngij C f h

k
i hkj C Ng.

Nrei .h.ek ; T /ek/; ej /C h
k
i rjTk :
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Using the Codazzi equation in a space form, we have

Ng. Nrei .h.ek ; T /ek/; ej /(A.3)
D Œreih.ek ; T /C h.rei ek ; T /C h.ek ;reiT /� Ngkj C h.ek ; T / Ng.rei ek ; ej /

D reih.ej ; T /C h.rei ej ; T /C h
k
j riTk � h.ek ; T / Ng.ek ;rei ej /

D rT h.ej ; ei /C h
k
j riTk :

Combining (A.2) and (A.3), we get (4). It follows that

@th
i
j D @t . Ng

ikhkj / D �2f h
i
kh
k
j � r

i
rjf C f h

ikhkj �Kf Ng
i
j CrT h

i
j

D �r
i
rjf � f h

ikhkj �Kf Ng
i
j CrT h

i
j :

The last three assertions (6)–(8) follow directly from (5); we only need the following fact:

@�r

@hij
hkj h

i
k D �1�r � .r C 1/�rC1 and

@�r

@hij
Ngij D .n � r C 1/�r�1:

Next we let @B be a totally umbilical hypersurface in MnC1.K/ with constant prin-
cipal curvature �2R. Let xWM !MnC1.K/ be an immersed hypersurface with boundary
@M supported on @B . Assume the contact angle � 2 .0; �/ is constant along @M .

From Proposition 3.2, we choose f 2 F . Then there exists an admissible volume-
preserving and contact angle-preserving variation of x with the variational vector field Y
having f � as its normal part. Namely,

Y D T C f � on M;(A.4)

Ng.�; NN ı x/ D � cos � on @M;(A.5)

where T is the tangent part of the variational vector field Y .
Applying (2.3), (A.4) and the admissible condition, we get

0 D Ng.Y; NN/ D Ng.Y; sin �� � cos ��/ D sin � Ng.Y; �/ � f cos � on @M:

Therefore,

(A.6) Ng.T; �/ D Ng.Y; �/ D cot �f on @M:

So, we can define

(A.7) Y D T C f � WD Y @M C cot �f�C f �;

where Y @M denotes the tangent part of Y to @M .
On the other hand, from (2.4) we see that Y can be also expressed as follows:

(A.8) Y D Y @M C
f

sin �
.cos ��C sin ��/ D Y @M C

f

sin �
N�:

Recall that the r-th wetting area functional Wr W .�"; "/! R is inductively given by

W0.t/ WD

Z
@M�Œ0;t�

x� dA@B ; W1.t/ WD
1

n

Z
@M

dst ;
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and, for 2 � r � n � 1,

(A.9) Wr .t/ D
1

n

Z
@M

H @M
r�1 dst C

r � 1

n � r C 2
.K C �2/Wr�2.t/;

where H @M
r�1 is the .r � 1/-th normalized mean curvature of the closed hypersurface @M

in @B .

Lemma A.2. For any 0 � r � n � 1, we have the first variational formula of Wr .t/:

(A.10)
d

dt
Wr .t/ D

�
n

r

��1 Z
@M

�@Mr Ng.Y; N�/ dst D
1

sin �

�
n

r

��1 Z
@M

�@Mr f dst ;

where �@Mr . Qh/ is the r-th mean curvature of @M in @B .

Proof. This is obviously true for r D 0 and r D 1. We next only consider the case r � 2.
Let @M be an immersed closed hypersurface in @B with a normal speed Qf N�. From (A.8),
we see

Qf D
1

sin �
f:

By the Gauss equation, we know that @B has intrinsic constant sectional curvature � D
K C �2. From Proposition A.1, we get

d

dt

Z
@M

�@Mr�1 dst D

Z
@M

�
�
@�@Mr�1.

Qh/

@ Qh
ˇ
˛

Qr
2
˛ˇ
Qf � .�@M1 �@Mr�1 � r�

@M
r / Qf

�
dst(A.11)

C

Z
@M

.��.n � r C 1/�@Mr�2
Qf C �@Mr�1 �

@M
1
Qf / dst

D r

Z
@M

�@Mr
Qf dst � �.n � r C 1/

Z
@M

�@Mr�2
Qf dst :

By induction, we assume it is true for r � 2 in (A.10). Applying (A.9) and (A.11), we have

d

dt
Wr .t/ D

1

n

�
n � 1

r � 1

��1
d

dt

� Z
@M

�@Mr�1 dst

�
C

�.r � 1/

n � r C 2

d

dt
Wr�2.t/

D
1

n

�
n � 1

r � 1

��1�
r

Z
@M

�@Mr
Qf dst � �.n � r C 1/

Z
@M

�@Mr�2
Qf dst

�
C

�.r � 1/

n � r C 2

�
n

r � 2

��1 Z
@M

�@Mr�2
Qf dst

D
r

n

�
n � 1

r � 1

��1 Z
@M

�@Mr
Qf dst

D
1

sin �

�
n

r

��1 Z
@M

�@Mr f dst :

The proof is completed.
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Proof of Theorem 3.1. The case r D 0 can be found in [33]. In the following proof, we
only consider the case 1 � r � n � 1. By Proposition A.1, using integration by parts and
the fact that � is a principal direction from Proposition 2.4, we obtain

d

dt

Z
M

�r dAt D

Z
M

h
�
@�r

@h
j
i

r
i
rjf � f .�1�r � .r C 1/�rC1/(A.12)

�K.n � r C 1/f �r�1 CrT �r

i
dAt

C

Z
M

�r .f �1 C divM T / dAt

D .r C 1/

Z
M

�rC1fdAt �K.n � r C 1/

Z
M

�r�1f dAt

C

Z
@M

.�r Ng.T; �/ � �
��
r r�f / dst :

Utilizing (A.6), (3.3) and the fact that the principal curvature of @B is �, we get, along @M ,

�r Ng.T; �/ � �
��
r r�f D �rf cot � � qf ���r(A.13)

D f
�

cot �.�r � ���r h��/ �
�

sin �
���r

�
D f

�
cot ��r .h jh��/ �

�

sin �
�r�1.h jh��/

�
:

Here we used the fact that

���r D P
��
r�1 D �r�1.h jh��/ and �r .h/ D �r .h jh��/C h���r�1.h jh��/:

By (2.2), we see, along @M ,

h˛ˇ D � Ng. Nre˛eˇ ; �/ D � Ng.
Nre˛eˇ ; sin � N� � cos � NN/ D sin � Oh˛ˇ � � cos � ı˛ˇ ;

for an orthonormal frame ¹e˛ºn�1˛D1 of T .@M/. Thus,

(A.14) �r .hjh��/ D �r .sin � Oh � � cos � In�1/;

where In�1 is the .n� 1/-th identity matrix. In general, for a .n� 1/� .n� 1/ symmetric
matrix B , we know

�r .In�1 C B/ D

rX
lD0

�
n � l � 1

n � r � 1

�
�l .B/:

When � D 0, from (A.14), we have

cot � �r .hjh��/ D cot � �r .sin � Oh/ D cos � sinr�1 � �r . Oh/:

When � ¤ 0, from (A.14), we get

�r .h jh��/ D �r .sin � Oh � � cos � In�1/

D .�� cos �/r
rX
lD0

�
n � l � 1

n � r � 1

��
�

tan �
�

�l
�l . Oh/
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and

�r�1.h jh��/ D �r�1.sin � Oh � � cos � In�1/

D .�� cos �/r�1
r�1X
lD0

�
n � l � 1

n � r

��
�

tan �
�

�l
�l . Oh/:

Therefore, for any � 2R, we have

cot � �r .hjh��/ �
�

sin �
�r�1.hjh��/ D cos � sinr�1 � �r . Oh/

C
cosr�1 �

sin �

r�1X
lD0

.�1/rCl�r�l
h
cos2 �

�
n� l�1

n� r�1

�
C

�
n� l�1

n� r

�i
tanl � �l . Oh/:(A.15)

Putting (A.15) and (A.13) into (A.12), we see

d

dt

Z
M

�r dAt D .r C 1/

Z
M

�rC1f dAt �K.n � r C 1/

Z
M

�r�1f dAt

C cos � sinr�1 �
Z
@M

f�r . Oh/ dst

C
cosr�1 �

sin �

r�1X
lD0

.�1/rCl�r�l
h

cos2 �
�
n � l � 1

n � r � 1

�
C

�
n � l � 1

n � r

�i
tanl �

Z
@M

f�l . Oh/ dst :

Since Oh is the second fundamental form of @M as a closed hypersurface in @B , we
have �r . Oh/ D �@Mr on @M . From (A.10), we have the first variational formula of the r-th
wetting area functional Wr as follows:

d

dt
Wr .t/ D

1

sin �

�
n

r

��1 Z
@M

f�r . Oh/ dst :

We conclude that for 1 � r � n � 1,

d

dt

° Z
M

�rdAt �

�
n

r

�
cos � sinr �Wr .t/(A.16)

� cosr�1 �
r�1X
lD0

.�1/rCl�r�l
�
n

l

�h
cos2 �

�
n � l � 1

n � r � 1

�
C

�
n � l � 1

n � r

�i
tanl �Wl .t/

±
D .r C 1/

Z
M

�rC1f dAt �K.n � r C 1/

Z
M

�r�1f dAt :

By the combination relationships�
n

l

�
�

�
n � l � 1

n � r � 1

�
D

�
n

r

�
�

�
r

l

�
n � r

n � l
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and �
n

l

�
�

�
n � l � 1

n � r

�
D

�
n

r

�
�

�
r

l

�
r � l

n � l
,

and from (A.16), we obtain

d

dt

° Z
M

�r dAt �

�
n

r

�
cos � sinr � Wr .t/

� cosr�1 �
r�1X
lD0

.�1/rCl�r�l

n � l

�
r

l

�
Œ.n� r/ cos2 � C .r� l/� tanl �

�
n

r

�
Wl .t/

±
D .r C 1/

Z
M

�rC1f dAt �K.n � r C 1/

Z
M

�r�1f dAt :(A.17)

Recall that

QrC1.t/ D

Z
M

HrdAt � cos � sinr �Wr .t/

� cosr�1 �
r�1X
lD0

.�1/rCl�r�l

n � l

�
r

l

�
Œ.n � r/ cos2 � C .r � l/� tanl � Wl .t/:

Therefore, by (A.17), we have

(A.18)
d

dt
QrC1.t/ D .n � r/

Z
M

HrC1f dAt � rK

Z
M

Hr�1f dAt :

Let

(A.19) ErC1.t/ D QrC1.t/C
rK

nC 2 � r
Er�1.t/:

One can readily check that for any �1 � s � n � 1,

d

dt
EsC1.t/ D .n � s/

Z
Mt

HsC1f dA:

In fact, it is true for s D �1 and s D 0. By induction, we assume it is true for s D r � 2,
and then we calculate using (A.18) and (A.19):

d

dt
ErC1.t/ D

d

dt
QrC1.t/C

� rK

nC 2 � r

� d
dt

Er�1.t/

D .n� r/

Z
M

HrC1f dAt � rK

Z
M

Hr�1f dAtC
rK

nC2� r
.nC2� r/

Z
M

Hr�1f dAt

D .n � r/

Z
M

HrC1f dAt :

The proof of Theorem 3.1 is complete.
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