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Remarks on the spectra of minimal hypersurfaces
in the hyperbolic space

Gerasim Kokarev

Abstract. We compute the Laplacian spectra of singular area-minimising hypersur-
faces in the hyperbolic space with prescribed asymptotic data. We also obtain similar
results in higher codimension, and explore related extremal properties of the bottom
of the spectrum.

1. Introduction

1.1. Main result

In [15], the authors study the spectrum of the Laplace operator on minimal submanifolds in
space forms. In particular, among a number of results, they prove the following statement.

Theorem 1.1. Let†m�HnC1 be a properC 2-smooth minimal submanifold in the hyper-
bolic space HnC1 that extends to a C 2-smooth manifold with boundary in the clos-
ure NHnC1, obtained by adding the sphere at infinity HnC1 [ Sn1.HnC1/. Then the spec-
trum of the Laplace operator on †m coincides with the spectrum of the Laplace operator
on the m-dimensional hyperbolic space Hm, that is, the interval Œ.m � 1/2=4;C1/.

To our knowledge, whenmD n> 7 non-trivial examples of minimal submanifolds that
satisfy the hypotheses of Theorem 1.1 occur mostly as minimal graphs, whose existence
is related to very specific asymptotic data. The first purpose of this paper is to prove the
version of this statement for singular area-minimising hypersurfaces, whose existence is
always guaranteed for arbitrary asymptotic data by the results in [1].

Theorem 1.2. Let �n�1 � Sn1.HnC1/ be a closed oriented submanifold in the sphere at
infinity, and let†n �HnC1 be an area-minimising locally rectifiable n-current asymptotic
to �n�1, that is, such that spt†n \ Sn1.HnC1/D �n�1. Then the spectrum of the Laplace
operator on †n is the interval Œ.n � 1/2=4;C1/.

Above, by the spectrum of the Laplace operator on †n we mean the spectrum of the
Friedrichs extension of the Laplacian defined on smooth functions with compact support
inside the regular set reg†n. We refer to Section 2 for the related background material and
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notation. The proof of Theorem 1.2 builds on two ingredients. First, a comparison argu-
ment, reminiscent to the one in [12,15], can be carried over to the singular setting to prove
a version of McKean’s bound for the bottom of the spectrum of singular minimal surfaces.
This is an extension of closely related results in the smooth setting that go back to [4,18],
see also [2]. Our main statement here is the comparison theorem for isoperimetric con-
stants, Theorem 3.1, which might be of independent interest.

Second, to show that any value above .n � 1/2=4 lies in the spectrum, we essentially
rely on the boundary regularity results for area-minimising hypersurfaces due to Hardt
and Lin [8]. This part of the argument uses specific behaviour at the boundary at infinity,
and unlike Theorem 1.1, requires only C 1-smoothness up to boundary, see the discussion
in Remark 5.2. Besides, related spectral properties hold for a more general class of locally
rectifiable currents. More precisely, for a closed submanifold �m�1 � Sn1.HnC1/, denote
by M.�m�1/ the set ofm-dimensional locally rectifiable currents Tm in HnC1 whose reg-
ular set reg1T

m, formed by points whose vicinity in sptTm is a C 1-smooth submanifold,
satisfies the following conditions:

(i) the complement spt Tmnreg1T
m is bounded in HnC1, that is, contained in some

hyperbolic ball Br � HnC1;
(ii) the union reg1T

m [ �m�1 is a C 1-smooth submanifold with boundary that meets
the boundary sphere Sn1.HnC1/ orthogonally.

Below, by ��.Tm/ we denote the fundamental tone of Tm, see Section 2 for a precise
definition. Our main observation is that the quantity ��.Tm/ satisfies a certain sharp bound
when Tm ranges in M.�m�1/ and area-minimising currents that lie in this set are natural
maximisers for ��.

Theorem 1.3. Let �m�1 � Sn1.HnC1/ be a closed submanifold in the sphere at infinity.
Then for any Tm 2M.�m�1/, the fundamental tone satisfies the inequality

(1.1) ��.T
m/ 6

1

4
.m � 1/2:

Further, there exists a complete area-minimising locally rectifiable m-current †m that
lies in M.�m�1/ such that ��.†m/ saturates inequality (1.1). In addition, the Laplacian
spectrum of †m is the interval Œ.m � 1/2=4;C1/.

Note that, since any complete Riemannian manifold can be properly isometrically
embedded into the hyperbolic space HnC1 for a sufficiently large n, via an embedding
into a horosphere, some hypotheses on the asymptotic behaviour of submanifolds in HnC1

are necessary for any bound for the fundamental tone to hold. We believe that the choice
of M.�m�1/ is very natural in view of the regularity theory for the asymptotic Plateau
problem, and our arguments in Section 4 underline an explicit relation to the spectral
properties of the asymptotic cone. Although our approach to the proof of inequality (1.1) is
rather elementary, unlike other papers in the literature, it does not use any volume growth
assumptions or curvature behaviour at infinity, see [15] and references therein.

The area-minimising m-current in Theorem 1.3 is the so-called Anderson solution,
whose regularity is studied by Lin in [16]. The fact that its bottom of the spectrum
equals the maximal value is an immediate consequence of the version of McKean’s bound
mentioned above. In particular, by McKean’s bound, inequality (1.1) is saturated by any
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stationary current†m 2M.�m�1/. However, there are also not necessarily stationary cur-
rents in M.�m�1/, for example, hyperbolic cones, which maximise the fundamental tone,
see Remark 3.3. Understanding the phenomena responsible for the equality in (1.1) seems
to be a more subtle problem, which we plan to address in future work. Mention that the
occurrence of stationary currents that saturate inequality (1.1) is reminiscent to the role
of minimal surfaces in the classical extremal eigenvalue problems, see [6, 10] and refer-
ences therein.

Our argument in the proof of Theorem 1.3 shows that for any stationary current †m

in the class M.�m�1/ its Laplacian spectrum is precisely the interval Œ.m� 1/2=4;C1/.
However, the answer to the following principal question in full generality is unknown:

Open Question. Let †m be an area-minimising (or more generally, stationary) current
in HnC1 that is asymptotic to a smooth submanifold �m�1, in the sense that spt†m \
Sn1.HnC1/ D �m�1. Does the spectrum of the Friedrichs extension of the Laplace oper-
ator on †m coincide with the interval Œ.m � 1/2=4;C1/?

Our Theorem 1.2 settles this question for area-minimising locally rectifiable currents
in co-dimension one, that is, when m D n. In higher co-dimension, as the discussion
above shows, the answer would be also positive, if developing boundary regularity theory,
one can show that a stationary current †m lies in M.�m�1/. For example, by results
in [16], so are area-minimising flat chains modulo two. Note that stationary currents that
are C 1-smooth near and up to boundary automatically lie in the class M.�m�1/, see
Remark 5.2. In particular, this observation sharpens the hypotheses of Theorem 1.1.

1.2. Content and organisation of the paper

Section 2 contains most of the background material. First, we introduce necessary termin-
ology from geometric measure theory and recall principal existence and regularity results
for the asymptotic Plateau problem. Then we discuss self-adjoint extensions of the Laplace
operator defined on rectifiable currents. We end with the notion of the fundamental tone
and its relationship with the bottom of spectrum. In Section 3, we discuss the comparison
theorem for isoperimetric constants of stationary currents. Here we follow closely the
notation and computations in [12]. Section 4 contains the proofs of Theorems 1.2 and 1.3.
We essentially focus on the latter, the proof of the former follows the line of argument
used to compute the Laplace spectrum of an area-minimising current in Theorem 1.3. The
principal part of the argument is based on the construction of suitable test-functions and
neat estimates for the corresponding values of the Laplacian near the ideal boundary. In
the last section, we collect a few remarks. They are mostly consequences of the proof of
Theorem 1.3, and explain certain points that have been made in the introduction.

2. Preliminary material

2.1. Notation and first results

We start with recalling basic notation from geometric measure theory; our main refer-
ences are [20, 21]. Let M be an oriented complete smooth Riemannian manifold. By Dn

we denote the space of smooth compactly supported n-forms on M . The dual space Dn,
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equipped with the weak topology, is called the space of n-dimensional currents. If†n is an
oriented n-dimensional submanifold of M with compact closure and finite n-dimensional
volume, then it defines an n-current ŒŒ†n�� by the formula

ŒŒ†n��.'/ D

Z
†n
'; where ' 2Dn:

More generally, a rectifiable n-current is a functional of the form
P
�i ŒŒ†i ��, where ¹†iº

is a countable collection of mutually disjoint rectifiable sets such that the closure ofS
i †i is compact, �i is a positive integer multiplicity function such that

P
�iH

n.†i / <

C1, and Hn stands for the n-dimensional Hausdorff measure. The space of rectifiable
n-currents is denoted by Rn. For a current S D

P
�i ŒŒ†i ��, its support is the closure of

the union
S
i †i ,

sptS D
[
i

†i :

The boundary of an n-dimensional current S 2Dn is the .n � 1/-dimensional current
@S 2Dn�1 defined by

@S.'/ D S.d'/; where ' 2Dn�1:

By Stokes’s theorem, this definition agrees with the standard notion of boundary, if S
is a smooth oriented manifold with boundary. By In we denote the space of integral n-
currents, that is, n-currents S such that S 2Rn and @S 2Rn�1.

In the sequel, we are interested in currents with non-compact support. By Rloc
n we

denote the space of locally rectifiable n-currents, formed by S 2Dn such that for any
x 2M there exists T 2Rn such that x … spt.S � T /. Similarly, by Iloc

n we denote the
space of locally integral n-currents defined by the condition above with T 2 In.

There is a natural notion of mass defined on Dn:

M.S/ D sup¹S.'/ W ' 2Dn; supx j'.x/j
� 6 1º;

where x ranges in M , and by j'.x/j� we mean the supremum of the values of the form
'.x/ on simple unit n-vectors. Similarly, we have the following function:

kSk.U / D sup¹S.'/ W ' 2Dn; supx j'.x/j
� 6 1; spt' � U º;

defined on open subsets U in M . If S has finite mass, then kSk extends to a Radon
measure, denoted by the same symbol. It is straightforward to see that if S D ŒŒ†n�� 2Rn,
where †n is an n-dimensional submanifold, then kSk is the volume measure on †n,
and M.S/ is the volume of †n. Finally, a current S 2Rloc

n is called absolutely area-
minimising, if for any compact subset K �M the inequality

M.SxK/ 6 M.T /

holds for all T 2Rn such that @.SxK/ D @T . Above, by SxK we mean the restriction to
a compact set K, defined as SxK.'/ D S.�K'/, where �K is the characteristic function
of a compact set K, and the value S.�K'/ is understood as the weighted integral over
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the support of S . More generally, a current S 2Rloc
n is called stationary if for all compact

subsets K �M the relation

d

dt

ˇ̌̌
tD0

M..�Vt /�.SxK// D 0

holds for all vector fields V with support in K, where �Vt is the flow of V .
In the sequel, we often consider M to be the hyperbolic space HnC1, that is the com-

plete simply connected .n C 1/-dimensional Riemannian manifold whose all sectional
curvatures are equal to �1. It is convenient to identify HnC1 with an open unit ball BnC1

via the Poincaré model. Every point on the boundary sphere p 2 @BnC1 represents an equi-
valence class of asymptotic geodesics in HnC1, and @BnC1 is naturally identified with the
so-called boundary at infinity, also denoted by Sn1.HnC1/. The following statement by
Anderson [1] is fundamental for our main result, Theorem 1.2.

Proposition 2.1. Let �n�1 � Sn1.HnC1/ be a closed oriented submanifold in the sphere
at infinity, where n > 2. Then there exists a complete area-minimising locally integral
n-current †n in HnC1 that is asymptotic to �n�1 in the sense that

spt†n \ Sn1.H
nC1/ D �n�1:

The existence of area-minimising currents continues to hold in higher codimension
and under weaker assumptions on the submanifold � � Sn1.HnC1/, see [1]. In particular,
in the sequel we may always assume that � is only C 1;˛-smooth, where 0 6 ˛ 6 1. By
standard regularity theory, see [20, 21], the area-minimising current in Proposition 2.1 is
a smooth embedded manifold in the complement of the singular set of Hausdorff dimen-
sion at most n � 7. For the sequel we need the following important boundary regularity
statement due to Hardt and Lin [8].

Proposition 2.2. Let �n�1 be a closed C 1;˛-smooth submanifold in the sphere at infinity,
where 0 6 ˛ 6 1, and let †n be an area-minimising locally rectifiable n-current in HnC1

that is asymptotic to �n�1. Then there exists a neighbourhood U of �n�1 in the closure
NHnC1 such that there is no singular set of †n in U , and the union .spt†n \U/[ �n�1 is
a C 1;˛-smooth manifold with boundary that meets the ideal boundary Sn1.HnC1/ ortho-
gonally.

In [17], Lin also shows that if �n�1 � Sn1.HnC1/ in Proposition 2.2 is C k;˛-smooth,
where 1 6 k 6 n� 1 and 0 6 ˛ 6 1 or k D n and 0 6 ˛ < 1, then .†n \ U/[ �n�1 is a
C k;˛-smooth manifold with boundary. The boundary regularity in higher codimension is a
more subtle question. However, the following result, due to [16], guarantees the existence
of an area-mininising current regular near the boundary.

Proposition 2.3. Let �m�1 � Sn1.HnC1/ be a closed C 1;˛-smooth submanifold in the
sphere at infinity, where 0 6 ˛ 6 1. Then there exists a complete area-minimising loc-
ally rectifiable m-current †m in HnC1 that is asymptotic to �m�1 at infinity. Moreover,
near �m�1, the set spt†m [ �m�1 is a C 1;˛-smooth submanifold with boundary that
meets the ideal boundary Sn1.HnC1/ orthogonally.

Thus, for area-minimising currents in Proposition 2.3 the singular set also lies in a
bounded subset in HnC1, and in the sequel we shall use this fact essentially. Note also that
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in higher codimension n �m > 0 the standard regularity theory guarantees only that the
Hausdorff dimension of the singular set is at most m � 2.

2.2. Laplacian and its spectrum

Now we describe analytic background related to the notion of the spectrum of the Laplace
operator on area-minimising currents in Propositions 2.1 and 2.3.

Let .†�; g/ be a Riemannian manifold, and let � be the Laplace–Beltrami operator
on †� with the sign convention so that it is non-negative. We view � as the operator
defined on the subspace D.�/ � L2.†�/ formed by compactly supported smooth func-
tions on †�. By standard Green’s formula,Z

†�

.��u/v dVolg C
Z
†�

hru;rvi dVolg D 0;

where u; v 2D.�/, the operator is symmetric and positive-definite. Since it is also real, it
is straightforward to show that it admits a self-adjoint extension to an unbounded operator
in L2.†�/, see for example Lemma 1.2.8 in [5]. Depending on the geometry of †�, there
can be many self-adjoint extensions of �. For example, when the boundary of †� is
non-empty, different boundary conditions correspond to different self-adjoint extensions,
see [5, 23]. On the other hand, when †� is complete, or is a regular locus of irreducible
analytic subvariety, the Laplace operator � above is known to have a unique self-adjoint
extension, see [11, 14, 23]. Such operators are called essentially self-adjoint.

Now let†n be a stationary locally rectifiable current in an oriented complete Rieman-
nian manifold M . Below, as †� we take the regular set reg†, that is, the subset of spt†n

formed by points x such that B".x/ \ spt†n is a smooth embedded submanifold for
some " > 0. To our knowledge, it is unknown whether the Laplacian described above is
essentially self-adjoint on reg†n. To avoid any ambiguity, we consider the spectrum of
the Friedrichs extension N� to a self-adjoint unbounded linear operator. This extension is
obtained as the self-adjoint operator associated with the closure of the Dirichlet energy,
defined on W 1;2

0 .†n�/. We refer to Section 4.4 of [5] for related material on operators
associated with quadratic forms.

By �0.†n/, we denote the quantity

(2.1) �0.†
n/ D inf

� Z
jruj2 dk†k

�ı� Z
u2 dk†k

�
;

where the infimum is taken over non-trivial smooth functions with compact support in
reg†n. For the Friedrichs extension N� of the Laplacian, it is straightforward to show
that the operator N� � �0.†n/ is non-negative, and by standard theory, see for example
Theorem 4.3.1 in [5], the value �0.†n/ is precisely the bottom of the spectrum of N�.
Equivalently, the value �0.†n/ can be defined as the infimum of the zero Dirichlet eigen-
values �0.�/, where � ranges over all open submanifolds � � reg†n such that the
closure � is compact and the boundary @� is smooth.

Finally, note that the version of the quantity �0.†n/ can be defined for all currents
T 2Rloc

n by the same relation. In more detail, denote by reg1T the subset of spt†n

formed by points x such that B".x/ \ spt†n is a C 1-smooth embedded submanifold
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for some " > 0. We note that the n-dimensional Hausdorff measure of the complement
spt T nreg1T is zero, see [20]. Allowing the function u in formula (2.1) to range among
non-trivial C 1-smooth functions with compact support in reg1T , we arrive at the quant-
ity ��.T /, called the fundamental tone.

Remark 2.4. It is worth mentioning that for a stationary current †n, the sets reg1†
n and

reg†n coincide. This statement is a consequence of Allard’s regularity theorem together
with elliptic regularity, see [7, 21]. For area-minimising currents, it can be deduced inde-
pendently from the observation that for any x 2 reg1†

n, the oriented tangent cone is an
oriented n-dimensional plane, see Lemma 10.3 in [20]. As a consequence, we conclude
that for a stationary current †n, the values �0.†n/ and ��.†n/ coincide. Note also that,
by a standard argument based on the first variation, the regular set reg†n can be viewed
as a genuine minimal (not necessarily proper) submanifold, that is, a submanifold of zero
mean curvature.

Remark 2.5. In the spirit of [10], see also Section 4.5 of [5], using the Dirichlet form, one
can also define higher variational eigenvalues �k.T / for general currents. However, in the
context of the main results of the current paper, their meaning does not add anything new.
In more detail, if †n is an area-minimising locally rectifiable n-current that satisfies the
hypotheses of Theorem 1.2 or Theorem 1.3, then the argument in the proof of Theorem 1.3
shows that the value .n � 1/2=4 lies in the essential spectrum of the Laplacian. Since
this value is also the bottom of the spectrum, by standard results, see for example The-
orem 4.5.2 in [5], all higher variational eigenvalues of †n are equal to .n � 1/2=4.

3. Comparison of the isoperimetric constants

3.1. Main statement

As above, let M be an oriented complete Riemannian manifold, and let †m be a locally
rectifiable m-current in M , †m 2Rloc

m . For any compact subset K � M , by the isoperi-
metric constant h.†mxK/ we call the quantity

h.†mxK/ D inf¹M.@�/=M.�/ W � � reg†m \Kº;

where � ranges over all open submanifolds of reg†m \ K whose closure is compact,
and whose boundary is smooth. If there is no such a submanifold �, for example when
reg†m \K is empty, then we set h.†mxK/ to beC1. By h.Bmr / we denote the isoperi-
metric constant of the ball of radius r > 0 in the m-dimensional hyperbolic space Hm,
that is,

h.Bmr / D inf¹Area.@�/=Vol.�/ W � � Bmr º:

As is known, see also Remark 3.2 below, the value h.Bmr / is given by the formula

(3.1) h.Bmr / D
sinhm�1.r/� R r

0
sinhm�1.t/ dt

� �
Our first result here is the following comparison theorem.
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Theorem 3.1. LetM be a complete Riemannian manifold whose sectional curvatures are
at most �1, and let †m be a stationary locally rectifiable m-current in M . Then for any
geodesic ball Br .p/ �M , the following inequality holds:

h.†mx NBr .p// > h.Bmr /

for all 0 < r 6 injp.M/, where injp.M/ is the injectivity radius of M at a point p.

It is straightforward to show, see for example Lemma 2.5 in [12], that

(3.2) h.Bmr / > .m � 1/ coth.r/ > .m � 1/:

If there exists a point p 2M such that injp.M/ D C1, which occurs, for example,
when M is simply connected, Theorem 3.1 immediately implies the version of Yau’s
inequality for all domains � � reg†m with smooth boundary and compact closure:

M.@�/ > .m � 1/M.�/:

Further, using Cheeger’s inequality, we obtain

��.reg†m \ Br .p// >
1

4
h2.Bmr /;

and again when injp.M/ D C1, the combination with (3.2) yields the following version
of McKean’s inequality [19] for the fundamental tone of a stationary locally rectifiable
current †m:

(3.3) ��.†
m/ >

1

4
.m � 1/2:

For smooth minimal submanifolds, this version of McKean’s inequality can be derived
from Theorem 1.10 in [2], which is an improvement of earlier results in [4, 18].

3.2. Proof of Theorem 3.1

We essentially follow the comparison argument in [12, 15]. Although the set spt†m \
Br .p/ may contain singular points, the argument carries over due to monotonicity of
certain quantities involved. We explain this below in more detail.

Let us denote by r.x/ the distance function dist.p; x/ in M restricted to the regular
set reg†m. Since the latter can be viewed as a (non-complete) submanifold with vanishing
mean curvature, the comparison argument in the proof of Lemma 2.7 in [12] yields the
inequality

(3.4) ��r.x/ > coth.r.x//.m � jrr.x/j2/

for any x 2 reg†m such that 0 < r.x/ < injp.M/. Now consider the function

f .r/ D

Z r

0

dt

ht
, where r > 0;

and ht is the function defined by the right-hand side in (3.1). A straightforward computa-
tion shows that f .r/ is convex, see Corollary 2.6 in [12], and satisfies the relations

(3.5) f 00.r/C .m � 1/ coth.r/f 0.r/ D 1; f .0/ D 0; f 0.0/ D 0:
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Denote by  the function on Br .p/ \ reg†m defined as the composition  .x/ D
f ı r.x/, where r.x/ D dist.p; x/. Computing the Laplacian of  , we obtain

�� D f 00.r/jrr j2 � f 0.r/�r > f 00.r/jrr j2 C f 0.r/ coth.r/.m � jrr j2/

D 1C .1 � jrr j2/.f 0.r/ coth.r/ � f 00.r//;

where we used relations (3.4)–(3.5). It is straightforward to check that the term

f 0.r/ coth.r/ � f 00.r/ D m coth.r/f 0.r/ � 1

is non-negative, see Lemma 2.5 in [12], and we conclude that �� > 1. Now let� be an
open submanifold such that the closure � lies in Br .p/ \ reg†m and the boundary @� is
smooth. Then, using the divergence theorem, we obtain

M.�/ 6 �
Z
�

� dk†mk D

Z
@�

hgrad ; �i 6 f 0.r/M.@�/;

where � is a unit normal vector, and we used that f 0.r/D 1=hr is increasing. Rearranging,
we immediately obtain

(3.6)
sinhm�1.r/� R r

0
sinhm�1.t/ dt

� 6
M.@�/

M.�/
,

and since � is arbitrary, finish the proof of the theorem.

Remark 3.2. Note that the quotient

sinhm�1.r/� R r
0

sinhm�1.t/ dt
�

is precisely the ratio Area.@Bmr /=Vol.Bmr /, where Bmr is the ball of radius r in the m-di-
mensional hyperbolic space Hm. Thus, applying the argument in the proof of Theorem 3.1
to the totally geodesic subspace Hm � HnC1 in place of †m, relation (3.6) shows that the
isoperimetric constant h.Bmr / is given by formula (3.1). This formula can be also deduced
directly from the classical isoperimetric inequality in the hyperbolic space.

Remark 3.3. For a fixed point p 2M , consider an arbitrary geodesic cone Cm with the
origin at p. For example, ifM is the hyperbolic space HnC1, and �m�1 is a submanifold in
the sphere at infinity, then asCm one can take the cone formed by geodesic rays emanating
from p and asymptotic to points in �m�1. Let r.x/ D dist.x; p/ be the corresponding
distance function, where x 2 Cm. Inspecting the proof of Lemma 2.7 in [12], we see that
relation (3.4) continues to hold; this is a consequence of the fact that the gradient gradx r ,
where the function r is viewed as a function on M , lies in the tangent space TxCm. Then
the argument in the proof of Theorem 3.1 shows that

h.Cmx NBr .p// > h.Bmr /;

where p is the origin of Cm. In particular, we conclude that McKean’s inequality (3.3)
holds for arbitrary, not necessarily minimal, cone.
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Remark 3.4. The statement and the proof of Theorem 3.1 carry over directly to the setting
when M has non-positive sectional curvatures. In this case, the comparison inequality for
isoperimetric constants takes the form

h.†mx NBr .p// > h.Bmr /;

where Bmr is an m-dimensional Euclidean ball of radius r > 0. In fact, if the point p 2M
in these inequalities is fixed, then the curvature hypotheses above, as well as in The-
orem 3.1 can be weakened – it is sufficient to impose the bound only on the sectional
curvatures along two-dimensional subspaces containing the radial vector gradx r , where
r.x/ D dist.p; x/.

4. Proofs

4.1. Proof of Theorem 1.3: the inequality

Let Tm � HnC1 be a locally rectifiable m-current from the class M.�m�1/ defined in
Section 1. We start with a proof of the inequality

(4.1) ��.T
m/ 6

1

4
.m � 1/2:

By the variational characterisation, see the discussion in Section 2, for this it is sufficient
to construct a sequence of compactly supported Lipschitz functions �k on reg1T

m such
that the Rayleigh quotients satisfy the relation

lim sup
k

R.�k/ 6
1

4
.m � 1/2;

where

R.�k/ D

� R
jr�kj

2 dkT k
�� R

�2
k
dkT k

� �
The idea is to construct .�k/ as a sequence of radial functions on the ambient space HnC1

whose restriction to spt Tm satisfies the desired relation above. To make the exposi-
tion more explicit we consider first the case of cones in M.�m�1/, where our argument
is very close the one contained in [3], and then handle the case of arbitrary currents
Tm 2M.�m�1/, using integral estimates near �m�1.

Step 1. Radial test-functions and cones.
Following [3], we define the following family of functions:

uR.t/ D

²
exp

�
�
.m�1/
2

t
�

sin
�
2�
R

�
t �R=2

��
; if t 2 ŒR=2;R�I

0; otherwise:

It is straightforward to check that it satisfies the equation

u00R C .m � 1/u
0
R C

�1
4
.m � 1/2 C

4�2

R2

�
uR D 0
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on .R=2;R/. Integrating by parts, and using the relation above, we obtainZ R

R=2

.u0R.t//
2 sinhm�1.t/ dt D

Z R

R=2

�
� .m � 1/uR.t/u

0
R.t/.coth.t/ � 1/

C

�1
4
.m � 1/2 C

4�2

R2

�
u2R.t/

�
sinhm�1.t/ dt:(4.2)

Now fix a point p 2HnC1, for example the origin of the corresponding unit ball BnC1, and
denote by r.x/ the hyperbolic distance dist.p;x/. Then the function uR ı r is a compactly
supported Lipschitz function on HnC1. Consider the cone obtained as the union of all
geodesic rays emanating from p and asymptotic to a point in �m�1. For example, if p is
the origin of the unit ball BnC1, then this cone is the subset

(4.3) Cm D ¹�z W z 2�m�1; � 2 .0; 1/º � BnC1;

where we identify HnC1 with the unit ball BnC1 via the Poincaré model. Let �R be the
restriction of the function uR ı r to the cone Cm. Then, using relation (4.2), in geodesic
spherical coordinates we obtainZ
jr�Rj

2 dkCmk �
�1
4
.m � 1/2 C

4�2

R2

� Z
�R

2 dkCmk

D !.�m�1/

�Z R

R=2

.u0R.t//
2 sinhm�1.t/ dt

�

�1
4
.m � 1/2 C

4�2

R2

� Z R

R=2

u2R.t/ sinhm�1.t/ dt
�

6 !.�m�1/

Z R

R=2

.m � 1/ j coth.t/ � 1j juR.t/j ju0R.t/j sinhm�1.t/ dt

6 .m � 1/
�

coth
�R
2

�
� 1

�� Z
jr�Rj

2 dkCmk
�1=2� Z

j�Rj
2 dkCmk

�1=2
;

where !.�m�1/ is the volume of �m�1 viewed as a submanifold of the unit sphere @BnC1.
Thus, denoting by R.�R/ the Rayleigh quotient of �R, we get

R.�R/ � AR 6 BR
p

R.�R/;

where

AR D
1

4
.m � 1/2 C

4�2

R2
and BR D coth

�R
2

�
� 1:

By elementary analysis, the last inequality gives

(4.4)
p

R.�R/ 6
BR

2
C

�
AR C

B2R
4

�1=2
;

and tending R!C1, we arrive at inequality (4.1).
Step 2. General case.
Let p 2 HnC1 be a point that corresponds to the origin in the unit ball BnC1 via the

Poincaré model. Below, by the radial function on HnC1 we mean a function that depends
on the distance r.x/ D dist.x; p/ only. We proceed with the following lemma.
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Lemma 4.1. Let Tm be a locally rectifiablem-current from the set M.�m�1/, and let Cm

be the cone given by (4.3). Then, for any 0 < " < 1 there exists R > 0 such that for any
non-negative bounded radial function f with compact support in the complement of the
hyperbolic ball BR.p/, the inequalities

.1 � "/

Z
f dkCmk 6

Z
f dkTmk 6 .1C "/

Z
f dkCmk

hold.

Proof. The hypotheses in the definition of the set M.�m�1/, see Section 1, guarantee that
for any point z 2 �m�1, there exists its neighbourhood Vz in the closed unit ball BnC1

where sptTm is the graph of a C 1-smooth vector-function w. In more detail, consider the
tangent space

TzT
m
D R � Tz�

m�1;

where the real line component is spanned by the radial vector @=@r . The latter indeed
lies in the tangent space TzTm, since spt Tm meets the boundary at infinity orthogon-
ally. A standard argument based on the inverse function theorem shows that there exist a
neighbourhood .�ı; 0��D� of the origin in the half-space .R�/� Tz�m�1 and a vector-
function w such that, in the spherical coordinates near z, we have

(4.5) Vz \ sptTm D ¹.t; �; w.t; �// W t 2 .1 � ı; 1�; � 2 D�º;

where t D jxj is the Euclidean radial distance, and we identify Tz�m�1 with the coordinate
subspace � in local coordinates on the unit sphere @BnC1. Note that, since rw vanishes at
the origin in TzTm, the Euclidean norm jrwj1 can be made arbitrarily small by choosing
sufficiently small ı and � . Choosing coordinates .�1; : : : ; �m�1/ on D� such that the
vectors @=@� i are orthonormal at the origin, it is straightforward to see that the integral of
a radial function f in the chart defined by the graph in (4.5) is given by the formulaZ

Vz\ sptTm
f dkTmk D

Z 1

1�ı

Z
D�

f .t/
2m

.1 � t2/m

p
1C P2m.rw/ dt d�

1
� � � d�m�1;

where P2m.rw/ is a polynomial of degree 2m in derivatives of w that vanishes at the
point z. Since the tangent spaces TzTm and TzCm coincide, choosing Vz smaller, if neces-
sary, we have a similar formula for the cone Cm:Z

Vz\ sptCm
f dkCmk D

Z 1

1�ı

Z
D�

f .t/
2m

.1 � t2/m

p
1C P2m.rv/ dt d�

1
� � � d�m�1;

where v is a C 1-smooth vector-function defined on the same set .1� ı; 1� �D� . Now for
a given 0 < " < 1 we may choose ı and � such that

.1 � "/2 6
1C P2m.rw/

1C P2m.rv/
6 .1C "/2

Combining these inequalities with the formulae for the integrals above, we immediately
obtain

.1 � "/

Z
Vz\ sptCm

f dkCmk 6
Z
Vz\ sptTm

f dkTmk 6 .1C "/

Z
Vz\ sptCm

f dkCmk:
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Our next aim is to produce similar inequalities in a neighbourhood of �m�1, using
an appropriate version of the partition of unity. For the completeness of exposition, we
explain this construction below.

Since �m�1 is compact, we may find a finite collection of points zi , where i D 1; : : : ; `,
such that the sets

Wzi D ¹.1; �; wi .1; �// W � 2 D�i º D ¹.1; �; vi .1; �// W � 2 D�i º;

cover �m�1, where the vector-functions wi and vi are constructed as described above.
Then the corresponding neighbourhoods ¹Vzi º cover both sptTm and sptCm near �m�1.
In particular, there exists R > 0 such that the complements

sptTmnBR.p/ and sptCmnBR.p/

lie in the union of the Vzi ’s. Now let ¹'iº be a partition of unity on �m�1 subordinate to
the covering ¹Wzi º. Since the charts Vzi \ T

m and Vzi \ C
m are parameterised by the

same coordinates .t; �/ we may also define functions �i and �i on these sets respectively,
by setting

�i .t; �/ D 'i .�/ and �i .t; �/ D 'i .�/:

Then the discussion above shows that for any non-negative radial function, supported in
the complement of the hyperbolic ball BR.p/, the following relations hold:

(4.6) .1 � "/

Z
�if dkC

m
k 6

Z
�if dkT

m
k 6 .1C "/

Z
�if dkC

m
k;

where we view �if and �if as compactly supported functions on spt Tm and spt Cm

respectively, and i D 1; : : : ; `. Since ¹'iº is a partition of unity on �m�1, by our construc-
tion we immediately obtain the relationsX

i

�i D 1 on sptTmnBR.p/ and
X
i

�i D 1 on sptCmnBR.p/;

and summing inequalities in (4.6), arrive at the statement of the lemma.

We proceed with a proof of relation (4.1). For a given 0 < " < 1, let R� > 0 be a
real number that satisfies the conclusions of Lemma 4.1. By the definition of the class
M.�m�1/, we may also assume that sptTm consists of regular points in the complement
of BR�.p/. ChooseR>2R� and denote by Q�R the restriction to sptTm of the function uR,
defined above. It is straightforward to see that

jr Q�R.r.x//j 6 ju0R.r.x//j D jr�R.r. Nx//j;

where x 2 sptTm and Nx 2 Cm are such that r.x/ D r. Nx/, and by Lemma 4.1, we obtain

R. Q�R/ 6
1C "

1 � "
R.�R/:

Combining the latter with relation (4.4), and tending R!C1, we immediately arrive at

��.T
m/ 6

1

4

.1C "/

.1 � "/
.m � 1/2:

Since 0 < " < 1 is arbitrary, we are done.
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4.2. Proof of Theorem 1.3: the spectrum of the area-minimising current

By Proposition 2.3, there exists an area-minimising locally rectifiable m-current †m that
lies in the class M.�m�1/. By McKean’s inequality (3.3), we conclude that the upper
bound for the bottom of the spectrum is saturated on†m. Thus, for a proof of the theorem
it remains to show that any � > .m � 1/2=4 belongs to the spectrum of †m. By standard
theory, see for example Lemma 4.1.2 in [5], for the latter it is sufficient to construct a
sequence .�k/ of smooth compactly supported functions on reg†m and a sequence of
positive real numbers ."k/, "k ! 0C, such that

(4.7)
Z
j��k � ��kj

2 dk†mk 6 "k

Z
j�kj

2 dk†mk for all k 2N:

In fact, we shall construct a sequence of functions with mutually disjoint supports, show-
ing that the interval Œ.m � 1/2=4;C1/ is precisely the essential spectrum of †m.

As above, we first construct radial test-functions on the ambient space HnC1, and show
how to use them to compute the spectrum of cones. Then, we perform a version of this
argument for the regular set of the area-minimising current †m.

Step 1. Radial test-functions and cones.
We start with introducing auxuliary functions modelled on the ones used to study

the spectrum of the hyperbolic space. First, for a given � > .m � 1/2=4, we define the
complex-valued function

 .t/ D sinh�.m�1/=2.t/ exp.iˇt/; where ˇ D

r
� �

1

4
.m � 1/2:

A direct calculation shows that it satisfies the relation

(4.8)  00.t/C .m � 1/ coth.t/ 0.t/C .�C ˛.t// .t/ D 0;

where we set
˛.t/ D

1

4
.m � 1/.m � 3/ sinh�2.t/:

Further, for a given R > 0 we consider the function

�R.t/ D

²
 .t/ sin2

�
2�
R
.t �R=2/

�
; if t 2 ŒR=2;R�I

0; otherwise:

Note that the second derivative � 00R is a bounded function with compact support. The next
lemma shows that �R is indeed a good model function.

Lemma 4.2. For any R > 0 the function �R, defined above, satisfies the inequalityZ R

R=2

ˇ̌
� 00R.t/C .m � 1/ coth.t/� 0R.t/C ��R.t/

ˇ̌2 sinhm�1.t/ dt

6 "R

Z R

R=2

j�R.t/j
2 sinhm�1.t/ dt;
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where
"R D 2max

°
˛2
�R
2

�
; 16 jˇj2

�2�
R

�2
; 16

�2�
R

�4±
:

In addition, for a fixed R0 > 0 and any R > R0, the following inequalities hold:Z R

R=2

j� 0R.t/j
2 sinhm�1.t/ dt 6 C�

Z R

R=2

j�R.t/j
2 sinhm�1.t/ dt;(4.9) Z R

R=2

j� 00R.t/j
2 sinhm�1.t/ dt 6 C�

Z R

R=2

j�R.t/j
2 sinhm�1.t/ dt;(4.10)

where the constant C� depends on m, �, and R0.

Proof. Using (4.8), a direct calculation gives

� 00R.t/C.m � 1/ coth.t/� 0R.t/C��R.t/ D �˛.t/�R.t/C iˇ
4�

R
 .t/ sin

�4�
R

�
t�

R

2

��
C 2

�2�
R

�2
 .t/ cos

�4�
R

�
t �

R

2

��
;(4.11)

where t 2 .R=2;R/. Note that the product j j2 sinhm�1 equals one, and thus, we obtainZ R

R=2

j .t/j2 sin2
�4�
R

�
t �

R

2

��
sinhm�1.t/ dt D

Z R

R=2

sin2
�4�
R

�
t �

R

2

��
dt

6 4

Z R

R=2

sin4
�2�
R

�
t �

R

2

��
dt D 4

Z R

R=2

j�Rj
2 sinhm�1.t/ dt;

where the inequality above follows by an elementary argument, which is omitted. Simil-
arly, estimating the weighted L2-norm of the last term in (4.11), we getZ R

R=2

j .t/j2 cos2
�4�
R

�
t �

R

2

��
sinhm�1.t/ dt 6 4

Z R

R=2

j�Rj
2 sinhm�1.t/ dt:

Now the first inequality in the lemma follows in a straightforward manner by combining
the relations above.

To prove inequality (4.9), one first computes

(4.12) j 0.t/j2 sinhm�1.t/ D
ˇ̌̌
�
1

2
.m � 1/ coth.t/C iˇ

ˇ̌̌2
6 C

for all t > R0, where the constant C depends on m, �, and R0. Then, computing the
derivative � 0R, we obtainZ R

R=2

j� 0R.t/j
2 sinhm�1.t/ dt 6 2

Z R

R=2

j 0.t/j2 sin4
�2�
R

�
t �

R

2

��
sinhm�1.t/ dt

C
8�2

R2

Z R

R=2

j j2 sin2
�4�
R

�
t �

R

2

��
sinhm�1.t/ dt:
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Now using inequality (4.12) and the observation that j j2 sinhm�1 equals one, we arrive
at the inequalityZ R

R=2

j� 0R.t/j
2 sinhm�1.t/ dt

6 2C

Z R

R=2

sin4
�2�
R

�
t �

R

2

��
dt C

32�2

R2

Z R

R=2

sin4
�2�
R

�
t �

R

2

��
dt

6 C1

Z R

R=2

j�R.t/j
2 sinhm�1.t/ dt;

where we used elementary inequalities between integrals of powers of sin as above. Fi-
nally, inequality (4.10) with some constant C2 in place of C�, can be derived in a similar
fashion, using for example, relation (4.11). Setting C� as the maximum of C1 and C2, we
finish the proof of the lemma.

Let Cm be the cone defined by relation (4.3). As above by the radial function we mean
a function that depends on the distance r.x/D dist.x;p/ only, where p 2 HnC1 is a point
that corresponds to the origin in the unit ball BnC1. We need the following observation,
which for the convenience of references we state as a lemma. We also include a proof,
where we introduce the notation that is used in the sequel.

Lemma 4.3. Let f be a smooth radial function on HnC1. Then the Laplacian of its
restriction to the cone Cm is given by the formula

��f .x/ D f 00.r.x//C .m � 1/ coth.r.x//f 0.r.x//;

where r.x/ D dist.x; p/ and x 2 Cm.

Proof. Let x be a point in the cone Cm �HnC1. In geodesic spherical coordinates centred
at p, it corresponds to the value r.x/ and a point � 2 Sn. Note that as x ranges in Cm,
the point � ranges in a submanifold of Sn diffeomorphic to �m�1, which we also denote
by �m�1. In a neighbourhood of � in Sn, we can choose coordinates .�1; : : : ; �n/ such
that the vectors @=@� i .�/ are orthonormal, and the level set

�m D 0; : : : ; �n D 0

defines �m�1 in this neighbourhood. Then, around the point x, we obtain the collection
of vector fields

Xr D
@

@r
, Xi D D expp

� @

@� i

�
; i D 1; : : : ; n:

By standard facts from Riemannian geometry, these vector fields satisfy the relations

jXr j
2
D 1 and jXi j

2
D sinh2.r/ j@=@� i j2Sn ;

and moreover, at the point x, the vectors Xr , X1; : : : ; Xm�1 form an orthogonal basis
on TxCm.
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The gradient of a radial function f on HnC1 is collinear to Xr , and hence, lies in
the tangent space TxCm. Thus, by a standard computation, see the proof of Lemma 2.7
in [12], we conclude that the Laplacian of the restriction of f to Cm at x is given by the
formula

(4.13) ��f .x/ D Hessx f .Xr ; Xr /C
1

sinh2.r.x//

m�1X
iD1

Hessx f .Xi ; Xi /

Computing the first term, we obtain

Hessx f .Xr ; Xr / D Xr .Dxf .Xr // �Dxf .rXrXr /(4.14)
D Xr .f

0.r// � f 0.r/hXr ;rXrXri D f
00.r/ � 0;

where we used that the product in the second term vanishes, since Xr has unit length.
Similarly, we obtain

Hessx f .Xi ; Xi / D Xi .Dxf .Xi // �Dxf .rXiXi / D 0 � f
0.r/hXr ;rXiXi i;

where the first term vanishes, since f is radial. The product in the last term can be com-
puted by Koszul’s formula, which at the point x gives

hXr ;rXiXi i D �
1

2
Xr jXi j

2
D � cosh.r/ sinh.r/:

Combining the last relations with formulae (4.13) and (4.14), we arrive at the statement of
the lemma.

Now choose a sequence Rk ! C1 such that RkC1 > 2Rk , and denote by �k com-
pactly supported smooth functions on the real line such that the supports spt�k are mutu-
ally disjoint, and the following hold:Z C1

0

ˇ̌
� 00k .t/C .m � 1/ coth.t/� 0k.t/C ��k.t/

ˇ̌2 sinhm�1.t/ dt(4.15)

6 2

Z Rk

Rk=2

ˇ̌
� 00Rk .t/C .m � 1/ coth.t/� 0Rk .t/C ��Rk .t/

ˇ̌2 sinhm�1.t/ dt;

and

(4.16)
Z Rk

Rk=2

j�Rk j
2 sinhm�1.t/ dt 6 2

Z C1
0

j�kj
2 sinhm�1.t/ dt:

Such smooth functions �k can be constructed as approximations of W 2;2-functions �Rk ,
for example, by using the mollification technique. Denote by �k the restriction of �k to
the cone Cm. Then, by Lemma 4.3 we obtainZ
j��k � ��kj

2 dkCmk

D !.�m�1/

Z C1
0

ˇ̌
� 00k .t/C .m � 1/ coth.t/� 0k.t/C ��k.t/

ˇ̌2 sinhm�1.t/ dt;
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and the combination with relations (4.15)–(4.16) yields

(4.17)
Z
j��k � ��kj

2 dkCmk 6 "k

Z
j�kj

2 dkCmk;

where "k D 4"Rk , and "Rk is given in Lemma 4.2. Since "Rk ! 0C, we conclude that the
statement of the theorem holds for cones.

Step 2. Minimal varieties.
To get similar estimates for the test-functions �k restricted to reg†m, we need the

following lemma.

Lemma 4.4. Let †m be a stationary locally rectifiablem-current from the set M.�m�1/.
Then for any " > 0, there exists R > 0 such that for any smooth radial function f that is
supported in the complement of the hyperbolic ball BR.p/, the Laplacian of its restriction
to spt†m is given by the formula

��f .x/ D f 00.r.x//C .m � 1/ coth.r.x//f 0.r.x//CE.x/;

where the error term E.x/ satisfies the estimate

jE.x/j 6 ".jf 00.r.x//j C jf 0.r.x//j/;

r.x/ D dist.x; p/, and x 2 spt†m.

Proof. We follow the notation in the proof of Lemma 4.3. Below we always assume
that R > 0 is sufficiently large such that all points x 2 spt†m with r.x/ > R are con-
tained in reg†m.

Partial case.
To illustrate the main idea, we first consider the case when the radial vector .@=@r/

lies in the tangent space Tx†m for a given point x 2 spt†m. Our claim that in this case
the error term in the formula for the Laplacian vanishes.

In more detail, consider the intersection of the geodesic sphere @Br .p/ with spt†m,
where r D r.x/. Since .@=@r/ and Tx@Br .p/ span the tangent space TxHnC1, we con-
clude that spt†m and @Br .p/ intersect transversally around x, and spt†m \ @Br .p/ is
a submanifold of dimension m � 1 in @Br .p/ around x. In geodesic spherical coordin-
ates the point x corresponds to the value r.x/ and a point � 2 Sn, and the intersection
spt†m \ @Br .p/ corresponds to a submanifold in Sn via the exponential map. Choosing
coordinates .�1; : : : ; �n/ around � on Sn in the same fashion as in the proof of Lemma 4.3,
we obtain the collection of vector fields

Xr D
@

@r
, Xi D D expp

� @

@� i

�
; i D 1; : : : ; n:

They satisfy the same properties as in the proof of Lemma 4.3, and in particular, Xr ,
X1; : : : ; Xm�1 form an orthogonal basis of the tangent space Tx†m. Since spt†m is
a smooth submanifold around x whose mean curvature vanishes, a standard computa-
tion, see [12], shows that the Laplacian of the restriction of f to spt†m at x is given
by formula (4.13). The rest of the argument in this case follows the lines in the proof of
Lemma 4.3.
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General case.
Since spt †m meets the boundary at infinity orthogonally, for a sufficiently large

r D r.x/ the tangent spaces Tx†m and Tx@Br .p/ span TxHnC1, and we conclude that
spt†m and @Br .p/ intersect transversally. Thus, the intersection spt†m \ @Br .p/ is a
submanifold in @Br .p/, and arguing as above, we can construct vector fields Xi in a
neighbourhood of x in HnC1, where i D 1; : : : ; n, such that at the point x they form an
orthogonal system, and the first .m� 1/ vectorsX1; : : : ;Xm�1 at x lie in the tangent space
Tx†

m. Now we define the vector QXr 2 Tx†m as a unit vector that is orthogonal to these
vectors and such that the product h QXr ; Xri is positive, where Xr is the radial vector @=@r
used above. This vector QXr can be extended to a vector field around x such that

(4.18) j QXr j
2
D 1 and h QXr ; Xi i D 0 for all i D 1; : : : ; m � 1:

In fact, since spt†m is C 1-smooth up to boundary, we can define the vector field QXr in a
neighbourhood of �m�1 as unit vector field such that for any x2 spt†m with a sufficiently
large r.x/, it lies in Tx†m and is orthogonal to spt†m \ @Br .p/.

Next, we claim that the hyperbolic length j QXr �Xr j tends to zero as r D r.x/ tends to
infinity. Indeed, denote by QZr and Zr vectors of unit Euclidean length obtained by scal-
ing QXr and Xr , respectively. Since spt†m meets the boundary of the Euclidean ball BnC1

orthogonally, it is straightforward to see that the difference QZr � Zr can be made arbit-
rarily small by choosing a sufficiently large r D r.x/. Now the claim follows from the
observation that the hyperbolic length j QXr � Xr j and the Euclidean length of QZr � Zr
coincide. Thus, writing QXr in the form

(4.19) QXr D 'Xr C Yr ; where hXr ; Yri D 0;

we conclude that the function .1 � '2/ and the hyperbolic length jYr j tend to zero when
r D r.x/ tends to infinity. Similarly to the computation used above, the Laplacian of the
restriction of f to †m at x is now given by the formula

��f .x/ D Hessx f . QXr ; QXr /C
1

sinh2.r.x//

m�1X
iD1

Hessx f .Xi ; Xi /:

The argument in the proof of Lemma 4.3 shows that the last term gives the same con-
tribution .m � 1/ coth.r/f 0.r/, and it remains to compute the first term only. Using the
decomposition in (4.19), we obtain

(4.20) Hessx f . QXr ; QXr /D '2Hessx f .Xr ;Xr /C2'Hessx f .Xr ; Yr /CHessx f .Yr ; Yr /:

As the computation in the proof of Lemma 4.3 shows, the first term in the last relation
equals '2f 00.r/, and the second term vanishes,

Hessx f .Xr ; Yr / D Yr .f 0.r// � f 0.r/hXr ;rYrXri D f
00.r/hXr ; Yri � 0 D 0;

where we used that f is radial and Xr has unit length. Similarly, the last term in rela-
tion (4.20) can be computed in the following fashion:

Hessx f .Yr ; Yr / D Yr .Dxf .Yr // �Dxf .rYrYr /
D Yr .f

0.r/hYr ; Xri/ � f
0.r/hXr ;rYrYri D 0 � f

0.r/hXr ;rYrYri:
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Combining all relations above, we conclude that the error term E.x/ in the statement of
the lemma has the form

E.x/ D .1 � '2/f 00.r/ � hXr ;rYrYrif
0.r/:

Since we already know that the function .1� '2/ is small for a large r D r.x/, for a proof
of the lemma it remains to show that so is the product hXr ;rYrYri.

Using relations (4.18)–(4.19), we see that the vector field Yr can be written in the form

Yr D

nX
iDm

˛iXi :

Since the vectors Xi at the point x, where i D 1; : : : ; n, form an orthogonal system, the
values of the functions ˛i at x can be estimated in the following way:

j˛i .x/j D
jhYr ; Xi ixj

jXi j2x
6
jYr jx

jXi jx
D
jYr jx

sinh.r/
,

where i D m; : : : ; n. Since the radial vector Xr is orthogonal to the vectors Xi ’s, a direct
computation gives

hXr ;rYrYri D

nX
i;jDm

˛i j̨ hXr ;rXiXj i;

where the products hXr ;rXiXj i can be computed using Koszul’s formula. In particular,
at the fixed point x we obtain

hXr ;rXiXj ix D �ıij cosh.r/ sinh.r/;

where i; j D m; : : : ; n, r D r.x/, and ıij is the Kronecker delta. Combining the relations
above, we finally arrive at the inequality

jhXr ;rYrYrixj 6 .n �m/ coth.r/ jYr j2x :

Since the hyperbolic length of jYr j can be made arbitrarily small by choosing a point x
with a sufficiently large r D r.x/, we conclude that so can be the left-hand side above.

Now for a given 0 < " < 1, let R > 0 be a real number that satisfies the conclusions
of Lemmas 4.1 and 4.2, as well as Lemma 4.4. For a sequence Rk ! C1 such that
RkC1 > 2Rk > 2R, we can choose compactly supported smooth functions �k defined
on the real line such that their supports spt �k are mutually disjoint, they satisfy rela-
tions (4.15)–(4.16), and in addition, the relationsZ C1

0

j� 0kj
2 sinhm�1.t/ dt 6 2

Z Rk

Rk=2

j� 0Rk j
2 sinhm�1.t/ dt;Z C1

0

j� 00k j
2 sinhm�1.t/ dt 6 2

Z Rk

Rk=2

j� 00Rk j
2 sinhm�1.t/ dt:
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Combining these relations with inequalities in Lemma 4.2 and relation (4.16), we obtainZ C1
0

j� 0kj
2 sinhm�1.t/ dt 6 4C�

Z C1
0

j�kj
2 sinhm�1.t/ dt;(4.21) Z C1

0

j� 00k j
2 sinhm�1.t/ dt 6 4C�

Z C1
0

j�kj
2 sinhm�1.t/ dt:(4.22)

Let us denote by Q�k the restriction of the function �k to the regular set reg†m. Then, by
Lemma 4.4, we obtainZ

j� Q�k � � Q�kj
2 dk†mk 6 3

Z ˇ̌
� 00k C .m � 1/ coth.�/� 0k C ��k

ˇ̌2
dk†mk(4.23)

C 3"2
Z
j� 00k j

2
C j� 0kj

2 dk†mk:

To estimate the first integral on the right hand-side above we use Lemmata 4.1 and 4.3,
and already obtained estimate (4.17) for cones. Combining all these ingredients, we getZ ˇ̌

� 00k C .m � 1/ coth.�/� 0k C ��k
ˇ̌2
dk†mk

6 .1C"/

Z ˇ̌
� 00kC.m�1/ coth.�/� 0kC��k

ˇ̌2
dkCmk D .1C"/

Z
j��k���kj

2 dkCmk

6 "k .1C "/

Z
j�kj

2 dkCmk 6 "k
1C "

1 � "

Z
j Q�kj

2 dk†mk:

Here, as in Step 1, we denote by �k the restriction of the radial function �k to the
cone Cm, and "k D 4"Rk , where "R is given by the relation in Lemma 4.2. To estimate the
second integral on the right hand-side of relation (4.23), we use integral inequalities (4.21)
and (4.22) for the first two derivatives of �k . In more detail, we can bound the L2-norm
of � 0

k
on reg†m in the following fashion:Z
j� 0kj

2 dk†mk 6 .1C "/

Z
j� 0kj

2 dkCmk

D .1C "/ !.�m�1/

Z C1
0

j� 0k.t/j
2 sinhm�1.t/ dt

6 4C�.1C "/ !.�
m�1/

Z C1
0

j�k.t/j
2 sinhm�1.t/ dt

D 4C�.1C "/

Z
j�kj

2 dkCmk 6 4C�
1C "

1 � "

Z
j Q�kj

2 dk†mk:

Similarly, we have Z
j� 00k j

2 dk†mk 6 4C�
1C "

1 � "

Z
j Q�kj

2 dk†mk:

Combining these estimates with relation (4.23), we finally obtainZ
j� Q�k � � Q�kj

2 dk†mk 6 .3"k C 24C� "
2/
1C "

1 � "

Z
j Q�kj

2 dk†mk:
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Since 0 < " < 1 is arbitrary andRk!C1, choosing a subsequence Q�k` , we may assume
that Z

j� Q�k` � �
Q�k` j

2 dk†mk 6 .3"k` C 24C�=`
2/
1C 1=`

1 � 1=`

Z
j Q�k` j

2 dk†mk

for all integers ` > 1. Since "k D 4"Rk ! 0C, by Lemma 4.2, we are done.

4.3. Proof of Theorem 1.2

The proof of Theorem 1.2 follows closely the lines in the proof of Theorem 1.3 for
the higher codimension area-minimising current. In more detail, by Proposition 2.2, any
area-minimising locally rectifiable n-current †n that is asymptotic to �n�1 lies in the
class M.�n�1/. Thus, the argument in the proof of Theorem 1.3 carries over directly, and
shows that the spectrum of the Friedrichs extension of the Laplacian is indeed the interval
Œ.n � 1/2=4;C1/.

5. Final remarks

In this section, we collect a few useful remarks, reflecting on the proof of Theorem 1.3.

Remark 5.1. It might be useful to note that, together with Remark 3.3, the argument in the
proof of Theorem 1.3 shows that the Laplacian spectrum of any cone asymptotic to �m�1

is precisely the interval Œ.m � 1/2=4;C1/. Indeed, the statement holds for the cone Cm,
given by relation (4.3), that is used in the proof. Its singular point p corresponds to the
origin of a unit Euclidean ball BnC1 via the Poincaré model. Since the isometry group
of HnC1 acts transitively on it, we conclude that the statement holds for all cones.

Remark 5.2. Our argument in the proofs of Theorems 1.2 and 1.3 applies to any station-
ary current that lies in the class M.�m�1/, that is, if it does not contain singularities near
the boundary, is C 1-smooth up to the boundary, and meets the boundary orthogonally.
In co-dimension one, the area-minimising hypothesis is needed only to ensure that these
properties hold, see Proposition 2.2. Let us point out that if for a stationary current †m its
support spt†m is a C 1-smooth submanifold near and up to boundary, then it automatic-
ally meets the boundary at infinity orthogonally. Indeed, using a standard argument based
on the first variation, see the proof of Lemma 5 in [1], or an appropriate version of the
maximum principle [9,22], one can foliate HnC1 by totally geodesic subspaces that serve
as barriers for†m. Then, following the idea in Section 1 of [8], one can show that the tan-
gent cone at the boundary point z 2�m�1 is contained in the product Tz�m�1 � Œ0;C1/,
where we identify HnC1 with the upper half-space. We refer to [13], where details of this
argument can be found.

In particular, the claim above shows that our argument in the proof of Theorem 1.3
applies to C 1-smooth up to boundary at infinity minimal submanifolds, sharpening The-
orem 1.1 due to [15], where the assumption that they are C 2-smooth up to boundary is
used. The last hypothesis is used in [15] to deduce that the corresponding submanifold has
finite total curvature, which is an essential step in the proof of Theorem 1.1 in that paper.
The latter fails even for simplest singular minimal submanifolds, such as cones.
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Remark 5.3. Let †m be an area-minimising m-current in HnC1 that satisfies the hypo-
theses of Theorem 1.2 or Theorem 1.3. As was discussed in Section 2, to our knowledge
it is unknown whether the Laplace operator on†m, defined on smooth compactly suppor-
ted functions on reg†m, has a unique self-adjoint extension. For this reason, we had to
specify that we consider the Friedrichs extension, that is associated with the closure of the
Dirichlet energy. In particular, this gives the variational characterisation of the bottom of
the spectrum, which is used to prove the version of McKean’s inequality, that is, inequal-
ity (3.3). On the other hand, in the proof of the statement that any � > .m � 1/2=4 lies
in the spectrum, we used compactly supported smooth test-functions only, and hence, the
argument holds for arbitrary self-adjoint extensions.

In summary, our argument in Section 4 shows that the interval Œ.m� 1/2=4;C1/ lies
in the spectrum of any self-adjoint extension of the Laplacian, and it coincides with the
whole spectrum of the Friedrichs extension.
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