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Abnormal singular foliations and the Sard conjecture
for generic co-rank one distributions

André Belotto da Silva, Adam Parusiński and Ludovic Rifford

Abstract. Given a smooth totally nonholonomic distribution on a smooth manifold,
we construct a singular distribution capturing essential abnormal lifts which is loc-
ally generated by vector fields with controlled divergence. Then, as an application,
we prove the Sard conjecture for rank 3 distribution in dimension 4 and generic dis-
tributions of corank 1.

1. Introduction

The topic of this paper is the Sard conjecture in sub-Riemannian geometry in the C1

category and in arbitrary dimensions. This is a follow-up of our previous works [3, 4],
where we study the Sard conjecture in the analytic setting, and of [2, 5] where we study
the Sard conjecture in three dimensions. We rely on Sections 1.1, 1.2 and 1.4 of [3] (and [5]
in three dimensions) for a complete presentation of the conjecture and its importance.

Throughout all the paper, we consider a smooth connected manifold M of dimen-
sion n � 3 equipped with a bracket generating distribution � of rank m < n. Whenever
dimM > 3, all known results on the Sard conjecture concern the analytic category, see,
for instance, [1,3,4,6,12–14,16,18]. When dim.M/D 3, the foundation paper of Zelenko
and Zhitomirskii [22] proves the Sard conjecture for generic distributions� (in respect to
the C1-Whitney topology). Belotto and Rifford have improved this result by showing that
the Sard conjecture holds true whenever the so-called Martinet surface is smooth [5]. (If�
is generic, then the Martinet surface is smooth [22].) The proof is based on the control of
the divergence of the, so-called, characteristic foliation introduced in [22], and makes use
of methods of analysis.

The goal of this paper is to extend to the smooth case, possibly generic, some of the
main results from [3,4], all of which greatly rely on subanalytic geometry. To this end, we
generalize to higher dimensions the heart of the arguments from [5], and combine trans-
versality theory with new methods related to Goh matrices and Pfaffian of minors. More
concretely, we follow the general geometrical strategy presented in Section 1.4 of [3],
leading to two sets of results. First, we establish a geometrical framework to study the
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Sard conjecture, by constructing an abnormal singular foliation, see Theorem 1.1, which
generalizes the characteristic foliation of Zelenko and Zhitomirskii [22]. Crucially, this
foliation admits generators with controlled divergence, a key property remarked in [5].
Second, we establish the Sard conjecture under qualitative properties of the abnormal
singular foliation, see Theorem 1.3, which are always satisfied for corank 1 generic distri-
butions �, see Corollary 1.5.

1.1. Abnormal singular foliation

For convenience, we shall say that both M and � are of class C with C D C1 if they
are C1, and of class C D C! if they are analytic, and we will proceed in the same way for
other objects (for example, a C -vector field will refer to a vector field in the category C ).
We start by briefly introducing some of the main objects used in the paper. We rely on [3]
for an extended discussion in the analytic case, and [11] for further details on singular
foliations in the C1 setting.

Symplectic form and �?.
We denote by ! the canonical symplectic form of T �M and by �? � T �M the

nonzero annihilator of �, that is,

�? WD ¹a D .x; p/ 2 T �M jp ¤ 0 and p � v D 0; 8v 2 �.x/º:

We denote by !? the restriction of ! to �?.
Distribution.
A distribution on �? is any mapping EK which assigns to a point a in �? � T �M a

vector subspace EK.a/ of Ta�
? of dimension dim EK.a/, also called rank, that may depend

upon a.
Singular distribution.
We say that EK is regular on a set � � �? if its rank is constant over each connected

component of � . Otherwise, we say that the distribution is singular; note that the rank of
a regular distribution EK on � may differ from one connected component of � to another.

Foliation and integrable distribution.
Recall that a singular foliation over a smooth manifold is a partition of that manifold

into connected immersed smooth submanifolds called leaves. We say that a singular dis-
tribution EK on �? is integrable if it is associated to a singular foliation, that is, if there
exists a singular foliation whose tangent spaces of its leaves are equal to EK .

Invariance by dilation.
Note that we may consider a family of natural dilation over the cotangent bundle

T �M , that is, for every �2R�, we consider the associated dilation:

�� W T
�M ! T �M; given by ��.x; p/ D .x; �p/:

We say that a set � � �? is invariant by dilation if ��.�/ D � for every � 2R�. Note
that �? is invariant by dilation. Similarly, a distribution EK is invariant by dilation if
d��. EK.a// D EK.��.a// for all a and �.
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Horizontal curves with respect to EK .
A curve  W Œ0; 1�! �? is said to be horizontal with respect to EK if it is absolutely

continuous with derivative in L2 and satisfies

P .t/ 2 EK. .t// � T .t/�
? for a.e. t 2 Œ0; 1�:

We are now ready to state the first main result of the paper:

Theorem 1.1 (Singular distribution capturing essential abnormal lifts). Let M and � be
of class C . Then there exist an open and dense set �0 � �

? and an integrable singular
distribution EF on �?, both invariant by dilation, satisfying the following properties:

(i) (Specification on �0). EF is regular on �0 and satisfies EFj�0 D ker.!?/j�0 . In par-
ticular, there holds dim EFj�0 � m mod 2 and dim EFj�0 � m � 2.

(ii) (Specification outside �0). EF .a/ D ¹0º for all a2† WD �? n �0.

(iii) (Abnormal lifts). Let  W Œ0; 1�!M be a singular horizontal path and let W Œ0; 1�!
�? be an abnormal lift of  . If  �1.†/ � Œ0; 1� has Lebesgue measure zero (we
call such an abnormal lift essential), then  is horizontal with respect to EF . Fur-
thermore, if a horizontal path  admits a lift  W Œ0; 1�!�? horizontal with respect
to EF , then  is singular.

(iv) (Local generators of EF ). For every point x 2M , there are an open neighborhood V

of x and C -vector fields ¹Y˛; ˛ 2 �º, where � is a finite set, defined on QV WD
�? \ T �V , such that EF

j QV
is generated by Span¹Y˛; ˛2�º and each Y˛ is singular

over† and homogeneous with respect to the p variable (in a local set of symplectic
coordinates .x; p//. In addition, if EF has constant rank over �0 \ QV , then each Y˛

has controlled divergence, that is,

div�
?

.Y˛/ 2 Y˛ � C. QV/;

where div�
?

.Y˛/ stands for the divergence of the restriction of Y˛ to �?. More-
over, if EF has rank at most 1, then j�j D 1 and the vector field Y˛ generating EF
has controlled divergence.

(v) (Generic case). Assume that � is generic, that is, it contains the intersection of
countably many open and dense subsets of the set of rankm distributions, equipped
with the Whitney C1 topology. Then † is countably smoothly .2n �m � 1/-recti-
fiable. Moreover, EFj�0 has rank 0 if m is even, and rank 1 if m is odd.

This result should be seen as the C1 analogue of Theorem 1.1 in [3], which covers
the analytic category. On the one hand, Theorem 1.1 characterizes only essential abnor-
mal lifts, while Theorem 1.1 in [3] characterizes all abnormal lifts. In fact, subanalytic
geometry and Whitney stratification are key to be able to describe the behavior of the
abnormal lifts over the singular set † WD �? n �0 in [3], and these methods are unavail-
able in the smooth category. On the other hand, Theorem 1.1(iv) provides a new property,
even in the analytic case, much in the spirit of [5]. This property may be used to study the
Sard conjecture as presented in Section 1.2 below. Crucially, under additional hypothesis,
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it allows us to bypass the analytic method of Witness transverse sections developed in [4].
Witness transverse sections exist for arbitrary subanalytic foliations (see Section 3 of [4])
but, unfortunately, they may not exist in the smooth category.

Finally, the proof of Theorem 1.1(v) follows from transversality arguments, combined
with methods related to Goh matrices and Pfaffian of minors developed in Section 3.
The generic property stated in assertion (v) roughly corresponds to the property which is
required to obtain Corollaries 1.5 and 1.6 below. But in fact much deeper results can be
established for generic distributions, as for example the Chitour–Jean–Trélat theorem [7]
stating that all abnormal lifts of generic distributions are essential. This subject will be
investigated more deeply in a forthcoming work.

Remark 1.2. Let us briefly comment on two technical improvements of Theorem 1.1.
First, according to Theorem 1.1(v), the singular set † WD �? n �0 of a generic distribu-
tion is countably smoothly .2n �m � 1/-rectifiable, which means that it can be covered
by countably many smooth submanifolds of �? of codimension 1. This result can be
improved in the analytic category where one can show that † is a proper analytic sub-
set of �?, see Theorem 1.1 in [3]. In either way, † has Lebesgue measure zero in �?.
Second, concerning Theorem 1.1(iv), we can show that, if we allow the set � to be count-
able, then the C -module of vector fields generated by ¹Y˛; ˛ 2 �º is involutive, that is,
it is stable by Lie-brackets. Moreover, in the case C D C! , � may always be taken to be
finite. We refer the reader to Remark 4.3 for further detail.

1.2. Applications to the Sard conjecture

The property of controlled divergence for generators of the singular distribution given in
Theorem 1.1(iv) was observed and explored in a previous work of Belotto and Rifford in
the case dim.M/D 3, where it could be used to prove the strong Sard conjecture whenever
the Martinet surface is smooth (see Theorem 1.1 in [5]). Here we use it to establish the
Sard conjecture for corank 1 distributions for which the singular distribution EF given by
Theorem 1.1 satisfies an extra assumption. We recall that a totally nonholonomic distri-
bution � of rank m < n on M is said to satisfy the Sard conjecture if for any x 2M , the
set of end-points of singular horizontal paths starting from x, denoted by Abn�.x/, has
Lebesgue measure zero inM (we refer to Section 1.2 of [3] for an extended presentation).
We have the following.

Theorem 1.3 (Conditional Sard conjecture for corank 1 distributions). Let M and � be
of class C and assume that� is of corank 1. Assume that the two following properties are
satisfied:

(H1) The distribution EFj�0 has constant rank equal to 0 or 1.

(H2) The singular set † of EF has Lebesgue measure zero in �?.

Then the Sard conjecture holds true.

Our first application of Theorem 1.3 is concerned with the Sard conjecture for corank-1
distributions in dimension 4, for which assumptions (H1)–(H2) are automatically satisfied
(see Section 2.2).
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Corollary 1.4 (Sard conjecture for rank-3 distribution in dimension 4). Suppose that M
is of dimension 4 and � is of rank 3. Then the Sard conjecture holds true.

By Theorem 1.1(v), the singular distribution of a generic distribution � has constant
rank 0 or 1 on �0, whose complement in �? has Lebesgue measure zero. Therefore, we
have the following.

Corollary 1.5 (Sard conjecture for corank-1 generic distributions). LetM and� be C1,
with� of corank 1. If � is generic (that is, if it contains the intersection of countably many
open and dense subsets of the set of rank m distributions, equipped with the Whitney C1

topology), then the Sard conjecture holds true.

As the last application, we note that Corollary 1.5 can be combined with Theorem 2.4
in [7] (showing that distributions of corank > 1 satisfy the minimal rank Sard conjecture)
to establish the minimal rank Sard conjecture for generic distribution (we refer the reader
to Section 1.4 of [3] for the statement of the conjecture, as well as for a discussion of its
importance towards a geometrical approach to the Sard conjecture):

Corollary 1.6 (Generic minimal rank Sard conjecture). If � is generic (that is, it contains
the intersection of countably many open and dense subsets of the set of rank m distribu-
tions, equipped with the Whitney C1 topology), then the minimal rank Sard conjecture
holds true.

1.3. Paper structure

The paper is organized as follows. Several examples illustrating our results for corank 1
distributions are presented in Section 2. Section 3 gathers a few results of importance for
the rest of the paper. Sections 4 and 5 are devoted respectively to the proofs of Theor-
ems 1.1 and 1.3. Finally, Appendices A and B provide the proofs of several results stated
in the course of the paper.

2. The corank 1 case

We gather in this section several examples to illustrate our results. First, we show in Sec-
tion 2.1 that Theorem 1.1 provides indeed a singular distribution on M in the case of
corank 1 distributions. Sections 2.2 and 2.3 are concerned with Sard type results concern-
ing corank 1 distributions in dimensions 4 and 5, and Section 2.4 features an example
of corank 1 distribution in dimension 6 for which the singular set has positive Lebesgue
measure.

2.1. Corank 1 distributions

In the case of a corank 1 distribution, the nonzero annihilator �? � T �M is a graph (up
to dilation) over M , in such a way that all objects given by Theorem 1.1 can indeed be
seen in M . The proof of the following result is given in Appendix A (� stands for the
canonical projection from T �M to M ).
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Theorem 2.1 (Singular distribution for corank 1 distributions). LetM and� be of class C

with � of corank 1 (that is,m D n� 1/ and consider �0, EF and † given by Theorem 1.1.
Then the open and dense set R0 �M and the integrable singular distribution H overM
given by

R0 WD �.�0/ and H WD d�
�
EF
�

satisfy the following properties:
(i) (Specification on R0). H is regular on R0, dim HjR0

� m .2/ and dim HjR0
�

m � 2.

(ii) (Specification outside R0). H .x/ D ¹0º for all x 2 � WDM nR0 D �.†/.

(iii) (Singular horizontal paths). Let  W Œ0; 1�!M be an horizontal path. If  is singular
and �1.�/ has Lebesgue measure zero, then  is horizontal with respect to H .
Conversely, if  is horizontal with respect to H , then it is singular.

(iv) (Local generators of H ). For every point x 2M , there are an open neighborhood V

of x, d 2N, and C -vector fields Z1; : : : ;Zd defined on V , such that HjV is gener-
ated by Span¹Z1; : : : ;Zd º, and each Zi is singular over � D M nR0 and, if H

has constant rank over V \R0, then Zi has controlled divergence, that is,

div.Zk/ 2 Zk � C.V/:

Moreover, if H has rank at most 1, then d D 1.

(v) (Generic case). Assume that � is generic (in respect to the Whitney C1 topology).
Then � is countably smoothly .n � 1/-rectifiable. Moreover, HjR0

has rank 0 if m
is even, and rank 1 if m is odd.

Remark 2.2. It follows from Theorem 2.1 in [3] that, in the real-analytic category, the
singular set � is a proper analytic subset of M and HjR0

has constant rank.

Remark 2.3. Since H D d�. EF / and � D �.†/, where † is invariant by dilation, the
assumptions (H1)–(H2) of Theorem 1.3 are satisfied if and only if HjR0

has constant rank
equal to 0 or 1 and � has Lebesgue measure zero in M .

2.2. Rank 3 distributions in dimension 4

LetM be a connected open set of R4 and� be a rank 3 totally nonholonomic distribution
on M generated by three smooth vector fields X1, X2 and X3 of the form

X i .x/ D @xi C Ai .x/@x4 ; 8x 2M; 8i D 1; 2; 3;

where A1, A2 and A3 are smooth functions from M to R. Note that up to shrinking M
we can always assume that such a property holds true on a neigborhood of a given point
in M . By the equation (A.1) used in the proof of Theorem 2.1, the distribution H given
by Theorem 2.1 is generated by the vector field

Z D ŒX1; X2�.x4/X
3
C ŒX3; X1�.x4/X

2
C ŒX2; X3�.x4/X

1;
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where for any i; j 2¹1; 2; 3º, ŒX i ;Xj �.x4/ stands for the Lie derivative of the function x4
along ŒX i ; Xj �, that is,

ŒX i ; Xj �.x4/ D @xi .Aj / � @xj .Ai /C Ai@x4.Aj / � Aj @x4.Ai /:

We can easily verify, by using the Jacobi identity, that Z has controlled divergence.
Moreover, we can check that

Z D 0 ” ŒX1; X2�.x4/ D ŒX
3; X1�.x4/ D ŒX

2; X3�.x4/ D 0;

which due to the total nonholonomicity of �, shows that � has Lebesgue measure zero
inM , cf. Lemma 4.5 below. As a consequence, by Theorem 1.3 and Remark 2.3, the Sard
conjecture holds true.

2.3. Rank 4 distributions in dimension 5

We consider here an example in the lowest dimension for which the Sard conjecture for
corank 1 distributions remains open. Let M be a connected open set of R5 and � a
rank 4 totally nonholonomic distribution onM generated by four vector fieldsX1,X2,X3

and X4 of the form

X i .x/ D @xi C Ai .x/@x5 ; 8x 2M; 8i D 1; 2; 3; 4;

where A1, A2, A3 and A4 are analytic functions from M to R. Note that for sake of
simplicity, we work here with analytic vector fields. In this case (see Theorem 2.1 and
Remark 2.2), the open set R0 � M is the complement of a proper analytic subset of M ,
and the distribution HjR0

has constant rank. Moreover, from Proposition 3.1, HjR0
cor-

responds to the projection of ker.L2/ D ker.!?/, whose dimension coincides with the
corank of the 4 � 4 matrix (see Section 3.1)

QH D ŒŒX i ; Xj �.x5/� i;j :

If QH has rank 4 on R0, then HjR0
has rank zero and the Sard conjecture is easily satisfied.

So, we assume that the rank of QH is everywhere at most 2, which by Theorem 2.1(i) means
that HjR0

has rank 2. Therefore, the Pfaffian of the matrix QH vanishes everywhere, that is,

ŒX1;X2�.x5/ŒX
3;X4�.x5/� ŒX

1;X3�.x5/ŒX
2;X4�.x5/C ŒX

1;X4�.x5/ŒX
2;X3�.x5/D 0;

and by (A.1), the distribution H is generated by the following vector fields:

Z1 D ŒX4; X2�.x5/X
3
C ŒX3; X4�.x5/X

2
C ŒX2; X3�.x5/X

4;

Z2 D ŒX1; X4�.x5/X
3
C ŒX3; X1�.x5/X

4
C ŒX4; X3�.x5/X

1;

Z3 D ŒX1; X2�.x5/X
4
C ŒX4; X1�.x5/X

2
C ŒX2; X4�.x5/X

1;

Z4 D ŒX1; X2�.x5/X
3
C ŒX3; X1�.x5/X

2
C ŒX2; X3�.x5/X

1;

or equivalently, H is generated by the following 2-derivation:

� DŒX1; X2�.x5/X
3
^X4 C ŒX1; X4�.x5/X

2
^X3 C ŒX4; X2�.x5/X

1
^X3

C ŒX3; X1�.x5/X
2
^X4 C ŒX2; X3�.x5/X

1
^X4 C ŒX3; X4�.x5/X

1
^X2;
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which can be seen as an analytic section of the bundle of Grassmannian Gr.2;M/. Note
that we can easily verify that Z1, Z2, Z3 and Z4 have controlled divergence via the Jacobi
identity. In conclusion, the integrable distribution H given by Theorem 2.1 is generated
globally by four analytic vector fields with controlled divergence, has rank 2 over R0

and 0 over � DM nR0, and the methods of the current paper do not allow us to conclude
if the Sard conjecture holds true or not in this case.

2.4. The singular set may have positive measure

We provide here an example of rank 5 totally nonholonomic distribution in R6 for which
the singular set � given by Theorem 2.1 has positive Lebesgue measure. We consider the
distribution � in R6 generated by vector fields X1, X2, X3, X4 and X5 of the form

X i .x/ D @xi C Ai .x/@x6 ; 8x 2R6; 8i D 1; 2; 3; 4; 5;

with A1; : : : ; A5WR6 ! R the smooth functions defined by8̂̂<̂
:̂
A1.x/ D A5.x/ D 0;

A2.x/ D x1;

A3.x/ D �x1;

A4.x/ D R.x2 C x3/;

for all x D .x1; x2; x3; x4; x5; x6/ 2 R6, and where RWR ! R is a smooth function
such that the closed set where R0 vanishes has empty interior and positive Lebesgue
measure. Then we check easily that � is totally nonholonomic everywhere (we have
ŒX1; X2� D @x6 ), and furthermore, we see that the rank of H , corresponding with the
dimension of the projection of ker.L2/D ker.!?/, coincides with the corank of the 5� 5
matrix (see Section 3.1)

QH D ŒŒX i ; Xj �.x6/�i;j D

266664
0 1 �1 0 0

�1 0 0 R0.x2 C x3/ 0

1 0 0 R0.x2 C x3/ 0

0 �R0.x2 C x3/ �R
0.x2 C x3/ 0 0

0 0 0 0 0

377775:
We conclude that the rank of H is 1 over the open set ¹R0.x2 C x3/ ¤ 0º and 3 over the
closed set ¹R0.x2 C x3/D 0º. By construction, the set ¹R0.x2 C x3/D 0º corresponds to
the set � of Theorem 2.1, it is closed with empty interior and positive Lebesgue measure
in R6.

3. Preliminaries

We gather in this section a few results and notations that will be useful for the proof
of Theorem 1.1. Section 3.1 is concerned with the Goh matrix which represents the L2

operator discussed in Section 3.2 of [3], while Section 3.2 introduces several definition
and properties on Pfaffians that will be used to define local generators of the singular
distribution obtained in Theorem 1.1.
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3.1. The Goh matrix

We recall here how the Goh matrix is defined locally. Given x 2M , we consider an open
neighborhood V of x on which � is generated by m smooth vector fields X1; : : : ; Xm,
we define the Hamiltonians h1; : : : ; hmWT �V ! R by

hi .a/ WD hX
i

.x; p/ D p �X i .x/; 8a D .x; p/ 2 T �V ; 8i D 1; : : : ; m;

and we denote by Eh1; : : : ; Ehm the corresponding Hamiltonian vector fields. The Goh mat-
rix H at a2T �V is the m �m matrix defined by

Ha WD Œh
ij .a/�1�i;j�m;

where, for any i; j 2 ¹1; : : : ; mº, hij is the Hamiltonian given by

hij WD ¹hi ; hj º

(here, ¹ ; º stands for the Poisson bracket). By construction, the matrix Ha represents the
linear map

L2
a W
E�.a/ WD Span¹Eh1.a/; : : : ; Ehm.a/º �! Rm

defined by

.L2
a.�//i WD

mX
jD1

uj h
ij .a/; 8� D

mX
iD1

ui Eh
i .a/ 2 E�.a/; 8i D 1; : : : ; m;

which satisfies the following result (see Proposition 3.5 in [3]):

Proposition 3.1. For every a2T �V \�?, we have ker.L2
a/ D ker.!?a /.

As it was recalled for instance in Proposition 3.4 of [3], an absolutely continuous curve
 W Œ0; 1�! M which is horizontal with respect to � is singular if and only if it admits
an abnormal lift, that is, an absolutely continuous curve of  W Œ0; 1� ! �? satisfying
P .t/ 2 ker.!?

 .t/
/ for almost every t 2 Œ0; 1�.

3.2. Pfaffian polynomial of minors

Letm2N be fixed, and letR be a sub-ring of the formal power series RJx1; : : : ;xmK, such
as RJx1; : : : ; xmK itself or R¹x1; : : : ; xmº, the ring of analytic function germs at the origin
of Rm. Denote by K D Frac.R/ its field of fractions. We consider a K-vector space V of
dimension n and we fix an orthonormal basis .e1; : : : ; en/ of V . We also fix, once and for
all, an ordering on the index set ¹1; : : : ; nº which we assume to be 1 < 2 < � � � < n for
simplicity.

Recall that an anti-symmetric bilinear operator over V can be written as

A D
X
i<j

aij ei ^ ej ; aij 2K;

and fix the notation aj i D �aij . Under this convention, A admits a representation as a
matrix MA D Œaij �i;j , such that A.v;w/ D vT �MA � w for all vectors v and w in V .
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Definition 3.2. Suppose that the dimension n of V is even. The Pfaffian polynomial '.A/
of an anti-symmetric bilinear operator A over V is defined by

1

.n=2/Š

n=2^
A DW '.A/ e1 ^ � � � ^ en:

If V has dimension zero, we fix the convention that '.A/ D 1. If V has odd dimension,
we fix the convention that '.A/ D 0.

It is clear from the definition that '.A/ 2 K. We denote by Det.A/ the determinant of
the associated matrix MA of A, it is well known (see, e.g., Section 5.8.1 of [21]) that

(3.1) '.A/2 D Det.A/:

We are now interested in considering a family of Pfaffian polynomials associated with the
minors ofA. Given l 2 ¹1; : : : ;nº, we denote byƒl the set of indices subsets I �¹1; : : : ;nº
of cardinality l , and for every I 2ƒl , we define the anti-symmetric bilinear operator

AI WD
X
i<j2I

aij ei ^ ej ;

which can be seen as an operator over the subspace VI � V of dimension l . Then, we set

Det.A; I / WD Det.AI / and '.A; I / D '.AI /:

In order to keep the compatibility of signs between different Pfaffian of minors, we always
consider the ordering ¹i1 < � � � < ilº of the elements of I and we fix the convention^

i2I

ei D ei1 ^ � � � ^ eil :

Then, we consider the function " whose input is an index set I and an element j 2 I , and
whose output is a value in ¹�1; 1º defined by

ej ^
^

i2In¹j º

ei D ".I; j /
^
i2I

ei :

We are now ready to provide formulas which characterize Pfaffian minors and their deriv-
atives in terms of Pfaffian of smaller orders.

Proposition 3.3. LetA be an anti-symmetric bilinear operator over the K-vector space V
and let I be a sub-index of ¹1; : : : ; nº of even cardinality r D 2s. Then the following
properties are satisfied:

(i) For every i0 2 I , we have

'.A; I / D
1

s

X
j2In¹i0º

".I; i0/ � ".I n ¹i0º; j / � ai0j � '.A; I n ¹i0; j º/:

(ii) For any R-derivation X over R, there holds

X Œ'.A; I /� D
s

2
�

X
i¤j2I

".I; i/ � ".I n ¹iº; j / � '.A; I n ¹i; j º/ �X.ai;j /:
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Proposition 3.3, whose proof is postponed to Section B.1, will be used to provide
suitable generators of the kernel of A, that is, of the subspace ker.A/ of all vectors v 2V
such that A.v; �/ � 0. In order to make this idea precise, we recall that an even number
r D 2s is said to be the rank of A, which we denote by rank.A/, if

ŝ

A ¤ 0 and
sC1̂

A D 0:

Note that the kernel of A is a linear subspace of dimension n� r . It is, of course, possible
to provide generators of ker.A/ via Cramer’s rule, but these generators will not satisfy
differential properties that will be needed later on. Instead, we now describe generators
of ker.A/ in terms of the Pfaffian polynomials which are better adapted to our future
objectives, cf. Lemma 4.2 below. The following result holds.

Proposition 3.4. Let A be an anti-symmetric bilinear operator of rank r < n over V .
Then we have

ker.A/ D Span¹ZI j I 2ƒrC1º;

where for every sub-index I 2ƒrC1, the vector ZI 2V is defined by

ZI WD
X
i2I

".I; i/ � '.A; I n ¹iº/ � ei :

The proof of Proposition 3.4 follows easily from Proposition 3.3(i), it is given in
Section B.2. As we said before, the formula (ii) of Proposition 3.3 will be used to show
that the generators for EF in Theorem 1.1 have controlled divergence.

Remark 3.5. Let M denote a free R-module, where R D RJx1; : : : ; xmK, and let A be an
anti-symmetric bilinear operator over M. Although all elements ZI belong to the mod-
ule M (because the coefficients of ZI are polynomials in aij 2 R), we do not know if the
collection ¹ZI ºI2ƒrC1 generates the sub-module ker.A/ �M. In general, finding gener-
ators of a sub-module is a much more subtle problem than its analogue for vector-spaces,
cf. Section 1 and paragraph 55 in [19].

4. Proof of Theorem 1.1

Let M and � of class C be fixed. We divide the proof into three parts.

4.1. Proof of assertions (i)–(iii)

We start by constructing the set �0 as a union of disjoint open sets. Let d1 be the min-
imum of the dimension of ker.!?/ over �?. By upper semi-continuity of the function
dWa2�? 7! dim.ker.!?a // 2N, the set of points a2�? where d.a/D d1 is an open sub-
set of�?, we denote it by �10 . Note that since !? is skew-symmetric, we have d1�m.2/.
Moreover, by non-holonomicity of�, we may conclude that d1 �m� 2 (a detailed proof
is given in Theorem 1.1(iv) of [3]). Moreover, since d is invariant by dilation, the set �10
is invariant by dilation too. If the closed set �? n �10 has empty interior, then we are done
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and we set �0 D �10 . Otherwise, we denote by �?1 the interior of �? n �10 , we consider
the minimum d2 of d.a/ for a 2�?1 and we define �20 the set of points a 2�?1 where
d.a/ D d2. By construction, �20 is an open subset of �? which is invariant by dilation
and does not intersect �10 , and in addition, we have d2 > d1, d2 � m.2/ and d2 � m� 2.
By continuing this process, we construct in a finite number of steps (because the mapping
i 7! di is increasing) an increasing family of dimensions d1; : : : ; ds along with a family
of disjoint open subsets �10 ; : : : ; �

s
0 of �? such that

d.a/ D di 8a2 � i0; 8i D 1; : : : ; s

and the set
�0 WD �10 [ � � � [ �s0

is open and dense in �?. Now we define the singular distribution EF as equal to ker.!?/
over �0 and 0 over its complement. Note that ker.!?/ is constant over each connected
component of �0. By symplectic arguments, see for instance Proposition 3.3 in [3], we
conclude that EFj�0 is integrable. Therefore, EF is a singular integrable distribution on �?

satisfying (i) and (ii). Furthermore, assertion (iii) follows easily from the characterization
of singular curves as projections of abnormal extremals (see, e.g., Proposition 3.4 in [3]).

4.2. Proof of assertion (iv)

Since the result is local in M , we may assume that � is generated by m C -vector fields
X1; : : : ; Xm, and that there exists a globally defined symplectic coordinate system .x; p/

D .x1; : : : ; xn; p1; : : : ; pn/ over T �M . For each l D 1; : : : ; m, we consider the set of
indices subsets

ƒl D ¹J � ¹1; : : : ; mº j jJ j D lº;

where jJ j stands for the cardinality of the set J . Then, we denote by H D Œhij �ij the
m �m skew-symmetric matrix associated to the operator L2 defined in Section 3.1, and
for every J 2 ƒl , l 2 ¹1; : : : ; mº, we set

HI WD Œh
ij �i;j2J and Det.L2; J / WD det.HJ /:

By construction, all l � l matrices HJ are skew-symmetric and, by (3.1), we have

Det.L2; J / D '.L2; J /2;

where '.L2; J / is the Pfaffian polynomial associated to HJ and compatible with the
ordering of the index set (see Definition 3.2).

By keeping the same notations as in the previous section, we recall that �0 is defined
as the open dense subset of �? given by

�0 D �10 [ � � � [ �s0 ;

where �10 ; : : : ; �
s
0 is a collection of disjoint open sets in �? associated with a family of

integers d1 < � � � < ds and a family of closed sets C1; : : : ;C s defined recursively by

d1 D min
a2�?

¹d.a/º ; �10 D d�1.d1/; C1 D �? n �10
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and for any integer i � 1 for which C i has nonempty interior,

diC1Dmin¹d.a/ ja2 Int.Ci /º; � iC10 D¹a2 Int.Ci / jd.a/D diC1º; C iC1DC i n� iC10 :

Note that all sets �10 ; : : : ;�
s
0 , C1; : : : ;C r are invariant by dilation. By construction and by

Proposition 3.1, for every i 2¹1; : : : ; sº, the linear map L2 has rank ri WDm� di at a point
a2 Int.C i / (we set C0 WD �?) if, and only if, a2 � i0. We now define the singular distri-
bution EF by using the system of generators given in Proposition 3.4. Given i 2¹1; : : : ; sº,
we define for each index set J 2ƒriC1 the smooth vector field

(4.1) YiJ WD
X
j2J

".J; j / � '.L2; J n ¹j º/ � Ehj ;

where the definition of ".J; j / was introduced in Section 3.2. We note that the vector
fields YiJ are all homogeneous with respect to p; indeed, all Ehi are homogeneous vec-
tor fields and all '.L2; J / are homogeneous functions. The following lemma is a direct
consequence of Propositions 3.1 and 3.4.

Lemma 4.1. For every i 2 ¹1; : : : ; sº, we have

(4.2) ker.!?a / D Span¹YiJ .a/ jJ 2ƒriC1º; 8a2 � i0

and

(4.3) YiJ .a/ D 0; 8a2C i ; 8J 2ƒriC1:

If C D C! , then the first part of (iv) follows from the observation that �0 D �10 , since
the rank of an analytic foliation is locally constant outside its singular set. In order to
address the case C D C1, when the rank may change in each open set � i0, we need
to modify the vector fields YiJ when s � 2. In this case, we set ‰1 � 1 and, for each
i 2¹2; : : : ; sº, we consider a smooth function‰i W�?! Œ0;1/ homogeneous with respect
to the p variable such that

‰�1i .0/ D �? n � i0:

Note that each function can be taken to be homogeneous because the sets �10 ; : : : ; �
s
0 are

invariant by dilation. By construction and (4.2), we conclude that

EF .a/ D ker.!?a / D Span¹‰iYiJ .a/ j i 2 ¹1; : : : ; sº; J 2ƒriC1º; 8a2 �0

EF .a/ D ¹0º; 8a2† WD �? n �0;

which proves the first part of (iv) when C D C1.
Next, if EF has rank at most 1, then we have s D 1, d1 D 1 and �0 D �10 (if s � 2, then

the rank of EF over �20 would be d2 > d1 D 1). Hence, we have r1 D m � d1 D m � 1,
which gives jƒr1C1j D jƒmj D 1 and implies that EF is generated by one vector field. It
remains to prove the following.

Lemma 4.2. If s D 1, then for any J 2ƒr1C1, the vector field YJ WD Y1J has controlled
divergence.
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Proof. Since controlled divergence is invariant by local bi-Lipschitz isomorphism, cf.
Lemma 4.2 in [2], we can suppose that the metric g is the Euclidean metric on T �M .
In this case, we claim that div.Y1J / WD divg.Y1J / D 0 for all J 2ƒr1C1. As a matter of
fact, let J 2ƒr1C1 be fixed. Since each Ehi is a Hamiltonian vector field, we know that
div.Ehi / D 0, so (4.1) gives

div
�
Y1J
�
D

X
j2J

".J; j / �
�
Ehj � '.L2; J n ¹j º/

�
:

Now, from Proposition 3.3(ii) and usual properties of Poisson algebras, we obtain that

div
�
Y1J
�
D
r1

4
�

X
j¤k¤l2J

"jkl � '.L
2; J n ¹j; k; lº/ � hjkl ;

where we have used the notation

"jkl WD ".J; j / � ".J n ¹j º; k/ � ".J n ¹j; kº; l/:

Note that there holds

ej ^ ek ^ el D el ^ ej ^ ek D ek ^ el ^ ej ; 8j; k; l 2 J

from which we conclude that "jkl D "ljk D "klj . Therefore, by using Poisson Jacobi
identity we infer that

(4.4) div.Y1J / D
r1

4
�

X
j¤k¤l2J

"jkl � '.L
2; I n ¹j; k; lº/ � hjkl � 0:

Finally, since by Propositions 3.1, 3.4 and the fact that Ehj � hi D hj i (a standard Poisson
computation, see, e.g., equation (3.6) in [3]), each hi (with i D 1; : : : ;m) is a first integral
of Y1J .

We now need to consider the divergence of the restricted vector-field Y1J to the sub-
manifold �?. We argue by induction on the restriction of Y1J to the auxiliary sets

A` D ¹h
1
D � � � D h` D 0º; ` 2 ¹0; : : : ; rº;

where A0 is the entire space and Ar D �? (note that as each hi is a first integral, the
restriction of Y1J to A` is well-defined). The induction claim is that:

divA`.Y1J / 2 Y1J � C.A`/:

The base case of ` D 0 follows from equation (4.4), while the inductive step is a direct
consequence of Proposition B.2 in [5].

Remark 4.3. Suppose that �0 D �10 , that is, the extra hypothesis of Theorem 1.1(iv)
is satisfied, and consider the module D of vector-fields generated by YI D Y1I with
I 2ƒrC1 and their Lie-brackets. Then D is involutive and generates the same singu-
lar distribution EF . Moreover, D D Span¹Y˛I ˛ 2 �º, where � is a countable index-set,
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and Y˛ is either equal to YI for some I 2ƒrC1, or can be obtained from a finite num-
ber of their Lie-brackets. Note that � may always be chosen finite when C D C! , by
Noetherianity. Finally, every Y˛ has controlled divergence. Indeed, it is enough to add
the following argument to Lemma 4.2 above: given two vector fields X and Y such that
div.X/ D div.Y / D 0, then div.ŒY; X�/ D 0. Indeed, denoting by vol the volume form
associated to the Euclidean metric g, we conclude from Cartan’s formula that

div.ŒX; Y �/ vol D d.iŒX;Y �vol/ D LŒX;Y �vol D LXLY vol �LYLXvol D 0

since LXvol D div.X/ vol D 0 and LY vol D div.Y / vol D 0.

Remark 4.4. In general, the set † can have positive measure in �?, cf. Section 2.4. If
rank.�/ � 3, nevertheless, then the set † is always a rectifiable set of Lebesgue measure
zero, and the rank of L2 is always maximal outside of †.

Indeed, apart from changing the set of generators of �, we may suppose that Xk D
@xk C

Pn
iDmC1 A

k
i .x/@xi . Now, from the non-holonomicity, there is a function hij D

ŒX i ; Xj � � p whose Taylor expansion at .x; p/ is non-zero when restricted to �?, for all
.x;p/ 2�?. This implies that at every a2�?, there exists at least one Pfaffian of a 2� 2
minor of H which is formally non-zero at a. Since H is at most a 3 � 3 anti-symmetric
matrix, its rank is at most 2. We conclude from Lemma 4.5 below.

4.3. Proof of assertion (v)

The proof of Theorem 1.1(v) proceeds by transversality. If we cover M by countably
many chart 'i WD ! M , where D is an open ball in Rn centered at the origin, then
it is sufficient to show that the set of totally nonholonomic distributions on each 'i .D/

satisfying the conclusion of Theorem 1.1(v) is generic. Moreover, any smooth distribution
on D can be extended to Rn and can be generated globally by families ofm smooth vector
fields (see [17,20]). So, we can assume from now on thatM DRn and aim to show that for
generic families of linearly independent and bracket-generating vector fields X1; : : : ; Xm

in Rn, the distribution � D Span¹X1; : : : ; Xmº satisfies the desired properties over Rn.

4.3.1. Transversality theory. We recall here the definition of jets of vector fields in Rn

and introduce some notations, we refer the reader to the textbooks [8,9] for further details
on transversality theory.

Let d a nonnegative integer be fixed, any real-valued function f smooth in a neigh-
borhood of some Nx 2 Rn admits a Taylor expansion up to order r at Nx, that is, it can be
written as

f .x/ '
Nx;d

f . Nx/C

dX
kD1

X
˛ 2 Ik

1

˛Š
@k˛f . Nx/.x � Nx/

˛;

where the symbol'with Nx;d below means that the function in the x variable given by the
difference between the left-hand side and the right-hand side has order > d at Nx, where
for each k 2 ¹1; : : : ; dº the set Ik denotes the set of multi-indices ˛ D .˛1; : : : ; ˛k/ with
˛1; : : : ;˛k 2¹1; : : : ;nº and ˛1� � � � �˛k , and where for each multi-index ˛D .˛1; : : : ;˛k/
we set

@k˛f . Nx/ WD
@kf

@x˛
. Nx/ D

@kf

@x˛1 � � � @x˛k
. Nx/ and .x � Nx/˛ WD

Yk

iD1
.x˛i � Nx˛i /:
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Denote by jIkj the cardinality of Ik for all integer k � 1. Then, the d -th Taylor expansion
at Nx of such function f can be encoded by a tuple�

Nx; f . Nx/;D1f . Nx/; : : : ;Ddf . Nx/
�

in the set
J d .Rn;R/ WD Rn �R �RjI1j � � � � �RjId j;

where Nx is the origin of the expansion and for every k 2 ¹1; : : : ; dº, Dkf . Nx/ is the tuple
in RjIk j given by

Dkf . Nx/ D
�
@k˛f . Nx/

�
˛ 2 Ik

:

The set J d .Rn;R/ is the set of d -jets of smooth function from Rn to R. To each smooth
function f WRn! R can be associated a smooth function j df WRn! J d .Rn;R/, called
the d -jet of f , defined by

j df .x/ WD .x; f .x/;D1f .x/; : : : ;Ddf .x//; 8x 2Rn:

Now, in order to define the d -jets of smooth vector fields in Rn, we can set

J d .Rn;Rn/ WD Rn �Rn � .RjI1j/n � � � � � .RjId j/n

and define, for every smooth vector field Y in Rn, the d -jet j dY WRn ! J d .Rn;Rn/ by

j dY.x/ WD .x; Y.x/;D1Y.x/; : : : ;DdY.x//; 8x 2Rn;

where each DlY.x/ has n coordinates DlY1.x/; : : : ; D
nY1.x/. Finally, given a family

X D .X1; : : : ; Xm/ of smooth vector fields in Rn, we define its d -jet j dX WRn! Jr for
every x 2Rn by

j dX.x/ WD
�
x;X.x/; .D1Xj .x//jD1;:::;m; : : : ; .D

dXj .x//jD1;:::;m
�
;

where the set of d -jets of families of m smooth vector fields is defined by

Jdm WD Rn �Rn�m � .RjI1j/n�m � � � � � .RjId j/n�m:

4.3.2. Formal Goh matrix. Set d � nC 2 and fix the coordinate system xD .x1; : : : ;xn/

over Rn and a point Nx 2 Rn. Without loss of generality, we suppose that Nx D 0. Denote
by T W C1.Rn;R/ ! RJxK and TmW C1.Rn;Rm/ ! .RJxK/m the Taylor expansion
mappings at Nx. Recall that T and Tm are surjective mappings by Borel’s theorem (see,
e.g., 1.5.4 in [15]). We work formally over Nx, essentially motivated by the following obser-
vation (we recall that a subset of Rn is said to be smoothly countably .n � 1/-rectifiable
if it can be covered by countable many smooth submanifolds of Rn of codimension 1):

Lemma 4.5. If f 2 C1.Rn;R/ is such that T .f / 6� 0, then there exists a neighbor-
hood V of Nx such that the set ¹x2U I f .x/D 0º is smoothly countably .n� 1/-rectifiable.

Proof. By the Malgrange preparation theorem (see, e.g., Theorem 7.5.5 in [10]), which we
can always apply after a linear coordinate change, there exist a neighborhood V of Nx D 0,
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d 2N, and C1-functions U.x/ and ak.x1; : : : ; xn�1/, k D 0; : : : ; d � 1, where ak.0/D 0
and U.x/ ¤ 0 for all x 2V , such that

fjV .x/ D U.x/
�
xdn C

d�1X
kD0

ak.x1; : : : ; xn�1/x
k
n

�
; 8x D .x1; : : : ; xn/ 2 V:

Since we are interested in the zero locus of f , we may assume without loss of generality
that U.x/ D 1. The result now follows by induction on d ; the case d D 1 being clear,
assume the result proven for d � 1. First, by the implicit function theorem, we have that
the set ¹f D 0º n ¹@xnf D 0º is rectifiable in V . Second, the zero set of the derivative
¹@xnf D 0º is rectifiable over V by induction. We conclude easily.

Now, we consider the fiber of the projection Jrm ! Rn over Nx, which we denote
by Jdm. Nx/. We note that the Taylor expansion mapping Tm (or T ) commutes with the
d -jet mapping, that is, if we denote by j d

Nx W .RJxK/m ! Jdm. Nx/ the corresponding d -jet,
then we have

Tm.j df / D j dNx .T
m.f //; 8f 2 C1.Rn;Rm/:

Let us denote by D the set of formal vector fields over Nx; note that X 2D means that
X D

Pn
iD1 Ai .x/@xi , where Ai .x/2RJxK. We note that the Taylor expansion T above

extends to a surjective function from DerRn to D which commutes with j d . In what
follows, we consider m-tuples yX D .X1; : : : ; Xm/2Dm satisfying an extra property. In
fact, we consider an open and dense set Ud

m � Jdm. Nx/ such that, for every yX 2 Dm such
that j d

Nx .
yX/ 2Ud

m. Nx/, we have that X1. Nx/; : : : ; Xm. Nx/ are linearly independent vectors
and from now on we consider m-tuples yX in the set DLI (where LI stands for linearly
independent) defined by

DLI WD .j
d
Nx /
�1.Ud

m. Nx//:

By using the canonical coordinates .x; p/ over T �Rn (with the canonical projection
� WT �Rn! Rn), given yX D .X1; : : : ;Xm/ 2DLI, we consider the functions h1; : : : ; hm

in RJxKŒp� defined by
hk WD p �Xk ; 8k D 1; : : : ; m;

where we recall that RJxKŒp� stands for polynomials in p whose coefficients are formal
power series in x (in particular, each hk is 1-homogeneous in p). We define the m � m
matrix L2

yX
over RJxKŒp� by

L2
yX
WD Œp � ŒX i ; Xj ��1�i;j�m D Œh

ij �1�i;j�m;

where hij 2RJxKŒp� are formal power series, and study its rank modulo the ideal

I yX D Span.h1; : : : ; hm/ � RJxKŒp�:

Indeed, recall that we want to study the rank of the Goh matrix when restricted to �?.
When yX is convergent, then �? corresponds to the zero set of I yX ; but even if yX is not
convergent, the ideal I yX is well-defined, providing us the precise algebraic counterpart of
a “germ of a formal set”, which is not defined in this paper. Now, studying the restriction
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of functions defined in the cotangent bundle to �? corresponds to considering functions
of the cotangent bundle quotient-out by I yX , that is, over the ring RJxKŒp�=I yX . Therefore,
we are interested in the function RWDLI ! N defined by

R. yX/ D rankRJxKŒp�=I yX
.L2
yX
/; 8 OX 2DLI;

where we recall that the rank over a principal domain A is defined as the dimension of the
associated mapping between Frac.A/-vector-spaces, where Frac.A/ is the field of frac-
tions of A. Note that R. yX/ is well-defined since, for yX 2DLI, the ideal I yX is prime
(heuristically, for yX 2DLI, the “formal set” �? associated to yX is irreducible; it is actu-
ally even smooth) and, therefore, the quotient RJxKŒp�=I yX is a principal domain. We
prove that:

Proposition 4.6. There exists an open dense set G . Nx/ � Jdm. Nx/, whose complement is
a semi-algebraic set of codimension n C 1, such that, for every yX 2 DLI such that
j d
Nx .
yX/ 2 G . Nx/, we have that R. yX/ is maximal, that is, if m is even, then R. yX/ D m,

and if m is odd, then R. yX/ D m � 1.

4.3.3. Reduction of Theorem 1.1(v) to Proposition 4.6. Let Nx 2M be fixed, and let
U �M be a connected open neighborhood of Nx which admits a globally defined coordin-
ate system x D .x1; : : : ; xn/. Let us consider the set G D U � G . Nx/ � Jdm, where G . Nx/

is given by Proposition 4.6. Note that G is a semi-algebraic set of codimension n C 1
in Jdm. By Thom’s transversality theorem (see, e.g., Theorem 4.9 in [9]), the set of vec-
tor fields X 2 C1.U;Rn/m such that j dX.U / is transverse to G is a residual set of
C1.Rn;Rn/m (in the smooth topology). In particular, since any j dX.U / is a smooth
graph over U in Jdm, it has dimension n, and since G has codimension nC 1, then the set
ofX 2C1.U;Rn/m for which j dX.Rn/ does not intersect G is generic in C1.U;Rn/m.
More precisely, there is an open and dense set O.U / � C1.U;Rn/m for which j d .X/\
G D ; for all X 2O.U /. Since being totally nonholonomic is an open and dense property
in C1.U;Rn/m, we may as well suppose that X D .X1; : : : ; Xm/ generates a totally
nonholonomic distribution for every X in O.U /.

Next, we fixX 2O.U / and suppose thatm is even; the odd case follows from a similar
argument. Denoting by yXx D Tx.X/ the formal expansion of X at x 2U , we notice that,
since X belongs to O.U /, the rank of the operator L2

yXx
is maximal equal to m for any

x 2U . Therefore, for every a2T �U \�?, the Taylor expansion of '.L2/ at a is a non-
identically zero formal power series. By Lemma 4.5, we infer that the zero set of '.L2/

is smoothly countably .2n � m � 1/-rectifiable and we conclude by noting that this set
coincides with † (see the proof of (iv) in Section 4.2).

4.3.4. Proof of Proposition 4.6. Without loss of generality, we may suppose that Nx D 0
and x D .x1; : : : ; xn/ is centered at Nx. Consider the set DNF �DLI (where NF stands for
“normal form”) of formal vector fields yX D .X1; : : : ; Xm/ of the form

Xk D @xk C

nX
iDmC1

Aki .x/@xi ; Aki .0/ D 0; i D mC 1; : : : ; n; k D 1; : : : ; m;
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where Aki 2RJxK, and denote by Wd
m the space of d -jets associated to them. We have

Wd
m D .R

jI1j/.n�m/�m � � � � � .RjId j/.n�m/�m

and we note that, for every � 2Wd
m, we may consider the unique element

OX� D .X
1
� ; : : : ; X

m
� / 2 DNF

such that j dCk. OX�/ D � for every nonnegative integer k. We start by showing that it is
enough to prove Proposition 4.6 over Wd

m:

Lemma 4.7. There exist a surjective map y WDLI!DNF and a surjective semi-algebraic
map  WUd

m ! Wd
m such that j d

Nx ı
y D  ı j d

Nx and

(i) for every semi-algebraic set Z � Wd
m of codimension s the set  �1.Z/ � Jdm. Nx/ is

a semi-algebraic set of codimension s,

(ii) for all yX 2DLI, we have that R. yX/ D R. y . yX//.

We postpone the proof to appendix B.3. The lemma follows from standard ideas and
computations: we make a linear change of coordinates and a systematic study of the
changes of generators of Span.X1; : : : ; Xm/ which are necessary to obtain the normal
forms in DNF. We are now ready to prove Proposition 4.6.

Proof of Proposition 4.6. By Lemma 4.7, it is enough to prove that there exists an open
dense set O �Wd

m whose complement is a semi-algebraic set of codimension nC 1, such
that for every yX 2DNF such that j d . yX/2O, we have that R. yX/ is maximal. We start by
remarking that for every yX 2DNF, we have

hk D pk C

nX
iDmC1

Aki .x/pi ; 8k D 1; : : : ; m;

so that the matrix L2
OX

does not depend upon the variables p1; : : : ; pm. It follows that

R. yX/ D rankRJxKŒp�=I yX
.L2
yX
/ D rankRJxKŒp�.L

2
yX
/:

Next, we slightly abuse notation, and we also denote by j d the extension of the truncated
mapping RJxK ! RŒx� to RJxKŒp� ! RŒx�Œp� (where j d acts as the identity over p).
Note that the rank of L2

yX
can only decrease when we truncate its Taylor expansion, and

that j d�1.L2
yX
/ only depends on � D j d . yX/, that is,

rank. NL2
� / � rank.L2

yX
/ with NL2

� WD j
d�1.L2

OX�
/ D j d�1.L2

yX
/:

We now prove the existence of O in an inductive way. To that end, we consider the
point a D . Nx; p0/ D .0; p0/, where p0 D .0; : : : ; 0; 1/. Moreover, given a sub-index
I � ¹1; : : : ; mº, we recall that '. NL2

�
; I / denotes the associated Pfaffian; its evaluation

at p0, which yields a series in RJxK, will be denoted by '. NL2
�
; I /jp0 as all its Lie derivat-

ives along vector fields. We are ready to state the inductive claim:
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Claim 4.8. For every even 0 < r �m and every index I 2ƒr , there exists a semi-analytic
set BI � Wd

m of codimension nC 1, such that '. NL2
�
; I /jp0 6� 0 for � 2 BI .

Note that the proposition easily follows from this claim. We therefore turn to its proof,
which follows by induction on r ; for r D 0, there is nothing to prove. Suppose the claim
proved up until r � 2, and fix an index set I 2ƒr . Up to re-ordering, we may suppose that
I D ¹1; : : : ; rº. Consider the mapping

Tr W Wd
m ! Rd

defined as
Tr.�/ � ek D .X1� /

k�1.'. NL� ; I //jp0 ; 8k D 1; : : : ; d;

where e1; : : : ; ed denotes the vectors of the canonical basis in Rd . Then, recalling that for
each � 2Wd

m, X� D .X1� ; : : : ;X
m
�
/ denotes the tuple of polynomial vector fields such that

j dCk. OX�/ D � for every nonnegative integer k, we may write

X2� D @x2 C

nX
iDmC1

A2i .x; �/@xn and A2n.x; �/ D

dX
kD1

k x
k
1 C

QA.x; �/;

where QA.x; �/ is such that A.x1; 0; : : : ; 0; �/ � 0 and QA.x; �/ is independent of the coef-
ficients 1; : : : ; d . In what follows, we compute the derivatives of Tr with respect to the
variables 1; : : : ; d at 1 D � � � D d D 0. We start by some simple observations, we have

.p � ŒX1� ; X
2
� �/jp0 D 1 CR1.�/ and

.X1� /
k�1.p � ŒX1� ; X

2
� �/jp0 D k CRk.�/; 8k D 1; : : : ; d;

where Rk WWd
m ! R is a function independent of the variables k ; : : : ; d . Furthermore,

we have that, for every j 2 I n ¹2º,

'. NL2
� ; I n ¹2; j º/jp0 is independent of 1; : : : ; d ;

and for every j > 1 and every k D 1; : : : ; d ,

.X1� /
k�1.p � ŒX2� ; X

j

�
�/jp0 is independent of k ; : : : ; d :

Now, by Proposition 3.3(i),

'. NL2
� ; I /jp0 D

1

.r=2/

X
j2In¹2º

�".I n ¹2º; j / � .ŒX2� ; X
j

�
�/jp0 � '.

NL2
� ; I n ¹2; j º/jp0

D
1

.r=2/

�
1 � '. NL

2
� ; I n ¹1; 2º/jp0 C S1.�/

�
where S1WWd

m!R is independent of 1; : : : ; d . Next, by deriving '. NL2
�
; I / with respect

to X1
�

, we get

.X1� Œ'.
NL� ; I /�/jp0 D

1

.r=2/

�
2 � '. NL� ; I n ¹1; 2º/jp0 C S2.�/

�
;

where S2WWd
m ! R is independent of 2; : : : ; d .



Abnormal singular foliations and the Sard conjecture for generic co-rank one distributions 1619

Repeating this process we get for every k D 1; : : : ; d ,

..X1� /
k�1Œ'. NL� ; I /�/jp0 D

1

.r=2/

�
k � '. NL

2
� ; I n ¹1; 2º/jp0 C Sk.�/

�
;

where Sk WWd
m! R is independent of k ; : : : ; d . Therefore, the Jacobian of Tr in respect

to the variables 1; : : : ; d at the origin has a determinant equal to

'. NL2
� ; I n ¹1; 2º/

d
jp0

It follows from the induction hypothesis that outside a semi-algebraic set of codimen-
sion nC 1, the mapping Tr is a submersion. We conclude easily.

5. Proof of Theorem 1.3

Let M and � be of class C and � a totally nonholonomic distribution of corank 1 and
let EF be the integrable distribution given by Theorem 1.1, which is assumed to satisfy
properties (H1)–(H2) of Theorem 1.3. From Theorem 2.1 and Remark 2.3, we infer that
the distribution HjR0

WD d�. EFj�0/ has constant rank 0 or 1 and that the singular set � WD
�.†/ has Lebesgue measure zero in M . If HjR0

has rank 0 then, by Theorem 2.1(iii),
all (non-trivial) singular horizontal paths must be contained in � and as a consequence,
for any x 2M , the set Abn�.x/ is contained in � , which has Lebesgue measure 0, so
the Sard conjecture is satisfied. It remains to show that the Sard conjecture holds true
whenever HjR0

has rank 1. Our proof follows closely the proof given in [5]. We fix a
smooth Riemannian metric g onM and denote by dg its geodesic distance and by H1 the
corresponding 1-dimensional Hausdorff measure in M . Then we start with the following
lemma, which can be proved in the exact same way as Lemma 2.2 in [5] (we refer the
reader to the discussion before Lemma 2.2 in [5] for the definition of @!z).

Lemma 5.1. Assume that HjR0
has rank 1 and that there is x 2M such that Abn�.x/

has positive Lebesgue measure. Then there is Nx 2 � such that for every neighborhood V

of Nx in M , there are two closed sets S0 and S1 in M satisfying the following properties:
(i) S0 � V and S0 has positive Lebesgue measure,

(ii) S1 � � \ V ,

(iii) for every z 2S0, there is a half-orbit!z of the line foliation HjR0
which is contained

in V such that H1.!z/ � 1 and @!z 2 S1.

To conclude the proof of Theorem 1.3, we assume that HjR0
has rank 1, we suppose

that there is x 2M such that Abn�.x/ has positive Lebesgue measure, and we apply the
above lemma. By Theorem 2.1(iv), there are a relatively compact open neighborhood V

of Nx in M and a set of coordinates x in V such that Nx D 0 and the distribution HjV is
generated by a vector field Z with controlled divergence. The latter property implies that,
apart from shrinking V , there exists K > 0 such that (cf. Lemma 2.3 in [5])

(5.1) jdivx.Z/j � K jZ.x/j; 8x 2V :
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Now, by Lemma 5.1, there are two closed sets S0; S1 � V satisfying properties (i)–
(iii). Denote by 't the flow of Z. For every z 2 S0, there is " 2 ¹�1; 1º such that !z D
¹'"t .z/ j t � 0º. Then, there are "2 ¹�1; 1º and S"0 � S0 of positive Lebesgue measure
such that for every z 2S"0 there holds

(5.2) !z D ¹'"t .z/ j t � 0º � V ; H1.!z/ � 1; and lim
t!C1

d.'"t .z/; S1/ D 0;

where d. � ; S1/ stands for the distance function to S1 with respect to g. Set for every
t � 0,

St WD '"t .S
"
0/

and denote by vol the volume associated with the Riemannian metric g on M . Since S1
has volume zero (because S1 � � with � of Lebesgue measure zero), by the dominated
convergence theorem, the last property in (5.2) yields

(5.3) lim
t!C1

vol.St / D 0:

Moreover, there is C > 0 such that for every z 2 S"0 and every t � 0, we have (j � j denotes
the norm with respect to g)Z t

0

jZ.'"s.z//j ds � CH1.!z/ � C:

Therefore by Proposition B2 in [5] and (5.1), we have for every t � 0,

vol.St / D vol.'"t .S"0// D
Z
S"0

exp
� Z t

0

div'"s.z/."Z/ ds
�
dvol.z/

�

Z
S"0

exp
�
�K

Z t

0

jZ.'"s.z//j ds
�
dvol.z/ � e�KC vol.S0/;

which contradicts (5.3). The proof of Theorem 1.3 is complete.

A. Proof of Theorem 2.1

Assertions (i), (ii), (iii) and (v) are easy consequences of the definitions of H and R0, and
Theorem 1.1. Let us now prove (iv). Since it is enough to verify the result locally, we may
assume that � is generated on M by m C -vector fields X1; : : : ; Xm of the form

X i D @xi C Ai .x/@xn ; 8i D 1; : : : ; m D n � 1;

in such a way that (we assume that we have a local set of symplectic coordinates .x; p/)

�? D
®
.x; p/ 2 T �V jp ¤ 0 and pi C Ai .x/pn D 0; 8i D 1; : : : ; n � 1

¯
and

ŒX i ; Xj � D
�
@xi .Aj / � @xj .Ai /C Ai@x4.Aj / � Aj @x4.Ai /

�
@xn ; 8i; j D 1; : : : ; m:
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Thus the Goh matrix (see Section 3.1) and the Pfaffians (see Section 3.2) have the form

Ha D pn QH.x/ and '.L2
a; I / D 'I .x/ p

jI j
n ; 8a D .x; p/ 2 �?; 8I � ¹1; : : : ;mº:

Set � D �.†/ and H D d�. EF /. Since † and EF are invariant by dilation, � is a closed
C -set and H has constant rank over each connected component of M n � . Now, first
consider the extra hypothesis of the theorem, that is, that H has constant rank overM n � ,
which is equivalent to asking that EF has constant rank over �0. In this case,

� DM nR0 D ¹x 2M j'I .x/ D 0; 8I 2ƒrº;

where r stands for the rank of the Goh matrix outside of†. Next, by Lemma 4.1, the local
generators of the distribution H over �? \ �0 are of the form

YI WD
X
i2I

".I; i/ � '.L2; I n ¹iº/ � Ehi D prn

�X
i2I

".I; i/ � 'In¹iº.x/ Eh
i
�
;

where Ehi is a degree zero vector-field in respect to the cotangent variable p. We conclude
that YI D p

r
n.ZI C

QZI /; where

(A.1) ZI D
X
i2I

".I; i/ � 'In¹iº.x/X
i ;

can be seen as a section of TM such that d�.YI / D ZI , and QZI belongs to the sub-
module generated by @pi , with i D 1; : : : ; n; in particular, d�. QZI / D 0. Now, given
two 0-homogeneous vector-fields X1 and X2, denote by X1 D X1 C zX1 the analogous
decomposition, and note that

ŒX1; X2� D ŒX1;X2�C rest depending on the @pi vectors:

Combining this observation with Lemma 4.1, we conclude that at every point x 2R0,
the sub-module of vector-fields generated by ¹ZI ; I 2ƒrC1º is closed by the Lie-bracket
operation. By the Frobenius theorem, and the fact that the singular locus of ZI contains � ,
we conclude that the singular distribution F generated by Span¹ZI ; I 2ƒrC1º is integ-
rable. Furthermore, it is clear by the construction that F is regular over R0.

Finally, recall that YI is of controlled divergence by Lemma 4.2. Since Ehi .xj / D ıij
for i; j D 1; : : : ; n� 1, we have that div.YI / belongs to the ideal .YI .x1/; : : : ;YI .xn�1//
and YI .pn/ belongs to the ideal pn.YI .x1/; : : : ;YI .xn�1//. By using the fact that YI is
homogeneous, we also have that div.YI / belongs to the ideal prn.ZI .x1/; : : : ;ZI .xn�1//
and YI .pn/ belongs to the ideal prC1n .ZI .x1/; : : : ;ZI .xn�1//. Now,

div.ZI / D div
� 1
prn

YI

�
�

YI .pn/

prC1n

2 .ZI .x1/; : : : ;ZI .xn�1//;

which proves that ZI has controlled divergence. Finally, the general case (that is, when the
hypothesis that H has constant rank along M n � is not satisfied) follows by combining
the above argument with the formalism introduced in the proof of Theorem 1.1 in order
to treat each connected component of TM n† separately. The necessary adaptations are
straightforward, and we omit the details in here.
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B. Proofs of auxiliary results

B.1. Proof of Proposition 3.3

Let us prove (i). By hypothesis, the cardinality of jI j is r D 2s for some s. Fix i0 2 I , and
consider the decomposition

AI D vi0 C Bi0 ; where vi0 D
X
j2I

ai0j ei0 ^ ej ;

(and recall the notation ai0j WD �aj i0 whenever j < i0). It is straightforward that

vi0 ^ vi0 � 0 and
ŝ

Bi � 0:

Therefore,

1

.r=2/Š

r=2^
AI D

1

.r=2/Š
vi0 ^

s�1̂

Bi0

D
1

.r=2/Š

X
j2In¹i0º

ai0j ei0 ^ ej ^

s�1̂

Bi0

D
1

.r=2/Š

X
j2In¹i0º

ai0j ei0 ^ ej ^

s�1̂

AIn¹i0;j º

D
1

.r=2/

X
j2In¹i0º

ai0j � '.A; I n ¹i0; j º/ ei0 ^ ej ^
^

k2In¹i0;j º

ek ;

and the formula easily follows from the definition of the function ", which concludes the
proof of (i).

Next, it will be convenient to establish some extra notation for determinants of non-
symmetric minors of A. Given I and J 2ƒl , we consider

AI;J D Œaij �i2I;j2J ; Det.A; I; J / WD det.AI;J /;

and note that AI D AI;I . The following result about a special case of Det.A; I; J / is
crucial for the proof of (ii):

Lemma B.1. Let A be an anti-symmetric bilinear operator over a K-vector space V and
let T be a sub-index of ¹1; : : : ; nº of odd cardinality. Then, for any fixed i; j 2T , we have

Det.A; T n ¹iº; T n ¹j º/ D '.A; T n ¹iº/ � '.A; T n ¹j º/

Proof of Lemma B.1. Fix a sub-index T of cardinality 2s � 1� nwith s > 0. If i D j , the
result is straightforward, so we assume that i ¤ j . Moreover, without loss of generality
we may suppose that T D ¹1; : : : ; 2s � 1º. Let y D .y1; : : : ; y2s�1/ 2 R2s�1 be fixed, we
consider

B.y/ D

�
AT yT

�y 0

�
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and note thatB.y/ is a skew-symmetric matrix. On the one hand, from the usual properties
of the determinant, we have

Det.B.y// D
2s�1X
i;jD1

.�1/iCjyi � yj � Det.A; T n ¹iº; T n ¹j º/

D

2s�1X
iD1

y2i � '.A; T n¹iº/
2
C 2 �

X
i<j

.�1/iCj �yi � yj � Det.A; T n¹iº; T n¹j º/:

On the other hand, since B.y/ is skew-symmetric and Det.B.y// is quadratic homogen-
eous with respect to y, we conclude that there exist f1; : : : ; f2s�1 2 K such that

Det.B.y// D
� 2s�1X
iD1

yifi

�2
:

Since the equality must hold for every y 2 R2s�1, we conclude that

fi D .�1/
i
� '.A; T n ¹iº/;

and the result easily follows.

We now turn to the proof of (ii). By the usual properties of the derivative of the determ-
inant, we know that

XŒ'.A; I /� D
1

2 � '.A; I /
� tr.Adj.AI / �XŒAI �/;

where Adj. �/ denotes the adjoint matrix and XŒAI � denotes the matrix ŒX.ajk/�j;k2I . In
particular, since the adjoint matrix is the transpose of the cofactor matrix, we have

ŒAdj.AI /�i;j D ".I; i/ � ".I; j / � Det.A; I n ¹j º; I n ¹iº/:

Therefore, using the fact that ai i D 0, we have

(B.1) XŒ'.A;I /�D
1

2 � '.A; I /
�

X
i¤j2I

".I; i/ � ".I;j / �Det.A;I n ¹j º; I n ¹iº/ �X.aj i /:

Now, by (i), we have for all i 2 I ,

'.A; I / D
1

.r=2/
".I; i/ �

X
k2I

".I n ¹iº; k/ � aik � '.A; I n ¹i; kº/;

which, by using the definition of the determinant and Lemma B.1 with T D I n ¹iº, for
every i ¤ j 2 I , yields

D.A; I n ¹j º; I n ¹iº/

D ".I n ¹j º; i/ �
X
k2I

".I n ¹iº; k/ � aik �D.A; I n ¹i; j º; I n ¹i; kº/

D ".I n ¹j º; i/ � '.A; I n ¹i; j º/ �
X
k2I

".I n ¹iº; k/ � aik � '.A; I n ¹i; kº/

D ".I n ¹j º; i/ � '.A; I n ¹i; j º/ � ".I; i/ � .r=2/ � '.A; I /:
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Combining this last equality with (B.1) yields

XŒ'.A; I /� D
r

4
�

X
i¤j2I

".I; j / � ".I n ¹j º; i/ � '.A; I n ¹i; j º/ �X.aj i /;

and we conclude easily by interchanging i and j .

B.2. Proof of Proposition 3.4

Fix I 2ƒrC1 with r D 2s, together with an index l 2 ¹1; : : : ; nº, and consider the anti-
symmetric bilinear operator AI;l over W D KnC1 D V �K defined by

AI;l D
X
i<j2I

aij ei ^ ej C
X
i2I

ail ei ^ enC1;

whose associated matrix is given by

MI;l D

�
MI vT

�v 0

�
; with v D

�
ai1l ; : : : ; airC1l

�
:

We notice that '.AI;l /D 0. As a matter of fact, either l 2 I and the result is straightforward
(the cardinality of I is odd), or l … I and, apart from re-ordering, MI;l is a sub-matrix of
size r C 2 of MA which has rank r , implying that

det.MI;l / D '.AI;l /
2
D 0:

Then, by applying Proposition 3.3(i) to the operator AI;l with J D I [ ¹n C 1º and
j0 D nC 1, we obtain

0 D '.AI;l ; J / D
1

s C 1

X
j2Jn¹j0º

".J; j0/ � ".J n ¹j0º; j / � .�ajl / � '.AI;l ; J n ¹j0; j º/

D
".J; j0/

s C 1

X
i2I

".I; i/ � ali � '.A; I n ¹iº/

D
".J;j0/

s C 1
AI;l

�
el ;
X
i2I

".I; i/'.A; I n¹iº/ � ei

�
D
".J;j0/

s C 1
AI;l .el ;ZI /:

Since the above equality is satisfied for all l 2 ¹1; : : : ; nº, we infer that

¹ZI ºI2ƒrC1 � ker.A/:

Then, we notice that the dimension of ker.A/ must be n � rank.A/ D n � r . In par-
ticular, there exists J 2ƒr such that '.A; J / ¤ 0 and, without loss of generality, we may
assume J D ¹1; : : : ; rº. Consider Il D J [ ¹lº for every l D r C 1; : : : ; n, and note that
the vectors ¹ZIl ºlDrC1;:::;n are all linear independent. This implies that the dimension of
¹ZI ºI2ƒrC1 � ker.A/ is at least n � r , concluding the result.
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B.3. Proof of Lemma 4.7

The morphism  (and its extension y ) will be obtained as a composition of surjective
semi-algebraic morphisms satisfying property (i) and (ii):

' W Ud
m ! Vd

m.1/; ĵ W V
d
m.j /! Zdm.j /; ‰j W Z

d
m.j /! Vd

m.j C 1/;

for j D 1; : : : ; m, where

Vd
m.mC 1/ D Wd

m and  D ‰m ıˆm ı � � � ı‰1 ıˆ1 ı ':

In what follows, we introduce each one of these morphisms in the level of formal power
series (we will denote them by y', ŷj and y‰j ), and we will then show the properties of
their restriction to jets. Let us start by defining the source and targets of each morphism:

The set Vd
m.j /.

It is the d -jets at Nx of vector-fields ¹X1; : : : ; Xmº of the form

Xk D @xk C

mX
iD1

Aki .x/@xi ; Aki .0/ D 0; i D 1; : : : ; n; k D 1; : : : ; m;

such that Aki .x/ � 0 for i D 1; : : : ; j � 1 and k D 1; : : : ; m. Note that

Vd
m.j / D .R

jI1j/.n�jC1/�m � � � � � .RjIr j/.n�jC1/�m:

The set Zdm.j /.
It is the d -jets at Nx of vector-fields ¹X1; : : : ; Xmº of the form:

Xk D @xk C

nX
iD1

Aki .x/@xi ; Aki .0/ D 0; i D 1; : : : ; n; k D 1; : : : ; m;

such that Aki � 0 for i D 1; : : : ; j � 1 and Ajj � 0. Note that

Zdm.j / D .R
jI1j/.n�jC1/�m�1 � � � � � .RjIr j/.n�jC1/�m�1:

Let us now explicitly define the morphisms ', ‰j and ĵ

The morphism y'.
First, fix yX D .X1; : : : ; Xm/ 2 DLI. By hypothesis, there exists a linear change of

coordinates �WRn ! Rn, which only depends on the values of X1. Nx/; : : : ; Xm. Nx/, such
that .��X1; : : : ; ��Xm/ D .Y 1; : : : ; Y m/ are such that Y j . Nx/ D @xj for j D 1; : : : ; m.

We claim that � may be chosen in such a way that it is semi-algebraic in respect
to .X1. Nx/; : : : ; Xm. Nx//. In fact, if m D n, then the claim is trivial since � is chosen
canonically; in the general case, �may be chosen in different ways, depending on how one
completes the list of vectors .X1. Nx/; : : : ; Xm. Nx// in order to form a local basis of T NxRn.
We may always find a semi-algebraic stratification of the space of parameters U0

m and a
locally defined coordinate system so that, in each strata, the choice of � becomes canonical
(for example, via a choice of ordering of coordinates in Rn, that is, we chose to complete
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it with .e1; : : : ; en�m/ first; if not possible, by .e1; : : : ; en�m�1; en�mC1/, etc.). We may
now define

y'.X1; : : : ; Xm/ D .��X1; : : : ; ��Xm/:

We observe that, by construction, ' is semi-algebraic. Property (ii) is immediate; we now
argue in a fiber-wise way that property (i) is satisfied. We fiber Ud

m via the paramet-
ers � D .X1.0/; : : : ; Xm.0//; denote by F� one of these fibers. Note that � is constant
along this fiber. It is, furthermore, invertible, implying that 'jF� is a linear bijection, imply-
ing (i).

The morphism ŷj .
It is defined by

ŷ
j .X

1; : : : ; Xm/ D .X1; : : : ; Xj�1; Uj .x/X
j ; XjC1; : : : ; Xm/;

where Uj .x/ D 1=.1C A
j
j .x//. Note that ĵ is clearly surjective and semi-algebraic (in

fact, it is polynomial). Property (ii) easily follows from the fact that

ŒUjX
j ; Xk � � p mod I yX D Ujh

j;k mod I yX ;

for all k D 1; : : : ; m. We now argue in a fiber-wise way that property (i) is satisfied.
Fiber Vd

m.j / via the parameters �D .Ajj /; denote by F� one of these fibers. Note that the
unit Uj .x/ is constant along each one of the fibers F�, implying that . ĵ /jF� is a linear
mapping. Furthermore, dividing by Uj .x/ would provide an inverse for . ĵ /jF� , implying
that . ĵ /jF� is a linear bijection, implying (i).

The morphism y‰j .
It is defined by

y‰j .X
1; : : : ; Xm/

D
�
X1 � A1jX

j ; : : : ; Xj�1 � A
j�1
j Xj ; Xj ; XjC1 � A

jC1
j Xj ; : : : ; Xm � Amj X

j
�
:

Note that ‰j is clearly surjective and semi-algebraic (in fact, it is polynomial). In order to
prove property (ii), note that

ŒXk � Akj X
j ; X l � AljX

j � � p mod I yX D h
kl
� Aljh

kj
� Akj h

jl mod I yX ;

for all k; l D 1; : : : ; m. In particular, L2
y‰j . yX/

can be obtained from L2
yX

by the following

operation: we subtract to the k-line of L2
yX

its j -line times Akj , and we do the symmetric
operation for columns. This operation does not change the rank of the matrix, implying
property (ii). We now argue in a fiber-wise way that property (i) is satisfied. Fiber Zdm.j /

via the parameters � D .A21.x/; : : : ; A
m
1 .x//; denote by F� one of these fibers. Note that

.‰j /jF� is a linear mapping which admits an inverse, implying that .‰j /jF� is a linear
bijection, implying (i).
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