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An inverse problem in Pólya–Schur theory. I.
Non-degenerate and degenerate operators

Per Alexandersson, Petter Brändén and Boris Shapiro

Abstract. Given a linear ordinary differential operator T with polynomial coefficients,
we study the class of closed subsets of the complex plane such that T sends any
polynomial (respectively, any polynomial of degree exceeding a given positive integer)
with all roots in a given subset to a polynomial with all roots in the same subset or
to 0. Below we discuss some general properties of such invariant subsets, as well as
the problem of existence of the minimal under inclusion invariant subset.

If a new result is to have any value, it must unite elements long since known,
but till then scattered and seemingly foreign to each other, and suddenly introduce
order where the appearance of disorder reigned. Then it enables us to see at a glance
each of these elements at a place it occupies in the whole.

— H. Poincaré, Science and Hypothesis

1. Introduction

In 1914, generalizing some earlier results of E. Laguerre, G. Pólya and I. Schur [18] created
a new branch of mathematics now referred to as the Pólya–Schur theory. The main result
of [18] is a complete characterization of linear operators acting diagonally in the monomial
basis of RŒx� and sending any polynomial with all real roots to a polynomial with all real
roots (or to 0). Without the requirement of diagonality of the action, a characterization of
such linear operators was obtained by the second author jointly with late J. Borcea [7].

The main question considered in the Pólya–Schur theory [12] can be formulated as
follows.

Problem 1.1. Given a subset S � C of the complex plane, describe the semigroup of all
linear operators T WCŒz�! CŒz� sending any polynomial with roots in S to a polynomial
with roots in S (or to 0/.
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Definition 1.2. If an operator T has the latter property, then we say that S is a T -invariant
set, or that T preserves S .

So far, Problem 1.1 has only been solved for the circular domains (i.e., images of
the unit disk under Möbius transformations), their boundaries [7], and more recently for
strips [10]. Even a very similar case of the unit interval is still open at present. It seems that
for a somewhat general class of subsets S � C, Problem 1.1 is out of reach of all currently
existing methods.

In this paper, we consider an inverse problem in the Pólya–Schur theory which seems
both natural and more accessible than Problem 1.1. We will restrict ourselves to considera-
tion of closed T -invariant subsets.

Problem 1.3. Given a linear operator T WCŒx�!CŒx�, characterize all closed T -invariant
subsets of the complex plane. Alternatively, find a sufficiently large class of T -invariant
sets.

For example, if T D d j =dxj , then a closed subset S �C is T -invariant if and only if it
is convex. Although it seems too optimistic to hope for a complete solution of Problem 1.3
for an arbitrary linear operator T , we present below a number of relevant results valid for
linear ordinary differential operators of finite order. (Note that an arbitrary linear operator
T WCŒx�!CŒx� can be represented as a formal linear differential operator with polynomial
coefficients, i.e., T D

P1
jD0Qj .x/

d j

dxj
, where each Qj .x/ is a polynomial, see [17].) To

move further, we need to introduce some basic notions.

Definition 1.4. Given a linear ordinary differential operator

(1.1) T D

kX
jD0

Qj .x/
d j

dxj

of finite order k � 1 with polynomial coefficients, define its Fuchs index as

�T D max
0�j�k

.deg.Qj / � j /:

Alternatively, the Fuchs index can be defined as the maximal difference between the output
and input polynomial, when acted upon by T :

�T D max
p2CŒx�

.deg.T .p// � deg.p//:

An operator T is called non-degenerate if �T D deg.Qk/ � k, and degenerate otherwise.
In other words, T is non-degenerate if �T is realized by the leading coefficient of T . We
say that T is exactly solvable if its Fuchs index is zero.

A few operators illustrating the situation are shown in Table 1, with some of their
properties listed.

Definition 1.5. Given a linear operator T WCŒx�! CŒx�, we denote by ITn the collection
of all closed subsets S � C such that for every polynomial of degree n with roots in S , its
image T .p/ is either 0 or has all roots in S . In this situation, we say that S belongs to the
class ITn or, equivalently, that S is Tn- invariant.

Similarly, a closed set S belongs to the class IT�n if for every polynomial of degree at
least n with roots in S , its image T .p/ is either 0 or has all roots in S . In this case, we say
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Operator Fuchs index Properties

.x3 C 2x/ d
3

dx3
C x d2

dx2
C 1 0 Exactly solvable, non-degenerate

.x C 1/ d
3

dx3
C x4 d2

dx2
C 2x 2 Degenerate

x2 d3

dx3
C 4 d2

dx2
�1 Non-degenerate

Table 1. Three examples of differential operators.

that S is T�n-invariant. By definition, the class IT�0 coincides with the class of all T -
invariant sets. We say that a set S 2 ITn (respectively, S 2 IT�n) is minimal if there is no
closed proper non-empty subset of S belonging to ITn (respectively, to IT�n).

Remark 1.6. Obviously, for any T and any n, the whole complex plane C is a trivial
example of a set belonging to both ITn and IT�n. On the one hand, in case when the
operator T preserves the space of polynomials of degree n, it is more natural to study the
class ITn . In particular, any exactly solvable operator preserves the degree of polynomials
it acts upon (except for possibly finitely many exceptions in low degrees). Thus, for an
exactly solvable operator, it makes sense to consider the class ITn and its elements for all
(sufficiently large) n and study their behavior when n!1. On the other hand, for an
arbitrary linear operator T , it is more natural to consider non-trivial subsets of C belonging
to IT�n, where n is any non-negative integer. Observe that families of sets belonging to ITn
(respectively, IT�n) are closed under taking the intersection.

In the present paper (which is the first part of two), we study the class IT�n for an
arbitrary T of the form (1.1). The sequel article [2] is devoted to the study of the class ITn
and also of the so-called Hutchinson invariant sets for exactly solvable operators and their
relation to the classical complex dynamics. A recent paper [1] contains the results of the
first and the third authors jointly with N. Hemmingsson, D. Novikov, and G. Tahar on a
similar topic, where we provide many details about the so-called continuously Hutchinson
invariant sets for operators T of order 1.

The structure of the paper is as follows. In Section 2, we present and prove some
general results about IT�n for an arbitrary operator T (with non-constant leading term). In
Section 3, we prove all results related to non-degenerate operators. In Section 4 and Sec-
tion 6, we prove all results related to degenerate differential operators including operators
with constant leading term. In Section 5, we provide preliminary information about the
asymptotic root behavior for bivariate polynomials used in Section 6. In Section 7, we
discuss several natural set-ups and problem formulations similar to that of the current paper.
Finally, Section 8 contains a number of open problems connected to the presented results.

2. General properties of invariant sets

Definition 2.1. Given an operator T of the form (1.1) with Qk.x/ different from a con-
stant, denote by Conv.Qk/ � C the convex hull of the zero locus of Qk.x/. We refer to
Conv.Qk/ as the fundamental polygon of T .

The next proposition contains basic information about invariant sets in IT�n.
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Theorem 2.2. The following facts hold:
(1) for any operator T as in (1.1) and any non-negative integer n, every S 2 IT�n is

convex;
(2) for any operator T as in (1.1) and any non-negative integer n, if S is an unbounded

closed set belonging to IT�n, then S is T -invariant, i.e., S belongs to IT�0 ;
(3) for any T as in (1.1) with Qk.x/ different from a constant and any non-negative

integer n, every S 2 IT�n contains the fundamental polygon Conv.Qk/;
(4) for any T as in (1.1) with Qk.x/ different from a constant and any non-negative

integer n, the set IT�n has a unique minimal (under inclusion) element.

Proof. (1) Fix S 2 IT�n and choose x1; x2 2 S . Take p.x/ D .x � x1/
m.x � x2/

m for
sufficiently large m, and consider p.`/.x/. Then

p.`/.x/ D
X̀
jD0

�
`

j

�
mŠ

.m � j /Š

mŠ

.mC j � `/Š
.x � x1/

m�j .x � x2/
mCj�`;

which implies that

q`.x/ WD
p.`/.x/

.x � x1/m�` .x � x2/m�`
D

X̀
jD0

�
`

j

�
.m/j .m/`�j .x � x1/

`�j .x � x2/
j ;

where .m/i WD mŠ=.m � i/Š is the Pochhammer symbol. Dividing both sides by m` and
expanding the Pochhammer symbols, we see that

m�`q`.x/ D
�X̀
jD0

�
`

j

�
.x � x1/

`�j .x � x2/
j
�
C
R1.x/

m
C
R2.x/

m2
C � � �

D ..x � x1/C .x � x2//
`
CO.m�1/R.x/:

Using the latter expression, we obtain

p.`/ D m`..x � x1/.x � x2//
m�`

�
.2x � x1 � x2/

`
CO.m�1/R.x/

�
:

Therefore,

T .p.x//

mk
D Qk.x/..x � x1/.x � x2//

m�k
�
.2x � x1 � x2/

k
CO.m�1/R.x/

�
C

kX
jD1

Qk�j ..x�x1/.x�x2//
m�kCj

mj

�
.2x�x1�x2/

k�j
CO.m�1/Rj .x/

�
:

All terms in the above sum approach 0 as m gets large, implying that the roots of T .p.x//
are close to that of

Qk.x/..x � x1/.x � x2//
m�k .2x � x1 � x2//

k :

Since .x1 C x2/=2 is a root of the latter polynomial, the original set S is convex.
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(2) Assume that S is an unbounded set belonging to IT�n for some positive n. Take
some polynomial p of degree less that n with roots in S . Consider a 1-parameter family of
polynomials of degree n of the form

Pt WD .x � ˛.t//
n�degpp.x/; t 2 Œ0;C1/;

where ˛.t/ is a variable point in S which continuously depends on t and escapes to1when
t !C1. (Such a family obviously exists since S is convex and unbounded.) Consider the
polynomial family T .Pt /. Since S 2 IT�n, the roots of T .Pt / belong to S for any finite t
and continuously depend on t . Since S is closed the same holds for the limit of the roots of
T .Pt / which do not escape to infinity. Notice that the set of finite limiting roots exactly
coincides with the set of roots of T .p/, which finishes the proof of item (2).

(3) Take an arbitrary T with Qk.x/ different from a constant, any non-negative inte-
ger n, and an arbitrary set S 2 IT�n. Set p.x/ D .x � ˛/m, where ˛ 2S . Then

T .p.x//

.m/k
D

kX
jD0

Qj .x/
.m/j

.m/k
.x � ˛/m�j :

If m!1; then .m/j =.m/k ! 0 for fixed j < k. Hence, the roots of T .p.x// approach
those of Qk.x/.x � ˛/m�k as m grows.

(4) Observe that for any differential operator T as above, the set IT�n is non-empty
since it at least contains the whole C. Now notice that by items (1)–(2), the intersection of
all sets in IT�n is non-empty. Indeed, each of them contains all roots of Qk.x/. Since this
intersection is convex, it also contains the convex hull Conv.Qk/ of the roots of Qk.x/.
Since IT�n consists of closed convex sets with a non-empty common intersection, there is
the unique minimal set in IT�n.

Let us denote by MT
�n the unique minimal element in IT�n whose existence is guaranteed

by item (4) of Theorem 2.2 . The following consequence of Theorem 2.2 is straightforward.

Corollary 2.3. (i) Under the assumption that Qk.x/ is not constant, one has the sequence
of inclusions of closed convex sets

(2.1) MT
�0 � MT

�1 � � � � :

(ii) Under the same assumption, if for some integer n there exists a compact set S 2IT�n,
then MT

�m is compact for all m � n and there exists a well-defined limit

(2.2) MT
1 WD lim

n!1
MT
�n:

Obviously, MT
1 is a closed convex compact set.

Remark 2.4. The assumption that Qk.x/ is different from a constant is important for the
existence of the unique minimal under inclusion element in IT�n. Many operators with a
constant leading term violate this property. For example, for T D d=dx; every convex
closed subset of C belongs to IT�n for every non-negative integer n. In fact, every point
in C is a minimal set for T D d=dx. More details about operators with a constant leading
term can be found in Section 6.
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Remark 2.5. Corollary 3.7 of the next section implies that for a non-degenerate T , the
minimal set MT

�n is compact for any sufficiently large n. However, this compactness
property might fail for small n. Theorem 3.14 below claims that MT

1 coincides with the
fundamental polygon Conv.Qk/.

On the other hand, as we will show in Proposition 4.5 of Section 4, for any degen-
erate operator T and non-negative integer n, every set in IT�n and, in particular, MT

�n is
unbounded implying that compact invariant sets exist if and only if T is a non-degenerate
operator. Together with item (2) of Theorem 2.2, this implies that for any degenerate T
and any positive integer n, IT�n D IT�0, and if either at least one of Qk.x/ or Q0.x/ has
positive degree, then

(2.3) MT
�0 D MT

�1 D MT
�2 D � � � ;

which is a very essential difference between the cases of non-degenerate and degenerate
operators. (The fact that every T -invariant set S contains all the roots of Q0.x/ follows
from the trivial identity T .1/ D Q0.x/, and that S contains all roots of Qk.x/ is shown in
item (3) of Theorem 2.2).

3. Non-degenerate operators

The main result of this section is Corollary 3.7, claiming that for a fixed non-denegerate
differential operator T , there exists a non-negative integer n such that IT�n contains all
sufficiently large disks. This implies compactness of the minimal set MT

�n for large n.
Unfortunately, at present we do have an explicit description the boundary of MT

�n for a
given T and n. Our best result in this direction is Theorem 3.14, which claims that the limit
set MT

1 coincides with the fundamental polygon Conv.Qk/.
The next example shows that Corollary 3.7 is the best we can hope for, as there exist

non-degenerate exactly solvable operators for which MT
�n is non-compact for small values

of n.

Example 3.1. Consider the non-degenerate exactly solvable operator given by

(3.1) T D
�
�
x2

4
C
x

4

� d2

dx2
C

�x
4
�
1

2

� d
dx
C 1:

We have chosen T in such a way that for every z 2C,

(3.2) T Œ.x � z/2� D .x � 2z/
�
x �

�z
2
C
1

2

��
:

Take any closed subset S 2 IT�2. The first factor in (3.2) ensures that if z 2S , then we also
have 2z 2S . The second factor ensures that if z 2S , then 1

2
.z C 1/ 2 S . These two facts

imply that S must contain the interval Œ1;1/ of the real axis. In particular, the minimal
set MT

�2 cannot be bounded.
Moreover, the image of .x � 1/4 has �3 as root. This then implies that the entire real

line lies in MT
�2. Finally, the image of .xC 1/2.x � 1/2 has two complex (conjugate) roots,

and this then implies that MT
�2 is in fact the entire C.



An inverse problem in Pólya–Schur theory. I. 1869

3.1. Existence of invariant disks

In this subsection, we will show that for any non-degenerate operator T , the collection IT�n
of its n-invariant sets contains large disks centered at 0 for all sufficiently large n.

Define the nth Fuchs index of a linear operator T WCnŒx�! CŒx� as

(3.3) � D �n D max
0�j�n

.degT .xj / � j /;

and call T non-degenerate if degT .xn/ � n D �n. Set

GT .x; y/ WD T Œ.1C xy/
n�

and note that there exist polynomials P n
`

, ` D �n; : : : ; �, of degree at most n, such that

(3.4) GT .x; y/ D
X

�n�`��

x`P n` .xy/:

Thus T is non-degenerate if and only if the degree of P n� is n. If T D
Pk
jD0Qj .x/

d j

dxj
is

a differential operator of order k, then

(3.5) GT .x; y/ D

kX
jD0

j Š x�jQj .x/

�
n

j

�
.xy/j .1C xy/n�j ;

and it follows that

(3.6) P n` .x/ D

kX
jD0

j Š a`;j

�
n

j

�
xj .1C x/n�j ;

where a`;j is the coefficient of xjC` in Qj .x/. Define

(3.7) f n` .x/ D

kX
jD0

j Š a`;j

�
n

j

�
xj :

In what follows, DR denotes the open disk ¹x 2C W jxj < Rº, and DR is the closure
of DR. We also define �R as the open set ¹.x; y/ 2 C2 W jxj > R and jyj > 1=Rº.

Proposition 3.2 (Theorem 7 in [7]). Let T WCnŒx�! CŒx� be a linear operator of rank
greater than one. The disk DR is Tn-invariant if and only if GT .x; y/ ¤ 0 for all
.x; y/2�R.

Theorem 3.3. Suppose T WCnŒx�! CŒx� is a non-degenerate linear operator with nth

Fuchs index �. Let g.x/ be the greatest common divisor of ¹P n
`
.x/º`. Then the closed disk

DR D ¹x W jxj � Rº is Tn-invariant for all sufficiently large R > 0 if and only if

(1) all zeros of g.x/ lie in ¹x W jxj � 1º;
(2) all zeros of P n� .x/=g.x/ lie in ¹x W jxj < 1º.

Proof. Suppose T WCnŒx�! CŒx� is a non-degenerate linear operator. We first prove that
conditions (1) and (2) are sufficient for Tn-invariance. Indeed assume that (1) and (2) hold.
Since degP n

`
� degP n� D n for all j , and since the zeros of P n� .x/=g.x/ lie in the open
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unit disk, there is a positive constant C such that jP n
`
.x/=P n� .x/j < C for all jxj � 1 and

all `. Hence, for sufficiently large R, if .x; y/2�R, then

(3.8)
ˇ̌̌ GT .x; y/
x�P n� .xy/

� 1
ˇ̌̌
D

ˇ̌̌ ��1X
`D�n

x`��
P n
`
.xy/

P n� .xy/

ˇ̌̌
�

��1X
`D�n

R�.��`/C <
C

R � 1
< 1:

For such R, the disk DR D ¹x W jxj � Rº is Tn-invariant by Proposition 3.2.
Suppose DR D ¹x W jxj � Rº is n-invariant for R sufficiently large. If g.x/ has a

zero in ¹x W jxj > 1º, then GT .x; y/ D 0 for some .x; y/2�R, and by Proposition 3.2,
the disk DR is not Tn-invariant. To get a contradiction, suppose .P n� =g/.y/ D 0, where
jyj � 1. Consider a sequence ¹yj º1jD1, where P n� .yj / ¤ 0, jyj j > 1, and limj!1 yj D y.
Let

Bj .x/ WD x
n GT .x; yj =x/

g.yj /
D

X
`��

x`Cn .P n` =g/.yj /:

Since .P n� =g/.y/ D 0 and P n
`
.y/ ¤ 0 for some `, we see that at least one zero, say xj ,

of Bj .x/ tends to1 as j !1. Hence for

Rj WD
1

2
jxj j

�
1C

1

jyj j

�
;

we have that .xj ; yj =xj / 2 �Rj , while GT .xj ; yj =xj / D 0. By Proposition 3.2, DRj is
not Tn-invariant for any Rj .

Recall that the Möbius map x 7! x=.1C x/ sends the set ¹x 2C W Re.x/ � �1=2º to
the unit disk.

Theorem 3.4. For T D
Pk
jD0Qj .x/

d j

dxj
and n2N, assume that T is non-degenerate as

a linear operator T WCnŒx�! CŒx�. Let � be the nth Fuchs index of T , and let a�;j be
the coefficient of x�Cj in Qj . Then the closed disk DR is Tn-invariant for all sufficiently
large R if and only if

(1) all zeros of the polynomial h WD gcd.f n�n; f
n
�nC1; : : : ; f

n
� / have real part greater

than or equal to �1=2; equivalently, there is no ˇ with Re ˇ > 1=2 such that

kX
jD0

x�j j Š

�
n

j

�
Qj .x/ˇ

j
� 0;

(2) and all zeros of the polynomial f n� =h have real part greater than �1=2.

Proof. We want to translate conditions (1) and (2) of Theorem 3.3 into this setting. This is
done by (3.5), (3.6), (3.7) and suitable Möbius transformations.

Example 3.5. Let T D Q1.x/ ddx CQ0.x/ be a non-degenerate linear operator of order 1.
Suppose first that

(3.9) Q0.x/C nˇx
�1Q1.x/ � 0

for some ˇ. We have
T D P � .ˇn � xD/;
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where P D P.x/ is some polynomial. But then

T .x �R/n D nP � .x �R/n�1..ˇ � 1/x � ˇR/;

has a zero outside ¹x W jxj � Rº if and only if jˇ=.ˇ � 1/j > 1, which is equivalent to
Reˇ > 1=2. This explains condition (1) in Theorem 3.4.

Suppose that (3.9) is not satisfied for any ˇ. If degQ1 > degQ0 C 1, then (2) is
always satisfied. Suppose that degQ1 D degQ0 C 1, and let ai be the leading coefficient
of Qi . The polynomial in (2) equals a0 C na1x: Hence condition (2) is equivalent to
Re .a0=a1/ < n=2.

Proposition 3.6. Let T WCnŒx�! CnŒx� be a diagonal operator, i.e.,

T .xi / D �i x
i ; 0 � i � n:

The following conditions are equivalent:
(1) there is a compact non-empty Tn-invariant set K ¤ ¹0º,

(2) D1 is Tn-invariant,

(3) DR is Tn-invariant for all R > 0,

(4) all zeros of the polynomial
nX
iD0

�i

�
n

i

�
xi

lie in D1.

Proof. Since the symbol of T is given by

GT .x; y/ D T Œ.1C xy/
n� D

nX
iD0

�i

�
n

i

�
.xy/i ;

we see that the disk DR is Tn-invariant if and only if all zeros of the polynomial

nX
iD0

�i

�
n

i

�
xi

lie in D1. This proves the equivalence of (2), (3) and (4).
Suppose that (1) holds for some K, but not (2). Let � 2K be of maximal modulus.

Since, the polynomial in (3) has zero outside the unit disk, the polynomial

T ..x � �/n/ D .��/n
nX
iD0

�i

�
n

i

��
�
x

�

�i
has a zero outside K, a contradiction.

Corollary 3.7. If T is a non-degenerate differential operator, then there are an integer N0
and a positive number R0 such that the disk DR WD D.0; R/ is Tn-invariant whenever
n � N0 and R � R0.
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Proof. Note that the zeros of f Tn approach 0 as n!1. Since a�;k ¤ 0, we see by (3.6)
that there exist positive numbers N0 and C such that
• jP n

`
.x/=P n� .x/j < C for all jzj � 1, all `, and all n � N0,

•
Pk
jD0 j Š a�;j

�
n
j

�
¤ 0,

• the zeros of f Tn are in D.0; 1=2/.
Therefore, the estimate in (3.8) can be made uniform in n. Indeed, we can choose

R0 D C C 1.

Remark 3.8. Note that by item (2) of Theorem 2.2, if T is a linear operator and � � C
is closed and unbounded, then � is Tn-invariant if and only if it is T`-invariant for all
` � n. Indeed, if f .z/ has degree ` � n, we may take a sequence ¹wj º1jD1 in � for which
jwj j ! 1 as j !1. Then the zeros of

T .f / D lim
j!1

T Œ.1 � x=wj /
n�`f .z/�

are in �, by Hurwitz’ theorem.

The following important notion can be found in Definition 1 of [7].

Definition 3.9. A polynomial f .z1; : : : ; z`/ 2 CŒz1; : : : ; z`� is called stable if for all
`-tuples .z1; : : : ; z`/ 2 C` with Im.zj / > 0, 1 � j � `, one has f .z1; : : : ; z`/ ¤ 0.

Proposition 3.10. Take a closed half-plane given by H D ¹ax C b W Imx � 0º, where
.a; b/ 2 C2, a ¤ 0, and let T D

Pk
jD0Qj .x/

d j

dxj
be a differential operator. Then the

following facts are equivalent:
(1) the set of positive integers n for which H is Tn-invariant is unbounded,

(2) H is Tn-invariant for all n � 0,

(3) the polynomial
Pk
jD0Qj .ax C b/.�y=a/

j , considered as an element in CŒx; y�, is
a stable polynomial in .x; y/.

Proof. By Remark 3.8, we see that (1) and (2) are equivalent. Now, (2) is equivalent to the
fact that the operator S WCŒx�! CŒx� defined by

S.f /.x/ D T .f .��1.x///.�.x//;

where �.x/ D ax C b, preserves stability. The operator S is again a differential operator,
so the equivalence of (2) and (3) now follows from Theorem 1.2 in [8].

Example 3.11. Consider the operator T WCnŒx�! CŒx� given by

(3.10) T D .x2 � x3/
d3

dx3
C .x C x2/

d2

dx2
C 2x

d

dx
� 6:

When n D 3, we have that for every z 2C,

(3.11) T Œ.x � z/3� D 12.x � z2/.x � z=2/:
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In particular, if z lies in a T3-invariant set, then z2 is also in the set. Thus, there are no large
T3-invariant disks. However, this does not violate Theorem 3.3, since the 3rd Fuchs index
of T is 0, but P n� .x/ D �6.1C 2x/. Hence, the operator T is degenerate for n D 3 and
Theorem 3.3 does not apply.

3.2. Description of the limiting minimal set MT
1.

Recall that in Corollary 2.3, we proved that whenever the leading coefficient Qk.x/ of
an operator T is has positive degree, then there is a minimal invariant set MT

1 containing
the convex hull of the roots of Qk.x/. Furthermore, if T is non-degenerate, Corollary 3.7
implies that MT

1 is compact. The next result of the third author is the main motivation for
Theorem 3.14.

Theorem A (Theorem 9 in [19]). Given a non-degenerate operator T as in (1.1) and " > 0,
there exists a positive integer n" such that for any n > n" and any polynomial p of degree n
with all roots in Conv.Qk/, all roots of T .p/ lie in the "-neighborhood of Conv.Qk/.

The main technical tool in the proof of Theorem 3.14 is Theorem 3.13, which is of
independent interest. It extends the previous Theorem 3.3. For the proof, we will make use
of the following alternative “symbol theorem”, which follows from Theorem 7 in [7].

Proposition 3.12. Let T WCnŒx�! CŒx� be a linear operator of rank greater than one, and
let D be a closed disk in C. Then D is Tn-invariant if and only if Gn.x; y/ ¤ 0 whenever
x 2Dc and y 2D, where

Gn.x; y/ D T
�
.x � y/n

�
D

nX
iD0

�
n

i

�
T .xi /yn�i :

Theorem 3.13. Given a non-degenerate operator

T D Qk.x/
dk

dxk
CQk�1.x/

dk�1

dxk�1
C � � � CQ0.x/;

let D be any closed disk that contains Conv.Qk/ and such that the distance between
Conv.Qk/ and the boundary of D is positive. Then D is Tn-invariant for all sufficiently
large degrees n.

Proof. By Proposition 3.12, D is Tn-invariant if the polynomial

Gn.x; y/ D

kX
jD0

.n/j �Qj .x/ � .x � y/
n�j

is nonzero whenever x 2Dc and y 2D.
For fixed j < k and y 2D, the polynomial (in x)

Qj .x/ � .x � y/
k�j

Qk.x/
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Conv(Qk)
ϵ

Dϵ(L)

Figure 1. Illustration to the proof of Theorem 3.14.

is uniformly bounded on Dc . This is because the degree of the numerator is less than or
equal to the degree of the denominator, and the zeros of Qk.x/ have positive distance
to Dc . By compactness of D, there is a constant C such thatˇ̌̌Qj .x/ � .x � y/k�j

Qk.x/

ˇ̌̌
� C; for all x 2Dc ; y 2D:

Hence, there is a constant L, independent of n, such thatˇ̌̌ Gn.x; y/

Qk.x/ � .x � y/n�k � .n/k
� 1

ˇ̌̌
<
L

n
, for all x 2Dc ; y 2D:

It follows that for n sufficiently large,Gn.x;y/ is nonzero whenever x2Dc and y 2D.

Theorem 3.14. If T is non-degenerate, then M T
1 D Conv.Qk/.

Proof. We assume Conv.Qk/ is not a line or a point. The proofs for those cases are similar.
Take " > 0. For each side L of the polygon Conv.Qk/, let D".L/ be a disk containing

Conv.Qk/ such that the distance between L and the boundary of D".L/ is at most " and
at least "=2, see Figure 1. By Theorem 3.13, D".L/ is Tn-invariant for all n � N.L; "/,
where N.L; "/ is a positive integer. But then

K" D
\
L

D".L/

is Tn-invariant for all n � N."/, where N."/ D maxLN.L; "/. Clearly K" converges to
Conv.Qk/ when "! 0.

Let us now describe a special class of non-degenerate operators for which all MT
�n,

n D 0; 1; : : : , coincide with each other and with the fundamental polygon Conv.Qk/.
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Proposition 3.15. Take a non-degenerate operator of the form

T D Qk.x/
dk

dxk
CQk�1.x/

dk�1

dxk�1

satisfying the condition

(3.12)
Qk�1.x/

Qk.x/
D

degQkX
iD1

�i

x � xi
,

where �i � 0 and ¹x1; : : : ; xdegQk º is the set of all roots of Qk.x/. Then,

MT
D MT

�1 D MT
�2 D � � � D MT

1 D Conv.Qk/:

Proof. By item (3) of Theorem 2.2, it suffices to show that under our assumptions on T ,
Conv.Qk/ is a T -invariant set. Moreover, by the Gauss–Lucas theorem, for

T D Qk.x/
dk

dxk
CQk�1.x/

dk�1

dxk�1

satisfying (3.12), it suffices to show that Conv.Qk/ is zT -invariant, where

zT D Qk.x/
d

dx
CQk�1.x/:

Assume now that p.x/ is an arbitrary polynomial of some degree n whose roots r1; : : : ; rn
lie in Conv.Qk/ and consider qD zT .p/. We want to show that q.z/ ¤ 0 for any x 2
C n Conv.Qk/. Assume q.x/ D 0, which is equivalent to

(3.13) Qk.x/p
0.x/CQk�1.x/p.x/ D 0 ”

p0.x/

p.x/
D �

Qk�1.x/

Qk.x/
�

The latter expression is equivalent to

nX
jD1

1

x � rj
D �

degQkX
iD1

�i

x � xi
,

where ¹x1; : : : ; xdegQ1º is the set of roots ofQk and �i � 0. Assuming that x … Conv.Qk/,
choose a line L separating z from Conv.Qk/. By our assumptions, L separates x from
all rj ’s and all xi ’s. Because of that and taking into account the signs, one can easily
conclude that the left-hand side of the latter expression is a complex number pointing
from x to the half-plane not containing x and the right-hand side does the opposite.
Therefore, (3.13) cannot hold if x …Conv.Qk/.

A special case of Proposition 3.15 when Qk.x/ is a real-rooted polynomial follows
from more general results of [9].
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4. Exactly solvable and degenerate operators: basic facts

4.1. Preliminaries on exactly solvable operators

In this section, we will need the following information, see e.g. [5].
Given an exactly solvable operator T , observe that for each non-negative integer j ,

(4.1) T .xj / D �Tj x
j
C lower order terms:

Define the spectrum of an exactly solvable T as the sequence ƒT WD ¹�Tj º
1
jD0 of complex

numbers.

Definition 4.1. We say that an exactly solvable operator T D
Pk
jD0Qj .x/

d j

dxj
is non-

trivial if the maximal value j0 of the index for which degQj .x/ D j is strictly positive.
(An example of a trivial exactly solvable operator is T D d=dx C 1.)

Lemma A (See [16]). For any non-trivial exactly solvable operator T and any sufficiently
large positive integer n, there exists a unique (up to a constant factor) eigenpolyno-
mial pTn .x/ of T of degree n. Additionally, the eigenvalue of pTn equals �Tn , where �Tn is
given by (4.1).

One can easily show that for any non-trivial exactly solvable operator T , there existsmT
such that the sequence ¹j�Tmjº

1
mDmT

is monotone increasing toC1, which implies that for
any sufficiently large positive integer m, j�Tj j < j�

T
mj for 0 � j < m. (For a trivial exactly

solvable operator T , all �Tj are equal.)

Remark 4.2. Unfortunately, in [16] the condition of non-triviality has been overlooked,
but the proof suggested there requires it. Indeed, if we consider the trivial exactly solvable
operator T D 1C d=dx, then it has not eigenpolynomials except for the constant, and this
case has to be considered separately.

Remark 4.3. In addition to Lemma A, observe that for any exactly solvable operator T as
in (1.1) and any non-negative integer n, T has a basis of eigenpolynomials in the linear
space CnŒx� consisting of all univariate polynomials of degree at most n. This follows
immediately from, e.g., the fact that T is triangular in the monomial basis ¹1; x; : : : ; xnº.
In other words, even if T has a multiple eigenvalue it has no Jordan blocks. However, the
eigenpolynomial in the respective degree is no longer unique. A simple example of such
situation occurs for T D xk dk

dxk
, in which case any polynomial of degree less than k lies

in the kernel.

In what follows, we will use the following result.

Proposition 4.4. Given an exactly solvable operator T as in (1.1) and any invariant set
S 2 IT�n, one has that S must contain the union of all roots of the eigenpolynomial pTm
satisfying two conditions: n�m and j�Tj j< j�

T
mj, where 0� j <m. The latter fact implies

that S contains the union of all roots of all eigenpolynomials of sufficiently large degrees.

Proof. Indeed, as we mentioned above, the sequence ¹j�Tn jº will be strictly increasing
toC1 starting from some positive integer mT . Choose some m � n such that m � mT ,
which implies that j�Tmj > j�

T
j j for 0 � j < m and that ¹pT0 ; p

T
1 ; : : : ; p

T
mº is a basis in the

space CmŒx� of all polynomials of degree at most m.
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Pick a polynomial q of degree m whose roots belong to S and expand it as

q.x/ D

mX
jD0

ajp
T
j .x/; with am ¤ 0.

Repeated application of T to q gives

(4.2) T ı`.q/ D

mX
jD0

aj�
`
jp

T
j .x/ D �

`
m

mX
jD0

aj

�
�j

�m

�`
pTj .x/:

Since S 2 IT�n, all roots of T ı`.q/ belong to S . By our assumption and disregarding the
common factor �`m, the polynomial in the right-hand side of (4.2) equals ampTm.x/ plus
some polynomial of degree smaller than m whose coefficients tend to 0 as `!1. Since
am ¤ 0, the roots of the polynomials in the right-hand side of (4.2) tend to those of pTm,
implying that the latter roots must necessarily belong to S .

4.2. Preliminaries on degenerate operators

An important although not very complicated result about degenerate operator, which
partially follows from our previous considerations, is as follows.

Proposition 4.5. If T is a degenerate operator, then for any non-negative n, every set
in IT�n is unbounded, and therefore is T -invariant.

Proof. We only need to show the unboundedness, since T -invariance follows from the
unboundedness by item (2) of Theorem 2.2. Let us start with the special case of degenerate
exactly solvable operators. (These operators and their invariant sets are the main object of
study of our sequel paper [2].)

Any exactly solvable operator T preserves the degree of a generic polynomial it acts
upon and has a unique (up to a constant factor) eigenpolynomial pTn .x/ of any sufficiently
large degree n, see Lemma A and Lemma 1 in [5]. Moreover, if rn denotes the maximum
of the absolute value of the roots of pn.x/, then for any degenerate exactly solvable T ,
limn!1 rn D C1, see Theorem 1 in [5].

By Proposition 4.4, for any exactly solvable operator T , any set S 2 IT�n must contain
the union of all roots of all eigenpolynomials pTm.x/ for all sufficiently large m; we
conclude that any such S is necessarily unbounded.

Assume now that T has a positive Fuchs index � WD �T > 0. Consider the operator
T 0 D d�

dx�
ı T . If T is degenerate, then T 0 is a degenerate exactly solvable operator. By

the Gauss–Lucas theorem, every S 2 IT�n belongs to IT
0

�n. Since every subset S 0 2 IT
0

�n is
unbounded by the above argument, we have settled the case � > 0.

Assume, finally, that T is a degenerate operator with � < 0. Consider a family of
operators

T 0a D .x � a/
��
� T;

where a 2C. Since under our assumptions, �� is a positive integer, Ta is a degenerate
exactly solvable operator for any a. Given S 2 IT�n, choose a 2S . Then S 2 I

T 0a
�n and is

therefore unbounded by the previous reasoning.
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5. (Tropical) algebraic preliminaries and three types of Newton
polygons

In our study of invariant sets for degenerate operators, we will need some classical results
about root asymptotics of bivariate polynomials in the spirit of modern tropical geometry,
see Section 38 of [11] and Chapter 4 of [20]. These results will be used in Section 6.

We start by introducing the domination partial order on points in R2, Namely, we say
that a point p D .u; v/ 2 R2 dominates a point p0 D .u0; v0/ if u � u0 and v � v0. Given a
subset S � R2, we call by its northeastern border NES the set of all points in S which are
not dominated by other points in S . Observe that NES can be empty if S is non-compact,
but for compact S , NES is always non-empty. Furthermore, if S is both compact and
convex then NES is contractible.

Given a bivariate polynomialR.u;v/D
P
.i;j /2‚ ai;ju

ivj with ai;j ¤ 0 for .i; j /2‚,
denote by Conv.R/ � R2 its Newton polygon, i.e., the convex hull of the set of exponents
.i; j /2‚. The northeastern border of Conv.R/ will be denoted by NER, see examples in
Figure 2 and Figure 3. By the above, NER is connected and contractible. The point of NER
with the maximal value of u will be called the eastern vertex and denoted by Ve and the
point of NER with the maximal value of v will be called the northern vertex and denoted
by Vn. The set NER coincides with a point if and only if Ve D Vn. Notice that every
edge of the boundary of Conv.R/ included in NER has a negative slope. Finally, denote
by Rne.u; v/ the restriction of R.u; v/ to the subset ‚ne � ‚ consisting of all monomials
whose exponents are the vertices of NER. We will call Rne.u; v/ the northeastern part
of R.u; v/.

Remark 5.1. Observe that for any bivariate R.u; v/ and ˛; ˇ 2 C, the change of variables
of the form u D QuC ˛; v D Qv C ˇ does not change neither NER nor Rne.u; v/.

Given an arbitrary bivariate polynomial

R.u; v/ D
X

.i;j /2‚

ai;j u
ivj D

mX
jD0

Rj .v/u
j

and some number w 2C, denote by UR.w/ the set of zeros of the equation R.u;w/ D 0
in the variable u considered as the divisor in C, i.e., zeros counted with multiplicities.
Here m is the degree of R with respect to u. Assume that the parameter w runs over
the portion of the positive half-axis Œ�;C1/ which contains no root of Rm.v/; one can
always choose � sufficiently large so that the latter condition is satisfied. (Obviously, for
all w 2 Œ�;C1/, the degree of the divisor UR.w/ equals m.) We define the subdivisor
U1R .w/ � UR.w/ as the set of all roots u.w/ whose absolute values tend to1 when w
tends to C1 along the positive half-axis. Notice that U1R .w/ is well-defined for all
sufficiently large positive z� > �, since there exists z� such that for any w 2 Œz�;C1/; the
absolute value of every root in U1R .w/ will be strictly larger than the absolute value of any
root in the complement UR.w/ nU1R .w/.

Our next goal is to describe U1R .w/ in terms of Rne.u; v/. In what follows, we will
frequently use the following statement.

Given an arbitrary bivariate polynomial R.u; v/ whose NER is not a single point,
decompose NER into the (disjoint) union of consecutive edges NER D

Sh
sD1 es cover-
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ing NER from north to east. That is, e1 starts at Vn, eh ends at Ve , and each es is adjacent
to esC1, see Figure 2. The absolute values of the slopes of e1; : : : ; eh are strictly increasing.
The following statement can be easily deduced from the known results of [11] (see Theo-
rems 63–66 in Section 38) and [20] (see Sections 3 and 4 of Chapter 4). (To use the latter
results, one has to substitute u and v by u�1 and v�1, respectively.)

Proposition 5.2. The degree of the divisor U1R .w/ is equal to ie � in, where Ve D .ie; je/
and Vn D .in; jn/. In other words, deg U1R .w/ equals the length of the projection of NER
onto the u-axis.

Additionally, U1R .w/ splits into h subdivisors U11 .w/; : : : ;U
1
h
.w/ corresponding to

the edges e1; : : : ; eh, respectively; the degree of U1s .w/; s D 1; : : : ; h equals the length
of the projection of es on the u-axis. All zeros in the divisor U1s .w/ have the asymptotic
growth u � "wsls where sls is the absolute value of the slope of es .

Possible values of " can be found by substituting "wsls in the restriction of R.u; v/
to the monomials contained in the edge es and finding the non-vanishing roots of this
restriction.

Definition 5.3. Given an arbitrary bivariate polynomial R.u; v/ whose northeastern bor-
der NER is not a single point, we will call the slopes of edges in NER the characteristic
exponents of R.u; v/. For a given edge es 2NER, all possible values of " corresponding to
the restriction of R.u; v/ to this edge will be called the leading constants corresponding to
(the characteristic exponent of) es . The union of all leading constants of R.u; v/ will be
denoted by ‡R.

Example 5.4. To illustrate Proposition 5.2 and Definition 5.3, take

R.u; v/ D u8 C u7v2 C u5v4 C .5C 7
p
�1/u3v6 � 23uv7:

One can easily check that all monomials in R.u; v/ belong to NER which consists of
three edges e1, e2 and e3 connecting .1; 7/ with .3; 6/, .3; 6/ with .7; 2/, and .7; 2/ with
.8; 0/ respectively. (The exponent .5; 4/ of the second monomial belongs to e2.) The
degree of U1R .w/ equals 8 � 1 D 7. The restriction R1.u; v/ of R.u; v/ to e1 is given by
.5C 7

p
�1/u3v6 � 23uv7. Its non-trivial zeros with respect to the variable u are given

by .5C 7
p
�1/u2 � 23w D 0. Thus for two roots from U11 .w/, u � "w

1=2, where " are
the two roots of the equation .5C 7

p
�1/"2 � 23 D 0. They are approximately equal to

�1:45392˙ 0:748212. (The absolute value of the slope of e1 equals 1=2.) The restriction
R2.u; v/ of R.u; v/ to e2 is given by u7v2 C u5v4 C .5C 7

p
�1/u3v6. Its non-trivial

zeros with respect to the variable u are given by u4 C u2w2 C .5C 7
p
�1/w4 D 0; we

have substituted w instead of v here to keep our notation. Thus for four different roots
belonging to U12 .w/, we have u � "w, where " are the four roots of the equation "4 C
"2 C 5C 7

p
�1 D 0. These are approximately equal to �1:22651˙ 0:961446

p
�1 and

�0:809831˙ 1:58673
p
�1. (The absolute value of the slope of e2 equals 1.) Finally, the

restriction R3.u; v/ of R.u; v/ to e3 is given by u8 C u7v2 which gives u D �v2. (The
absolute value of the slope of e3 equals 2.) Summarizing, we get that ‡R consists of six
complex numbers approximately given by ¹�1;�1:22651˙ 0:961446

p
�1;�0:809831˙

1:58673
p
�1;�1:45392˙ 0:748212º. Its convex hull contains 0 as its interior point.
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v

u

Vn

Ve

e1

e2

e3

Figure 2. The northeastern border of the Newton polygon of R.u; v/ D u8 C u7v2 C u5v4 C .5C
7
p
�1/u3v6 � 23uv7, see Example 5.4. (The Newton polygon itself is obtained by adding an edge

connecting Vn with Ve .)

Corollary 5.5. In the above notation, for a given bivariate polynomial R.u; v/, the family
of convex hulls of U1R .w/ converges to C when w !C1 if and only if the convex hull
of ‡R contains 0 as its interior point.

Proof. (Sketch) This statement is rather obvious, since if 0 is an interior point of the convex
hull of ‡R, then the roots in U1R .w/ will be asymptotically moving to infinity when
w !C1 in the directions prescribed by all values of "2‡R, and their convex hull will
contain the disk of any given radius centered at 0 for sufficiently large w.

Let us fix a connected contractible piecewise linear curve NE � R2 with integer
vertices consisting of pairwise non-dominating points, see Figure 2. In other words, NE
is a piecewise linear path with integer vertices whose edges have negative slopes whose
absolute values increase when moving down along the path. Denote by Pol.NE/ the
set of all bivariate polynomials whose northeastern border coincides with a given NE.
(In particular, we assume that all coefficients at the corners/endpoints of NE are non-
vanishing. Pol.NE/ is a Zariski-open subset of a finite-dimensional linear space of bivariate
polynomials.) Recall that the integer length of a closed straight interval I � R2 � Z2 is
the number of points from Z2 contained in I , i.e., the number of integer points belonging
to I .

Definition 5.6. Given NE � R2 as above, we call it
(i) defining if there exists an edge in NE with the slope �˛=ˇ where ˛ and ˇ are

coprime positive integers and ˇ � 3;
(ii) almost defining if there are no edges as in (i), but there either

(a) exists at least one edge in NE with the slope �˛=2 and whose integer length is
larger than 2, or

(b) there exist at least two edges with the slope �˛=2 and integer length at least 2;
(iii) non-defining in the remaining case i.e., when either all edges of NE have negative

integer slopes or all edges but one have negative integer slopes and the remaining
edge has a negative half integer slope and integer length 2.
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(i) Defining

�1=3

�4=1

(ii) Almost def.

�2=4

�3=1
(ii) Almost def.

�1=2

�3=2

(iii) Non-def.

�2=2

�3=1 (iii) Non-def.

�1=2

�4=1 (iii) Non-def.

�2=2

�3=2

Figure 3. Examples of defining/almost defining/non-defining Newton polygons, see Definition 5.6.
The slopes of the edges of the northeasten boundary are shown as fractions, such that the length of
the projection is the respective denominator.

Definition 5.7. A Newton polygonN � R2 is called defining/almost defining/non-defining
if its northeastern border contains at least one edge and is defining/almost defining/non-
defining, respectively.

In Figure 3, we show examples of Newton polytopes illustrating Definition 5.6 and
Definition 5.7.

Proposition 5.8. Given NE � R2 as above, the convex hull of U1R .w/ converges to C,
when w !C1,

(i) for any R2Pol.NE/ if NE is defining;
(ii) for generic R2Pol.NE/ if NE is almost defining;
(iii) if NE is non-defining, there is a full-dimensional subset of Pol.NE/ for which the

convex hull of U1R .w/ converges to C when w !C1 and the complement of the
latter set in Pol.NE/ is also full-dimensional.

Remark 5.9. In case (ii), the condition of nongenericity is given by the fact that all "2‡R
are real proportional to each other (i.e., they lie on the same real line in C passing through
the origin);

In case (iii), if one forces the next to the leading coefficient for some edge with integer
slope and length of projection larger than 2 to vanish, i.e., one forces the sum of the
respective " to be equal to 0, then the conclusion of Corollary 5.5 will be valid for a generic
choice of the remaining coefficients at the vertices belonging to this edge.

If the convex hull of U1R .w/ does not tend to C, but in > 0, which means that UR.w/ n

U1R .w/ is non-empty, then the convex hull of UR.w/ will tend to the convex cone with
apex at 0 spanned by the elements of ‡R.



P. Alexandersson, P. Brändén and B. Shapiro 1882

Proof of Proposition 5.8. By Corollary 5.5, we need to prove that the convex hull of ‡R
contains 0 as its interior point

(i) for any R2Pol.NE/ if NE is defining;
(ii) for generic R2Pol.NE/ if NE is almost defining;
(iii) if NE is non-defining, polynomials R 2 Pol.NE/ for which ‡R contains 0 as an

interior point form a full-dimensional set with the full-dimensional complement.
Indeed, assume that NE is defining. Then it contains an edge es with the slope �˛=ˇ,

where ˛ and ˇ are coprime positive integers and ˇ � 3. Take now any polynomial
R.u;v/2Pol.NE/ and denote byRs.u;v/ the restriction ofR to es . Substituting uD "v˛=ˇ

in the equation Rs.u; v/ D 0 and factoring out a power of v, we get a univariate algebraic
equation for " which only involves powers of " which are multiples of b � 3. Since every
non-vanishing " appears in ‡R together with all " � e2�

p
�1`=b for ` D 1; : : : ; b � 1, one

obtains that 0 lies in the interior of the convex hull of ‡R.
Assume now that NE is almost defining. Then it either contains an edge es with the

slope �˛=2 and length greater than 2 or two edges with half integer slopes and length 2
each. (All the remaining edges have integer slopes.) In the former case, the algebraic
equation satisfied by " has an even degree exceeding 2 and contains only even powers of ".
Its non-vanishing solutions come in pairs of numbers of the form .˛;�˛/. If at least two
such pairs are non-proportional over R (which happens generically), then 0 is the inner
point of ‡R. Similarly, in the latter case we have two second order equations without linear
terms defining ". Again typically their pairs of solutions are non-proportional over R and
the result follows.

Finally, assume that NE is non-defining. Then all edges, but possibly one, have integer
slopes, which means that the corresponding equations for "will have all possible monomials
present and their non-trivial roots can either contain 0 inside their convex hull or lie in a
half-plane of C bounded by a real line passing through the origin, in which case 0 is outside
(on the boundary of) this convex hull. If there is one edge of length 2 and half-integer slope
in NER, then it produces one pair of opposite values for ".

6. Application of algebraic results to invariant sets of degenerate
operators

In what follows, we need to consider the action of

T D

kX
jD0

Qk.x/
d j

dxj

on polynomials of the form .x � t /n for sufficiently large n. One has

T .x � t /n D .x � t /n�k
kX

jD0

.n/j .x � t /
k�jQj .x/ D .x � t /

n�k T .x; n; t/;

where T .x;n; t/ is a trivariate polynomial. The important circumstance is that the essential
part  CT .x; n/ of  T .x; n; t/ is independent of t , see the beginning of Section 5. We will
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apply to  CT .x; n/ the results of the previous section and discuss how its zeros with respect
to x behave when n!C1. Denote by ajxdj the leading monomial ofQj .x/ and consider
the polynomial

z T .x; n/ D

kX
jD0

aj n
jxdjCk�j :

(It contains much fewer monomials than T .x;n; t/, but with exactly the same coefficients.)
Notice that the essential part  CT .x; n/ is obtained from z T .x; n/ by removing those
monomials which do not belong to NE. T /.

Taking the symbol polynomialGT .x;y/D
Pk
jD0Qk.x/y

j of T , we introduce its trun-

cation zGT .x; y/ D
Pk
jD0 ajy

jxdj and observe that z T .x; n/ is obtained from zGT .x; y/
by substituting y by n and adding k � j to the powers dj of x of the respective monomial.
Thus the Newton polygon of z T .x; n/ is obtained from the Newton polygon of zGT .x; y/
by the affine transformation A sending .i; j / to .i C k � j; j /. Therefore NE. T / is
obtained from the part of the boundary of the Newton polygon of z T .x; y/ under the latter
affine transformation, see Figure 4 for an example.

NT

y

x

A
�!

N 

n

x

Figure 4. The affine transformation A sending NT to N . Here T D .x3 C � � � /d7=dx7 C

.x6 C � � � /d6=dx6 C d5=dx5 C .x7 C � � � /d2=dx2 C .xC � � � /d=dxC .x3 C � � � /, zGT .x; y/D
x3y7 C x6y6 C y5 C x7y2 C xy C x3 and z T .x; n/ D n7x3 C n6x7 C n5x2 C n2x12 C x10:

Denote the Newton polygon of zGT .x; y/ by NT and the Newton polygon of z T .x; y/
by N . We have that N D A ıNT . The relation between the slopes of edges before and
after the affine transformation A is as follows.

If the slope sl of an edge of NT equals sl D �=�, where � and � are coprime integers
and � > 0, then the slope of its image, denoted by asl, is given by asl D �=.� � �/, which
implies that asl D sl=.1 � sl/ or, equivalently, sl D asl=.1 C asl/. Therefore if asl is a
negative integer, then we get

asl D �J; J > 0 ” sl D
J

J � 1
�

Obviously, any sl of the above form is positive (orC1).
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Analogously, if asl is a negative half-integer, then we get

asl D �
J

2
, J > 0 and odd ” sl D

J

J � 2
�

Any sl of the above form is positive, with the only exception J D 1, for which sl D �1.
It is easy to describe A�1.NE / as the part of the boundary NT starting at Vn and

going southeast till we either reach the lowest point of the polygon or till the slope of the
next edge becomes smaller than or equal to 1. Denote A�1.NE / as BT and call it the
shifted northeastern border of NT .

One can easily check that for T D
Pk
jD0Qk.x/

d j

dxj
, the corresponding NE. T / is

a single point if and only if T is non-degenerate. So for any degenerate T , its NE. T /
contains at least one edge. Additionally, asl < 0 if and only if 1sl < 1, which means that
either sl < 0 or sl > 1.

Observe that the vertex Vn of z coincides with that of zG. The following notion is
important for the rest of the paper.

Definition 6.1. A degenerate operator T is called defining/almost defining/non-defining
if its Newton polygon N is defining/almost defining/non-defining, respectively, see Def-
inition 5.6. In terms of the Newton polygon NT , this means that its shifted northeastern
border BN is not a single point, and in the defining case, it contains an edge with the slope
of the form J=.J � ˇ/, with ˇ � 3; in the almost defining case, all edges of BN have
slopes J=.J � 1/, but there exists either one edge with slope J=.J � 2/, J odd and length
greater than 2, or two such edges with length 2; and in the non-defining case, BN contains
edges of arbitrary integer length with slopes J=.J � 1/, J being a positive integer, except
for possibly one edge of integer length 2 whose slope is J=.J � 2/, J odd.

The following result is an easy consequence of our previous considerations.

Theorem 6.2. For any non-negative integer n and (almost) any degenerate operator T
whose NT is (almost) defining, the only set contained in IT�n is C.

6.1. Degenerate operators with non-defining Newton polygons

As we have seen above, the convex hull of the set ‡T of all leading constants for (almost)
every degenerate T with (almost) defining NT contains 0 as its interior point.

For degenerate T with non-definingNT , whose northeastern border we denote by NET ,
it might still happen that 0 is the interior point of the latter convex hull, in which case the
conclusion of Theorem 6.2 holds. However, for a full-dimensional subset of Pol.NE/ with
a given non-defining NE, their leading constants belong to some half-plane in C bounded
by a line passing through 0, and therefore 0 lies on the boundary of their convex hull. In
this situation, the conclusion of Theorem 6.2 fails; we will discuss this case below.

Definition 6.3. Given a finite set U D ¹u1; : : : ; ukº of (not necessarily distinct) complex
numbers, we define the cone CCU � C generated by U as given by

CCU WD ¹˛1u1 C ˛2u2 C � � � C ˛`u`º; where j̨ � 0; j D 1; : : : ; `:

We say that a set S � C is closed with respect to CCU� C if for any complex number
z 2 S and any v 2 CCU, z C v belongs to S .
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Obviously, 0 is the interior point of the convex hull of U D ¹u1; : : : ; u`º if and only if
CCU D C.

Given a degenerate operator T with non-defining Newton polygon NT , denote by
‡T WD ¹"1; : : : ; "mº the collection of all its leading constants and set CCT WD CC.‡T /. As
we mentioned above, if CCT D C, then the conclusion of Theorem 6.2 holds. Let us assume
now that CCT is a closed sector in the plane with positive angle � � . (We are then missing
two remaining cases: CCT being a line through the origin, and CCT being a half-line through
the origin.)

Remark 6.4. Recall that by item (2) of Theorem 2.2, any set S 2 IT�n is unbounded and
belongs to IT�0, i.e., is unbounded and T -invariant.

Lemma 6.5. In the above notation, any T -invariant set S is closed with respect to CCT .

Proof. Indeed, take a point t 2 S and consider the sequence of polynomials T .x � t /n

when n increases. For n!1, the roots of T .x � t /n whose absolute values tend to infinity
will be spreading out to infinity approaching some rays whose directions are given by the
elements of ‡T . Since every S must be convex, the result follows.

Corollary 6.6. In the above notation, if the product of the leading coefficient Qk.x/ and
the constant term Q0.x/ of the operator T is not a constant, then any T -invariant set S
contains the Minkowski sum Conv.QkQ0/ ˚ CCT � C of CCT and Conv.QkQ0/; the
latter set being the convex hull of the union of all roots of Qk.x/ and Q0.x/.

Proof. It is easy to see that if any T -invariant set S must contain the zero loci ofQk.x/ and
of Q0.x/ then by convexity of S it should contain Conv.QkQ0/. Applying Lemma 6.5,
we get the required result.

Let us now present some conditions guaranteeing the existence of non-trivial T -
invariant sets for a degenerate operators T .

6.2. Degenerate operators with non-defining Newton polygon and constant leading
term

In this section, we discuss the case of a constant leading term. One can easily check that
the class of degenerate operators

T D
dk

dxk
CQk�1.x/

dk�1

dxk�1
C � � � CQk.x/

with non-defining NT splits into two subclasses:
(A) operators with constant coefficients;
(B) operators satisfying the following three conditions:

(i) degQk�1 D 1;
(ii) degQj � 1 for j D 0; : : : ; k � 2;
(iii) if jmin is the smallest value of j for which degQj D 1, then Q` must vanish for

all ` � jmin � 2.
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For the more interesting subclass (B), the northeastern border of such operator T can
consist of one, two or three edges, see Figure 5 below. If it consists of one edge, then after
an affine change of x, we can reduce such an operator to

T D
dk

dxk
� x

dk�1

dxk�1
C ˛

dk�2

dxk�2
; ˛ 2C:

If it consists of two edges, then after an affine change of x, we can reduce such an operator to

T D
dk

dxk
� x

� dk�1
dxk�1

C

X̀
iD1

˛i
dk�1�i

dxk�1�i

�
C

X̀
iD1

ˇi
dk�2�i

dxk�2�i
,

where ` � k � 1 is a positive integer and all ˛i and ˇi are arbitrary complex numbers with
the only restriction ˛` ¤ 0.

Finally, if it consists of three edges, then after an affine change of x, we can reduce
such an operator to

T D
dk

dxk
� x

� dk�1
dxk�1

C

X̀
iD1

˛i
dk�1�i

dxk�1�i

�
C

X̀
iD1

ˇi
dk�2�i

dxk�2�i
C ˇ`C1

dk�3�`

dxk�3�`
,

where ` � k � 3 is a positive integer, all ˛i and ˇi are arbitrary complex numbers with the
restrictions ˛` ¤ 0 and ˇ`C1 ¤ 0.

�

D

x

�

`

D

x

`

D

x

Figure 5. NE borders of the three sub-cases in subclass (B). Here, � denotes a monomial that might
be present, but all monomials below � must be absent, i.e., have vanishing coefficients.

6.2.1. Subclass A, i.e., linear differential operators with constant coefficients. Observe
that in the case of constant coefficients, if S is a T -invariant set, then for any a 2C,
Sa WD S C a is a T -invariant set as well. (Similarly for T�n-invariant sets).

Proposition 6.7. Let

(6.1) T D ak
dk

dxk
C ak�1

dk�1

dxk�1
C � � � C a0; ak ¤ 0;

be a linear differential operator with constant coefficients. Let ƒ�1T D ¹�
�1
1 ; : : : ; �

�1
k
º be

the set of the inverses of characteristic exponents (not necessarily distinct), where

ak t
k
C ak�1 t

k�1
C � � � C a0 D ak.t � �1/.t � �2/ � � � .t � �k/:
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(We use the convention that if �j D 0 for some j , which happens if a0 D 0, then we do not
consider its inverse in the list ƒ�1T /. Then a convex set S � C is T -invariant if and only
if S is closed with respect to Cƒ�1T .

Remark 6.8. Further notice that if Cƒ�1T D C, which happens in the open (in the usual
topology) subset of linear differential operators of the form (6.1) of any given order k � 3,
the only T -invariant S � C is the whole C.

Proof of Proposition 6.7. To prove the implication ), we invoke Lemma 6.5 and the
observation that Cƒ�1T D CCT .

To prove the converse implication, we proceed by induction on k, whose base is the
following statement.

Lemma 6.9. For an operator T D d=dx � �, a convex set S � C is T -invariant if and
only if for any x 2 S and � > 0, the number x � �� belongs to S , which is equivalent to S
being closed with respect to Cƒ�1T .

Proof. In case � D 0, any convex set S is T -invariant by the Gauss–Lucas theorem. For
�¤ 0, using the rescaling of x we can reduce T to the special case d=dxC 1. Observe that
for any polynomial p.x/, the zeros of p0.x/C p.x/ coincide with those of e�x.p.x/ex/0.
Recall that ex D limn!1.1C x=n/

n D limn!1 .x C n/
n=nn. By translation invariance,

we can additionally assume that either all roots of p.x/ are real, or among these roots there
is at least one with a positive imaginary part and at least one with the negative imaginary
part. For any natural n, all roots of ..x C n/np.x//0 lie in the convex hull of all roots of p
appended with �n. When n!1, we get the required statement. In other words, all roots
of p0.x/C p.x/ D e�x.p.x/ex/0 lie in the infinite polygon (or half-line) formed by the
parallel translation of the convex hull of all roots of p to infinity in the direction �1.

To continue our proof by induction, notice that the operator (6.1) factorizes as

T D ak

� d
dx
� �1

�� d
dx
� �2

�
� � �

� d
dx
� �k

�
D

� d
dx
� �1

�
zT ;

where zT has order k � 1. Observe that the factors in the above expansion commute. By
inductive hypothesis, S is a zT -invariant subset if and only if it is closed with respect
to Cƒ�1

zT
.

Assume that S � C is closed with respect to Cƒ�1T and let p.x/ be a polynomial
with all roots in S . We need to show that T .p/ has all roots in S . We have that T .p/ D
.d=dx � �1/ zT .p/. Since S � C is closed with respect to Cƒ�1T , it is also closed with
respect to Cƒ�1

zT
, which implies that all roots of zT .p/ lie in S . Using Lemma 6.9 again

and the fact that Cƒ�1T contains C��11 , we get that all roots of T .p/ D .d=dx � �1/ zT .p/
lie in S as well.

6.2.2. Subclass B, i.e., operators with constant leading term and deg Qk�1 D 1. In
this case, we currently have only a number of sporadic results.

Let us start with operators of order 1. After an affine change of x, we only need to
consider one single operator T D d=dx � x. The following statement holds.
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Lemma 6.10. For T D d=dx � x, its minimal T -invariant set MT
�0 is the real axis.

Proof. It is easy to check, using Theorem 1.3 in [8], that T is a hyperbolicity preserver,
i.e., that T sends every real-rooted polynomial to a real-rooted polynomial (or 0).

Recall that the symbol FT .x; y/ of the differential operator T D
Pk
jD0Qj .x/

d j

dxj
is

by definition given by

FT .x; y/ WD

kX
jD0

Qj .x/y
j :

The above mentioned criterion claims that T is a hyperbolicity preserver if and only if the
real algebraic symbol curve �F �R2 given by FT .x;y/D 0must intersect each affine line
with negative slope in all real points. (The real plane R2 is equipped with coordinates .x;y/).
In other words, this number of real intersection points counting multiplicity must be
equal to the degree of FT .x; y/. In the case under consideration, the symbol FT .x; y/ of
T D d=dx � x equals y � x and its symbol curve has one real intersection point with each
real affine line except for those parallel to x D y. One can also check that no subinterval
of R is a T -invariant set. Indeed, applying T to x � ˛, ˛ 2R, we get

T .x � ˛/ D �x.x � ˛/C 1 D �.x2 � ˛x � 1/;

whose roots are ˛=2 ˙
p
.˛=2/2 C 1. These roots are the endpoints of a real interval

containing ˛.

The next results describe which operators T belonging to the class B preserve a given
half-plane in C. As a consequence, we characterize hyperbolicity preserving T in this class.

Observe that for any operator T belonging to the class B , its symbol FT .x; y/ is of the
form U.y/ � xV.y/ where U.y/ D yk C � � � and V.y/ D yk�1 C � � � . (Here, � � � stands
for lower degree terms in y).

Lemma 6.11. Let H � C be an open half-plane represented as

H D ¹az C b W Imz � 0º;

where a; b 2C and a ¤ 0, and let

T D U
� d
dx

�
C xV

� d
dx

�
;

where U and V are polynomials. Then the following are equivalent:
(1) H is Tn-invariant for all n.

(2) The bivariate polynomial U.�y=a/C bV.�y=a/C aV.�y=a/x is stable in .x; y/.

(3) Either V � 0 and U.�y=a/ is stable, or the rational map

z 7�!
1

a

U.�z=a/

V .�z=a/
C
b

a

maps the open upper half-plane to the closed upper half-plane.

(For the notions of stability and Tn-invariance, see Definitions 1.5 and 3.9).
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Proof. By Proposition 3.10, the first two statements are equivalent. The polynomial in (2)
is stable if whenever z is in the upper half-plane and

U.�z=a/C bV.�z=a/C aV.�y=a/w D 0;

then w is in the closed lower half-plane. Solving for w gives the equivalence of state-
ments (2) and (3).

We recall the following version of the Hermite–Biehler theorem from [6].

Lemma 6.12. Let f; g 2RŒx�. The following statements are equivalent:
• the univariate polynomial f .x/C ig.x/ is stable,

• the bivariate polynomial f .x/C yg.x/ is stable,

• f and g are real-rooted, their zeros interlace, and

W.f; g/ D f 0.x/g.x/ � f .x/g0.x/ � 0; for all x 2R:

Also, if the zeros of f and g interlace, then eitherW.f;g/� 0 for all x orW.g;f /� 0
for all x.

Corollary 6.13. Let

T D U
� d
dx

�
C xV

� d
dx

�
;

where U.y/; V .y/2RŒy�. Then R is Tn-invariant for all n if and only if

• there is a nonzero constant � 2C such that �U.y/; �V .y/ 2 RŒy�, and

• the zeros of �U.y/ and �V .y/ are real and interlacing, and

W.�V.y/; �U.y// � 0; for all x 2R:

Proof. If R is Tn-invariant for all n, then there is a nonzero � 2C such that �T WRŒx�!
RŒx�, see Section 4 of [6].

Moreover, for any differential operator T with real coefficients, R is Tn-invariant for
all n if and only if the closed lower half-plane is Tn-invariant for all n, see Theorem 1.2
and Theorem 1.3 in [8]. Hence the result follows from Lemma 6.11 and Lemma 6.12.

7. Variations of the original set-up

Above we have mainly concentrated on invariant sets for roots of polynomials of degree
at least n. Currently, we neither have a description of the minimal invariant sets whose
existence we have established nor a numerically stable procedure which will construct
them or their approximations in specific examples.

The goal of this section is to present some interesting variations of our basic notion of
invariant sets together with numerical examples illustrating the other types of invariant sets
introduced below. These notions are of independent interest and might be easier to study.
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Variation 1: invariant sets for roots of polynomials of a fixed degree

Instead of looking for a set which is invariant for roots of polynomials of degree at least n,
we can relax the requirement and ask that a set is only invariant for roots of polynomials of
degree exactly n. We call this property Tn-invariance, see Definition 1.5.

Given T and n, we denote by ITn the family of Tn-invariant sets, and we denote by MT
n

the corresponding unique minimal closed invariant set (if it exists), see the introduction.
Note that MT

n � MT
�n. It is natural to study MT

n for exactly solvable operators T , since in
this case they preserve the degrees of polynomials they act upon.

One can observe that in many cases MT
n can have a complicated structure – in particular,

it does not need to be convex, and it can be a fractal, etc. An illustration can be found in
Example 7.1 and Figure 6. We plan to carry out the detailed study of Tn-invariant sets in
the sequel paper [2].

Example 7.1. The minimal invariant set MT
1 for the differential operator T D .x2 � xC i/

d=dx C 1 coincides with the classical Julia set associated with f .x/ D x2 C i .

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 6. The minimal set MT
1 for the operator .x2 � x C i/d=dx C 1. This set has the property

that if t 2MT
1 , then˙

p
t � i is also in MT

1 .

Variation 2: Hutchinson-invariant sets

A set S � C is called Hutchinson-invariant in degree n if every polynomial of the form
P.x/ D .x � t /n, with t 2S , has the property that T .P / has all roots in S (or is constant).
In particular, a T1-invariant set is a Hutchinson-invariant set in degree 1 and vice versa.
However, for n > 1, Tn-invariant sets and Hutchinson-invariant sets in degree n in general
do not coincide. We denote by HT

n the collection of all Hutchinson-invariant sets in degree n
and by HMT

n 2HT
n the unique minimal under inclusion closed Hutchinson-invariant set in

degree n (if it exists). Notice that

HMT
n � MT

n � MT
�n:

In particular, if HMT
n exists, then MT

n and MT
�n exist as well.
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To explain our choice of terminology, recall that a Hutchinson operator is defined by a
finite collection of univariate functions �1; : : : ; �m, and its invariant sets were introduced
and studied in [15] as well as a large number of follow-up papers. In our situation, let us
assume that the action of T on .x � t /n factorizes as

(7.1) T ..x � t /n/ D .x � .a1t C b1// � � � .x � .amt C bm// ;

see, e.g., (3.2). Then we have that if S � C is Hutchinson-invariant in degree n, then
fi .S/ � S for all i D 1; 2; : : : ;m, where fi .t/ D ai t C bi . If all these fi are contractions,
that is, jai j < 1, one can show that there is a unique minimal non-empty closed Hutchinson-
invariant set S , and it is exactly the invariant set associated with the Hutchinson operator
defined by f1; : : : ; fm, see [15]. (One can also consider other types of factorizations
similar to (7.1) with, e.g., polynomial or rational factors.) This observation implies that
one can obtain many classical fractal sets such as the Sierpiński triangle, the Cantor set,
the Lévy curve and the Koch snowflake as Hutchinson-invariant sets, see Example 7.2. In
particular, MT

n does not have to be connected.
Julia sets associated with rational functions can also be realized as Hutchinson-invariant

sets of appropriately chosen operators T , see [2]. Let us illustrate the situation with
Example 7.2 and Example 7.3.

Example 7.2. For the differential operator T D x.x C 1/ d
2

dx2
C i d

dx
C 2, the set HMT

2 is
a Lévy curve. The roots of T ..x � t /2/ are given by

x D
1C i

2
t and x D

1 � i

2
.t � i/:

The two maps

(7.2) t 7!
1C i

2
t and t 7!

1 � i

2
.t � i/

are both affine contractions which together produce a fractal Lévy curve as their invariant
set, see Figure 7. In particular, every member of IT2 must contain HMT

2 given by the latter
curve which also implies that MT

2 exists.

Example 7.3. The differential operator T D x.x � 1/d=dx C 1 admits two minimal1 sets
HMT

1 , one of which is the one-point set ¹0º and the other is the unit circle. This fact is in
line with known properties of the Julia sets; some very special rational functions admit
several completely invariant sets containing one or two points. The reason why the above
case is exceptional is that T maps the polynomial x to x2, which has the same zeros as x.
In general, such exceptional invariant sets only show up in the situation when there exists
some t such that T .x � t / D c.x � t /k , see [4].

Remark 7.4. There are at least two advantages in studying Hutchinson-invariant sets
compared to the set-up of the present paper. The first one is that the occurring types of
fractal sets have already been extensively studied which connects this topic to the existing

1Minimal here means that no proper closed subset is an invariant set.
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Figure 7. The Hutchinson-invariant set HMT
2 for the operator T D x.x C 1/ d

2

dx2
C i d

dx
C 2. The

two colors indicate the image of the set under the two maps in (7.2).

classical complex dynamics, see, e.g., [3, 13]. The second advantage is that there exists a
stable Monte–Carlo-type method for producing a good approximation of HMT

n , whenever
the latter set is compact. Namely,

(1) start with some z0 2C;
(2) for j D 0; 1; 2; : : : , pick randomly a root of T ..x � zj /n/ with equal probability, and

denote it by zjC1;
(3) plot zjC1 and iterate step 2 until a picture emerges.

Our experiments show that about 100 iterations per final pixel gives a clear picture.
This algorithm was used to create Figure 6. The set of points zj rapidly converge to the
set HMT

n , and the initial choice of z0 statistically will not matter.

Further information about Hutchinson-invariant sets can be found in [14].

Variation 3: Continuously Hutchinson-invariant sets

Given T and n as above, consider

 .x; t; n/ WD T ..x � t /n/=.x � t /n�k ;

where k is the order of the operator T . Then  .x; t; n/ is a polynomial in CŒx; t; n�. Given
n0 � 0, we say that a set S is continuously Hutchinson-invariant with parameter � n0 if
for every real number n � n0, we have that

 .x; t0; n/ D 0 (considered as a polynomial in CŒx�)

has all roots in S , whenever t0 2S . We denote by CHT
�n0

the collection of all continuously
Hutchinson-invariant with parameter � n0 and by CHMT

�n0
the minimal non-empty closed

such set S (it if exists). It is easy to verify that, for all integers m � 1,

HMT
m � CHMT

�m � CHMT
�0:

Properties of the minimal continuously Hutchinson invariant set CHMT
�n0

seem to
substantially depend on whether n0 D 0 or n0 > 0: namely, the boundary of CHMT

�0 looks
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rectifiable, while the boundary of CHMT
�1 seem to have a fractal (and non-rectifiable) char-

acter. However, in contrast with Hutchinson-invariant sets which can be fractal, CHMT
�n0

always has a finite number of connected components. For operators T of order 1, con-
tinuously Hutchinson invariant sets with positive parameter have been studied in detail
in [1].

In general, it is unclear what the relation between CHMT
�n and MT

�n is, but for large n,
we expect the inclusion CHMT

�n � MT
�n, since extending the domain of n from the set of

large integers to the set of large real numbers does not seem to make a big difference. Note
that Theorem 3.14 and Proposition 7.5 suggest that these sets coincide in the limit n!1.

The following result shows that as n0 grows, the minimal continuously Hutchinson-
invariant set converges to the zero locus of the leading coefficient Qk of T .

Proposition 7.5 (Convergence to the zero locus of Qk). Given a non-degenerate operator
T D

Pk
jD0Qj

d j

dxj
, R > 0 and ı > 0, then there exists n0 D n0.R; ı/ such that for all

t 2C with jt j < R, we have that each root of

T Œ.x � t /n� D 0

different from t lies at a distance at most ı from some root of Qk.x/.
In particular, for any ı > 0, there exists an n0 D n0.ı/ such that the ı-neighborhood

of the union of roots of Qk.x/ is Hutchinson-invariant in degree n, for all n � n0. The
same holds for the continuously Hutchinson-invariant sets with parameter exceeding n.

Proof. Fix R > 0 and ı > 0. A straightforward calculation shows that

 .x; t; n/

n.n � 1/ � � � .n � k C 1/
D Qk.x/C

kX
jD1

Qk�j .x/.x � t /
j

.n � k C 1/.n � k C 2/ � � � .n � k C j /
�

Hence, the zeros  .x; t; n/ D 0 tend to the zeros Qk.x/ as n!1, provided that jt j < R.
Thus, for some n0 WD n0.ı/, all roots of  .x; t; n/ D 0 lie at a distance at most ı from the
fundamental polygon of T .

Variation 4: two-point continuously Hutchinson invariant sets

Our last variation of the notion of invariant sets is inspired by the convexity property of
invariant sets from IT�n.

Set
P.x/ WD .x � t1/

n1.x � t2/
n2

and consider

�.x; t1; n1; t2; n2/ WD
T .P /

.x � t1/n1�k .x � t2/n2�k
,

where k is the order of the operator T . Again, �.x; t1; n1; t2; n2/ is a polynomial in
CŒx; t1; n1; t2; n2�. Given n0 � 0, a set S � C is called two-point continuously Hutchinson
invariant with parameters � n0 if for every pair of real number n1; n2 � n0, we have that

�.x; t1; n1; t2; n2/ D 0 (considered as a polynomial in x)
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Figure 8. The boundaries of the minimal continuously Hutchinson-invariant sets CHMT
�0 for the

operators T D z2 d=dz C .z � 1/ (left), and T D z3 d=dz C .z C 1/.z � 1/ (right). The first curve
is parameterized by r.�/ D sin �=� in polar coordinates, while the second is given by the equation
r2.�/ D sin 2�=.2�/. Proofs of these facts can be found in [1].

has all roots in S , whenever t1; t2 2 S . We denote by C2HMT
�n0

the minimal under inclusion
non-empty closed set S which is two-point Hutchinson invariant with parameters � n0 (if
it exists).

Obviously, CHMT
�n0
� C2HMT

�n0
. Moreover, we can apply the same technique as in

Theorem 2.2, to show that two-point continuous invariant sets are convex.

Remark 7.6. The linear operators which factor as in (7.1) allow us to produce a large
class of fractal sets associated with Hutchinson operators, where each map is an affine
contraction from C to C. These minimal invariant sets HMT

n are fractals, and therefore
might be difficult to study. It is highly plausible that continuously Hutchinson invariant
set CHMT

�0 or its larger convex cousin C2HMT
�0 have piecewise analytic boundary. For

operators of order 1, discussions of analyticity of the boundary of the former set can be
found in [1]. Remember that we have the set of inclusions

HMT
n � CHMT

�0 � C2HMT
�0;

so a simple description of CHMT
�0 may provide some additional insight in the nature

of HMT
n .

8. Some open problems

Here we present a very small sample of unsolved questions directly related to the results of
this paper.

(1) The major open problem is whether it is possible to describe the boundary of MT
�n for

non-degenerate or degenerate operators with non-defining Newton polygons and Qk
different from a constant. At the moment, we only have some information what
happens with MT

�n when n!1. Already for non-degenerate operators of order 1,
this problem seems to be quite non-trivial, cf. [1].
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(2) Another important issue is how MT
�n depend on the coefficients of operator T . It seems

that even in the case when T is non-degenerate and n is such that MT
�n is compact,

it might loose compactness under small deformation of T with the space of non-
degenerate operators of the same order. Even for operators of order one the question is
non-trivial. For example, consider the space of pairs of polynomials .Q1.x/;Q0.x//
where degQ1.x/ D k; degQ0.x/ D k � 1 and T D Q1.x/d=dx CQ0.x/. Fixing
a positive integer n, is it possible to describe the space of such pairs .Q1.x/;Q0.x//
for which MT

�n is compact?
(3) Is it possible to characterize the invariant sets for Case B, i.e., operators with constant

leading term and degQk�1 D 1, see end of Section 6.
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