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On the nonlinear thin obstacle problem

Anna Abbatiello, Giovanna Andreucci and Emanuele Spadaro

Abstract. The thin obstacle problem, or n-dimensional Signorini problem, is a clas-
sical variational problem with roots in elasticity theory and wide-ranging applica-
tions. The vast literature concerns mostly quadratic energies, whereas only partial
results have been proved in the nonlinear case. In this paper, we consider the thin
boundary obstacle problem for a general class of nonlinearities and we prove the
optimal C 1;1=2-regularity of the solutions in any space dimension.

1. Introduction

We are interested in the boundary (thin) obstacle problems for a class of nonlinear func-
tionals of the type

(1.1) min
u2Ag

Z
BC1

f .ru/ dx;

where B1 is the unit ball in Rn, with n � 2, and for any subset E � Rn,

EC D E \ ¹xn > 0º and E 0 WD E \ ¹xn D 0º:

• The class of competitor functions is

Ag WD ¹u 2 W
1;1
0 .BC1 / W ujB 01 � 0; uj.@B1/C D gj.@B1/Cº;

where g 2 C 2.Rn/ prescribes the boundary values and satisfies gjRn�1�¹0º � 0.
• The nonlinear (non-quadratic) energy density f WRn ! R is of the form

(1.2) f .p/ D h.jpj/ for all p 2 Rn;

with h 2 C 2.R/ satisfying

(1.3) h.0/ D h0.0/ D 0; h00.t/ D 1CO.t/ for t ! 0C:
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• The function f is convex and the matrix r2pf .p/ is uniformly positive definite in
compact subsets, i.e., fulfills the following local ellipticity condition:

8M > 0; 9 Œ5�� D �.M/ > 0 W hr2pf .p/�; �i � �j�j
2; 8jpj �M; 8� 2 Rn:(1.4)

This class of problems contains the linear case of the Dirichlet energy h.t/ D t2=2

and the geometric case of minimal surfaces h.t/ D
p
1C t2 � 1, where the constant 1 is

clearly irrelevant in the minimization problem. The existence and uniqueness of a solu-
tion u in the class Ag under suitable growth conditions on f can be established following
classical results by Giaquinta–Modica and Giusti [25, 28]. The solution to (1.1) can be
characterized as the weak solution to the system

div.rpf .ru// D 0 in BC1 ;(1.5a)
urpf .ru/ � en D 0 on B 01;(1.5b)
�rpf .ru/ � en � 0 on B 01;(1.5c)

u � 0 on B 01;(1.5d)
u D g on .@B1/C;(1.5e)

where en denotes the last vector of the standard basis of Rn.

1.1. Previous results

The minimization problem (1.1) with the Dirichlet integral
R
jruj2 stems from the pio-

neering works of Signorini in elasticity theory [38]. Since then, lower dimensional obsta-
cle problems naturally appeared in several fields, with applications, for instance, in fluid
mechanics when describing osmosis through semi-permeable membranes, as well as in the
boundary heat control problem, and many other contexts (see, e.g., the book by Duvaut-
Lions [13] and the survey papers [15, 35, 37] for an extensive bibliography and further
applications).

Given for granted the existence of Lipschitz solutions, which in great generality have
been shown to exist in the works by Giaquinta–Modica [25] and Giusti [28], the main
questions concern two aspects of the solutions u:
• the regularity of u up to B 01, where the boundary conditions are not prescribed but are

implicitly determined by the solution itself through its free boundary,
• the regularity of the free boundary, that is the subset of B 01 where the solution ceases

to saturate the one-side constraint and takes the natural boundary conditions.
Most of the results in the literature deal with the linear case rpf .p/ D p, for which

both the optimal regularity of the solution u and the structure of the free boundary are
known. As far as the first aspect is concerned, we recall the results by Lewy [31] and
Richardson [34] for n D 2, Caffarelli [6], Kinderlehrer [30], Ural’tseva [40] for the C 1;˛

regularity, for some ˛ > 0; whereas the optimal regularity of the solutions is due to
Athanasopoulos–Caffarelli in [4], where the authors show that the solution to (1.1) with
rpf .p/ D p are C 1;1=2loc in BC1 [ B10 , and that in general cannot be more regular.

On the other hand, the nonlinear case is much less understood, despite its obvious rel-
evance in the applications. One of the first occurrences of such instance can be found in
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a paper by Nitsche [33] for the case of the minimal surface operator, for which the exis-
tence of Lipschitz solutions has been first proven by Giusti [27]. Since then, only partial
results have been established for the nonlinear case, which turned out to be considerably
more complicated than the linear counterpart. The first important contributions are given
by Frehse [20, 21], where, under very general assumptions, the author shows the conti-
nuity of the first derivatives along the directions parallel to B 01 in any dimension n � 3,
and the continuity of the normal derivative in the case n D 2 for the Lipschitz solutions to
nonlinear elliptic variational inequalities. More refined results, regarding both the optimal
regularity of the solutions and their free boundaries, have been found by Athanasopou-
los [3] for the minimal surface case in dimension n D 2, and only recently more precise
results for some nonlinear cases in general dimension appeared. We recall the case of
minimal surfaces with flat obstacles treated by Focardi and the third named author [18],
where the optimal Hölder continuity of the derivatives is proven, together with a study of
the structure and the properties of the free boundary; as well as the study of a general class
of nonlinear variational inequalities by Di Fazio and the third named author in [12], where
for the boundary obstacle problem the non-optimal C 1;˛ regularity in BC1 [B

0
1 is shown.

We point out also the nonlinear thin obstacle problems considered in [11] in relation with
the boundary Bernoulli problem in dimension n D 2, where the optimal C 1;1=2 regularity
and the structure of the free boundary are derived with the use of complex analysis tech-
niques and the connected literature on the fully nonlinear case (see, e.g., [8, 14, 32, 36]),
where analogous results are obtained with completely different methods, in particular,
in [8] the C 1;1=2 regularity is proven under the assumption of rotational invariant fully
nonlinear operators.

Our understanding is even more limited concerning the properties of the free boundary
of the solutions. Indeed, if for the linear problem many details on the free boundary have
been investigated (structure of regular points [7,16], singular points [22], non-regular and
non-singular points [2, 17, 19], to mention only few of the most relevant works), for the
nonlinear case much less is known, left aside the aforementioned results in the very special
case of two dimensions and for the minimal surface case considered in [18].

1.2. Main result: Optimal C 1;1=2 regularity

The aim of this paper is to establish the optimal C 1;1=2-regularity for the general class of
problems (1.1). The starting point is the C 1;˛-regularity established in [12].

Theorem 1.1. Let u be the solution to the boundary obstacle problem (1.1) or equiva-
lently (1.5). Then for every r < 1, there exists a constant C > 0, depending on r , Lip.u/
and the nonlinear energy density f , such that

kukC 1;1=2.BCr [B 0r / � CkukL2.BC1 /
:

The idea of the proof is very much influenced by the work on stationary two-valued
graphs done by Simon–Wickramasekera [39]. This connection has been already used
in the case of the minimal surface operator in [18], whose C 1;˛ solutions fulfilled the
hypotheses (suitably formulated) of [39]. Here instead we show how the proof of [39] can
be adapted in order to cover the more general cases under examination.

We proceed in several steps. First, we introduce a new frequency function tailored to
the nonlinear operator rpf .ru/ that is a modification of the famous Almgren frequency
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function used for Dirichlet energy minimizers [1] (see also [10]). In order to show its
(almost) monotonicity, we need to use the C 1;˛-regularity established in [12] and to
exploit a dichotomy argument first used in [39]. The monotonicity formula for this mod-
ified frequency allows then to study the limit of the blow-up sequence and leads to the
optimal C 1;1=2-regularity as in the classical case of quadratic energies.

A byproduct of our main result Theorem 1.1 is that the results for the free boundary of
the solutions to thin obstacle problems for a linear differential operator with Hölder con-
tinuous coefficients apply (see [23]), and moreover, if one has that h.t/ D t2=2CO.t4/
(as in the minimal surface case, for instance), then the optimal regularity in Theorem 1.1
implies that the solution u solves a thin obstacle problem for a linear operator with Lip-
schitz coefficients, and more refined results on the structure of the singular set can be
derived (see [2,18,24]). Moreover, we expect that the techniques developed in the present
paper, and in particular the search for a form of the frequency functions tailored to non-
linear problems, can be useful in related questions in the geometric calculus of variations
(see, e.g., the general nonlinear energies for multiple valued functions [9]).

The more general nonlinear thin obstacle problems, starting from the question raised
by Nitsche on minimal surfaces with non-constant unilateral thin constraints, remain still
open, and more refined techniques need to be developed.

2. Frequency function

2.1. Preliminary estimates

The starting point of our analysis is the C 1;˛loc .B
C
1 [ B

0
1/-regularity of the solutions u

of (1.1) established in [12]. For our aims, we need to use the following Schauder andW 2;2

estimates: for any % 2 .0; N%/,

(2.1) kukL1.BC
%=2
/ C %krukL1.BC

%=2
/ C %

1C˛ Œru�˛;BC
%=2
� k

�
%�n

Z
BC%

u2
�1=2

and

(2.2) kr
2ukL2.BC

%=2
/ � ˇ%

�2
kukL2.BC% /;

where the constants N%; k; ˇ > 0 depend on the dimension n, Lip.u/ and the nonlinear
energy density f , and

Œru�˛;BC% WD sup
x¤y2BC%

jru.x/ � ru.y/j

jx � yj˛

is the usual Hölder seminorm. These estimates, although not explicitly derived in [12],
follow straightforwardly from the proofs therein, and we give the details in Appendix A.

2.2. Frequency function

We use the notation ƒu for the contact set:

ƒu WD ¹u D 0º \ B
0
1;



On the nonlinear thin obstacle problem 1837

and �u for the free boundary

�u WD
®
x 2 B 01 W B

0
r .x/ \ƒu ¤ ; and B 0r .x/ nƒu ¤ ; for all r > 0

¯
:

In the sequel of this section we will always assume that the origin is a point of the free
boundary:

0 2 �u:

Recall that by the C 1;˛-regularity, this implies that

u.0/ D 0 D jru.0/j:

For any % 2 .0; 1/, we introduce the following nonlinear modification of the standard
frequency function of u:

(2.3) N.%/ WD
D.%/

H.%/
,

where

D.%/ WD %2�n
Z
BC%

rpf .ru/ � ru dx; H.%/ WD %1�n
Z
.@B%/C

u2 d�x :

For convenience, we set the notation

kuk% D
�
%�n

Z
BC%

u2 dx
�1=2

:

The main result about the frequency is that, under the assumption of a doubling condition
for u, a quasi-monotonicity formula holds.

Proposition 2.1. Let u 2 C 1;˛loc .B
C
1 [ B

0
1/ be the solution to the boundary obstacle prob-

lem (1.5), and assume that 0 2 �u and (2.1) and (2.2) hold with constants N%, k and ˇ. If
there are 
 > 1 and � 2 .0; 1=2� such that

(2.4) kuk� > 0; kuk% � 
kuk%=2 for any % 2 .0; ��;

then there exists %0 D %0. N%;�/ 2 .0; 1/ such that for all % 2 .0; %0/, the frequency function
N.%/ is well defined, bounded and

d
d%
Œexp.˛�1C%˛/N.%/� � 0 for any % 2 .0; %0/;

where C D C.n; ˛; 
; ˇ; k; Œru�˛/ > 0.

Remark 2.2. Let us observe that the doubling condition (2.4) can be written as

(2.5)
Z
BC%

u2 dx � 2n
2
Z
BC
%=2

u2 dx for any % 2 .0; ��;

and, in particular, kuk� > 0 implies that

kuk% > 0 for any % 2 .0; ��:
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In order to prove Proposition 2.1, we need some technical results.

Remark 2.3. Note that if h satisfies (1.3), then there exist Nt > 0 and functions !1 and !2
such that

h00.t/ D 1C !2.t/ and h0.t/ D t .1C !1.t//;

with the functions !1 and !2 satisfying, for all t 2 .0; Nt /,

j!2.t/j C j!1.t/j C t j!
0
1.t/j � Ct; !2.t/ D !1.t/C t!

0
1.t/:

Moreover, formula (1.2) yields

(2.6) rpf .p/ D h
0.jpj/

p

jpj
D .1C !1.jpj//p

and

r
2
pf .p/ D

h0.jpj/

jpj
IdC

�
h00.jpj/ �

h0.jpj/

jpj

�p ˝ p
jpj2

(2.7)

D .1C !1.jpj// IdC !01.jpj/
p ˝ p

jpj
�

Therefore, straightforward computations imply the following estimates:

jru � rpf .ru/j � C jruj
2;(2.8)

j�u � div.rpf .ru//j � C jruj jr2uj;(2.9)

where the constant C is independent of u.

The following version of the Poincaré inequality is needed (see also Section 6 of [39]).

Lemma 2.4. Let u 2 C 1;˛.BC1 / with u.0/ D 0 fulfilling the Schauder estimates (2.1).
Then

(2.10)
Z
BC%

u2 dx � C%2
Z
BC%

jruj2 dx for any % 2 .0; N%/;

with C > 0 depending on the dimension n, the constants in the Schauder estimates, and
in the doubling condition.

Proof. Let % 2 .0; N%/, � 2 .0; 1=2/ and

� WD

−
BC
�%

u dx:

Then the appropriate version of the Poincaré inequality (see Lemmas 7.12 and 7.16
of [26]) impliesZ

BC%

ju � �j2 dx � C%2
Z
BC%

jruj2 dx; with C D C.n; �/ > 0:
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Therefore,

(2.11)
Z
BC%

u2 dx � 2
Z
BC%

.ju � �j2 C �2/ dx � 2C%2
Z
BC%

jruj2 dx C !n%n�2:

Since there exists y 2 BC
�%

with u.y/ D �, and since u.0/ D 0, it follows that

� � �% sup
BC
�%

jruj:

Employing also the L1-estimate for ru in (2.1), from (2.11), we get thatZ
BC%

u2 dx � C%2
Z
BC%

jruj2 dx C k2!n �2
Z
BC%

u2 dx;

where k is the constant in (2.1). This in turn gives (2.10) if � is sufficiently small, depend-
ing on k.

In order to establish the boundedness of the frequency function we need the following
auxiliary lemma.

Lemma 2.5. Let u 2 C 1;˛loc .B
C
1 [ B

0
1/ be the solution of the boundary obstacle prob-

lem (1.1) fulfilling the Schauder estimates (2.1) and (2.2) with constants N%, k and ˇ, the
doubling condition (2.5) with constants 
 and � , and 0 2 �.u/. Then

(2.12)
Z
.@B%/C

u2 d�x �
C1

%

Z
BC%

u2 dx for all % <
1

2
min¹ N%; �º;

with C1 D C.n; k; 
/ > 0, and there exists Q% 2 .0; N%/ such that

(2.13)
Z
BC%

u2 dx � %
Z
.@B%/C

u2 d�x C C2%1C˛
Z
BC%

juj jruj dx for all % 2 .0; Q%/;

with C2 D C2.Œru�˛/ > 0.

Proof. We start by proving (2.12). Employing the Schauder estimates (2.1) and the dou-
bling condition (2.5), we have that for any 0 < s < % < 1

2
min¹ N%; �º,

d
ds

� Z
.@Bs/C

u2 d�x
�
D
n � 1

s

Z
.@Bs/C

u2 d�x C 2
Z

.@Bs/C

uru � � d�x

�
.n � 1/k2

s%n
j.@Bs/

C
j

Z
BC2%

u2 dx C
2k2

%nC1
j.@Bs/

C
j

Z
BC2%

u2 dx

� .n � 1/n2n!n s
n�2 k

2


%n

Z
BC%

u2 dx C n!n2n sn�1
k2


%nC1

Z
BC%

u2 dx

� C.n; k; 
/
1

%2

Z
BC%

u2 dx;

where �.x/D x=jxj is the outer normal vector andC.n;k;
/ > 0 is a constant. Integrating
with respect to s 2 .0; %/, with % < 1=2min¹ N%; �º, (2.12) follows.



A. Abbatiello, G. Andreucci and E. Spadaro 1840

Turning to (2.13), we notice that

d
ds

� Z
.@Bs/C

u2 d�x
�
D .n � 1/sn�2H.s/C 2

Z
.@Bs/C

uru � � d�x

� 2

Z
.@Bs/C

uru � � d�x :

Since u fulfills (1.5), using the divergence theorem and (2.6), we deduce thatZ
.@Bs/C

uru � � d�x D
Z
.@Bs/C

u.ru � rpf .ru// � � d�x(2.14)

C

Z
.@Bs/C

urpf .ru/ � � d�x

D �

Z
.@Bs/C

u!1.jruj/ru � � d�x

C

Z
BCs

div.urpf .ru// dx C
Z
B 0s

urpf .ru/ � en dx0:

Recall that j!1.t/j � Ct for t � Nt . Hence, considering that ru.0/ D 0, we find a radius Q%
such that

jru.x/j � Nt for all x 2 BC
Q%
:

This implies thatˇ̌̌ Z
.@Bs/C

u!1.jruj/ru � � d�x
ˇ̌̌
� C

Z
.@Bs/C

jujjruj2 d�x for all s < Q%:

As far as the third integral in (2.14) is concerned, we notice that by the Signorini boundary
condition (1.5), we infer that Z

B 0s

urpf .ru/ � en dx0 D 0:

Finally, the second integral in (2.14) is positive for small enough radii. Indeed,Z
BCs

div.urpf .ru// dx D
Z
BCs

ru � rpf .ru/ dx C
Z
BCs

u div.rpf .ru// dx

D

Z
BCs

ru � rpf .ru/ dx

D

Z
BCs

jruj2.1C !1.ru// dx � 0;

if Q% is small enough to ensure that jru.x/j � C�1 for x 2 BCs .
We can then estimate as follows:

d
ds

� Z
.@Bs/C

u2 d�x
�
� �C

Z
.@Bs/C

jujjruj2 d�x � �Cs˛
Z
.@Bs/C

jujjruj d�x ;
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where we employed the Hölder continuity of ru. Integrating the last inequality for s 2
.�; %/, with % < Q%, we obtainZ %

�

d
ds

� Z
.@Bs/C

u2 d�x
�

ds � �C%˛
Z %

�

Z
.@Bs/C

jujjruj d�x ds;

which gives Z
.@B%/C

u2 d�x C C%˛
Z
BC%

jujjruj dx �
Z
.@B� /C

u2 d�x :

Integrating again with � 2 .0; %/,

%

Z
.@B%/C

u2 dx C C%˛C1
Z
BC%

jujjruj dx �
Z
BC%

u2 dx;

which is (2.13).

2.3. Boundedness of the frequency.

If 0 2 �u, then u is a nonzero solution of the thin obstacle problem and this implies thatR
.@B%/

C u2 d�x > 0 for every % > 0.
By virtue of (2.12) and the Poincaré inequality (2.10), it follows thatZ
.@B%/C

u2 d�x �
C

%

Z
BC%

u2 dx � C%
Z
BC%

jruj2 dx for all % 2 .0;min¹�; N%º=2/:

On the other hand, by the Schauder estimates (2.1) and the doubling condition (2.5), we
get

(2.15) %2
Z
BC%

jruj2 dx � k2
� 1
%n

Z
BC2%

u2 dx
�
jBC% j � C

Z
BC%

u2 dx;

where C D C.n; k; 
/. Next, (2.13) and the Cauchy–Schwarz inequality imply thatZ
BC%

u2 dx � %
Z
.@B%/C

u2 d�x C C%1C˛
Z
BC%

juj jruj dx

� %

Z
.@B%/C

u2 d�x C C"%2
Z
BC%

jruj2 dx C
C%2˛

"

Z
BC%

juj2 dx

for any " > 0. Then there exists %0."/ 2 .0; Q%/ such that�
1 �

C%2˛

"

� Z
BC%

u2 dx � %
Z
.@B%/C

u2 d�x C C"%2
Z
BC%

jruj2 dx

for any % 2 .0; %0."// (with positive left-hand side). Going back into (2.15), we have

%2
Z
BC%

jruj2 dx � C%
Z
.@B%/C

u2 d�x C C"%2
Z
BC%

jruj2 dx;
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and thus choosing " > 0 sufficiently small, we conclude

(2.16) %

Z
BC%

jruj2 dx � C
Z
.@B%/C

u2 dx:

Therefore, using that

0 < c1 � 1C !1.jruj/ � c2 for all x 2 BC%0 with %0 sufficiently small;

we can conclude that if 0 2 �u and the doubling condition (2.5) holds, then there exist
positive constants C1, C2 and %0 (depending on n, k, 
 , and Œru�˛) such that

(2.17) C1 � N.%/ � C2 for any % 2 .0; %0�:

2.4. Quasi-monotonicity of the frequency

Here we prove Proposition 2.1.
Deriving (2.3), we obtain

N 0.%/ D
D0.%/H.%/ �D.%/H 0.%/

H.%/2
,

with

D0.%/ D .2 � n/%1�n
Z
BC%

rpf .ru/ � ru dx C %2�n
Z
.@B%/C

rpf .ru/ � ru d�x

and

(2.18) H 0.%/ D 2%1�n
Z
.@B%/C

uu% d�x ;

where u% D ru � x=% denotes the radial derivative. Now we can rewriteN 0.%/ as follows:

N 0.%/ D
1

.H.%//2

h�
2%2�n

Z
.@B%/C

ju%j
2 d�x

�
H.%/ �

�
%2�n

Z
.@B%/C

uu% d�x
�
H 0.%/

i
C

1

.H.%//2

h�
D0.%/ � 2%2�n

Z
.@B%/C

ju%j
2 d�x

�
H.%/

�

�
D.%/ � %2�n

Z
.@B%/C

uu% d�x
�
H 0.%/

i
:

Then the Cauchy–Schwarz inequality implies that

N 0.%/ �
1

.H.%//2

h�
D0.%/ � 2%2�n

Z
.@B%/C

ju%j
2 d�x

�
H.%/(2.19)

�

�
D.%/ � %2�n

Z
.@B%/C

uu% d�x
�
H 0.%/

i
:

We now estimate each term in the right-hand side of (2.19), beginning with

E1 WD
ˇ̌̌
D0.%/ � 2%2�n

Z
.@B%/C

ju%j
2 d�x

ˇ̌̌
:
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Using the divergence theorem first and x � en D 0 for every x 2 B 0%, we deduce that

%

Z
.@B%/C

rpf .ru/ � ru d�x(2.20)

D

Z
BC%

div.rpf .ru/ � rux/ dx C
Z
B 0%

rpf .ru/ � rux � en dx

D n

Z
BC%

rpf .ru/ � ru dx C
Z
BC%

.D2urpf .ru// � x dx

C

Z
BC%

.@plrpf .ru/ � ru/.@lru � x/ dx:

First, let us consider the second integral on the right-hand side and integrate by parts (with
respect to the j -th variable in D2u D @i@ju):Z

BC%

.D2urpf .ru// � x dx

D

Z
.@B%/C

ru � x rpf .ru/ � � d�x �
Z
B 0%

ru � x rpf .ru/ � en dx

�

Z
BC%

rpf .ru/ � ru dx �
Z
BC%

.ru � x/ .D2
pf .ru/ W D

2u/ dx

D

Z
.@B%/C

ru � x rpf .ru/ � � d�x �
Z
BC%

rpf .ru/ � ru dx

�

Z
BC%

.ru � x/.D2
pf .ru/ W D

2u/ dx;

where we employed the Signorini boundary condition (1.5b) on B 0% in the boundary inte-
gral on the right-hand side. Now, using (2.6) and (2.7), we getZ
BC%

.D2urpf .ru// � x dx

D

Z
.@B%/C

.1C !1.jruj//ru � x ru � � d�x �
Z
BC%

rpf .ru/ � ru dx

�

Z
BC%

ru � x .1C !1.jruj//�u dx �
Z
BC%

ru � x !01.jruj/
ru˝ru

jruj
W D2u dx:

Next we consider the third term on the right-hand side of (2.20):Z
BC%

.@plrpf .ru/ � ru/.@lru � x/ dx D
Z
BC%

@2plpj f .ru/@ju @
2
liuxi dx

D

Z
BC%

.1C !1.jruj//.D
2uru/ � x dx C

Z
BC%

!01.jruj/jruj.D
2uru/ � x dxDWACB:
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We integrate by parts inAwith respect to the j th variable inD2uD @i@ju, and use (1.5b)
on B 0%:

A D

Z
BC%

.1C !1.jruj//@iju @juxi dx(2.21)

D

Z
.@B%/C

.1C !1.jruj//ru � � ru � x d�x

�

Z
BC%

rpf .ru/ � ru dx �
Z
BC%

ru � x.1C !1.jruj//�u dx

�

Z
BC%

ru � x !01.jruj/
ru˝ru

jruj
W D2u dx:

Combining (2.20) and (2.21), we realize that

%

Z
.@B%/C

rpf .ru/ � ru d�x D .n � 2/
Z
BC%

rpf .ru/ � ru dx

C 2

Z
.@B%/C

.1C !1.jruj//ru � � ru � x d�x

� 2

Z
BC%

ru � x.1C !1.jruj/�u dx

� 2

Z
BC%

ru � x !01.jruj/
ru˝ru

jruj
�D2u dx C B:

Therefore,

D0.%/ � 2%2�n
Z
.@B%/C

ˇ̌̌
ru �

x

%

ˇ̌̌2
d�x

D 2%1�n
Z
.@B%/C

!1.jruj/ru � x ru � � d�x

� 2%1�n
Z
BC%

ru � x.1C !1.jruj/�u dx

� 2%1�n
Z
BC%

ru � x !01.jruj/
ru˝ru

jruj
�D2u dx

C %1�n
Z
BC%

!01.jruj/jruj.D
2uru/ � x dx DW

4X
iD1

Ai ;

and hence

E1 WD
ˇ̌̌
D0.%/ � 2%2�n

Z
.@B%/C

jur j
2 d�x

ˇ̌̌
�

4X
iD1

jAi j:

Let us discuss each term jAi j. We have

jA1j � C%
2�nC˛

kruk21j@B%j
(2.1)
� C%�1�nC˛

Z
BC2%

u2 dx
(2.10)
� C%1�nC˛

Z
BC%

jruj2 dx
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and

jA2j � C%
1�n.1C C%˛/

Z
BC%

jruj jxj j�u � divrpf .ru/j dx

(2.9)
� C%2�nC˛

Z
BC%

jD2ujjruj dx � C%2�nC˛
� Z

BC%

jruj2 dx
�1=2� Z

BC%

jD2uj2 dx
�1=2

(2.2)
� C%�nC˛

� Z
BC%

jruj2 dx
�1=2� Z

BC2%

juj2 dx
�1=2 (2.5); (2.10)

� C%1�nC˛
Z
BC%

jruj2 dx:

Similarly,

jA3j C jA4j � %
1�n

Z
BC%

j!01.jruj/jjD
2ujjruj2jxj dx

� C%2�nC˛
Z
BC%

jD2ujjruj dx � C%1�nC˛
Z
BC%

jruj2 dx:

Therefore,

(2.22) E1 � C%
1�nC˛

Z
BC%

jruj2 dx � C%˛�1D.%/:

Now, let us consider

(2.23) E2 WD
ˇ̌̌
D.%/ � %2�n

Z
.@B%/C

uu% d�x
ˇ̌̌
:

Integrating by parts and employing (1.5b), we getZ
BC%

rpf .ru/ � ru dx D
Z
@BC%

urpf .ru/ � � d�x �
Z
BC%

u @j .@pj f .ru// dx

D

Z
.@B%/C

u.1C !1.jruj//ru � � d�x

�

Z
BC%

uD2f .ru/ W D2u dx

D

Z
.@B%/C

u.1C !1.jruj//ru � � d�x

�

Z
BC%

.1C !1.jruj// u�u dx

�

Z
BC%

u!01.jruj/
ru˝ru

jruj
W D2u dx:

Thus,

E2 D
ˇ̌̌
%2�n

Z
.@B%/C

u!1.jruj/ru � � d�x � %2�n
Z
BC%

.1C !1.jruj// u�u dx(2.24)

� %2�n
Z
BC%

u!01.jruj/
ru˝ru

jruj
W D2u dx

ˇ̌̌
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Then, using that u 2 C 1;˛.BC% /,

E2 � %
3�nC˛

kruk21j@B%j C C%
2�n.1C C%˛/

Z
BC%

jujj�u � divDpf .ru/j dx

C C%2�n
Z
BC%

jujjD2ujjruj dx;

and employing the estimate (2.9), the Hölder inequality, the Schauder estimates (2.2)
together with the doubling assumption and the Poincaré inequality (2.10), we conclude
that

(2.25) E2 � C%
2�nC˛

Z
BC%

jruj2 dx � C%˛D.%/:

Moreover, by virtue of (2.18) and (2.23), we can deduce that

(2.26) jH 0.%/j �
ˇ̌̌
H 0.%/ �

2

%
D.%/

ˇ̌̌
C
2

%
jD.%/j � C%�1.E2 C jD.%/j/:

Putting together (2.17), (2.22), (2.25) and (2.26) into (2.19), we conclude that

N 0.%/ � �C%˛�1N.%/:

Whence we infer that
d

d%
.exp.˛�1C%˛/N.%// � 0;

thus concluding the proof of Proposition 2.1.

3. Blowup sequence

Here we prove that the rescalings at a free boundary point of the solutions to the nonlinear
obstacle problems (1.1) converge to the solutions of the classical Signorini problem for
the Dirichlet energy.

Proposition 3.1. Let u 2 C 1;˛loc .B
C
1 [ B

0
1/ be the solution to the boundary obstacle prob-

lem (1.5), 0 2 �u, and let (2.1) and (2.2) hold with constants N%, k and ˇ. Assume that
there are 
 > 1 and � 2 .0; 1=2� such that

(3.1) kuk� > 0; kuk% � 
kuk%=2 for any % 2 .0; ��:

Then, for every sequence of positive real numbers %j such that %j & 0; there is a subse-
quence %j 0 such that

%
n=2
j 0 u.%j 0x/

kukL2.BC%j 0 /
! '.x/ in C 1 locally on ¹xn � 0º;

where ' 2 C 1;1=2.¹xn > 0º/ is a homogeneous solution to the Signorini problemZ
.@B1/C

jr'j2 dx �
Z
.@B1/C

jr j2 dx for all  j.@B1/C D 'j.@B1/C ;  jB 01 � 0:
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Moreover,

eC%
˛

Nu.%/ � Nu.0/ D N'.0/ �
3

2
for any % 2 .0; %0/;

and

(3.2) kuk% � C
�%
�

�3=2
kuk� for any % 2 .0; ��;

with C D C.n; k; 
; Œru�˛/ > 0 and %0 as in Proposition 2.1.

Proof. Let %j be a sequence of real numbers such that %j & 0 and let uj be the sequence
of functions defined as uj .x/ D �ju.%jx/, with

�j WD
%
n=2
j

kukL2.BC%j /

chosen so that kuj kL2.BC1 / D 1 for any j 2N. By virtue of (2.1) and (3.1) (see also (2.5)),
we have that kuj kC 1;˛.BCR / � C.n;R; 
/ for all R > 0 and for j sufficiently large. Thus,
there is a subsequence u%j 0 that converges in C 1 locally on ¹xn � 0º to a function ' D
'.x/ 2 C 1;˛ . With an abuse of notation, we keep denoting the subsequence with u%j .

Let us show that ' is solution of the Signorini problem. For any suitable test function 
with compact support in BC1 , we have

(3.3)
Z
BC1

ruj � r dx C
Z
BC1

!1

�
jruj j

�j%j

�
ruj � r dx D 0;

because u solves (1.5). Since

jruj .x/j

�j%j
D jru.%jx/j � C%

˛
j for all x 2 BC1 ;

it follows that

!1

�
jruj j

�j%j

�
! 0 as j !C1:

Thus, taking the limit in (3.3) and employing the convergence in C 1 of uj to ', we getZ
BC1

r' � r dx D 0;

which means that ' is harmonic in BC1 . Next, let us discuss the limit of the conditions
on B 01. Since u solves (1.5), uj solves

ujrpf
�
ruj

�j%j

�
� en D 0 on B 01:

Note that

rpf
�
ruj

�j%j

�
D h0

�
jruj j

�j%j

�
ruj

jruj j
D

�
1C !1

�
jruj j

�j%j

��
ruj

�j%j
�
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Therefore,

�j%jrpf
�
ruj

�j%j

�
� en D

�
1C !1

�
jruj j

�j%j

��
ruj � en ! r' � en;

and hence
' r' � en D 0 and r' � en � 0 on B 01;

concluding that ' is a solution to the classical Signorini problem. For any radius � > 0,
we denote by Nj .�/ the frequency for the sequence uj and we have that

Nj .�/ D

.�%j /
2�n

R
BC%j �
jru.y/j2 dy

.�%j /1�n
R
@BC%j �
ju.y/j2 d�y

D Nu.%j�/;

whence
Nj .�/! lim

j!C1
Nu.%j�/ D Nu.0/:

On the other hand, the convergence in C 1 ensures that

Nj .�/! N'.�/ for any radius �:

Combining the last two, we conclude that N'.�/ is constant and by standard results we
infer that ' is homogeneous of degree Nu.0/ � 3=2 (see [4, 5]).

In order to establish (3.2), we start by noticing that as in (2.26) and (2.25), we know
that

H 0.%/ � C.1 � %˛/
1

%
D.%/;

hence, employing the monotonicity of N.%/,

.lnH.%//0 D
H 0.%/

H.%/
� C

1

%
N.%/ � C

1

%
N.0/:

Integrating onto the interval .%; �/ yields

ln
�H.�/
H.%/

�
� C ln

��
%

�3=2
;

which means that

(3.4)
�H.�/
H.%/

�1=2
� C

��
%

�3=2
:

By virtue of (2.12),

H.�/ D �1�n
Z
@BC�

u2 d�x � C��n
Z
BC�

u2 dx;

while on the other side, from (2.16) and (2.10), we have

H.%/ � C%�n
Z
BC%

u2 dx:

Therefore, (3.4) implies the conclusion�
%�n

Z
BC%

u2 dx
�1=2
� C

�%
�

�3=2�
��n

Z
BC�

u2 dx
�1=2

:
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4. Proof of the optimal regularity

Finally, in this section we show the optimal regularity u 2 C 1;1=2loc .BC1 [ B
0
1/. We fix the

notation

kuk%;x0 WD
�
%�n

Z
BC% .x0/

u2 dx
�1=2

; x0 2 �u:

We begin with the following preliminary lemma (cf. [39]).

Lemma 4.1. Let u be solution to (1.1) and let ı 2 .0;1=2/. Then there exists %0 2 .0;1=2�;
such that for every x0 2 �u \B1=2 and every % 2 .0; %0�, the following implication holds:

kuk%=2;x0 � 2
3=2Cı

kuk%=4;x0 H) kuk�;x0 �
�2�
%

�3=2Cı
kuk%=2;x0 for all � 2

h3
4
%;%

i
:

Proof. We argue by contradiction. Let us suppose that for any l 2 N n ¹0; 1º there are
%0 D 1=l , %l � 1=l , �l 2 Œ3%l=4; %l � and solutions ul D u to (1.1) with xl 2 �ul such
that the assertion does not hold. Then, introducing the rescaling

Qul .x/ WD kulk
�1
2%l ;xl

ul .2%lx C xl /;

by the estimates (2.1), we have, up to a not relabeled subsequence, that the functions Qul
converge in C 1 to ' on BC� , with � D liml �l=.2%l / 2 Œ3=8; 1=2�, that is a solution to
the Signorini problem in B1. Let us now consider the function f .%/ D %�3=2�ık'k%,
with 0 < % � � and ı > 0. From the assumption, we have that the function f attains its
maximum in Œ1=8; �� in an interior point Q% 2 .1=8; �/. Indeed,

kulk%l=2 � 2
3=2Cı

kulk%l=4 H)
�1
4

��3=2�ı
k Qulk1=4 �

�1
8

��3=2�ı
k Qulk1=8

H) f
�1
4

�
� f

�1
8

�
and, analogously,

kulk�l <
�2�l
%l

�3=2Cı
kulk%l=2 H)

� �l
2%l

��3=2�ı
k Qulk�l=.2%l / <

�1
4

��3=2�ı
k Qulk1=4

H) f .�/ � f
�1
4

�
:

Rather than f 0.%/, let us compute .f 2.%//0:�
%�3�2ı�n

Z
BC%

'2 dx
�0
D

�
%�3�2ı

Z
BC1

'2.%x/ dx
�0

D .�3 � 2ı/%�3�1�2ı�n
Z
BC%

'2 dx C 2%�3�2ı�n
Z
BC%

'r ' dx

D .�3 � 2ı/%�3�1�2ı�n
Z %

0

Z
@BCt

'2 d�x dt C 2%�3�2ı�n
Z %

0

Z
@BCt

'r ' d�x dt

D .�3 � 2ı/%�3�2ı�2
Z %

0

H'.t/ dt C 2%�3�2ı�2
Z %

0

D'.t/ dt

D 2%�3�2ı�2
Z %

0

H'.t/
�
N'.t/ �

3

2
� ı

�
dt:
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Since ' is a solution to the Signorini problem, the monotonicity of N and the fact that
N' � 3=2 imply that f is monotone increasing. Moreover, considering that, under the
contradiction assumption, f must have an interior maximum, we infer that f needs to be
constant in the interval I D Œ1=8; ��. Hence, we conclude that actually N'.%/ D 3=2C ı
for % 2 I . This implies that ' is a homogeneous solution of degree 3=2 C ı < 2, thus
contradicting the fact that there are no solution with frequency � 2 .3=2; 2/ (see [5]).

Remark 4.2. Let us notice that for � D %=2 2 .0; %0=2/ in Lemma 4.1, we have that

kuk�;x0 � 2
3=2Cı

kuk�=2;x0 H) kuk2�;x0 � 2
3=2Cı

kuk�;x0 :

It follows that if kuk�;x0 � 2
3=2Cıkuk�=2;x0 , then kuk2j �;x0 � 2

3=2Cıkuk2j�1�;x0 for
every j D 1; 2; : : : such that 2j� � %0, which implies

kuk%;x0 � C%
3=2Cı

kuk%0;x0 for any % 2 .�=2; %0=2�;

and, by changing the constant C , also

(4.1) kuk%;x0 � C%
3=2
kukL2.B1/ for any % 2 .�=2; 1=2�:

Proposition 4.3. Let u 2 C 1;˛loc .B
C
1 [ B

0
1/ be the solution of (1.1) and x0 2 �u \ B1=2.

Then

(4.2) sup
BC
%=2
.x0/

juj C % sup
BC
%=2
.x0/

jruj � C%3=2kukL2.BC1 /
for all % 2 .0; 1=2/;

where C D C.n; ˛; ˇ; k/ > 0.

Proof. Assume without loss of generality that x0 D 0 2 �u. Let us introduce

� WD inf
°1
2
; ¹% 2 .0; 1=2� W kuk% � 2

3=2Cı
kuk%=2º

±
;

where ı 2 .0; 1=2/. From Lemma 4.1 and (4.1), we have

(4.3) kuk% � C%
3=2
kukL2.BC1 /

for any % 2 .�=2; 1=2�:

On the other hand, if % 2 .0; ��, then

kuk% < 2
3=2Cı

kuk%=2

and thus, by Proposition 3.1 and (3.2),

(4.4) kuk% � C
�%
�

�3=2
kuk� for any % 2 .0; ��:

Combining (4.3) and (4.4), we deduce that there exists a constant C > 0 such that

kuk% � C%
3=2
kukL2.B1/ for any % 2 .0; 1=2/:

By (2.1), we finally have

sup
BC
%=2

juj C % sup
BC
%=2

jruj � Ckuk% � C%
3=2
kukL2.BC1 /

for any % 2 .0; 1=2/:
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Theorem 4.4. Every solution u of (1.1) belongs to C 1;1=2loc .BC1 [B
0
1/ and for every r < 1,

there exists a constant C > 0 depending on r , Lip.u/ and the nonlinear energy density f ,
such that

(4.5) kukC 1;1=2.BCr [B 0r / � CkukL2.BC1 /
:

Proof. Recall that, by [12], every solution of (1.1) is C 1;˛loc . The local C 1;1=2 regularity
of u is now an easy consequence of Proposition 4.3. We give the proof for readers’ con-
venience.

We need to estimate the oscillation of the gradient. We distinguish between three cases.

Case 1. Let z; y 2 BC
1=2

be such that

dist.z; �u/ � 10�1jz � yj and dist.y; �u/ � 10�1jz � yj:

Then let pz ; py 2 �u be such that

dist.z; �u/ D jz � pzj; dist.y; �u/ D jy � py j;

and note that

jru.z/ � ru.y/j � jru.z/ � ru.pz/j C jru.pz/ � ru.py/j C jru.py/ � ru.y/j

D jru.z/ � ru.pz/j C jru.py/ � ru.y/j
(4.2)
� C jz � pzj

1=2
C C jy � py j

1=2

� C jz � yj1=2;

whereC >0 is the constant in Proposition 4.3, which ultimately depends on Lip.u/ and f .

Case 2. Let z; y 2 BC
1=2

be such that

10�1jz � yj < %z WD dist.z; �u/; B%z .z/ \ƒu D ;:

We consider the symmetrization matrix S 2 Rn�n,

Sx WD .x0;�xn/ for x D .x0; xn/,

and set

v.x/ WD

´
u.Sx/ xn � 0;

u.x/ xn > 0;
x 2 B%z .z/:

It is easy to verify that v satisfies

div.rpf .rv// D 0 in B%z .z/:

Indeed, if xn < 0, then

rv.x/ D Sru.Sx/; r2v.x/ D Sr2u.Sx/S:
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Therefore,

div.rpf .rv.x/// D r2pf .rv.x// W D
2v.x/

D

h
.1C !1.jrv.x/j//I C !

0
1.jrv.x/j/

rv.x/˝rv.x/

jrv.x/j

i
W D2v.x/

D

h
.1C !1.jru.Sx/j//I C !

0
1.jru.Sx/j/

Sru.Sx/˝ Sru.Sx/

jru.Sx/j

i
W SD2u.Sx/S

D .1C!1.jru.Sx/j//I WD
2u.Sx/C!01.jru.Sx/j/

Sru.Sx/˝Sru.Sx/

jru.Sx/j
WD2u.Sx/

D div.rpf .ru.Sx/// D 0:

Moreover, for every ' 2 C 1c .B%z .z//, we have thatZ
B%z .z/

rpf .rv.x// � r'.x/ dx D
Z
BC%z .z/

rpf .ru.x// � r'.x/ dx

C

Z
B%z .z/\¹xn<0º

rpf .rv.x// � r'.x/ dx

D �

Z
B 0%z .z/

rpf .ru.x
0; 0// � en '.x

0; 0/ dx0

C

Z
B 0%z .z/

rpf .rv.x
0; 0// � en '.x

0; 0/ dx0 D 0;

where we use that rpf .p/ D .1C !1.jpj//p leads to

rpf .rv.x
0; 0// � enrpf .ru.x

0; 0// � en D 0 for all .x0; 0/ 2 B 01 nƒu:

Therefore, since v solves a uniformly elliptic equation in B%z .z/, by standard estimates,
we get

jru.z/ � ru.y/j � kD2vkL1.B%z=2.z//jz � yj

� C%�2z kvkL1.B%z .z//jz � yj � C%
�1=2
z jz � yj � C jz � yj1=2;

where in the second inequality C > 0 depends on Lip.u/ and f , and in the third also on
the constant in Proposition 4.3.

Case 3. Let z; y 2 BC
1=2

be such that

10�1jz � yj < %z WD dist.z; �u/; B%z .z/ \ B
0
1 � ƒu:

We consider the symmetrization matrix S 2 Rn�n, Sx WD .x0;�xn/ for x D .x0; xn/, and
set

v.x/ WD

´
�u.Sx/; xn � 0;

u.x/; xn > 0;
x 2 B%z .z/:

We need to verify as before that v solves the equation

div.rpf .rv// D 0 in B%z .z/:
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Indeed, if xn < 0, then, as above, the equation is pointwise verified and, for every ' 2
C 1c .B%z .z//, we have thatZ

B%z .z/

rpf .rv.x// � r'.x/ dx D �
Z
B 0%z .z/

rpf .ru.x
0; 0// � en '.x

00/ dx0

C

Z
B 0%z .z/

rpf .rv.x
0; 0// � en '.x

00/ dx0 D 0;

where now we use that

rpf .rv.x
0; 0// � en D .1C !1.jrv.x

0; 0/j//@nv.x
0; 0/

D .1C !1.jru.x
0; 0/j//@nu.x

0; 0/

D rpf .ru.x
0; 0// � en for all .x0; 0/ 2 B 01 \ƒu:

We can then conclude exactly as in the previous case that

jru.z/ � ru.y/j � C jz � yj1=2:

By a covering argument one easily passes from BC1=2 to any BCr with r < 1, with the
constant C in (4.5) depending on r too, thus finishing the proof.

A. Schauder estimates

In this section, we prove estimates (2.1) and (2.2). The proof follows very closely the
arguments in [12].

A.1. Caccioppoli inequalities

We consider the solution u to (1.1) with 0 2 �u. When not explicitly specified, the con-
stants of the statements below might depend on the Lipschitz constant of u.

Lemma A.1. Let u be solution to (1.1). Then there exist NR;C > 0 such that

(A.1)
Z
A.k;%/

jruj2 dx �
C

.R � %/2

Z
A.k;R/

.u � k/2 dx;

for % such that 0 < % < R < NR and for any k � 0, where A.k; r/D ¹x 2 BCr W u.x/ � kº.

Proof. Let ' 2 C1.BC1 / be such that ' � 1 on BC% , ' � 0 outside BCR and jr'j �
C=.R � %/ with R < 1. Then, testing the equation (1.5a) with v WD '2.u � k/C, we get

0 D

Z
BC1

div.rpf .ru//v dx

D �

Z
BC1

rpf .ru/ � r.'
2.u � k/C/ dx �

Z
B 01

rpf .ru/ � en '
2.u � k/C dx0

(1.5b)
� �

Z
BC1

rpf .ru/ � r.'
2.u � k/C/ dx

D �

Z
A.k;1/

'2rpf .ru/ � ru dx � 2
Z
BC1

'.u � k/Crpf .ru/ � r' dx:
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Using the ellipticity condition (1.4), we getZ
A.k;1/

'2rpf .ru/ � ru dx D
Z
A.k;1/

'2
Z 1

0

r
2
pf .tru/ dt ru � ru dx

� �

Z
A.k;1/

'2 jruj2 dx:

The conclusion now follows from a standard computation:

�

Z
A.k;1/

'2 jruj2 dx � 2
Z
A.k;1/

'.u � k/C jrpf .ru/j jr'j dx

�
�

2

Z
A.k;1/

'2 jruj2 dx C
C

�

Z
A.k;1/

ju � kj2 jr'j2 dx;

where we used that jrpf .ru/j � C jruj, with the constant C depending on kruk1.

For what concerns the Caccioppoli inequalities, for the derivatives of u, we argue as
in Lemma 4.2 and Propositions 4.3 and 4.5 of [12].

Lemma A.2. Let u be the solution of (1.1). Then there exist NR;C > 0 such that

(A.2)
Z
A.k;r/

jrwj2 dx �
C

.R � r/2

Z
A.k;R/

.w � k/2 dx;

where w D ˙@iu, with i D 1; : : : ; n, % is such that 0 < % < R < NR and k � 0, with
A.k; r/ D ¹x 2 BCr W w.x/ � kº.

Proof. We introduce the notation for the difference quotient, that is,

Dt
iw.x/ WD

w.x C tei / � w.x/

t
for any t ¤ 0 and any i D 1; : : : ; n � 1:

Let ' 2 C1.BC1 / be such that ' � 1 on BC% , ' � 0 outside BCR and jr'j � C=.R � %/.
As shown in Lemma 4.2 of [12], there exists "0 > 0 such that

v WD uC "D�ti .'
2.Dt

iu � k/C/ 2 Ag for all k � 0; and all " 2 .0; "0/:

Employing v as a test function in (1.5a) and writing z WD .Dt
iu � k/C, we have

0 �

Z
BC1

rpf .ru/ � r.v � u/ dx D
Z
BC1

rpf .ru/ � r."D
�t
i .'

2z// dx

D �"

Z
BC1

Dt
i .rpf .ru// � r.'

2z/ dx

Arguing as in the previous lemma, and using the difference quotient’s properties, we
obtain, for t ! 0C,Z

BCR

'2 jr.@iu � k/Cj
2 dx � C

Z
BCR

jr'j2 j.@iu � k/Cj
2 dx:

Employing the properties of ', we conclude (A.2).
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For what concerns the normal derivative, we use equation (1.5):

0 D div.rpf .ru// D r2pf .ru/ W D
2uI

therefore, isolating the terms with @2nnu, we get

@2nnu@
2
pnpn

f .ru/ D
X

.i;j /¤.n;n/

@2ij u@
2
pipj

f .ru/:

By ellipticity (1.4),
@2pnpnf .ru/ � �

(the constant � depending on kruk1), and hence

j@nnuj � C

n�1X
i

j@iruj;

and employing (A.2) we conclude . The same arguments can be easily adapted for �@iu
and the proof is complete.

An immediate consequence of the previous lemma is the following corollary (whose
simple proof is left to the readers).

Corollary A.3. As consequence of (A.1) and (A.2), it follows that

%2
Z
BC%

jruj2 dx C %4
Z
BC%

jr
2uj2 dx � C

Z
BC2%

juj2 dx:

A.2. De Giorgi’s oscillation lemma

In this section we consider functions w satisfying the Caccioppoli inequalities:

(A.3)
Z
A.k;r/

jrwj2 dx �
C

.R � r/2

Z
A.k;R/

.w � k/2 dx;

for k � 0 and 0 < r < R, with A.h; s/ D ¹x 2 Bs W w.x/ � hº.

Proposition A.4. Let w be a function in BC1 satisfying (A.3). Then there exists C > 0

such that

sup
BC
%=2

w � C
�
%�n

Z
A.k0;%/

.w � k0/
2 dx

�1=2� jA.k0; %/j
%n

�
=2
C k0

for every k0 � 0, 0 < % < 1, where 
2 C 
 D 2=n, 
 > 0.

Proof. We set r 0 D .r CR/=2, and let ' 2 C1.BCR / such that supp' �� BCr 0 , 0 � ' �
1, ' � 1 in BCr and jr'j � C=.R � r/. Then, applying the Sobolev and the Hölder
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inequalities, we have (consider for simplicity n> 2; the same holds for nD 2 by observing
that 1� D 2 and then using the Jensen inequality)Z

A.k;r/

.w � k/2 dx �
Z
A.k;r 0/

.'.w � k//2 dx(A.4)

� jA.k;R/j2=n
� Z

A.k;r 0/

.'.w � k//2
�

dx
�2=2�

� jA.k;R/j2=n
Z
A.k;r 0/

jr.'.w � k//j2 dx

� C jA.k;R/j2=n
� Z

A.k;r 0/

jr'j2.w � k/2 dx C
Z
A.k;r 0/

jr.w � k/j2'2 dx
�

� C jA.k;R/j2=n
� 1

.R � r/2

Z
A.k;R/

.w � k/2 dx C
Z
A.k;r 0/

jrwj2 dx
�

(A.3)
� C jA.k;R/j2=n

� 1

.R � r/2

Z
A.k;R/

.w � k/2 dx
�
:

Let us set
�.k; r/ D jA.k; r/j


Z
A.k;r/

.w � k/2 dx:

Then observe that, for 0 � h < k and 0 < r < R < 1,

(A.5) jA.k; r/j �

Z
A.k;r/

�w � h
k � h

�2
dx �

1

.k � h/2

Z
A.h;R/

.w � h/2 dx:

From (A.4), we getZ
A.k;r/

.w � k/2 dx � cjA.k;R/j

2C
 1

.R � r/2

Z
A.h;R/

.w � h/2 dx:

Thus, combining the last two estimates, we obtain

(A.6) �.k; r/ � c
1

.k � h/2

1

.R � r/2
�.h;R/1C
 :

We now choose

rj D
%

2

�
1C

1

2j

�
and kj D k0 C d

�
1 �

1

2j

�
;

where d is a positive number to be chosen later. Setting R D rj , r D rjC1, k D kjC1 and
h D kj in (A.6), we get

�.kjC1; rjC1/ �
C.4
C1/j

d2
%2
�.kj ; rj /

1C

D DBj�.kj ; rj /

1C
 ;

with D D Cd�2
%�2 and B D 4
C1. On the other side, choosing d such that

d � c
�
%�n

Z
A.k0;%/

.w � k0/
2 dx

�1=2� jA.k0; %/j
%n

�
=2
;
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with c suitable positive constant, we have that �.k0; %/�D�1=
B�1=

2
. Then employing

Lemma 7.1 of [29], it follows that

�j � B
�j=
�0 D 4

�j�j=
�0 for all j � 0; with �j D �.kj ; rj /;

which means

4j jA.kj ; rj /j



Z
A.kj ;rj /

.w � kj /
2 dx D 4j�j � 4�j=
�0:

Combining the last formula with (A.5) (adapting the indexes), we conclude that

jA.kjC1; rjC1/j

C1
�
4j

d2
jA.kj ; rj /j




Z
A.kj ;rj /

.w � kj /
2 dx � 4�j=


�0

d2
for all j � 0;

thus, taking the limit as j !C1, we get jA.d C k0;%=2/j D 0, which gives the thesis.

Remark A.5. From Lemma A.2, we have thatw D˙@iu satisfy (A.3). Therefore, we get

krukL1.BC
%=2
/ � C

� 1
%n

Z
BC%

jruj2 dx dx
�1=2
� C%�1

� 1
%n

Z
BC2%

juj2 dx
�1=2

:

Also Proposition A.4 implies

sup
BC
%=2

u � C
� 1
%n

Z
BC2%

juj2 dx
�1=2

:

By a simple covering, we conclude the estimates of the first two terms in (2.1).

In order to show the estimate on the Hölder seminorm Œru�˛;B% , we recall the follow-
ing result.

Proposition A.6 (Proposition 4.7 in [12]). Let u be the solution to the thin obstacle prob-
lem (1.5). Then the co-normal derivative

ˆu WD @pnf .ru/ D .1C !1.jruj//@nu

is C 0;ˇ .BC1 [ B
0
1/ for some ˇ 2 .0; 1/ and

Œˆu�ˇ;BC% � Cr
�ˇ
kruk

1;BCr
for all %; r W 0 < % < r < 1:

We can hence show the following proposition.

Proposition A.7. Let u be the solution to the thin obstacle problem (1.5). Then there
exists C > 0 such that

(A.7) %1C˛Œru�˛;BC% � C
�
%�n

Z
BC2%

u2 dx
�1=2

for some ˛ 2 .0; 1/:
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Proof. Let x0 2 B 0r and r 2 .0; 1 � jx0j/. If B 0r .x0/ � ƒ.u/, then we conclude by the
classic regularity theory that there exists ˛ > 0 such thatZ

BC% .x0/

jru � .ru/%j
2 dx � C

�%
r

�nC2˛ Z
BCr .x0/

jru � .ru/r j
2 dx for % < r:

Let us now suppose that there exists z 2 B 0r .x0/ nƒ.u/. Let w be the solution of

(A.8)

8̂<̂
:

div.rpf .rw// D 0 in BC% .x0/;
@nw D 0 in B 0%.x0/;
w D u on .@B%.x0//C;

with 0 < % < r . By the triangular and the Jensen inequalities, we obtainZ
BC% .x0/

jru � .ru/%j
2 dx(A.9)

� C

Z
BC% .x0/

jru � rwj2 dx C C
Z
BC% .x0/

jrw � .rw/%j
2 dx:

We begin by estimating the first addend, by testing (1.5) with u � w 2 H 1
0 .Br .x0//

and using the fact that w is solution of (A.8):

0 D

Z
BC% .x0/

.div.rpf .ru// � div.rpf .rw///.u � w/ dx

D �

Z
BC% .x0/

.rpf .ru/ � rpf .rw// � r.u � w/ dx

�

Z
B 0%.x0/

.u � w/.rpf .ru/ � rpf .rw// � en dx

D �

Z
BC% .x0/

.rpf .ru/ � rpf .rw// � r.u � w/ dx

�

Z
B 0%.x0/

.u � w/rpf .ru/ � en dx:

Hence, we have thatZ
BC% .x0/

.rpf .ru/ � rpf .rw// � r.u � w/ dx D �
Z
B 0%.x0/

.u � w/rpf .ru/ � en dx:

By ellipticity,

�

Z
BC% .x0/

jru � rwj2 dx �
Z
BC% .x0/

.rpf .ru/ � rpf .rw// � .ru � rw/ dx;
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and therefore, using Proposition A.6,

�

Z
BC% .x0/

jru � rwj2 dx �
Z
B 0%.x0/

ju � wjjrpf .ru/ � enj dx0

D

Z
B 0%.x0/

ju � wjjrpf .ru/.x
0/ � en � rpf .ru/.z/ � enj dx0

� C Œrpf .ru/ � en�C 0;ˇ .B 0%/ %
ˇ

Z
B 0%.x0/

ju � wj dx0

� C Œrpf .ru/ � en�C 0;ˇ .B 0%/ %
ˇ

Z
BC% .x0/

div.�ju � wjen/ dx

� C Œrpf .ru/ � en�C 0;ˇ .B 0%/ %
ˇ

Z
BC% .x0/

jr.u � w/j dx

� C Œrpf .ru/ � en�C 0;ˇ .B 0%/ %
ˇCn=2

kr.u � w/kL2.BC% /;

where we used the Hölder inequality in the last step. Finally,

(A.10)
Z
BC% .x0/

jru � rwj2 dx � C Œrpf .ru/ � en�2C 0;ˇ .B 0%/ %
2ˇCn:

We focus now on the second addend of (A.9). By standard regularity theory, there
exists 
 > 0 such thatZ

BC% .x0/

jrw � .rw/%j
2 dx � C

�%
r

�nC2
 Z
BCr .x0/

jrwj2 dx:

Then, using the triangular inequality and inequality (A.10), we deduceZ
BC% .x0/

jrw � .rw/%j
2 dx

� C
�%
r

�nC2
 Z
BCr .x0/

jruj2 dx C C Œrpf .ru/ � en�2C 0;ˇ .B 0%/ %
2ˇCn:

Therefore, for ˛ WD min¹ˇ; 
º, we get

%�.nC2˛/
Z
BC% .x0/

jru � .ru/%j
2 dx

� C Œrpf .ru/ � en�
2
ˇ;B 0%

%2.ˇ�˛/ C C
%2.
�˛/

rnC2


Z
BCr .x0/

jruj2 dx:

From Campanato’s theorem, taking the supremum in % � r=2 and employing Proposi-
tion A.6, we get

Œru�˛;BC
%=2
� Cr�˛

Z
BCr .x0/

jruj2 dx;

and, combining with Remark A.5, we infer that (A.7) follows.
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