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On the space of subgroups of Baumslag–Solitar groups I:
Perfect kernel and phenotype

Alessandro Carderi, Damien Gaboriau, François Le Maître and
Yves Stalder

Abstract. Given a Baumslag–Solitar group, we study its space of subgroups from
a topological and dynamical perspective. We first determine its perfect kernel (the
largest closed subset without isolated points). We then bring to light a natural par-
tition of the space of subgroups into one closed subset and countably many open
subsets that are invariant under the action by conjugation. One of our main results is
that the restriction of the action to each piece is topologically transitive. This parti-
tion is described by an arithmetically defined function, that we call the phenotype,
with values in the positive integers or infinity. We eventually study the closure of
each open piece and also the closure of their union. We moreover identify in each
phenotype a (the) maximal compact invariant subspace.

1. Introduction and presentation of the results

The Baumslag–Solitar group of non-zero integer parameters m and n is defined by the
presentation

(1.1) BS.m; n/ WD hb; t j tbmt�1 D bni:

These one-relator two-generators groups were defined by Baumslag and Solitar [2] to pro-
vide examples of groups with surprising properties, depending on the arithmetic properties
of the parameters.

It follows from the work of Baumslag and Solitar and of Meskin [24] that the group
BS.m; n/ is
• residually finite if and only if jmj D 1 or jnj D 1 or jmj D jnj,
• Hopfian if and only if it is residually finite or m and n have the same set of prime

divisors.
The group BS.m; n/ is amenable if and only if jmj D 1 or jnj D 1, and in this case, it

is metabelian. All Baumslag–Solitar groups, however, share weak forms of amenability:
they are inner-amenable [27] and a-T-menable [17].
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Over the years and despite the simplicity of their presentation, these groups have
served as a standard source of examples and counter-examples, sometimes to published
results (!). They have been considered from countless different perspectives in group the-
ory and beyond.

Various aspects concerning the subgroups of the BS.m; n/ have been considered such
as the growth functions of their number of subgroups of finite index with various proper-
ties, or such as a description of the kind of fundamental group of graphs of groups that
can be embedded as subgroups in some BS.m; n/; see, for instance, [13, 18, 22].

In this article, we consider global aspects of the space Sub.BS.m; n// of subgroups of
the BS.m; n/ and of the topological dynamics generated by the natural action by conjuga-
tion.

1.1. The perfect kernel

Let � be a countable group. We denote by Sub.�/ the space of subgroups of � . If one
identifies each subgroup with its indicator function, one can view the space Sub.�/ as a
closed subset of ¹0; 1º� . Thus, Sub.�/ is a compact, metrizable space by giving it the
restriction of the product topology. See Section 2.2 for the generalities about Sub.�/.

By the Cantor–Bendixson theorem, Sub.�/ admits a unique decomposition as a dis-
joint union of a perfect set, called the perfect kernel K.�/ of � , and of a countable open
subset. It is a challenging problem to determine the perfect kernel of a given countable
group.

When � is finitely generated, the finite index subgroups are isolated in Sub.�/. It is
thus relevant to introduce the subspace SubŒ1�.�/ consisting of all infinite index sub-
groups of � . It is a closed subspace of Sub.�/ exactly when � is finitely generated (see
Remark 2.3).

Our first main result completely describes the perfect kernel of the various Baumslag–
Solitar groups. When jmj D jnj, the subgroup generated by bm is normal; let us denote
by � the corresponding quotient homomorphism

BS.m; n/
�
�! BS.m; n/=hbmi:

We also denote by � the map it induces between the spaces of subgroups of BS.m;n/ and
BS.m; n/=hbmi.

Theorem A (Perfect kernel of BS.m; n/, Theorem 5.3). Let m; n2Z n ¹0º.

(1) If jmj D 1 or jnj D 1, then K.BS.m; n// is empty.

(2) If jmj; jnj > 1 , then

(a) if jmj ¤ jnj, then K.BS.m; n// D SubŒ1�.BS.m; n//,
(b) if jmj D jnj, then K.BS.m; n// D ��1.SubŒ1�.BS.m; n/=hbmi//.

The fact that Sub.BS.m; n// is countable when jmj D 1 or jnj D 1 (item (1)), i.e.,
for the Baumslag–Solitar groups that are metabelian, was already observed by Becker,
Lubotzky and Thom, Corollary 8.4 in [3]. Fortuitously or not, it turns out that the equality
K.BS.m; n// D SubŒ1�.BS.m; n// holds exactly when BS.m; n/ is not residually finite.

There is a general correspondence between the transitive pointed �-actions and the
subgroups of � . It sends an action ˛ to the stabilizer of its base point. This �-equivariant
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map is a bijection when one considers the actions up to pointed isomorphisms (see Sec-
tion 2.2). Item (2) of Theorem A has a unified reformulation in this setting:

(20) If jmj; jnj > 1, then K.BS.m; n// is the space of subgroups ƒ such that the right
BS.m; n/-action on ƒnBS.m; n/ has infinitely many hbi-orbits.

Note that this exactly means that the quotient of the ƒ-action on the standard Bass–Serre
tree (see Section 2.3) of BS.m; n/ is infinite.

Let us now give some more context for Theorem A. By Brouwer’s characterization
of Cantor spaces, the space K.�/ is either empty or a Cantor space. It is empty exactly
when Sub.�/ is countable. This happens, for example, for groups all whose subgroups
are finitely generated, also known as Noetherian groups. For instance, all finitely gener-
ated nilpotent groups and more generally all polycyclic groups have a countable space of
subgroups.

On the opposite side, for the free group with a countably infinite number of generators,
no subgroup is isolated, thus K.F1/ D Sub.F1/ (see Proposition 2.1 in [11]).

There are some classical groups for which we know that K.�/ D SubŒ1�.�/. This is
the case for the free groups Fn (for 1 < n <1), see, for instance, Proposition 2.1 of [11].
This is also the case for the groups with infinitely many ends, for the fundamental groups
of the closed surfaces of genus � 2, and for the finitely generated LERF groups with non-
zero first `2-Betti number (see [1]). Recall that a group � is LERF when its set of finite
index subgroups is dense in Sub.�/ (see, for instance, Theorem 3.1 in [19]).

Bowen, Grigorchuk and Kravchenko established that the perfect kernel of the lamp-
lighter group .Z=pZ/n o Z D .

L
Z.Z=pZ/n/ Ì Z (for a prime number p) is exactly the

space Sub.
L

Z.Z=pZ/n/ of subgroups of the normal subgroup, Theorem 1.1 in [7]. Skip-
per and Wesolek uncovered the perfect kernel for a class of branch groups containing the
Grigorchuk group and the Gupta–Sidki 3 group [26].

The perfect kernel can be obtained by successively, and transfinitely, removing the
isolated points, thus obtaining for every ordinal ˛ the ˛-th Cantor–Bendixson derivative
Sub.�/.˛/ WD Sub.�/.ˇ/ n ¹isolated points of Sub.�/.ˇ/º if ˛ D ˇC 1, and Sub.�/.˛/ WDT
ˇ<˛ Sub.�/.ˇ/ if ˛ is a limit ordinal. The Cantor–Bendixson rank rkCB.�/ of � is

the first ordinal � for which the derived space Sub.�/.�/ has no more isolated points,
and is thus equal to the perfect kernel (see, for instance, Section 6.C of [20] for details).
When jmj; jnj > 1 and jmj ¤ jnj, then Theorem A implies that rkCB.BS.m; n// D 1.
The determination of the Cantor–Bendixson ranks rkCB.BS.m; n// for the other cases is
postponed to the sequel [6].

1.2. Dynamical partition of the perfect kernel

The compact space of subgroups Sub.�/ is equipped with the continuous action of � by
conjugation: ƒ � 
 WD 
�1ƒ
 . The perfect kernel is �-invariant. This action is of course
not minimal in general, even when restricted to the perfect kernel: the latter may contain
normal subgroups and these subgroups are fixed points! However, the first three named
authors observed a particularly nice feature in the case of the free group Fn (for 1<n<1):
the action K.Fn/Ô Fn is topologically transitive (which means that the space admits a
dense Gı subset of points whose individual orbits are dense). These Fn-actions are called
totipotent, see [11].
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To our surprise, we uncovered a dramatically different and very rich situation for the
Baumslag–Solitar groups.

Theorem B. Whenever jmj; jnj ¤ 1, the perfect kernel K.BS.m; n// admits a countably
infinite partition into BS.m; n/-invariant and topologically transitive subspaces. For the
induced topology on K.BS.m; n//), one of the subspaces is closed; all the other ones are
open.

Theorem B follows from Proposition 5.8 and Theorem 5.14. In a further work [16],
we show that topological transitivity can be upgraded to high topological transitivity.

From now on in this introduction, we stick to the case jmj ¤ 1 and jnj ¤ 1. In order
to describe the partition in Theorem B, we introduce a new invariant: the phenotype.

The relation tbmb�1 D bn imposes some arithmetic conditions between the cardinali-
ties of the b-orbit of a point x and the b-orbit of xt . For instance, the b-orbit of x is infinite
if and only if the b-orbit of xt is infinite.

In Definition 4.1, we introduce a function Phm;nWZ�1 [ ¹1º ! Z�1 [ ¹1º, called
the .m; n/-phenotype, with the following property, which directly follows from Proposi-
tion 4.6, Theorem 4.13 and Proposition 3.22.

Theorem C. Whenever jmj; jnj¤1, there is a transitive BS.m;n/-action with two b-orbits
of cardinal k and `, respectively, if and only if Phm;n.k/ D Phm;n.`/.

If, for instance, m and n are coprime, the phenotype Phm;n.k/ of any natural number
k 2 Z�1 is obtained as k expunged of all its prime divisors that appear in either m or n.
The general form is more complicated, see Definition 4.1 and Example 4.3, but it follows
readily from Definition 4.1 that Phm;n.q/ D q for every q � 1 that is coprime with m
and n. Hence, the set of possible .m; n/-phenotypes

Qm;n WD ¹Phm;n.k/ W k 2 Z�1º [ ¹1º:

is always infinite.
Theorem C allows us to define the phenotype of a transitive BS.m; n/-action as the

common .m; n/-phenotype of the cardinalities of its b-orbits. Then we define the pheno-
type Ph.ƒ/ of a subgroup ƒ2 Sub.BS.m; n// as the phenotype of the (right) BS.m; n/-
action on the homogeneous space ƒnBS.m; n/.

Notice that the BS.m;n/-actions onƒnBS.m;n/ and .g�1ƒg/nBS.m;n/ are isomor-
phic (both are transitive with some point stabilizer equal to ƒ), so they have the same
phenotype. Hence, the partition

(1.2) Sub.BS.m; n// D
G

q2Qm;n

Ph�1.q/

is invariant under the BS.m; n/-action (recall this is the action by conjugation). Let us
mention from Proposition 5.8 that

• for each finite q 2 Qm;n, the piece Ph�1.q/ is open; it is also closed if and only if
jmj D jnj;

• the piece Ph�1.1/ is closed but not open.
In particular, the function PhWSub.BS.m; n//! Z�1 [ ¹C1º is Borel. It is continu-

ous if and only if jmj D jnj.
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It now follows from Theorem 5.14 that the restriction of the partition (1.2) to the
perfect kernel

(1.3) K.BS.m; n// D
G

q2Qm;n

Kq.BS.m; n//;

where Kq.BS.m; n// WD K.BS.m; n// \ Ph�1.q/, satisfies all the conclusions of Theo-
rem B. The pieces Kq.BS.m; n// are indeed non-empty, see Remark 5.12.

1.3. Approximations by subgroups of other phenotypes

We still stick to the case jmj ¤ 1 and jnj ¤ 1. Since the only non-open piece in parti-
tion (1.2) is Ph�1.1/, the subgroups of infinite phenotype are the only ones which can
be approximated in Sub.BS.m; n// by subgroups of other (that is, finite) phenotypes.

The set of limits of subgroups of finite phenotype depends on whether we fix the phe-
notype or we let it vary. About approximations by subgroups with a constant phenotype,
we have the following result (see Proposition 5.8 and Theorem 6.2).

Theorem D. Assume jmj; jnj ¤ 1 and let us fix a finite .m; n/-phenotype q.

(1) If jmj D jnj, then Ph�1.q/ is closed, hence no infinite phenotype subgroup can be
approximated by subgroups of phenotype q.

(2) If jmj ¤ jnj, then an infinite phenotype subgroup ƒ can be approximated by sub-
groups of phenotype q if and only if ƒ � hhbii, where hhbii is the normal subgroup
generated by b.

It is remarkable that the set Ph�1.q/ \ Ph�1.1/ is independent of q in the previous
result.

Allowing the finite phenotype to vary yields new limit points. Our result is the follow-
ing (see Proposition 6.7 and Corollary 6.11).

Theorem E. Assume jmj; jnj ¤ 1.

(1) If jmj D jnj, then every infinite phenotype subgroup is a limit of finite (and varying)
phenotype subgroups.

(2) On the contrary, if jmj ¤ jnj, then the set of subgroups in Ph�1.1/ which are limits
of finite (and varying) phenotypes subgroups has empty interior in Ph�1.1/.

Therefore, in the case jmj D jnj, all subgroups of infinite phenotype are limits of
subgroups of finite phenotype, but none of them is a limit of subgroups of fixed finite
phenotype.

The case jmj ¤ jnj is more complex. We do not have a nice description of the limit set
from the above theorem. We can show however that this limit set is strictly larger than its
fixed phenotype counterpart, see Proposition 6.12 and Theorem 6.14.

1.4. Closures of orbits in finite phenotype

We still stick to the case jmj ¤ 1, jnj ¤ 1, and assume moreover jmj ¤ jnj. The previous
subsection shows that for any finite phenotype q, we have

Ph�1.q/ ¨ Ph�1.q/ ¨ Ph�1.q/ [ Ph�1.1/:
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Theorem B further yields that Ph�1.q/ contains dense orbits. For such an orbit O, one has
O D Ph�1.q/, thus O intersects Ph�1.1/. In fact, Theorem D completely described O.
We now turn our attention to the orbits whose closure is contained in Ph�1.q/. Quite
remarkably, they form a compact set.

Theorem F (See Theorem 5.20). Suppose jmj; jnj ¤ 1 and jmj ¤ jnj. For every finite
phenotype q, there is a positive integer s D s.q;m; n/ such that the subset

MCq WD Ph�1.q/ \ ¹ƒ2Sub.BS.m; n//Wƒ � hhbsiiº

is compact and contains all the invariant compact subsets of Ph�1.q/.

In particular, every normal subgroup of phenotype q, and hence every finite index
subgroup, contains hhbsii. Moreover, MCq \Kq.BS.m; n// has empty interior in the
corresponding piece of the perfect kernel Kq.BS.m; n// (Theorem 5.20 (4)).

When gcd.m; n/ D 1, the above theorem takes an easier form, that is, s D q and
MCq \K.BS.m; n// D ¹hhbqiiº. In particular, hhbqii is the unique normal subgroup of
phenotype q and infinite index, see Theorem 5.20 (5). On the other hand, if gcd.m;n/¤ 1,
then the perfect kernel contains continuum many normal subgroups of phenotype q, see
Theorem 5.26.

1.5. An example: The case of BS.2 ; 3/

Let us specialize our theorems to the case of BS.2; 3/. An illustrative picture is given in
Figure 1.

Since 2 ¤ 3, Theorem A tells us that K.BS.2; 3// D SubŒ1�.BS.2; 3//. In this case
the phenotype is given by the following simple formula:

Ph.ƒ/ D
I

2jI j2 3jI j3
,

where I is the index I WD Œhbi W ƒ \ hbi�, and where jI jp denotes the p-adic valuation
of I subject to the convention that j1jp D 0.

Therefore, the possible phenotypes for subgroups of BS.2; 3/ are given by all the
positive integers not divisible by 2 and 3, and infinity. Denoting Kq D ¹ƒ � BS.2; 3/ W
Ph.ƒ/ D qº, the partition (1.3) becomes

K.BS.2; 3// DK1
F G

q Wgcd.q;2/Dgcd.q;3/D1

Kq :

By Theorem B, the action on each Kq is topologically transitive. Note that all finite index
subgroups have finite phenotype. The set K1 is closed and colored in black in Figure 1;
the subsets Kq are open and colored in gray in the figure. Finally, the finite index sub-
groups are denoted by the dotted lines. Note that there are infinitely many finite index
subgroups and they accumulate on the sets Kq .

Note that for every finite q, the set Kq \K1 is non-empty and independent of q;
indeed, by Theorem D, this is the set of subgroups of infinite phenotype contained in hhbii.
This set is illustrated as the black central disk in the figure. As one can guess in the
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Figure 1. The space of subgroups of BS.2; 3/.

figure,
S
q finite Kq \K1 is strictly bigger than this set, and yet not the entirety of K1,

as prescribed by Theorem E.
We finally apply Theorem F. Since gcd.2; 3/ D 1, for every finite phenotype q, the

largest compact invariant subset of Kq consists only of one point: the unique normal
subgroup contained in Kq , namely, hhbqii, pictured with a small star in the figure. More-
over, MCq consists of the finite index subgroups of phenotype q represented by the dotted
lines emanating from the star together with the single accumulation point hhbqii of MCq .

Remark. Figure 1 is actually quite general. As soon as jmj ¤ jnj, we have the exact
same picture except that the possible phenotypes are different, and the stars turn into
bigger compact maximal invariant subsets. Moreover, the phenotype is given by a more
complicated formula.

1.6. Some ideas on the techniques of proofs

The definition of the topology on the space of subgroups leads us to look at the restriction
of transitive actions to some part of their Schreier graph and then on assembling such parts
from different actions (to form new actions). This leads us to the notion of pre-action, as
considered in [14], where to facilitate the verification of the group relation, we impose
that b is defined everywhere, i.e., on the whole domain of the pre-action (see Section 3.1).
These pre-actions are more malleable but the algebraic conditions underlying them still
make them difficult to manipulate.
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This is why we further downgrade the data and move on to purely combinatorial
objects associated with actions and pre-actions: the .m; n/-graphs (Section 3.3). These
are oriented graphs which carry labels on the vertices and on the edges and which satisfy
simple arithmetic conditions linking degrees and labels (Definition 3.12, equalities (3.13)
and inequalities (3.14)). They generalize the Bass–Serre graphs of pre-actions used in [14]
by adding their labels which record the size of the orbits of b, bm or bn according to the
graph element considered. Notice that in [14] the b-orbits were assumed to be infinite.

All the vertex labels of a connected .m; n/-graph have the same .m; n/-phenotype
(Proposition 4.6), which is thus defined to be the phenotype of the graph (Definition 4.8).

At this level, we can consider assembling together different parts (originating from
different actions). Consider two connected .m; n/-graphs that are non-saturated (at least
one of the inequalities (3.14) is strict). Then they can appear as subgraphs of the same
.m; n/-graph as soon as they have the same phenotype (Theorem 4.13). This relies on two
basic constructions, the Welding Lemma 4.16 and the connecting Theorem 4.17.

We then proceed by upgrading from .m; n/-graphs to pre-actions and actions (Propo-
sition 3.23). These upgrades are not uniquely determined, however, if an .m; n/-graph G2
contains the .m; n/-graph G1 of a pre-action ˛1, then the upgraded pre-action ˛2 can be
chosen to extend ˛1 (Proposition 3.23).

To summarize, we will use several times the same construction scheme: Considering
two actions, we restrict them to a large but proper part of their domain (pre-actions). We
downgrade the resulting pre-actions to .m; n/-graphs and glue them together. We saturate
the resulting .m; n/-graph and upgrade it into one action that “contains” the chosen parts
of both original actions as sub-pre-actions (Theorem 4.12).

1.7. Subsequent work

Since the first version of the present paper appeared, two preprints have enriched the
picture as follows.

On the one hand, the three last-named authors proved in [16] that the dynamics on the
pieces Kq is in fact highly topologically transitive. They also studied the property of high
transitivity for transitive actions of BS.m; n/: They characterized the pieces containing
subgroups ƒ such that the action ƒnBS.m; n/Ô BS.m; n/ is highly transitive and they
established that this property is generic in these pieces.

On the other hand, Sasha Bontemps has extended Theorems A, B and C to general-
ized Baumslag–Solitar groups, where the right notion of phenotype is more subtle [5].
She also obtained high topological transitivity results generalizing Theorem C from the
aforementioned preprint [16].

2. Preliminaries and notations

In this text, we denote by Z�0 WD ¹0; 1; 2; : : :º the set of non-negative integers and by
Z�1 WD ¹1; 2; 3; : : :º the set of positive integers. Given two integers k; l 2Z n ¹0º, we
denote by gcd.k; l/2Z�1 the greatest common divisor of k and l . We use the convention
that gcd.k;1/ D k and1=k D k1D1.
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Let P be the set of prime numbers. Given an integer k 2 Z n ¹0º and a prime p 2 P ,
we denote by jkjp the p-adic valuation of k, that is, jkjp is the largest positive integer
such that pjkjp divides k.

2.1. Graphs and Schreier graphs

All our graphs are defined as in [25]. That is, a graph G is a couple .V .G /; E.G //, where
V.G / is the vertex set and E.G / is the edge set, endowed with:

• two maps s; tWE.G /! V.G / called source and target, respectively,
• a fixed-point-free involution E.G /! E.G /; e 7! Ne,

such that s. Ne/ D t.e/ and t. Ne/ D s.e/.
An orientation of the graph G is a partition E.G / D EC.G / t E�.G / whose pieces

are exchanged by the involution e 7! Ne. Edges in EC.G / are called positive edges and
edges in E�.G / are negative.

Remark 2.1. In order to define an oriented graph G , it is enough to define the set of
vertices V.G /, the set of positive edges EC.G /, and the restrictions of the source and
target maps s; t to EC.G /. Indeed, we can define E�.G / to be a copy of EC.G / and the
involution e 7! Ne to be the natural identification of EC.G / with E�.G /. We extend the
source and target map by setting s. Ne/ WD t.e/ and t. Ne/ WD s.e/.

The degree of a vertex v in a graph G , is the cardinal

deg.v/ WD j¹e 2 E.G / W s.e/ D vºj D j¹e 2 E.G / W t.e/ D vºj:

If G is oriented, we say that an edge e is:
• a v-outgoing edge if it is positive and s.e/ D v,
• a v-incoming edge if it is positive and t.e/ D v.

The outgoing degree degout.v/ of v is the number of v-outgoing edges, while its incom-
ing degree degin.v/ is the number of v-incoming edges. We clearly have degout.v/ C

degin.v/ D deg.v/.
A subgraph G 0 of a graph G is a graph such that V.G 0/ � V.G /, E.G 0/ � E.G / and

the structural maps of G 0 are restrictions of those of G .
Still following [25], we call circuit a subgraph isomorphic to a circular graph (of

length l � 1) and loop a circuit of length 1. The edge of a loop is also called a loop.
A path in a graph G is a finite sequence of edges .e1; : : : ; en/ such that t.ek/D s.ekC1/

for all 1 � k � n � 1. Similarly, an infinite path is a sequence of edges .ek/k�1 such that
t.ek/D s.ekC1/ for all k � 1. Finally, a (possibly infinite) path is called simple when the
induced sequence of vertices is injective.

The ball B.v; R/ of radius R centered at a vertex v in a graph G is the subgraph
induced by the set of vertices of G at distance � R from v in the path metric.

Schreier graphs. Let � be a group and let S be a generating set of � . Consider a (right)
action ˛WX Ô � . The Schreier graph of ˛ relatively to S is the oriented graph Sch.˛/ D
Sch.˛; S/ defined by

V.Sch.˛// WD X and EC.Sch.˛// WD ¹.x; s/ W x 2 X; s 2 Sº;
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where s.x; s/ D x and t.x; s/ D xs, together with the following labeling: the edge .x; s/
is labeled s and its opposite .x; s/ is labeled by s�1.

Given a subgroup ƒ � � , we denote by Sch.ƒ; S/ the Schreier graph of the natural
action ƒn� Ô � .

The Cayley graph of � relatively to S is the Schreier graph Sch.˛; S/ of the action
˛W � Ô � by (right) translations. This graph is denoted by Cay.�; S/ and we clearly
have Cay.�; S/ D Sch.¹idº; S/. The �-action by left translations extends to the standard
left action of � on Cay.�; S/ by graph automorphisms.1 In particular, ƒnCay.�; S/ D
Sch.ƒ; S/.

Let 'WX ! Y be a �-equivariant map from ˛WX Ô � to ˇW Y Ô � and let S be a
generating set of � . The map ' extends to a graph morphism from Sch.˛;S/ to Sch.ˇ;S/
which respects the labelings. In particular, given subgroupsƒ1 �ƒ2 � � , the equivariant
map ƒ1n� ! ƒ2n� defines a surjective morphism Sch.ƒ1; S/! Sch.ƒ2; S/.

2.2. Space of subgroups

Let � be a countable group. We identify its set of subsets with ¹0; 1º� and we endow
it with the product topology, thus turning it into a Polish compact space. The space of
subgroups of � is the closed, hence compact Polish, subspace

Sub.�/ WD ¹ƒ2 ¹0; 1º� W ƒ is a subgroupº;

which is also totally disconnected. The clopen subsets

V.I;O/ WD ¹ƒ2Sub.�/ W I � ƒ and ƒ \O D ¿º

of Sub.�/, where I;O run over finite subsets of � , form a basis of the topology. Note that
a sequence .ƒn/n�0 of subgroups converges to ƒ if and only if for all 
 2 � ,

.
 2 ƒ/ ” .
 2ƒi for i large enough/:

By the Cantor–Bendixson theorem [4, 10] (see, e.g., Theorem 6.4 in [20]), there is a
unique decomposition

Sub.�/ D C.�/ tK.�/;

where C.�/ is a countable open subset and K.�/ is a closed perfect2 subspace called
the perfect kernel of � . The set K.�/ is the largest subset K � Sub.�/ without isolated
points for the induced topology. In fact, K.�/ is exactly the set of condensation points,
that is, the points whose neighborhoods in Sub.�/ are all uncountable.

Remark 2.2. By a theorem of Brouwer, the space K.�/ is either empty or a Cantor space,
see Theorem. 7.4 in [20].

Remark 2.3. The subset SubŒ1�.�/ of infinite index subgroups of � is closed in � if
and only if � is finitely generated. Indeed if � is finitely generated, then its finite index
subgroups are isolated. If � is not finitely generated, its finite index subgroups are not

1This is why Schreier graphs were defined with respect to right actions.
2A topological space is called perfect if it has no isolated points.
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finitely generated, but they are limit points of finitely generated (thus of infinite index)
subgroups; so SubŒ1�.�/ is dense in Sub.�/.

The group � acts (on the right) by conjugation viaƒ � 
 WD 
�1ƒ
 on the space of its
subgroups Sub.�/. This action is continuous and the Cantor–Bendixson decomposition
Sub.�/ D C.�/ tK.�/ is �-invariant.

By the Baire category theorem, any countable closed subset of Sub.�/ contains an iso-
lated point, so Sub.�/ has trivial perfect kernel if and only if it is countable. The following
well-known proposition is useful for showing the latter property.

Proposition 2.4. Let � be a countable group, let N be a normal subgroup of � such that
�=N is Noetherian (all its subgroups are finitely generated ), and assume that Sub.N / is
countable. Then Sub.�/ is countable.

Proof. Let ƒ � � and denote by � W� ! �=N the quotient map. Since �=N is Noethe-
rian, we have �.ƒ/DhSi for some finite set S . Fix a finite set S 0�ƒ such that �.S 0/DS .
Then we can recover ƒ from S 0 and its intersection with N as

ƒ D hS 0 [ .ƒ \N/i:

In other words, the map .S 0; N 0/ 7! hS 0 [ N 0i surjects Pf .�/ � Sub.N / onto Sub.�/,
where Pf .�/ is the set of finite subsets of � , which is countable. Since Sub.N / is count-
able as well, we conclude that Sub.�/ is countable.

Corollary 2.5. If jmj D 1 or jnj D 1, then Sub.BS.m; n// is countable.

Sketch of proof. We sketch the proof contained in Corollary 8.4 of [3]. By symmetry,
we may as well assume that m D 1. Then BS.m; n/ is isomorphic to the semi-direct
product ZŒ1=n� Ì Z where Z acts by multiplication by n. As explained in the proof of
Corollary 8.4 in [3], Sub.ZŒ1=n�/ is countable, so the result follows from the previous
proposition.

Space of pointed actions. Let us now interpret the topological space Sub.�/ in terms
of pointed transitive group actions and their pointed Schreier graphs. Given any pointed
transitive group action .˛; v/, where ˛WV Ô � and v 2 V , we associate to it the stabilizer
Stab˛.v/2Sub.�/, and we notice that Stab˛1.v1/D Stab˛2.v2/ if and only if .˛1; v1/ and
.˛2; v2/ are isomorphic as pointed transitive actions.

Notation 2.6. We shall denote by Œ˛; v� the isomorphism class of any pointed transitive
action .˛; v/.

We therefore have a canonical bijection Œ˛; v� 7! Stab˛.v/ between the collection of
isomorphism classes of pointed transitive actions and Sub.�/. Its inverse is given byƒ 7!
Œƒn�Ô �;ƒ�. Through this bijection, the action by conjugation of � on Sub.�/ becomes
Œ˛; v� � 
 D Œ˛; v˛.
/�, i.e., it moves the basepoint.

Via the above identification, we obtain a topology on the set of isomorphism classes
of pointed actions Œ˛; v�.

It is clear that two pointed actions are isomorphic if and only if their Schreier graphs
are isomorphic as pointed labeled graphs. Given two pointed labeled oriented graphs
.G ; v/ and .H ; w/, and a positive integer R, we write .G ; v/ 'R .H ; w/ to mean that
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the R-balls around v in G and around w in H are isomorphic as pointed oriented labeled
graphs. It is an exercise to check that if � is generated by a finite set S , then the sets of
the form

(2.7) N .Œ˛; v�; R/ WD ¹Œ˛0; v0� W .Sch.˛; S/; v/ 'R .Sch.˛0; S/; v0/º;

constitute a basis of clopen neighborhoods of Œ˛; v�.

2.3. Bass–Serre theory

Associated with the standard HNN-presentation of

BS.m; n/ D hb; t j tbmt�1 D bni;

we have the BS.m; n/-action on its Bass–Serre tree T . Recall that T is the oriented tree
with V.T / D BS.m; n/=hbi, EC.T / D BS.m; n/=hbni,

s.
hbni/ D 
hbi and t.
hbni/ D 
 thbi

and given a subgroup ƒ � BS.m; n/, the quotient ƒnT has the structure of a graph of
groups whose fundamental group is ƒ, see [25].

Remark 2.8. Let ƒ � BS.m; n/ be a subgroup. If ƒ \ hbi D ¹idº, then ƒ acts freely
on T ; thus, it is the fundamental group of the quotient graph ƒnT , hence ƒ is a free
group.

Let us now concentrate on a subgroup ƒ � BS.m; n/ such that ƒ \ hbi ¤ ¹idº. Then
for the induced actionƒÕ T , each edge and vertex stabilizer is infinite cyclic: the tree T

is a GBS-tree (for Generalized Baumslag–Solitar), in the sense of [15, 21]. One can use
this point of view to understand the graph of groups description of ƒ. However, taking
advantage of the transitivity of the BS.m; n/-action on the edges and the vertices, we
provide a slightly more precise description.

Proposition 2.9. Let m and n be non-zero integers. Let ƒ � BS.m; n/ be a subgroup
such thatƒ\ hbi ¤ ¹idº. The quotient graph of groups arising from the actionƒÕ T is
isomorphic to the graph of groups obtained by attaching a copy of Z to every vertex and
every edge of the quotient graph ƒnT , with structural maps of positive edges

Ze ,! Zs.e/; k 7!
n

degout.s.e//
� k and Ze ,! Zt.e/; k 7!

m

degin.t.e//
� k:

Proof. In this proof we set � WD BS.m; n/. Let us consider the action of ƒ on the tree T .
Since T is locally finite, any edge adjacent to a vertex with infinite stabilizer has itself
infinite stabilizer. It follows that all vertex and edge ƒ-stabilizers are infinite. Being sub-
groups of the �-stabilizers, they are all isomorphic to Z.

Observe that since � acts transitively and the �-stabilizers are abelian, the �-stabilizers
are canonically pairwise isomorphic: given any vertex u2V.T / and a2 Stab�.u/, one has

(2.10) gag�1 D hah�1 for any g; h 2 � such that gu D hu:

Indeed, since h�1g 2 Stab�.u/, we get that h�1gag�1h D a.
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We now focus on the quotient graph of groups arising from the action ƒ Õ T . Let
us recall from [25] that its vertex groups are Gv WD Stabƒ. Qv/ and its edge groups are
Ge WD Stabƒ. Qe/, where Qv and Qe are some lifts of v and e in T . Given any e 2 EC.ƒnT /,
the structural map Ge ,! Gt.e/ is

(2.11) Ge D Stabƒ. Qe/ ,! Stabƒ.t. Qe//! Stabƒ. �t.e// D Gt.e/; a 7! a 7! gag�1;

where g 2 ƒ is any element such that g � t. Qe/D �t.e/ and the map Ge ,! Gs.e/ is similar.
This is unambiguous by (2.10).

Let us call orientation of an infinite cyclic group the choice of one generator (over
two). This provides an identification to Z. Once every stabilizer is oriented, the inclu-
sions Ge ,! Gs.e/ and Ge ,! Gt.e/ become multiplications by non-zero integers ��ƒ.e/
and �Cƒ.e/, respectively. It now suffices to prove that, for well-chosen orientations, one has

(2.12) ��ƒ.e/ D
n

degout.s.e//
and �Cƒ.e/ D

m

degin.t.e//

for every positive edge e 2 EC.ƒnT /.
Let us first observe that the absolute value of �˙ƒ.e/ does not depend on the orienta-

tions: it is equal to ŒGv W Ge�. In other words, if Qe is a lift of e, Qv WD s. Qe/D and Qw WD t. Qe/,
we have

j��ƒ.e/j D ŒStabƒ. Qv/ W Stabƒ. Qe/� D jStabƒ. Qv/ � Qej;(2.13)

j�Cƒ.e/j D ŒStabƒ. Qw/ W Stabƒ. Qe/� D jStabƒ. Qw/ � Qej:(2.14)

Let Eout. Qv/ be the set of Qv-outgoing edges. Its cardinal is jEout. Qv/j D jnj. Any genera-
tor of Stab�. Qv/ acts as a single jnj-cycle on Eout. Qv/. Hence, Eout. Qv/ splits into Stabƒ. Qv/-
orbits of equal size, that is, j��ƒ.e/j according to (2.13). The number of these Stabƒ. Qv/-
orbits is degout.v/, thus jnj D j��ƒ.e/j � degout.v/. We obtain similarly jmj D j�Cƒ.e/j �
degin.w/, using incoming edges and (2.14). We have established that (2.12) holds in abso-
lute value.

Let us now turn to the signs in (2.12), for which we need explicit orientations of the
ƒ-stabilizers. We actually start by orienting the �-stabilizers.

Pick the vertex Qu0 WD hbi 2 V.T /. Then Stab�. Qu0/D hbi and the positive edge Qd0 WD
hbni 2EC.T / has source Qu0 and target t Qu0. Since the �-stabilizers are canonically pair-
wise identified by conjugation (2.10), these choices induce a canonical conjugation-invari-
ant orientation x� of all the vertex and edge �-stabilizers: xg Qu0 WD gbg

�1 for Stab�.g Qu0/
and xg Qd0 WD gb

ng�1 for Stab�.g Qd0/.
The inclusions Stab�. Qe/ ,! Stab�.s. Qe// and Stab�. Qe/ ,! Stab�.t. Qe// become multi-

plications by non-zero integers that we denote by ��� . Qe/ and �C� . Qe/. We have ��� . Qe/ D n
since xQe D xns.Qe/, and �C� . Qe/ D m since

xQe D gb
ng�1 D g.tbt�1/mg�1 D xmt.Qe/:

The ƒ-stabilizers have finite index in the corresponding �-stabilizers. We orient them
coherently with the ambient �-stabilizers by using positive powers. The ƒ-conjugations
between ƒ-stabilizers remain orientation-preserving, therefore by (2.11) the inclusion
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map Stabƒ. Qe/ ,! Stabƒ.t. Qe// becomes the multiplication by �Cƒ.e/. Similarly, the inclu-
sion Stabƒ. Qe/ ,! Stabƒ.s. Qe// becomes multiplication by ��ƒ.e/. Since the orientations
are coherent, we conclude that ��ƒ.e/ has the same sign as ��� .e/ D n and �Cƒ.e/ has the
same sign as �C� .e/ D m.

Corollary 2.15. Letm and n be non-zero integers. Letƒ � BS.m;n/ be a subgroup such
thatƒ\ hbi ¤ ¹idº. The isomorphism type of ƒ is completely determined by the oriented
graph ƒnT .

Proposition 2.16. Letm and n be non-zero integers and letƒ� BS.m;n/ be a subgroup.

(1) If ƒ \ hbi ¤ ¹idº, then either ƒ ' Z is virtually a subgroup of hbi or ƒ is not a
free group.

(2) If jmj D 1 or jnj D 1, then the fundamental group of the underlying graph ƒnT is
a free group of rank � 1.

Ifƒ\ hbi D ¹idº, thenƒ is the fundamental group of the underlying graphƒnT (see
Remark 2.8).

The first item of the proposition follows from standard techniques in `2-cohomology:
ifƒ\ hbi ¤ ¹idº, thenƒ is the fundamental group of a graph of groups whose vertex and
edge groups are isomorphic to Z; all the `2-Betti numbers of such a group vanish. For the
comfort of the reader, we propose a proof by hand.

Proof. We start with the first item. Recall that in a free group F , whenever non-trivial
elements g;h 2 F satisfy ghkg�1 D hl with k ¤ 0¤ l , then there is a 2 F such that g;h
are both powers of a. In particular, such elements g; h always commute.

Now, assume that ƒ is free and ƒ \ hbi ¤ ¹idº, say ƒ \ hbi D hbsi, where s > 0.
Pick any � 2 ƒ and set H� WD hbsi \ �hbsi��1, which is the intersection of ƒ with the
stabilizer of the geodesic Œhbi; �hbi� in T . Observe that H� is a finite index subgroup of
both hbsi and �hbsi��1. Therefore, there are k ¤ 0 ¤ l such that �bsk��1 D bsl . As ƒ
is free, � and bs commute.

Consequently, the center of ƒ contains hbsi. Thus, the rank of ƒ is 1; in other words,
ƒ is infinite cyclic. It is now clear that hbsi has finite index in both ƒ and hbi, so ƒ is
virtually a subgroup of hbi.

Let us turn to the second item. The fundamental group of a graph of groups surjects
onto the fundamental group of the underlying graph. The condition in item (2) implies
the amenability of BS.m; n/. Its subgroups thus cannot surject onto a non-amenable free
group.

3. Bass–Serre graphs

3.1. Pre-actions

Let m; n2Z n ¹0º and BS.m; n/ D hb; t j tbm D bnti.
Recall that a partial bijection of a set X is a bijection between two subsets of X . Our

actions are on the right; thus in a product of (partial) bijections �� , the transformation �
is applied first.
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Definition 3.1. Given a bijection ˇ of a set X and a partial bijection � of X , we say that
� is .ˇn; ˇm/-equivariant if �ˇm D ˇn� as partial bijections, that is,

• dom.�/ is ˇn-invariant,
• rng.�/ is ˇm-invariant,
• x�ˇm D xˇn� for all x 2 dom.�/.

A pre-action of BS.m; n/ on a set X is a couple .ˇ; �/ where ˇ is a bijection of X
and � is a .ˇn; ˇm/-equivariant partial bijection of X . The set X is called the domain of
the pre-action. Such a pre-action is saturated if dom.�/ D X D rng.�/.

Remark 3.2. Saturated pre-actions .ˇ; �/ correspond to actions ˛ of BS.m; n/ on the
same set X under the association ˇ $ ˛.b/ and � $ ˛.t/.

Definition 3.3. Given a pre-action .ˇ; �/ of BS.m; n/, its Schreier graph is the oriented
labeled graph Sch.ˇ; �/ D G defined by

V.G / WD X and

´
EC.G / WD X � ¹bº t dom.�/ � ¹tº;
E�.G / WD X � ¹b�1º t rng.�/ � ¹t�1º;

where the label of any edge is its second component, and
• for all x 2 X , we set

s.x; b/ WD x; t.x; b/ WD xˇ and .x; b/ WD .xˇ; b�1/;

• for all x 2 dom.�/, we set

s.x; t/ WD x; t.x; t/ WD x�; and .x; t/ WD .x�; t�1/:

Notice that the orientation of any edge .x; l/ is determined by its label l and that the
source of .x; l/ is x, regardless of its orientation.

Noting that a BS.m; n/-action is transitive if and only if the associated Schreier graph
is connected, we make the following definition.

Definition 3.4. A pre-action of BS.m; n/ is transitive if its Schreier graph is connected.

3.2. Bass–Serre graphs

We now introduce an important tool for our study. It is the labeled graph obtained from
the Schreier graph defined in Section 3.1 by “shrinking each ˇ-orbit to one point”. We
identify together the t -edges whose initial vertices belong to the same ˇn-orbit. Note that
their terminal vertices automatically belong to the same ˇm-orbit.

We label the vertices by the cardinality of the corresponding ˇ-orbit and the edges by
the cardinality of the corresponding ˇn-orbit. This is illustrated by Figure 2. The formal
definition is as follows.

Definition 3.5. The Bass–Serre graph associated to a pre-action ˛ D .ˇ; �/ of BS.m; n/
on a set X is the oriented labeled graph BS.˛/ defined by

V.BS.˛// WD X=hˇi and

´
EC.BS.˛// WD dom.�/=hˇni;
E�.BS.˛// WD rng.�/=hˇmi:
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For every x 2 dom � , we set

s.xhˇni/ WD xhˇi; t.xhˇni/ WD x�hˇi and xhˇni WD x�hˇmi D xhˇni�:

We define the label map LWV.BS.˛// tE.BS.˛//! Z�1 [ ¹1º by

L.xhˇi/ WD jxhˇij; L.xhˇni/ WD jxhˇnij; L.yhˇmi/ WD jyhˇmij:

Remark 3.6. For any x 2 dom.�/, the .ˇn; ˇm/-equivariant partial bijection � induces a
bijection from xhˇni to x�hˇmi. Thus, both the target and the opposite maps of BS.˛/
are well defined and the label of each edge is equal to the label of its opposite.

Remark 3.7. We view the sets EC.BS.˛// and E�.BS.˛// as disjoint sets, even though
we might have that dom.�/=hˇni \ rng.�/=hˇmi ¤ ¿. Note that the source of an edge
xhˇki 2 E˙.BS.˛// is xhˇi regardless of its orientation.

Remark 3.8. The groups BS.m;n/ and BS.n;m/ are isomorphic via b 7! b and t 7! t�1.
For every pre-action .ˇ; �/ of BS.m; n/, the couple .ˇ; ��1/ is a pre-action of BS.n;m/.
At the level of Bass–Serre graphs, BS.ˇ; �/ and BS.ˇ; ��1/ coincide, except that the
orientation is reversed.

Remark 3.9. In the case of a transitive BS.m; n/-action, the graph underlying our Bass–
Serre graph is the quotient of the Bass–Serre tree T by the stabilizer of any point of X , as
will be explained in Section 3.6.

We now clarify what we meant by “shrinking each ˇ-orbit to a point”, by noting that
we have the following simplicial map from the Schreier graph to the Bass–Serre graph of
any pre-action.

Definition 3.10. The projection associated to a pre-action ˛D .ˇ; �/ is the application �˛
given by

V.Sch.˛//! V.BS.˛//; x 7! xhˇi;

ECt .Sch.˛//! EC.BS.˛//; .x; t/ 7! xhˇni;

E�t .Sch.˛//! E�.BS.˛//; .x; t�1/ 7! xhˇmi;

Eb.Sch.˛//! V.BS.˛//; .x; b˙1/ 7! xhˇi;

where E˙t .Sch.˛// is the subset of edges in Sch.˛/ whose label is t or t�1 respectively,
and Eb is the subset of edges whose label is b or b�1.

This projection is illustrated in Figure 2. Given any subgraph G � Sch.˛/ or path p in
Sch.˛/, we obtain a subgraph �˛.G / � BS.˛/ or a path �˛.p/ in BS.˛/.

Note that for every vertex v D xhˇi,

jxhˇkij D
jxhˇij

gcd.jxhˇij; k/
,

thus the following facts hold:
• all the v-outgoing edges e have the same label, which is

L.e/ D
L.v/

gcd.L.v/; n/
,
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Figure 2. The projection from the Schreier graph onto the Bass–Serre graph of some non-saturated
transitive BS.2; 3/-pre-action. The dotted circles represent the ˇ-orbits in the Schreier graph.

• all the v-incoming edges e0 have the same label, which is

L.e0/ D
L.v/

gcd.L.v/;m/
�

We also have the following relations between labels and degrees:
• The outgoing degree degout.v/ is equal to the number of ˇn-orbits contained in xhˇi \

dom.�/. Recall that dom.�/ is ˇn-invariant. Since xhˇi contains exactly gcd.L.v/; n/
orbits under ˇn, we get

degout.v/ � gcd.L.v/; n/;

with equality if and only if xhˇi � dom.�/.
• Similarly, the incoming degree degin.v/ is equal to the number of ˇm-orbits contained

in xhˇi \ rng.�/, so
degin.v/ � gcd.L.v/;m/;

with equality if and only if xhˇi � rng.�/.

Remark 3.11. As a consequence of the last two items, the pre-action is an action if and
only if, for every vertex v,

degout.v/ D gcd.L.v/; n/ and degin.v/ D gcd.L.v/;m/:

3.3. .m; n/-graphs

We now introduce an axiomatization of the Bass–Serre graphs we obtain from pre-actions.
Recall that by convention gcd.1; k/ D jkj for all k ¤ 0.
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Definition 3.12. An .m;n/-graph is an oriented labeled graph G D .V;E/ with label map
LWV tE ! Z�1 [ ¹1º such that:

• for every positive edge e 2EC,

(3.13)
L.s.e//

gcd.L.s.e//; n/
D L.e/ D

L.t.e//
gcd.L.t.e//;m/

,

• for every negative edge e 2 E�, L.e/ D L. Ne/,
• for every vertex v 2V , we have

(3.14) degout.v/ � gcd.L.v/; n/ and degin.v/ � gcd.L.v/;m/:

Example 3.15. The Bass–Serre graph of any pre-action of BS.m; n/ is an .m; n/-graph.
The converse will be shown in Proposition 3.22.

Remark 3.16. Observe that an edge label is uniquely determined by the label of any of
its vertices. The edge labels are thus redundant and are just calculation tools (see also
Remark 4.7).

Example 3.17. Let us see how labels interact for m D 2 and n D 3. If e is an edge in
a .2; 3/-graph, then once we fix the label of one of the extremities, the other one can be
chosen according to the following rules, using formula (3.13) for L.e/:

• If gcd.L.s.e//; 2/ D 1, then L.t.e// 2 ¹L.e/; 2L.e/º.
• If gcd.L.s.e//; 2/ D 2, then L.t.e// D 2L.e/.
• If gcd.L.t.e//; 3/ D 1, then L.s.e// 2 ¹L.e/; 3L.e/º.
• If gcd.L.t.e//; 3/ D 3, then L.s.e// D 3L.e/.

The reader is invited to consult the web page [12] to see the kinds of local constraints
which occur in general. In Figure 3, we give an illustrative example.

3

1

1

2

1

1

1

(a) Various choices for the label L.t.e//.

6

4

4

4

2

2

2

(b) No choice for the label L.t.e//.

Figure 3. Two examples of .2; 3/-graphs.

Remark 3.18. As in Remark 3.8, every .m; n/-graph can be turned into an .n;m/-graph
by flipping the orientations of its edges. Note that this operation does not affect the labels.
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Remark 3.19. In a connected .m; n/-graph, the labels are, either all finite, or all 1 by
equation (3.13). This will be made more precise in Proposition 4.6. Observe that any
oriented graph G satisfying degin.v/ �m and degout.v/ � n, for every v2V.G /, becomes
an .m;n/-graph if we set all the labels to be infinite. However, one cannot always put finite
labels, see Lemma 3.33.

Definition 3.20. Let G be an .m; n/-graph. A vertex v in G is saturated if the inequali-
ties (3.14) are indeed equalities, i.e.,

degout.v/ D gcd.L.v/; n/ and degin.v/ D gcd.L.v/;m/:

The .m; n/-graph G is saturated if all its vertices are saturated.

Example 3.21. The Bass–Serre graph of a pre-action of BS.m; n/ is saturated if and only
if the pre-action is an action.

3.4. Realizing .m; n/-graphs as Bass–Serre graphs

Proposition 3.22. Every .m; n/-graph G is the Bass–Serre graph of at least one pre-
action of BS.m; n/. Any such pre-action is an action if and only if G is saturated.

The above proposition is a consequence of the following stronger statement where
by definition, a sub-.m; n/-graph of an .m; n/-graph G is a subgraph G 0 labeled by the
restriction of the label map of G .

Proposition 3.23 (Extension of pre-actions from .m; n/-graphs). Let G1 be the Bass–
Serre graph of a pre-action ˛1, and let G2 be an .m; n/-graph that contains G1 as a
sub-.m; n/-graph. Then G2 is the Bass–Serre graph of a pre-action ˛2 that extends ˛1.

Proof. We start with a pre-action .ˇ1; �1/ on X1, which yields the Bass–Serre graph G1.
LetW WD V.G2/ n V.G1/ andX2 WDX1 t

F
v2W Xv , where eachXv is a set of cardinality

jXvj DL.v/. We extend ˇ1 to a permutation ˇ2 ofX2 by making it act as a cycle of length
L.v/ on Xv .

By Zorn’s lemma, it suffices to extend �1 when G1 only lacks one positive G2-edge.
So, suppose EC.G1/ t ¹eº D EC.G2/. Then, by inequality (3.14) in Definition 3.12,

degG1
out.s.e// < degG2

out.s.e// � gcd.L.s.e//; n/

and, similarly,
degG1

in .t.e// < degG2
in .t.e// � gcd.L.t.e//;m/:

We can thus find a ˇn2 -orbit yhˇn2 i contained in the ˇ2-orbit s.e/ but disjoint from dom.�1/
and a ˇm2 -orbit zhˇm2 i contained in the ˇ2-orbit t.e/ but disjoint from rng.�1/.

Since these two orbits yhˇn2 i and zhˇm2 i share the same cardinalL.e/, we can define �2
as an extension of �1 which is also .ˇn2 ; ˇ

m
2 /-equivariant when restricted to yhˇn2 i by

letting
yˇkn2 �2 D zˇ

km
2 for all k 2Z:

By construction, �2 is the desired extension.

The pre-action ˛2 arising in Proposition 3.23 is definitively not unique in general. In a
forthcoming work, we will characterize which .m;n/-graphs arise as Bass–Serre graphs of
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continuum many non-isomorphic actions. In particular, we will show that the .m; n/-
graphs whose underlying graph has non-finitely generated fundamental group are of this
kind. Such .m; n/-graphs always exist as long as jmj � 2 and jnj � 2. Here we give
a simple example of a graph associated to continuum many non-isomorphic actions for
n D m D 2.

Example 3.24. Let G be the .2; 2/-graph whose underlying graph is such that V.G / D Z
and for every z 2 V.G /, there are exactly two z-outgoing edges, one to z and the other
to z C 1, see Figure 4. That is, G is a line where every vertex has an extra loop. We set the
labels of G to be all infinite.

1 1 1 1

Figure 4. The (2,2)-graph G .

Set X WD V.G / � Z Š Z � Z. For every function f WZ! Z such that for all w < 0,
f .w/ D 0 and f .0/ ¤ 0, we define an action f̨ as follows, for all .k; l/ 2 X :

.k; l/ f̨ .b/ WD .k; l C 1/; .k; l/ f̨ .t/ WD

²
.k C 1; l/ if l is odd;
.k; l C f .k// if l is even:

It is easy to check that all f̨ are actions of BS.2; 2/ whose Bass–Serre graph is G , that f̨

and ˛g are non-conjugate for f ¤ g, and that there are continuum many such actions.

3.5. Additional properties of .m; n/-graphs

In this section, we collect some basic consequences of the definition of .m; n/-graphs.
Observe that equation (3.13) is equivalent to the fact that

(3.25) max.jL.s.e//jp � jnjp; 0/ D jL.e/jp D max.jL.t.e//jp � jmjp; 0/;

from which we obtain the following.

Remark 3.26. Consider an oriented labeled graph G D .V; E/ with label map LW V t
E ! Z�1 satisfying L. Ne/ D L.e/ for every edge e. The labeled graph G is an .m; n/-
graph if and only if the following two conditions hold:

• for every positive edge e and every prime p such that jL.e/jp � 1,

(3.27) jL.s.e//jp D jL.e/jp C jnjp and jL.t.e//jp D jL.e/jp C jmjp;

• for every positive edge e and every prime p such that jL.e/jp D 0,

(3.28) 0 � jL.s.e//jp � jnjp and 0 � jL.t.e//jp � jmjp:

In particular, in an .m; n/-graph, jL.s.e//jp > jnjp if and only if jL.t.e//jp > jmjp ,
and if one of these two equivalent conditions is met, then

(3.29) jL.t.e//jp D jL.s.e//jp C jmjp � jnjp:
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Lemma 3.30. Let p be a prime number such that jnjp < jmjp and let G be an .m; n/-
graph. If .ek/k�1 is any infinite path consisting of positive edges with L.s.e1//¤1 and
jL.s.e1//jp > jnjp , then

lim
k!C1

jL.s.ek//jp D C1:

If .ek/k�1 is any infinite path consisting of negative edges with L.s.e1// ¤1, then

lim sup
k!C1

jL.s.ek//jp < jmjp:

Proof. If .ek/k�1 is an infinite path of positive edges such that jL.s.e1//jp > jnjp , then
by a straightforward induction using Equation (3.29) we have that

(3.31) jL.s.ek//jp D jL.s.e1//jp C k.jmjp � jnjp/

for all k � 1. The first result follows.
For the second one, let .ek/k�1 be an infinite path consisting of negative edges. By

exchanging the roles in equation (3.29), we have the claim:

if e is a negative edge, then jL.s.e//jp > jmjp if and only if jL.t.e//jp > jnjpI
and when this occurs, jL.t.e//jp D jL.s.e//jp � jmjp C jnjp:

Thus, jL.s.ekC1//jp D jL.t.ek//jp < jL.s.ek//jp as long as jL.s.ek//jp > jmjp . So
there must be k0 2 N such that jL.s.ek0//jp � jmjp (this could have already happened
for k0 D 1). From this point, we have jL.s.ek0C1//jp D jL.t.ek0//jp � jnjp < jmjp and
an inductive use of the claim gives jL.s.ek//jp � jnjp < jmjp for all k > k0. This finishes
the proof.

Remark 3.32. It follows from equation (3.31) that any infinite path .ek/k�1 consisting of
positive edges with L.s.e1// ¤1 and jL.s.e1//jp > jnjp has to be a simple path.

Lemma 3.33. If jmj > jnj and G is an .m; n/-graph with a vertex of finite label, then
there is a vertex v 2 V.G / such that degin.v/ < jmj.

Proof. Assume by contradiction that degin.v/ D jmj for all v 2 V.G /. Then we can build
inductively an infinite path .ek/k2N consisting of negative edges with L.s.e0// finite. By
the previous lemma, this path goes through some vertex v0 that jL.v0/jp < jmjp . Then
degin.v0/ D gcd.L.v0/;m/ < jmj, a contradiction.

3.6. Bass–Serre theory for BS.m; n/

Take m; n 2 Z n ¹0º. Set � WD BS.m; n/ D hb; t j tbmt�1 D bni and put S WD ¹b; tº.
Denote by T the associated Bass–Serre tree and remark that it is the underlying oriented
graph of the Bass–Serre graph of the transitive and free action: T D BS.� Ô �/.

Besides the Schreier graph, we can associate to each subgroup ƒ � � two decorated
graphs:

• the Bass–Serre graph of the action ƒn� Ô � ,
• the quotient graph of groups ƒnT of the action ƒÕ T .
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Let us observe that the underlying oriented graphs of the two above decorated graphs
are the same. Indeed, they are obtained as quotients of commuting actions as one can see in
the following diagram, where byÔV hbi we mean that hbi acts only on the set of vertices,
where the. arrows are graph morphisms obtained by quotienting by left ƒ-actions, and
where the dashed& arrows are projections as in Definition 3.10:

ƒÕ Cay.�; S/ÔV hbi

ƒnCay.�; S/ÔV hbi ƒÕ BS.� Ô �/

Sch.ƒ; S/ÔV hbi ƒÕ T

BS.ƒn� Ô �/ ' ƒnT :

Next, observe that, BS.ƒn� Ô �/ being saturated, one has degin.v/ D gcd.L.v/;m/
and degout.v/ D gcd.L.v/; n/ for every vertex v in this graph. Hence, for every edge e,
one has

L.s.e//
L.e/

D gcd.L.s.e//; n/ D degout.s.e// and
L.t.e//
L.e/

D degin.t.e//:

Thus, Remark 2.8 and Proposition 2.9 can be immediately reformulated in terms of the
labels of the Bass–Serre graph BS.ƒn� Ô �/ as follows.

Proposition 3.34. Let m and n be non-zero integers. Let G be a saturated connected
.m; n/-graph and let ƒ be a subgroup of � D BS.m; n/ such that BS.ƒn� Ô �/ ' G .

(1) If all labels of G are infinite, then ƒ is a free group, namely, isomorphic to the
fundamental group of the graph G .

(2) If all labels of G are finite, then the quotient graph of groups arising from the action
ƒÕ T is isomorphic to the graph of groups obtained by attaching a copy of Z to
every vertex and every edge of G , with structural maps of positive edges

Ze ,! Zs.e/; k 7!
n � L.e/

L.s.e//
� k and Ze ,! Zt.e/; k 7!

m � L.e/

L.t.e//
� k:

Then, combining Proposition 3.34 and Lemma 3.33, we get the following rephrasing
of Corollary 2.15.

Corollary 3.35. Let m and n be non-zero integers such that jmj ¤ jnj. Then the isomor-
phism type of ƒ � BS.m; n/ depends only on the graph structure of BS.ƒ/.

Proof. Recall that if an .m; n/-graph is saturated and has only infinite labels, then all
vertices have incoming degree jmj and outgoing degree jnj. Lemma 3.33 thus allows us to
detect whether the Bass Serre graph of ƒ contains infinite labels by purely looking at its
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graph structure: it has infinite labels if and only if all vertices have degree jnj C jmj. The
result now follows from Proposition 3.34.

Remark 3.36. When jmj D jnj, the statement analogue to that of Corollary 3.35 fails
since the central subgroup ƒ D hb2ni has the same Bass–Serre graph as the trivial sub-
group ¹idº.

4. Phenotype

In this section, we introduce a central invariant to understand transitive BS.m; n/-(pre)-
actions: the phenotype (see Definition 4.9). We first define the .m; n/-phenotype of a
natural number. We then prove that given a transitive pre-action .�; ˇ/, all cardinalities
of ˇ-orbits have the same phenotype.

4.1. Phenotypes of natural numbers

Recall that P denotes the set of prime numbers and that given p2P and k2Z, we denote
by jkjp the p-adic valuation of k.

Definition 4.1 (Phenotype of a natural number). Let k 2Z�1. We set

Pm;n WD ¹p 2 P W jmjp D jnjpº;

Pm;n.k/ WD ¹p 2 P W jmjp D jnjp and jkjp > jnjpº:

The .m; n/-phenotype of k, denoted by Phm;n.k/, is the following positive integer:

Phm;n.k/ WD
Y

p2Pm;n.k/

pjkjp :

If k D1, we set Phm;n.k/ WD 1.

Example 4.2. If m and n are coprime, then for every k 2Z,

Pm;n D ¹p 2 P W p does not divide mnº;
Pm;n.k/ D ¹p 2 P W p divides k and p does not divide mnº:

In this case, Phm;n.k/ is the greatest divisor of k that is coprime to mn.

Example 4.3. If m D 22 � 32 � 5 and n D 22 � 3, then Pm;n D P n ¹3; 5º and

Pm;n.k/ D

´
¹p 2 P Wp divides kº n ¹2; 3; 5º if 23 does not divide k;
¹p 2 P Wp divides kº n ¹3; 5º if 23 divides k:

For example, Phm;n.2 � 3 � 7/ D 7 and Phm;n.25 � 3 � 7/ D 25 � 7.

Remark 4.4. If k and l both have phenotype q, then so do their lcm and gcd.

The following lemma will be useful in Section 5.
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Lemma 4.5. Let q D Phm;n.k/ be a finite .m; n/-phenotype. Then Ph�1m;n.¹qº/ is finite if
and only if jmj D jnj.

Proof. Assume first that jmj ¤ jnj. In this case, there is a prime number p such that
jmjp ¤ jnjp . We get Phm;n.pik/ D q for all i , hence Ph�1m;n.¹qº/ is infinite.

If jmj D jnj, then Pm;n D P . If k and k0 are two integers with the same phenotype,
the only primes p for which the valuations of k and k0 may differ are those for which
jkjp � jmjp and in this case jk0jp must also be bounded by jmjp . There are only finitely
many such k0.

4.2. Phenotypes of .m; n/-graphs

If v is a vertex of an .m; n/-graph, we use the shorter expression “phenotype of the ver-
tex v” to mean “phenotype of the label of the vertex v”. The key feature of the notion of
phenotype is the following statement.

Proposition 4.6. Given a connected .m; n/-graph, all its vertices have the same .m; n/-
phenotype.

Proof. It is enough to check that for any positive edge e from v� to vC, the phenotypes
of v� and vC are the same. If the phenotype of one of them is infinite, then this is a direct
consequence of equation (3.13) from Definition 3.12. Otherwise, remark that for every
positive integer k and every p 2 Pm;n,ˇ̌̌ k

gcd.k; n/

ˇ̌̌
p
> 0 ” p 2 Pm;n.k/:

Equation (3.13) impliesˇ̌̌ L.v�/

gcd.L.v�/; n/

ˇ̌̌
p
D jL.e/jp D

ˇ̌̌ L.vC/

gcd.L.vC/;m/

ˇ̌̌
p
;

and hence Pm;n.L.v�// D Pm;n.L.vC//. If p 2 Pm;n.L.v�//, then L.v�/ has higher
p-valuation than m and n, so

jL.v�/jp � jnjp D
ˇ̌̌ L.v�/

gcd.L.v�/; n/

ˇ̌̌
p
D

ˇ̌̌ L.vC/

gcd.L.vC/;m/

ˇ̌̌
p
D jL.vC/jp � jmjp:

Since jnjp D jmjp , we conclude that for all p 2 Pm;n.L.v�// D Pm;n.L.vC//, we have
jL.v�/jp D jL.vC/jp . Therefore, L.v�/ and L.vC/ share the same phenotype.

Remark 4.7. One can prove that the edges of a connected .m; n/-graph also all have the
same .m;n/-phenotype. However, it is a coarser invariant: there are connected graphs with
different vertex phenotypes, but with the same edge phenotype. For example, fix

m D 22 � 32 � 5; n D 22 � 3

and consider the graph consisting of a single oriented edge e and its two endpoints. If the
label of its origin is L.s.e// D 23 � 7, then

L.e/ D
L.s.e//

gcd.L.s.e//; n/
D 2 � 7 and Phm;n.L.e// D 7;
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while Phm;n.L.s.e// D 23 � 7. If instead we set the label of its origin to be L.s.e// D
24 � 7, then we get

L.e/ D 22 � 7 and Ph.L.e// D 7;

while Phm;n.L.s.e// D 24 � 7 ¤ 23 � 7. We will thus not use the phenotype of edges.

Proposition 4.6 allows us to define the phenotypes of connected .m; n/-graphs and
transitive BS.m; n/-pre-actions.

Definition 4.8. The phenotype of a connected .m; n/-graph G is the common phenotype
of the labels of its vertices. We denote it Ph.G /.

4.3. Phenotypes of BS.m; n/-actions

Recall that a pre-action is transitive if its Schreier graph is connected, which is equivalent
to its Bass–Serre graph being connected.

Definition 4.9. The phenotype of a transitive (pre)-action ˛ of BS.m; n/ is the common
phenotype of the cardinalities Phm;n.jxhbij/ of its hbi-orbits. We denote it Ph.˛/.

By definition, the phenotype of any transitive (pre)-action coincides with the pheno-
type of its Bass–Serre graph.

Remark 4.10. Any BS.m; n/-action with finite Bass–Serre graph and finite phenotype
is necessarily an action on a finite set whose cardinality is the sum of the labels of the
vertices.

For infinite phenotype, we have the following.

Lemma 4.11. There exists an infinite phenotype transitive BS.m; n/-action with finite
Bass–Serre graph if and only if jmj D jnj.

Proof. Consider an infinite phenotype BS.m; n/-action with finite Bass–Serre graph G .
Since G is saturated, all its vertices have outgoing degree jnj and incoming degree jmj.
But there must be globally as many outgoing edges as incoming edges, so since G is finite,
we must have jnj D jmj.

Conversely, if jnj D jmj, consider the bouquet of jnj circles with edges and vertices
labeled by1, and observe that this is a connected saturated .m;n/-graph. Proposition 3.22
provides a transitive action having this labeled bouquet of circles as its finite Bass–Serre
graph of infinite phenotype.

4.4. Merging pre-actions

In order to establish some of the main results of this article, we will need “cut and paste”
operations on pre-actions, for instance:

• putting two prescribed pre-actions inside a single transitive action (useful for topolog-
ical transitivity properties),

• modifying an action so as to add or remove a circuit in its Schreier graph (useful to
get a new action that is close but distinct from the original one).
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We now present these “cut and paste” operations. The main one is the following and the
rest of this section will be devoted to its proof. Other useful results will appear in the
course of the proof.

Theorem 4.12 (The merging machine). Assume jmj � 2 and jnj � 2. Let ˛1 and ˛2 be two
transitive non-saturated pre-actions of BS.m; n/ with the same phenotype. There exists a
transitive action ˛ which contains copies of ˛1 and ˛2 with disjoint domains.

Given a pre-action ˛ D .ˇ; �/ and two sub-pre-actions ˛1; ˛2, let us recall that the
domain of ˛ is the set dom.ˇ/ D rng.ˇ/. Notice that ˛1 and ˛2 have disjoint domains
if and only if their Bass–Serre graphs BS.˛1/ and BS.˛2/ are disjoint (that is, have no
common vertex) in BS.˛/.

First, taking advantage of Proposition 3.23, we reduce to the case of .m; n/-graphs,
for which the analogous result is the following.

Theorem 4.13 (The merging machine for .m; n/-graphs). Assume jmj � 2 and jnj � 2.
Let G1 and G2 be two connected and non-saturated .m; n/-graphs with the same phe-
notype. There exists a connected and saturated .m; n/-graph G which contains disjoint
copies of G1 and G2.

Remark 4.14. The hypothesis that both jmj; jnj � 2 is necessary. If m D 1 but jnj ¤ 1,
we can consider the .1; n/-graph consisting of a single vertex with infinite label and only
one loop. This graph is not saturated but it cannot be connected to another copy of itself.
Indeed, the reader can check that the only saturated graph containing it admits a unique
circuit, namely, the loop itself.

Proof of Theorem 4.12 based on Theorem 4.13. The two Bass–Serre graphs BS.˛1/ and
BS.˛2/ are connected non-saturated .m; n/-graphs with the same phenotype. Therefore,
we can apply Theorem 4.13 to obtain a connected and saturated .m; n/-graph G which
contains disjoint copies of BS.˛1/ and BS.˛2/.

Then we apply Proposition 3.23 to the pre-action ˛1 t ˛2, whose Bass–Serre graph
BS.˛1/ t BS.˛2/ is contained in G , to ensure the existence of a BS.m; n/-pre-action ˛
which extends ˛1 t ˛2. Thus ˛ extends both ˛1 and ˛2 with disjoint domains. Since G

is connected and saturated, ˛ is a transitive and saturated pre-action, i.e., it is a genuine
transitive action of BS.m; n/ that satisfies the requirements of Theorem 4.12.

We now present some general results we will use in order to prove Theorem 4.13. We
begin with two easy properties of phenotypes which will be useful in the proof.

Lemma 4.15. For any k 2Z�1, if q D Phm;n.k/, then Phm;n.q/ D q and gcd.q; n/ D
gcd.q;m/.

Proof. We get directly from Definition 4.1 that jqjp D jkjp if p 2 Pm;n.k/, and jqjp D 0
for the other primes p. Consequently, we get Pm;n.q/ D Pm;n.k/ and then Phm;n.q/ D
Phm;n.k/ D q. Finally, since every prime p dividing q satisfies jmjp D jnjp and jnjp <
jqjp , we obtain

gcd.q; n/ D
Y

p2P Wp jq

pjnjp D
Y

p2P Wp jq

pjmjp D gcd.q;m/:
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In the following lemma, by welding two vertices we mean taking the quotient graph
obtained by identifying these vertices. Its proof is a direct consequence of the definition
of an .m; n/-graph, so we omit it.

Lemma 4.16 (Welding lemma). Let m; n 2Z n ¹0º, let G be an .m; n/-graph and let v
and w be two distinct vertices such that

• L WD L.v/ D L.w/,

• degout.v/C degout.w/ � gcd.n; L/,
• degin.v/C degin.w/ � gcd.m;L/.

Welding together v and w delivers an .m; n/-graph.

Note that in this lemma G can be finite or infinite, connected or not. Together with the
welding lemma, the following result will allow us to connect not saturated .m; n/-graphs
via the well-known technique of arc welding.

Theorem 4.17 (Connecting lemma). Assume jmj � 2 and jnj � 2. Let k; ` 2 Z�1 be such
that Phm;n.k/D Phm;n.`/, and let "k ; "` 2 ¹C;�º. There exists an .m;n/-graph G , which
is a simple edge path .e1; : : : ; eh/ of length h � 1, such that

• L.s.e1// D k and L.t.eh// D `,

• the orientations of e1 and eh are given by e1 2E.G /"k and eh 2E.G /"` .

Proof. Observe that every .m; n/-graph can be turned into an .n; m/-graph by flipping
the orientations of its edges. Note that this operation does not affect the labels nor its
phenotype. We thus can restrict ourselves to the case where the orientation "k of the first
edge in the path is asked to be positive and no assumption is made on "`. Let us set
q WD Phm;n.k/ D Phm;n.`/.

We first treat the case k D q D `. Recall from Lemma 4.15 that Phm;n.q/D q and that
we have gcd.m;q/D gcd.n; q/. Hence, there exists an .m;n/-graph with two vertices and
a unique positive edge f1 such that

L.s.f1// D q D L.t.f1// and L.f1/ D
q

gcd.m; q/
D

q

gcd.n; q/
�

If "` is positive, then we are done. If not, create a vertex v with label L.v/ D q
gcd.n;q/m:

We get gcd.m; L.v// D jmj, hence gcd.m; L.v// � 2. Therefore, we can equip v with
two distinct incoming positive edges f1 and f2. Such edges have to be labeled by

L.v/

gcd.m;L.v//
D

q

gcd.n; q/
,

so that we can label s.f1/ and s.f2/ by q, and .f1; Nf2/ is the path we are looking for. The
theorem is thus proved for k D ` D q.

Let us now treat the case k¤ q and `D q. Recall that Pm;n.k/D ¹p 2P W jmjp D jnjp
and jnjp < jkjpº and that Phm;n.k/D

Q
p2Pm;n.k/

pjkjp . Thus, any number L 2 Z�1 with
phenotype q admits a unique decomposition as follows:

(4.18) L D q �
Y

p2PnPm;n.k/
jmjp�jnjp

pjLjp
Y
p2P
jmjp>jnjp

pjLjp :
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In a first step, we construct (algorithmically) a simple path, consisting of positive edges
with vertices v0; v1; : : : ; vr , such that v0 has label k, and such that the decomposition of
L.vr / reduces to

(4.19) L.vr / D q �
Y

p2P Wjmjp>jnjp

pjL.vr /jp ;

that is, such that jL.vr /jp D 0 whenever jmjp � jnjp and p … Pm;n.k/.
To do so, starting with i D 0 and L.v0/ D k, while L.vi / has prime divisors p such

that jmjp � jnjp and p … Pm;n.k/, we connect vi to a new vertex viC1 by a positive
edge fi . According to Remark 3.26, we label fi by jL.fi /jp WD max.jL.vi /jp � jnjp; 0/
and set

jL.viC1/jp WD

´
jL.fi /jp C jmjp if jL.fi /jp � 1;
0 if jL.fi /jp D 0;

for every prime p. Then we replace i by i C 1, which terminates the “while” loop. Notice
that we exit from the loop after finitely many steps. Indeed, given a prime p such that
jmjp � jnjp and p … Pm;n.k/, we have:

• either jL.f1/jp D 0 in the case jmjp D jnjp and jkjp � jnjp , which implies that
jL.vi /jp D 0 for all i � 1,

• or jL.viC1/jp D jL.vi /jp � jnjp C jmjp < jL.vi /jp whenever jL.vi /jp � 1 in the case
jmjp < jnjp .
When we exit the “while” loop, Remark 3.26 guarantees that we have constructed an

.m; n/-graph, and the loop condition ensures that the last vertex vr satisfies jL.vr /jp D 0
whenever jmjp � jnjp and p … Pm;n.k/.

If we are lucky, we have L.vr / D q. If not, in a second step, we notice that the same
algorithm, exchanging the roles ofm and n, produces a simple path consisting of negative
edges from a vertex w0 such that L.w0/D L.vr / to a vertex ws labeled by q. The decom-
position (4.19) ofL.vr /¤ q also shows that gcd.m;L.vr //� 2, so vertices labeledL.vr /
can have two distinct positive incoming edges. Using Lemma 4.16, we weld vr and w0
together and get a simple path from v0 to ws .

In any subcase, we now have a path .e1; : : : ; eh0/ such that e1 is positive,L.s.e1//D k,
and L.t.eh0// D q. If eh0 has the orientation prescribed by "`, we are done; if not, using
the case k D q D `, with the first edge having the same orientation as eh0 , and the last one
having the orientation prescribed by "`, we extend our path to a simple path .e1; : : : ; eh/
with L.s.e1// D k and L.t.eh// D q such that e1; eh have the correct orientations. This
concludes the case ` D q and k ¤ q.

The case k D q and ` ¤ q is obtained by exchanging the roles of k and l in the above
argument. Therefore, let us finally treat the case k¤ q and `¤ q. The former cases furnish
paths .f1; : : : ; fr / and .f 01 ; : : : ; f

0
s /, that we may assume disjoint, such that

L.s.f1// D k; L.t.fr // D q D L.s.f 01//; L.t.f 0s // D `;

the orientations of f1 and f 0s are given by "k and "` respectively, and the orientations fr
and f 01 coincide. Then we just weld the vertices t.fr / and s.f 01/ together, and the path
.f1; : : : ; fr ; f

0
1 ; : : : ; f

0
s / is as desired.
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Remark 4.20. In Theorem 4.17, the assumption jmj � 2 and jnj � 2 is necessary. Indeed,
Theorem 4.17 would be false for n D 1. If v is a vertex in a .m; 1/-graph with L.v/ D 1
and e is an edge such that t.e/ D v, then

1 D L.t.e// D
L.t.e//

gcd.L.t.e//;m/
D

L.s.e//
gcd.L.s.e//; 1/

D L.s.e//:

Clearly any vertex with label 1 has at most one outgoing and one incoming edge. This
implies that the labels of the vertices in any directed path which ends in v must be all 1.
In other words, if we have any simple edge path as in Theorem 4.17 such that ` D 1

and "` D �, then we must have that k D 1 (and "k D C).

Definition 4.21. Let G be a connected .m; n/-graph. A saturated extension G 0 of G is
called a forest-saturation of G if it satisfies:
• the subgraph induced in G 0 by V.G / is exactly G ,
• the subgraph induced in G 0 by V.G 0/ n V.G / is a forest F ,
• each connected component of F is connected to G by a single edge of G 0.

Lemma 4.22 (Forest-saturation lemma). Let G be a connected .m; n/-graph. There is a
forest-saturation G 0 of G such that all vertices of the forest F induced in G 0 by V.G 0/ n
V.G / have degree � 1Cmin.jmj; jnj/ in G 0.

The reader can observe in the following construction proving Lemma 4.22 that, while
the labels of the new edges are prescribed, the axioms of .m; n/-graphs allows some
choices concerning the labels of the new vertices. The systematic choice of the maximal
label will be made for the new vertices among all those satisfying the transfer equa-
tion (3.13), that is, L.s.e//=gcd.L.s.e//; n/DL.e/DL.t.e//=gcd.L.t.e//;m/: Hence,
the forest-saturation constructed in this proof is called the maximal forest-saturation of G .
Notice that other choices would have led to forest-saturations with different underlying
graphs, by virtue of the relationship between labels and degrees (see Definition 3.20).
These forest-saturations are further studied in the recent preprint [16].

Proof of Lemma 4.22. We can assume that the connected graph G is not yet saturated: it
admits non-saturated vertices i.e., vertices v for which one of the inequalities in (3.14),
degout.v/ � gcd.L.v/; n/ or degin.v/ � gcd.L.v/; m/, is strict. For every non-saturated
vertex v of G , we add:

• .gcd.L.v/; n/ � degout.v//-many new v-outgoing edges labeled Lout WD
L.v/

gcd.n;L.v//
with extra target vertices labeled mLout, and

• .gcd.L.v/; m/ � degin.v//-many new v-incoming edges labeled Lin WD
L.v/

gcd.m;L.v//
with extra source vertices labeled nLin.
We then iterate this construction. All the non-saturated vertices of the j -th step become

saturated at the .j C 1/-th one. The increasing union G 0 of these .m; n/-graphs is a satu-
rated .m;n/-graph. The complement of G in it is a forest since at each step, each new edge
has a new vertex as one of its vertices. The label of each new vertex v is an integer multiple
of either m or n. Thus, the degree degout.v/C degin.v/ D gcd.L.v/; n/C gcd.L.v/; m/
of v is larger than 1Cmin.jmj; jnj/ as expected.
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Proof of Theorem 4.13. By hypothesis, for i D 1; 2, there is a non-saturated vertex vi
in Gi , that is, a vertex for which one of the inequalities (3.14) is strict. If degin.vi / <

gcd.L.vi /; m/, then let �i WD C; otherwise, let �i WD �. The labels of v1 and v2 having
identical phenotypes, the connecting lemma (Theorem 4.17) furnishes an .m;n/-graph G0
which is a simple edge path .e1; : : : ; eh/ such that L.s.e1// D L.v1/ and L.t.eh// D
L.v2/, and the orientations of e1 and eh are given by ��1 and �2, respectively.

We then consider the disjoint union G1 t G0 t G2. We claim that we can merge the
vertices v1 and s.e1/ thanks to the welding Lemma 4.16. Indeed, the choice of orientation
for e1 and the form of G0 (a path of edges) are made for the assumptions of Lemma 4.16 to
hold. Then we can merge v2 and t.eh/, applying Lemma 4.16 again (this time, using the
fact that the orientation of eh is well chosen). This produces a connected .m; n/-graph G3
which contains disjoint copies of G1 and G2.

It now suffices to apply the saturation Lemma 4.22 to G3 so as to obtain a connected
saturated .m; n/-graph G that satisfies the requirements of Theorem 4.13.

5. Perfect kernel and dense orbits

5.1. Perfect kernels of Baumslag–Solitar groups

In the case jmj D 1 or jnj D 1, it follows from the proof of Corollary 8.4 in [3] that
Sub.BS.m; n// is countable, hence the perfect kernel K.BS.m; n// is empty. Our main
theorem describes the perfect kernels in the remaining cases.

Theorem 5.1. Let m; n2Z with jmj � 2 and jnj � 2. We have

K.BS.m; n// D ¹ƒ2Sub.BS.m; n// W ƒnBS.m; n/=hbi is infiniteº:

Let us temporarily give a name to the set appearing in Theorem 5.1:

J D J.m; n/ WD ¹ƒ2Sub.BS.m; n// W ƒnBS.m; n/=hbi is infiniteº;

and recall that SubŒ1�.�/ denotes the space of infinite index subgroups of � .
Given an action ˛ of � on a space X and a point v 2 X , we have already introduced

the notation Œ˛; v� for the action ˛ pointed at v.

Remark 5.2. In terms of pointed transitive actions, J.m;n/ is the set of pointed transitive
actions with infinitely many b-orbits, whence J D ¹Œ˛; v�WBS.˛/ is infiniteº: Moreover,
• if jmj ¤ jnj, we have J.m; n/ D SubŒ1�.BS.m; n//; since every infinite action has an

infinite Bass–Serre graph by Lemma 4.11;

• if jmj D jnj, we have J.m;n/D ��1.SubŒ1�.BS.m;n/=hbmi//;where � is the homo-
morphism from BS.m;n/ to its quotient by the normal subgroup hbmi D hbni. Indeed,
since hbmi has finite index in hbi, we get that ƒnBS.m; n/=hbi is finite if and only if
ƒnBS.m; n/=hbmi is finite.

Therefore, Theorem 5.1 can be rephrased in two ways, as follows.
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Theorem 5.3. Let m; n2Z with jmj � 2 and jnj � 2.

(1) In terms of pointed transitive actions, the perfect kernel corresponds exactly to
actions whose Bass–Serre graph is infinite:

K.BS.m; n// D ¹Œ˛; v� W BS.˛/ is infiniteº:

(2) In terms of subgroups:
• if jmj ¤ jnj, the perfect kernel is equal to the space of infinite index subgroups

K.BS.m; n// D SubŒ1�.BS.m; n//;

• if jmj D jnj, we have

K.BS.m; n// D ��1.SubŒ1�.BS.m; n/=hbmi//;

where � is the homomorphism from BS.m; n/ to its quotient by the normal sub-
group hbmi D hbni.

Proof of Theorem 5.1. Our aim is to prove that K.BS.m; n// D J.m; n/. It will be con-
venient to write one inclusion in terms of pointed transitive actions and the other in terms
of subgroups.

Let us first prove the inclusion K.BS.m; n// � J. It suffices to show that no element
of J is isolated in J. Recall the definition of the topology in terms of pointed actions,
see Section 2.2 and, in particular, equation (2.7). Let us fix a pointed transitive action
.˛0; v/ representing an element of J and a radius R � 0. We will show that the basic
neighborhood N .Œ˛0; v�; R/ contains at least two distinct elements of J.

Let .ˇ; �/ be the pre-action obtained by restricting ˛0 to the union of the b-orbits of
the vertices of the ball of radius R C 1 centered at v in the Schreier graph of ˛0. The
Bass–Serre graph of .ˇ; �/ is the projection in BS.˛0/ (see Definition 3.10) of this ball,
hence it is finite. Since BS.˛0/ is infinite, the pre-action .ˇ; �/ is not saturated.

We now build two .m;n/-graphs G1;G2 that extend the finite non-saturated Bass–Serre
graph G of .ˇ; �/ in two different ways. First, let G1 be a forest-saturation of G given by
Lemma 4.22. In particular, the subgraph induced in G1 by V.G1/ n V.G / is a forest whose
vertices have degree at least 3 � 1Cmin.jmj; jnj/ in G1.

We then construct G2 by modifying G1. Let us pick a vertex v 2 V.G1/ n V.G /. The
subgraph induced in G1 by V.G1/ n ¹vº has at least 3 connected components. Choose two
connected components disjoint from G and remove them. In the resulting .m;n/-graph G 01,
the vertex v is the only one that is not saturated: two edges are missing.

Theorem 4.17 gives us an .m;n/-graph, which is a simple edge path P whose extremi-
ties have the same label as v and for which the orientations of the end edges are compatible
with that of the missing edges of v. We then apply twice the welding lemma, Lemma 4.16,
so as to weld the two extremities of P to v. We eventually define G2 to be a forest-
saturation of the graph that we obtained. Observe that G1 is not isomorphic to G2, since
the fundamental groups of their underlying graphs are free groups of distinct ranks.

Finally, we extend .ˇ; �/ to pre-actions ˛1 and ˛2, whose Bass–Serre graphs are G1
and G2, respectively, thanks to Proposition 3.23. Since G1; G2 are saturated, ˛1; ˛2 are
actually actions by Example 3.21. We already remarked that G1 is not isomorphic to G2,
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so the pointed transitive actions .˛1; v/ and .˛2; v/ are not isomorphic: Œ˛1; v� ¤ Œ˛2; v�.
Moreover, the balls of radius R centered at the basepoints in the Schreier graphs of
˛0; ˛1; ˛2 all coincide by construction with that of .ˇ; �/, so Œ˛1; v� and Œ˛2; v� are both
in N .Œ˛0; v�; R/.

Let us now turn to the inclusion K.BS.m; n// � J. Let us pick a subgroup ƒ 2
Sub.BS.m; n// n J.m; n/, and let us prove that it is not in the perfect kernel.

If jmj ¤ jnj, then ƒ has finite index in BS.m; n/ by Remark 5.2, hence it is isolated
in Sub.BS.m; n//.

If jmj D jnj, then �.ƒ/ has finite index in BS.m; n/=hbmi by Remark 5.2, hence it is
finitely generated. Therefore, the set

V WD ¹ƒ0 2 Sub.BS.m; n// W �.ƒ0/ � �.ƒ/º

is a neighborhood of ƒ, since it contains the basic neighborhood

V.S;¿/ D ¹ƒ0 2 Sub.BS.m; n//WS � ƒ0º;

where S � ƒ is a finite set such that �.S/ generates �.ƒ/.
Now, for any ƒ0 2 V , the subgroup �.ƒ0/ has finite index in BS.m;m/=hbmi. Hence,

�.ƒ0/ is finitely generated, so ƒ0 itself is finitely generated since it is written as an exten-
sion with cyclic kernel:

1! hbmi \ƒ0 ! ƒ0 ! �.ƒ0/! 1:

Therefore, all subgroups of V are finitely generated, which implies that V is countable
and hence ƒ is not in K.BS.m; n//.

Corollary 5.4. If jmj � 2, jnj � 2 and jmj ¤ jnj, then

Ph�1.1/ �K.BS.m; n//I

in other words, every infinite phenotype subgroup is in the perfect kernel.

Proof. Any subgroup with infinite phenotype has infinite index and hence it belongs to
K.BS.m; n// according to Theorem 5.3.

5.2. Phenotypical decomposition of the perfect kernel

Let us now turn to a description of the internal structure of K.BS.m; n//.

Notation 5.5. Letm;n 2Z n ¹�1;0; 1º. We denote by Qm;n the set of all possible .m;n/-
phenotypes, that is, Qm;n WD Phm;n.Z�1 [ ¹1º/:

Definition 5.6. The phenotype of a subgroup ƒ � BS.m; n/ is the .m; n/-phenotype of
the index of ƒ \ hbi in hbi:

Ph.ƒ/ D Ph.ƒ \ hbi/´ Phm;n.Œhbi W ƒ \ hbi�/:

This yields a function PhWSub.BS.m; n//! Qm;n � Z�1 [ ¹1º:

In particular, Ph.hbki/ D Phm;n.k/ for k 2 Z�1, and the phenotype of the trivial
subgroup is infinite.
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Remark 5.7. The index Œhbi W ƒ \ hbi� is the cardinal of the hbi-orbit of the point ƒ in
the action ƒnBS.m; n/ Ô BS.m; n/. Hence, Ph.ƒ/ is the phenotype of this action (as
given in Definition 4.9). Since the latter does not depend on the basepoint, the function Ph
is invariant under conjugation.

It follows from the definitions that if Ph.ƒ/ D Ph.ƒ0/, then Ph.ƒ/ D Ph.ƒ \ ƒ0/,
see Remark 4.4.

Proposition 5.8. In the partition of the space of subgroups of BS.m;n/ according to their
phenotype

Sub.BS.m; n// D
G

q2Qm;n

Ph�1.q/;

the pieces are non-empty and satisfy:
(1) For every finite q 2Qm;n, the piece Ph�1.q/ is open; it is also closed if and only if
jmj D jnj.

(2) For q D1, the piece Ph�1.1/ is closed and not open.

In particular, the function Ph W Sub.BS.m; n//! Z�1 [ ¹C1º is Borel. It is contin-
uous if and only if jmj D jnj.

Proof. Given k 2Z�1, we set

Ak WD ¹ƒ2Sub.BS.m; n// W ƒ \ hbi D hbkiº:

Writing Ak as

Ak D ¹ƒ2Sub.BS.m; n/ W bk 2 ƒ; bi … ƒ for every 1 � i < kº

makes it clear that Ak is clopen for every k 2 Z�1. Moreover, hbki 2 Ak , so in particu-
lar Ak is not empty. Now, by definition, for every q 2 Z�1, we have

(5.9) Ph�1.q/ D
G

k2Ph�1m;n.q/

Ak :

Hence, Ph�1.q/ is open for every finite q and, by taking the complement, Ph�1.1/ is
closed.

Take a sequence of positive integers .ki /i2N tending to1. Observe that the subgroups
¹hbki iºi have finite phenotype and converge to the trivial subgroup which has infinite
phenotype. Therefore, Ph�1.1/ is not open. Moreover, if Ph�1m;n.q/ is not finite, we can
choose all the ki ’s with phenotype q; the same argument shows that Ph�1.q/ is not closed.
Finally, the clopen decomposition (5.9) shows that Ph�1.q/ is closed as long as Ph�1m;n.q/
is finite. By Lemma 4.5, Ph�1m;n.q/ is finite exactly when jmj D jnj.

We now restrict the above partition to the perfect kernel

(5.10) K.BS.m; n// D
G

q2Qm;n

Kq.BS.m; n//;

where

(5.11) Kq.BS.m; n// WDK.BS.m; n// \ Ph�1m;n.q/:
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Remark 5.12. Observe that each Kq.BS.m; n// is not empty. Indeed, it contains hbqi
which belongs to the perfect kernel by Theorem 5.1. Moreover, in the proof of Theo-
rem 5.1, the .m; n/-graphs we construct have the same phenotype, so every element of
Kq.BS.m; n// is actually a non-trivial limit of elements of Kq.BS.m; n//. We conclude
that Kq.BS.m; n// is equal to the perfect kernel of Ph�1m;n.q/.

Let us show that the action of BS.m; n/ by conjugation on each term is topologically
transitive in the following sense.

Definition 5.13. An action by homeomorphisms of a group � on a topological space X
is called topologically transitive if for every nonempty open sets U and V , there is a point
whose �-orbit intersects both U and V .

Theorem 5.14. Let m; n be integers such that jmj; jnj � 2. Then for every phenotype
q 2Qm;n, the action by conjugation of BS.m;n/ on the invariant subspace Kq.BS.m;n//
is topologically transitive.

Proof. We again use the definition of the topology in terms of pointed actions, see Sec-
tion 2.2 and, in particular, equation (2.7). So let us fix two pointed actions .˛1; v1/ and
.˛2; v2/ in Kq.BS.m; n//, take R > 0, and consider the basic open sets N .Œ˛1; v1�; R/

and N .Œ˛2; v2�; R/. We need to construct a pointed action whose orbit meets both open
sets.

As in the proof of Theorem 5.1, for i D 1; 2, we let .ˇi ; �i / be the pre-action obtained
by restricting ˛i to the union of the b-orbits of the vertices of the balls B.vi ; R C 1/ of
radius RC 1 centered at vi in the Schreier graph of ˛i . The Bass–Serre graph of .ˇi ; �i /
is finite. Since BS.˛i / is infinite, the pre-action .ˇi ; �i / is not saturated.

Moreover, .ˇ1; �1/ and .ˇ2; �2/ have the same phenotype, so we can apply the merging
machine (Theorem 4.12) to obtain an action ˛ whose Schreier graph contains (copies of)
the balls B.vi ; RC 1/.

Pointing ˛ at the copy of v1 that we denote by v, we have .Sch.˛/;v/'R.Sch.˛1/;v1/.
By transitivity of ˛, there is 
 2 BS.m; n/ such that v˛.
/ is the copy of v2, and thus
.Sch.˛/; v˛.
// 'R .Sch.˛2/; v2/. In particular, the orbit of Œ˛; v� meets both open sets
N .Œ˛1; v1�; R/ and N .Œ˛2; v2�; R/.

Corollary 5.15. Letm;n be integers such that jmj; jnj � 2. Then for every q2Qm;n, there
is a denseGı subset of Kq.BS.m;n// consisting of subgroups with dense conjugacy class
in Kq.BS.m; n//.

Proof of Corollary 5.15. By Proposition 5.8, each Kq.BS.m; n// is Polish as an open or
a closed subset of the Polish space K.BS.m; n//.

The corollary now follows from a well-known characterization of topological transi-
tivity in Polish spaces: If .Ui / is a countable base of non-empty open subsets, then the setT
i2N Ui� of points with dense orbit is a dense Gı by the Baire theorem.

5.3. Closed invariant subsets with a fixed finite phenotype

Given a finite phenotype q, we will show that there is a largest closed invariant subset
inside the (open but not closed when jmj ¤ jnj) set of subgroups of phenotype q. The
following lemma is key.
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Lemma 5.16. Let jmj ¤ jnj, and let L2Z�1 satisfying:

9p 2 P ; jmjp ¤ jnjp and jLjp > min.jmjp; jnjp/:

Then for any saturated .m; n/-graph which contains L as a label, the range of the label
map is unbounded.

Proof. By symmetry, we may as well assume that jnjp < jmjp for a fixed prime p, and
so jLjp > jnjp . Let v0 2 V.G / have label L. Since our Bass–Serre graph G is saturated,
every vertex has at least one outgoing edge. We can thus build inductively an infinite
path .ek/k2N consisting of positive edges with s.e0/ D v0. The conclusion then follows
directly from Lemma 3.30.

Remark 5.17. When jnj D jmj, the lemma fails because labels are bounded. Indeed, if
L0 is a label, then all labels in the same connected component must satisfy the inequality
jLjp � max.jL0jp; jmjp; jnjp/ for all primes p by equation (3.29) and the discussion that
precedes it.

Let q be a finite .m; n/-phenotype. In order to describe which saturated .m; n/-graphs
have unbounded labels, we now define

(5.18) s.q;m; n/ WD q �
Y
p2P
jqjpD0I

jmjpDjnjp>0

pjmjp �
Y
p2P

jmjp¤jnjp

pmin ¹jnjp ;jmjpº:

Remark 5.19. The definition is motivated by the fact that s.q;m;n/ is the largest label of
phenotype q which does not satisfy the hypothesis of Lemma 5.16. As we will see in the
proof of Theorem 5.20, a saturated .m; n/-graph with phenotype q has unbounded labels
if and only if one of its labels does not divide s.q;m; n/.

Proposition 5.8 implies that every subgroup (or pointed action) that lies in the closure
of the set of subgroups of phenotype q has phenotype either q or1, and phenotype1 can
occur only when jmj ¤ jnj. We can now characterize the subgroups ƒ with phenotype q
whose orbit approaches subgroups with infinite phenotype.

Theorem 5.20. Letm;n be integers such that jmj; jnj � 2 and denote by q 2Qm;n n ¹1º

a finite .m; n/-phenotype. Let s D s.q;m; n/ be as in equation (5.18). Then the space

MCq WD Ph�1.q/ \ ¹ƒ2Sub.BS.m; n// W ƒ � hhbsiiº

of subgroups of phenotype q containing the normal subgroup hhbsii satisfies the following
properties:

(1) MCq is the largest closed BS.m; n/-invariant subset of Sub.BS.m; n// contained
in Ph�1.q/; in particular, all normal subgroups of phenotype q and all finite index
subgroups of phenotype q contain hhbsii.

(2) If jmj D jnj, then MCq D Ph�1.q/.
(3) For every ƒ2Ph�1.q/ nMCq , the orbit of ƒ accumulates to Ph�1.1/.
(4) If jmj ¤ jnj, then MCq \Kq.BS.m; n// has empty interior in Kq.BS.m; n//.
(5) If gcd.m; n/ D 1, then s D q and MCq \K.BS.m; n// D ¹hhbqiiº; in particular,
hhbqii is the unique normal subgroup of phenotype q of infinite index.
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Proof of Theorem 5.20. The proofs of (2) and (3) rely on the following claim.

Claim. For any ƒ2 Ph�1.q/ nMCq , there are a prime p such that jmjp ¤ jnjp and a
vertex label L in the Bass–Serre graph of ƒ such that jLjp > jsjp .

Proof of the claim. Observe that a subgroupƒ contains hhbsii if and only if all the b-orbits
of the corresponding action ƒnBS.m; n/ Ô BS.m; n/ have cardinality which divides s.
So if ƒ2Ph�1.q/ nMCq , we can fix a prime p such that jLjp > jsjp , and we will prove
that jmjp ¤ jnjp .

Assume by contradiction that jmjp D jnjp . Then jsjp � jmjp D jnjp . If jmjp D 0, then
the inequality clearly holds, otherwise, by equation (5.18),

• if p divides q D Phm;n.s/, then jsjp D jqjp > jmjp D jnjp ,
• if p does not divide q D Phm;n.s/, then jsjp D jmjp D jnjp .

Thus, we have jLjp > jmjp D jnjp , in other words, p 2 Pm;n.L/ (see Definition 4.1).
Hence, we have jPhm;n.L/jp D jLjp > jsjp � jPhm;n.s/jp . This is a contradiction since
both phenotypes are equal to q. �claim

We can now easily prove (2) by the contrapositive. By the above claim, if MCq ¤

Ph�1.q/, then there is a prime p such that jmjp ¤ jnjp , in particular, jmj ¤ jnj.
Let us prove (3). Let ƒ 2 Ph�1.q/ nMCq . The claim above provides a prime p

such that jmjp ¤ jnjp and the Bass–Serre graph of ƒ admits a vertex label L such that
jLjp > jsjp . It follows from equation (5.18) that jsjp Dmin.jmjp; jnjp/, therefore we have
jLjp >min.jmjp; jnjp/. Lemma 5.16 thus applies, and so there is a sequence of vertices in
the Bass–Serre graph of ƒ whose labels tend to C1. In other words, there is a sequence
.
i /i�0 such that the index of 
iƒ
�1i \ hbi in hbi tends toC1. By compactness, we may
assume that this sequence converges, and its limit� cannot contain a non-zero power of b
since Œhbi W 
iƒ
�1i \ hbi�!C1. Hence, � has infinite phenotype, which proves (3).

We now prove (1). We first claim that MCq is closed in Sub.BS.m;n//. Indeed, the set

Bs WD ¹ƒ2Sub.BS.m; n// W ƒ � hhbsiiº

is a countable intersection of basic clopen sets and hence it is closed. Then notice that Bs

intersects only finitely many sets Ph�1.q0/, since q0 must be finite and divide s. Proposi-
tion 5.8 claims that the Ph�1.q0/ are open, hence

MCq D Bs n

[
q0¤q

q0 divides s

Ph�1.q0/

is closed. Also note that MCq is obviously BS.m; n/-invariant. Finally, item (3) implies
that every closed BS.m;n/-invariant subset of Ph�1.q/ is contained in MCq . This proves
that MCq is the largest closed BS.m; n/-invariant subset of Sub.BS.m; n// contained in
Ph�1.q/. Since all normal subgroups and all finite index subgroups have finite (hence
closed) orbits, the remaining statement in item (1) is clear.

Let us prove item (4). Suppose jnj ¤ jmj and let p be a prime number such that
jmjp ¤ jnjp . By definition, Phm;n.sp/D Phm;n.s/D q, so hbspi 2Kq.BS.m;n// nMCq .
Consider a subgroup ƒ2Kq.BS.m; n// whose orbit is dense in Kq.BS.m; n//, as pro-
vided by Corollary 5.15. Since the orbit of ƒ accumulates to hbspi …MCq and MCq
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is invariant and closed, the latter does not contain any point of that orbit. Hence, the
complement Kq.BS.m; n// nMCq contains the dense orbit of ƒ. We conclude that
MCq \Kq.BS.m; n// has empty interior in Kq.BS.m; n//.

We finally prove item (5). The equality sD q follows immediately from formula (5.18)
for s.q;m; n/. We have the presentation

BS.m; n/=hhbqii D h Nb; Nt W Nt Nbm Nt�1 D Nbn; Nbq D 1i:

Since gcd.q;m/D gcd.q;n/D 1, the elements Nbm and Nbn both generate h Nbi in the quotient
group BS.m; n/=hhbqii. We thus have a natural semi-direct product decomposition

BS.m; n/=hhbqii Š Z=qZ Ì Z D h Nbi Ì hNt i:

Consider ƒ2MCq in the perfect kernel; by definition, it contains hhbqii. It suffices to
prove that the image ƒq WD ƒ=hhbqii of ƒ in h Nbi Ì hNti is trivial. Since Ph.ƒ/ D q, the
index Œhbi W ƒ\ hbi� is a multiple of q, so we haveƒq \ h Nbi D ¹idº. Thus,ƒq is mapped
injectively in the quotient h Nbi Ì hNti=h Nbi ' Z. If this image were not ¹0º, then ƒ would
have finite index in BS.m; n/, contradicting that ƒ is in the perfect kernel. The group ƒq
is thus trivial as wanted.

Remark 5.21. In terms of actions, MCq is the set of classes Œ˛; v� all of whose cardinal-
ities of b-orbits divide s and have phenotype q.

Proposition 5.22. Let m; n 2 Z n ¹0º and k 2 Z�1. Let

Gm;n;k WD BS.m; n/=hhbkii D hNt ; Nb j Nt Nbm Nt�1 D Nbn; Nbk D 1i

and let
r.k/ WD max¹r 0 2N W r 0 divides k and gcd.r 0; m/ D gcd.r 0; n/º:

Then:
(1) b has order r.k/ in the quotient Gm;n;k ; in particular, hhbkii D hhbr.k/ii.

(2) The groupGm;n;k DGm;n;r.k/ is the HNN extension of Z=r.k/ZD h Nbi with respect
to the relation Nt Nbm Nt�1 D Nbn.

(3) Phm;n.k/ D Phm;n.r.k// D Ph.hhbkii/.

Remark 5.23. It follows from item (1) in the above proposition that

r.k/ D Œhbi W hhbkii \ hbi�:

It is a routine computation, working prime number by prime number, to check that

(5.24) r.k/ D
Y
p2P

jmjpDjnjp

pjkjp �
Y
p2P

jmjp¤jnjp

pmin.jkjp ;jmjp ;jnjp/

In particular, r.k/ is a multiple of all the r 0s which divide k and satisfy the equation
gcd.r 0; m/ D gcd.r 0; n/. Moreover, r.r.k// D r.k/.
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Remark 5.25. It also follows from items (1) and (3) of the above proposition that the set
of integers k of phenotype q such that r.k/D k parametrizes the normal subgroups of the
form hhbk

0

ii of phenotype q. Comparing equations (5.24) and (5.18), one can check that
this is exactly the set of integers k that are multiple of q and that divide s.q; m; n/, i.e.,
k D q � j , where

(1) jj jp D 0 for p 2 P such that jmjp D jnjp D 0,
(2) jj jp � jmjp for p 2 P such that jmjp D jnjp > 0 and jqjp D 0,
(3) jj jp � min ¹jnjp; jmjpº for p 2 P such that jmjp ¤ jnjp .

Proof of Proposition 5.22. Set r WD r.k/. Since Nbm and Nbn are conjugate in Gm;n;k , they
have the same order:

ord. Nb/

gcd.ord. Nb/;m/
D ord. Nbm/ D ord. Nbn/ D

ord. Nb/

gcd.ord. Nb/; n/
�

Thus, gcd.ord. Nb/;m/ D gcd.ord. Nb/; n/. Moreover, ord. Nb/ divides k. So, by the definition
of r , the order ord. Nb/ divides r and hence br 2 hhbkii. On the other hand, bk 2 hbri, so
hhbrii D hhbkii and Gm;n;k D Gm;n;r .

Since gcd.r; m/ D gcd.r; n/, we have that the subgroups generated by Qbm and Qbn in
the group Z=rZD h Qb W Qbr D 1i are isomorphic. We can thus consider the HNN-extension
of Z=rZ D h Qb W Qbr D 1i with the relation Qt Qbm Qt�1 D Qbn. This admits the presentation
hQt ; Qb j Qt Qbm Qt�1 D Qbn; Qbr D 1i and it is hence isomorphic to Gm;n;r .

By the normal form theorem for HNN-extensions, the vertex group injects, i.e., Nb has
order exactly r . Finally, formula (5.24) implies that

Phm;n.k/ D Phm;n.r/ D Ph.hhbrii/:

Theorem 5.26. Let m; n 2 Z n ¹0º and q be a finite phenotype.

(1) If gcd.m; n/ D 1, then the perfect kernel contains a unique normal subgroup of
phenotype q, namely, hhbqii.

(2) If gcd.m; n/ ¤ 1, then the perfect kernel contains continuum many normal sub-
groups of phenotype q.

Proof. The case gcd.m; n/ D 1 follows from item (5) of Theorem 5.20. Therefore, let us
assume that gcd.m; n/ ¤ 1.

Consider a prime p which divides both m and n. Then either jqjp ¤ 0 and we set
k WD q, otherwise, set k WD qp. In both cases, remark that Phm;n.k/D q and gcd.k;m/D
gcd.k; n/, and hence r.k/D k. Then Proposition 5.22 yields that Nb has order k inGm;n;k .
Furthermore, since k0 WD gcd.k; m/ D gcd.k; n/ > 1, the elements Nbn and Nbm are not
generators of the subgroup h Nbi; the group Gm;n;k is not a semi-direct product. We claim
that Gm;n;k is not amenable. Indeed, we can write the group Gm;n;k as the amalgamated
free product

Gm;n;k D hNt ; Nc j Nt . Nc/
m=k0 Nt�1 D . Nc/n=k0 ; . Nc/k=k0 D 1i �

NcDNbk0 h
Nb j Nbki;

and one can easily check that Gm;n;k admits as a quotient the non-amenable free product
hQti � h Qb j Qbk0i.
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Since Gm;n;k is the fundamental group of a finite graph of finite groups, it admits a
finite index normal subgroup F which is a finitely generated free group by Proposition 11,
p. 120, in [25]. Since Gm;n;k is non-amenable, this normal free subgroup is not amenable.

Every characteristic subgroup N of F is itself normal in Gm;n;k . Thus, the pull-back
under the quotient map BS.m; n/� Gm;n;k is a normal subgroup QN G BS.m; n/. Since
the intersection of F with the finite group h Nbi is trivial, the same holds for its charac-
teristic subgroups, that is, N \ h Nbi D ¹idº. Therefore, the order of the image of b in
Gm;n;k=N D BS.m; n/= QN is the same as in Gm;n;k , namely, k. In other words, we have
QN \ hbi D hbki. By definition,

Ph. QN/ D Phm;n.Œhbi W QN \ hbi� D Phm;n.k/ D q:

There are continuum many characteristic subgroups N in the finitely generated free
subgroup F by [9] (see also [8]). At most countably many of them lie outside the perfect
kernel, so the theorem follows.

6. Limits of finite phenotype subgroups

In this section, we characterize the subgroups of infinite phenotype of BS.m; n/ which
arise as limits of finite phenotype subgroups. We will use a version of the straightforward
fact that finitely generated subgroups always form a dense set in the space of subgroups.

Lemma 6.1. Let m; n 2Z n ¹0º. For every phenotype q 2Qm;n, the finitely generated
subgroups of phenotype q are dense in Ph�1.q/.

Proof. Let ƒ be a non-finitely generated subgroup of phenotype q. Let k 2 Z�0 be such
that ƒ \ hbi D hbki. The group ƒ can be written as the increasing union of finitely gen-
erated subgroups all containing bk . They have the same phenotype as ƒ.

6.1. Limits of subgroups with fixed finite phenotype

Recall from Proposition 5.8 that, for q finite, Ph�1.q/ is open while Ph�1.1/ is closed,
and from Theorem 5.20 (3) that the orbit of any ƒ 2 Ph�1.q/ nMCq accumulates to
Ph�1.1/. We now determine the set of such accumulation points in Ph�1.1/, which is
exactly the set of subgroups contained in the normal closure hhbii of hbi but having trivial
intersection with hbi itself (since they belong to Ph�1.1/).

Theorem 6.2. Suppose jmj ¤ jnj and let q be a finite phenotype. Then

Ph�1.q/ \ Ph�1.1/ D ¹ƒ2Ph�1.1/Wƒ � hhbiiº:

We need two preparatory lemmas. We start with an easy consequence of the defining
relation tbm D bnt of BS.m; n/.

Notation 6.3. Given 
 2 BS.m; n/, let us denote:
• by �
 the t -length of 
 , namely, the number of occurrences of t˙1 in the normal form

of 
 ,
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• by †
 the number of occurrences of t minus the number of occurrences of t�1 in the
normal form of 
 , which is often called the t -height of 
 .
Remark that †
 is the image of 
 in BS.m; n/=hhbii Š Z. In particular, †
 D 0 if and

only if 
 2 hhbii.

Lemma 6.4. Fix 
 2 BS.m; n/. Let A2Z be such that, for all primes p 2P ,

• if jmjp D jnjp , then jAjp � jmjp ,

• otherwise, jAjp � �
 jmjp and jAjp � �
 jnjp .

Then there is B 2 Z, such that 
bA D bB
 , where jBj is determined by

jBjp D jAjp C†
 .jnjp � jmjp/ for all p 2 P :

Proof. This follows from a straightforward induction on �
 using the relation tbm D bnt .
We leave the details to the reader.

The proof of the inclusion in Theorem 6.2 from left to right relies on the following
lemma.

Lemma 6.5. Fix 
 62 hhbii and let q be a finite phenotype. There is an integerRDR.q; 
/
such that every subgroup ƒ of phenotype q containing 
 must also contain bR.

Proof. Up to replacing 
 by its inverse, let us assume †
 > 0. We first define the integer

M WD max¹jmjp; jnjp W p 2 P º;

and then we let
R WD q

� Y
p2P

jmjpCjnjp>0

p
��
M

:

Fix ƒ of phenotype q. Since q is finite, we have hbi \ƒ D hbN i with N > 0. We have
to show that N divides R. Notice that Phm;n.N / D q, thus N decomposes as

N D q � p
l1
1 � � �p

lk
k
p
lkC1
kC1
� � �plrr ;

where r � 0 and l1; : : : ; lr � 1, while the pi are distinct prime numbers coprime with q,
see Definition 4.1. Moreover, we order them so that p1; : : : ; pk 2 Pm;n n Pm;n.N / and
pkC1; : : : ; pr 2 P nPm;n.

Observe that jmjpi D jnjpi � jN jpi D li � 1 when pi 2Pm;n nPm;n.N / and jmjpi ¤
jnjpi when pi 2 P n Pm;n. Hence, jmjpi C jnjpi > 0 for every i 2 ¹1; : : : ; rº. Conse-
quently, to establish that N divides R, it suffices to prove

(6.6) li � �
M for all i 2 ¹1; : : : ; rº:

Observe that �
 � 1, since 
 … hhbii. For i 2 ¹1; : : : ; kº, equation (6.6) holds, since
pi 2 Pm;n nPm;n.N /, thus

li � jmjpi D jnjpi �M � �
M:
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Let us hence fix i 2 ¹k C 1; : : : ; rº and suppose, by contradiction, that li > �
M .
Consider

N 0 D N � .p1 � � �pk/
M .pkC1 � � � ypi � � �pr /

�
M ;

where by ypi we mean that the factor pi is removed from the product. Clearly, bN
0

2 ƒ

and jN 0jpi D li . Put
" WD sign.jmjpi � jnjpi /:

Note that pi …Pm;n, hence jmjpi ¤ jnjpi , so "¤ 0. Since we assumed jN jpi D li � �
M ,
we also have jN 0jpi � �
M . It is then clear thatN 0 satisfies the assumption of Lemma 6.4,
so 
"bN

0


�" D bN
00 , where

jN 00jpi D li C†
".jnjpi � jmjpi / D li C "†
 .jnjpi � jmjpi /

D li �†
 jjmjpi � jnjpi j < li :

Clearly, bN
00

2 ƒ, hence bN
00

2 hbN i. But jN 00jpi < jN jpi , a contradiction. We thus have
established equation (6.6), which finishes the proof.

Proof of Theorem 6.2. Set

L WD ¹ƒ2Ph�1.1/Iƒ � hhbiiº:

We first show the inclusion

Ph�1.q/ \ Ph�1.1/ � L:

Take � 2 Ph�1.1/ nL and 
 2 � n hhbii. By Lemma 6.5, there is an R such that every
subgroupƒ of phenotype q containing 
 also contains bR. Thus, the clopen neighborhood
of �, given by

O WD ¹ƒ2Sub.BS.m; n// W 
 2ƒ; bR 62 ƒº;

does not intersect Ph�1.q/. Thus, � is not in the closure of Ph�1.q/.
We now show the reverse inclusion

L � Ph�1.q/ \ Ph�1.1/:

Remark that, as in Lemma 6.1, the finitely generated elements of L are dense in L: every
element of L is an increasing union of finitely generated subgroups which have to be
in L as well. So, take ƒ D hSi 2 L, where S is finite; we will show that ƒ is a limit
of subgroups with phenotype q. Set � WD max
2S �
 , where �
 is the t -length of 
 (see
Notation 6.3). Set M WD max¹jmjp; jnjpWp 2P º. Note that P n Pm;n is finite, since it is
composed of primes p such that jmjp C jnjp > 0, and that jmjp D 0 for all but finitely
many primes p. Hence, for j � 1, we can define the integer

Nj WD q �
Y

p2Pm;nnPm;n.q/

pjmjp �
Y

p2PnPm;n

pj�M :

Observe that Phm;n.Nj / D q.
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Since ƒ � hhbii, the height †
 is zero (see Notation 6.3) for every 
 2 S , whence,
for every 
 2 S and every j , Lemma 6.4 gives 
bNj D b˙Nj 
 . Thus, ƒ D hSi nor-
malizes hbNj i. Moreover, ƒ has trivial intersection with hbNj i because it has infinite
phenotype. In particular, for j D 1, we have a natural isomorphism

ˆ W ƒ Ë hbN1i ! hƒ; bN1i:

Since N1 divides Nj , we get

ˆ.ƒ Ë hbNj i/ D hƒ; bNj i:

Observe that ˆ induces a homeomorphism

Sub.ƒ Ë hbN1i/! Sub.hƒ; bN1i/ � Sub.BS.m; n//;

and that the sequence of subgroups .ƒ Ë hbNj i/j�1 converges to ƒ Ë ¹idº. Therefore, we
have that hƒ; bNj i converges to ƒ. Since

Ph.hƒ; bNj i/ D Phm;n.Nj / D q;

the group ƒ is the limit of a sequence of elements of phenotype q as wanted.

6.2. Limits of subgroups with varying finite phenotype

In Theorem 6.2, we showed that Ph�1.q/ \ Ph�1.1/ does not depend on the finite phe-
notype q. We will now consider the closure of all subgroups with finite phenotype, and
we will first analyze what happens if jmj D jnj.

Proposition 6.7. Let m and n be integers such that jmj D jnj � 2. Then

Ph�1.1/ �
[
q finite

Ph�1.q/:

In other words, every subgroup with infinite phenotype is a limit of subgroups with finite
(variable) phenotypes.

Proof. Let us fix ƒ2Ph�1.1/. Note that hbni is normalized by ƒ thanks to the relation
tbnt�1 D b˙n. We now proceed as in the second part of the proof of Theorem 6.2. The
group hƒ; bjni has finite phenotype, it is isomorphic to ƒ Ë hbjni and the sequence of
subgroups .hƒ; bjni/j�1 converges to ƒ.

The situation is completely different in the case jmj ¤ jnj.

Proposition 6.8. Let m and n be integers such that jmj ¤ jnj and jmj; jnj � 2. Then

Ph�1.1/ 6�
[
q finite

Ph�1.q/:

In other words, there are subgroups with infinite phenotype that are not limits of subgroups
with finite (variable) phenotypes.
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Let us recall from Corollary 5.4 that

Ph�1.1/ DK1.BS.m; n// whenever jmj ¤ jnj.

Hence, the subgroups given by the proposition lie in fact in K1.BS.m; n//.
In the proof of Proposition 6.8, we will need a lemma and a proposition.

Lemma 6.9. Letm;n be integers such that jmj ¤ jnj and jmj, jnj � 2. Let k WD gcd.m;n/.
Let ƒ � BS.m; n/ be a subgroup containing the following elements:

t; btb�1; : : : ; bk�1tb�.k�1/:

If ƒ has finite phenotype, then ƒ has finite index in BS.m; n/.

Proof. Let ˛ be the action ƒnBS.m; n/Ô BS.m; n/. Since the phenotype is finite, it is
sufficient to show that the Bass–Serre graph BS.˛/ is finite (see Remark 4.10).

Since ƒ contains t , there is a loop in BS.˛/ at the vertex v WD ƒhbi. In particular,
equation (3.13) gives

L.v/

gcd.L.v/;m/
D

L.v/

gcd.L.v/; n/
�

As ƒ has finite phenotype, L.v/ is finite, so gcd.L.v/;m/ D gcd.L.v/; n/ . Moreover, as
BS.˛/ is a saturated .m; n/-graph, we obtain

degin.v/ D gcd.L.v/;m/ D gcd.L.v/; n/ D degout.v/:

This number, that we will denote d , is the greatest common divisor of m, n and L.v/.
Hence, d divides k D gcd.m; n/.

The d outgoing edges at v are exactlyƒhbni;ƒbhbni; : : : ;ƒbd�1hbni. As d � k, the
subgroup ƒ contains t; btb�1; : : : ; bd�1tb�.d�1/. Since

ƒbj t D .ƒbj tb�j /bj D ƒbj ;

the element t fixes all the points ƒ;ƒb; : : : ; ƒbd�1 2 ƒnBS.m; n/. The terminal vertex
of the edge ƒbj hbni is precisely the vertex ƒbj thbi D ƒbj hbi D v (see Definition 3.5),
so all outgoing edges at v are loops.

Since the outgoing degree at v is equal to the incoming degree, all incoming edges at v
are loops as well. Therefore, BS.˛/ consists only of the vertex v and d loops. It is thus
finite as wanted.

Proposition 6.10. Letm and n be integers with jmj; jnj � 2. Letƒ be a finitely generated
subgroup of infinite phenotype and infinite Bass–Serre graph. Then there is a sequence of
conjugates of ƒ which converges to ¹idº. In particular,ƒ does not contain any non-trivial
normal subgroup of BS.m; n/.

Proof. First recall that ƒ is free. Indeed, having infinite phenotype, it acts freely on the
Bass–Serre tree T of BS.m; n/. Taking the class hbi as a base point in T , the subgroup ƒ
is the fundamental group of the quotient graphƒnT based atƒhbi. This quotient graph is
equal to the Bass–Serre graph of ƒ, see Section 3.6, so it is infinite. Since moreover ƒ is
finitely generated, it consists of a finite graph to which are attached finitely many infinite
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trees. Moving the basepoint along one of those infinite trees toward infinity amounts to
conjugating ƒ by a certain sequence of elements 
i of BS.m; n/ for which we claim that

iƒ


�1
i ! ¹idº. Indeed, each non-trivial element of 
iƒ
�1i is represented by a long path

in the tree, followed by a closed path in the finite graph and the long path back to the new
basepoint. All such elements have a uniformly large t -length which tends to C1 with i :
their t -length is bounded below by twice the t -length of 
i minus the diameter of the finite
graph. In particular, for any finite set F � � n ¹idº and large enough i , all the elements of

iƒ


�1
i have t -length larger than all those of F , so 
iƒ
�1i \ F D ¿. This proves that


iƒ

�1
i ! ¹idº, as wanted.

Proof of Proposition 6.8. Consider the groupƒWDht; btb�1; : : : ; bk�1tb�.k�1/i. Observe
that, by Britton’s lemma (see, e.g., Chapter IV.2 of [23]), it is a free group freely generated
by t; btb�1; : : : ; bk�1tb�.k�1/. Every non-trivial element of ƒ contains at least one t˙1

in its normal form, in particular, ƒ\ hbi D ¹idº: the phenotype of ƒ is infinite. We claim
that

ƒ …
[
q finite

Ph�1.q/:

Suppose that .ƒi /i�0 is a sequence of subgroups of finite (variable) phenotypes con-
verging to ƒ. For i large enough, we have t; btb�1; : : : ; bk�1tb�.k�1/ 2 ƒi , and thus
the subgroup ƒi has finite index by Lemma 6.9. However, recall that since jmj ¤ jnj,
the group BS.m; n/ is not residually finite [24]. Therefore, there is a non-trivial normal
subgroup N E BS.m; n/ contained in every finite index subgroup, and we have N � ƒ
since ƒi ! ƒ. This is impossible by Proposition 6.10.

Corollary 6.11. Let m and n be integers such that jmj ¤ jnj and jmj; jnj � 2. Then[
q finite

Ph�1.q/ \ Ph�1.1/

has empty interior in Ph�1.1/.

Proof. Recall again that Ph�1.1/DK1.BS.m;n//, see Corollary 5.4. In this space, the
subset

K1.BS.m; n// n
[
q finite

Ph�1.q/

is open and Proposition 6.8 implies that it is non-empty. By Corollary 5.15, this open
subset contains a subgroup ƒ whose orbit is dense in K1.BS.m; n//. Therefore,[

q finite

Ph�1.q/

has empty interior in K1.BS.m; n//.

Proposition 6.12. Let m and n be integers such that jmj; jnj � 2. For any finite pheno-
type q0, the following inclusion is strict:

Ph�1.q0/ \ Ph�1.1/ ¨
[
q finite

Ph�1.q/ \ Ph�1.1/:
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Observe that Proposition 6.12 is trivially true if jmj D jnj. Indeed, Proposition 6.7
implies that the right-hand side is equal to Ph�1.1/. Since Proposition 5.8 yields that
Ph�1.q0/ is closed, the left-hand side is empty.

Proof of Proposition 6.12. For a prime p which divides neither m nor n, let us define
ƒp WD hb

p; ti. Then ƒp clearly has phenotype p (and index p in BS.m; n/). Let ƒ be an
accumulation point of the sequence .ƒp/. Then, by construction,ƒ has infinite phenotype,
so it is in the set [

q finite

Ph�1.q/ \ Ph�1.1/:

However, it contains t 62 hhbii, so it is not in Ph�1.q0/ by Theorem 6.2.

Corollary 6.13. Let m and n be integers such that jmj; jnj � 2. The following inclusion
is strict: [

q finite

Ph�1.q/ \ Ph�1.1/ ¨
[
q finite

Ph�1.q/ \ Ph�1.1/:

Proof. If jmj D jnj, then as already remarked the left-hand side is empty.
If jmj ¤ jnj, recall from Theorem 6.2 that Ph�1.q/ \ Ph�1.1/ is independent of q.

The corollary thus follows from Proposition 6.12.

We can also give a statement analogous to Proposition 6.12 in the perfect kernel, which
is less easy to obtain.

Theorem 6.14. Letm and n be integers such that jmj; jnj � 2. For any finite phenotype q0,
the following inclusion is strict:

Kq0.BS.m; n// \K1.BS.m; n// ¨
[
q finite

Kq.BS.m; n// \K1.BS.m; n//:

Proof. For a fixed prime p which divides neither m nor n, let us define a pre-action
. p̌; �p/ as follows. Consider three p̌-cycles say o1, o2 and o3, of cardinals pn, p and
pm, respectively. Then fix basepoints yi 2 oi for i D 1; 2; 3. Remark that o1 splits into
jnj � 2 ˇnp -orbits of size p and that o3 splits into jmj � 2 ˇmp -orbits of size p. Therefore,
we can define �p by setting

y1ˇ
jn
p �p WD y2ˇ

jm
p ; y2ˇ

jn
p �p WD y3ˇ

jm
p and y1ˇ

�1Cjn
p �p WD y3ˇ

1Cjm
p :

Clearly the phenotype of such a pre-action is p and the associated Bass–Serre graph

G0;p WD BS. p̌; �p/

is a triangle. Set xp WD y1 and note that for every p, we have

xp�p�p p̌�
�1
p p̌ D xp:

By Lemma 4.22, we can then extend G0;p to a saturated .m;n/-graph Gp , see Figure 5,
and by Proposition 3.23, we can extend the pre-action . p̌; �p/ to an action p̨ whose
Bass–Serre graph is Gp .
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3 � p

v1

2 � p

v3

p

v2

e3

e1 e2

4 � p9 � p

2 � p

Figure 5. A (2,3)-graph Gp , where m D 2 and n D 3.

Define ƒp to be the stabilizer of the action p̨ at xp and remark that t2bt�1b 2 ƒp .
Moreover, by construction, Ph.ƒp/ D p.

By compactness, we find an accumulation point ƒ of the sequence .ƒp/p . Since ƒp
has phenotype p, the subgroupƒ has infinite phenotype. Since t2bt�1b 2ƒp for every p,
we have that t2bt�1b 2 ƒ. Moreover, t2bt�1b … hhbii, soƒ 62 Ph�1.q0/ by Theorem 6.2.
Therefore, the proof is complete.
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