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Quasi-projective varieties whose fundamental group
is a free product of cyclic groups

José 1. Cogolludo-Agustin and Eva Elduque

Abstract. In the context of Serre’s question, we study smooth complex quasi-projec-
tive varieties whose fundamental group is a free product of cyclic groups. In partic-
ular, we focus on the case of surfaces and prove the existence of an admissible map
from such a quasi-projective surface to a smooth complex quasi-projective curve.
Associated with this result, we prove addition-deletion lemmas which describe a nat-
ural operation correlating this family of quasi-projective surfaces and groups. Our
methods also allow us to produce examples of curves in smooth projective surfaces
whose complements have free products of cyclic groups as fundamental groups,
generalizing classical results on Cp 4 curves and torus-type projective sextics, and
describing the conditions under which this phenomenon occurs.

1. Introduction

Goals and motivation

This paper is devoted to the general problem of describing the topology of smooth com-
plex quasi-projective varieties. From the point of view of first homotopy groups, using
Lefschetz-type theorems, it is enough to focus on complements of curves in a smooth pro-
jective surface. In this context, we address Serre’s question on the type of groups that can
appear as fundamental groups of quasi-projective varieties. In particular, we consider the
family of finite free products of cyclic groups. As it turns out, all of them can be realized as
fundamental groups of quasi-projective surfaces, but only some as fundamental groups of
complements of plane projective curves (see Section 3.3). Moreover, in Theorem 1.3 we
describe the geometric structure of such quasi-projective surfaces as containing a natural
fibration onto a projective curve where the finite order elements correspond with multiple
fibers of the fibration.

Interest for this problem in the complex projective plane goes back to Zariski and his
foundational paper [43]. He considered the space of plane projective curves of degree six
having six simple cusps, and characterized whether these singular points are placed on a
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conic by the property 71 (P2 \ D) = Z, * Z for any such sextic D C P2, or equivalently,
by having a (2, 3)-toric decomposition (i.., given by an equation f;? + f,> = 0 where f; is
a generic form of degree i in C[x, y, z]). This is equivalent to the existence of a morphism
F:P2\ D — P!\ {[1: —1]}, defined by F(x,y,z) = [f?: f;'] with two multiple fibers.
In the 70’s, Oka proved his classical result on C, 4 curves in Section 8 of [32] (see also
Dimca [17], Proposition (4.16) in Chapter 4), exhibiting a family of irreducible curves

(1.1) Cpg ={(x" +yP)T + (y7 + z9)7 = 0}

for any p,q > 1 coprime such that 71(P?\ Cp4) = Z, * Z4. This was generalized in
the 80’s by Némethi in [29].

This problem appeared in several other contexts, mainly focusing on a possible con-
nection between Alexander polynomials of complements P2 \ D and toric (or more gener-
ally quasi-toric) decompositions ([5,13,25,26,34-36,40,41]). For instance, Oka’s conjec-
ture [18] (discussed and proved by Degtyarev in [14, 15]) states that an irreducible plane
sextic is of torus type if and only if its Alexander polynomial is non-trivial.

A classical tool to describe the topology of smooth quasi-projective surfaces is the
existence of morphisms onto smooth curves (a complex quasi-projective manifold of
dimension 1). This is described in the Castelnuovo—de Franchis theorem for the existence
of morphisms onto smooth curves of genus g > 2, and in Arapura’s structure theorem [3],
as well as its twisted version [6]. If X denotes a smooth projective surface and D C X
a (non-empty) reduced curve, the latter paper uses certain properties of the fundamen-
tal group to describe the existence of a dominant morphism F from X \ D to a smooth
projective curve S, which induces an orbifold structure S°® on S determined by the mul-
tiplicity of the fibers of F'. Since the fibers of this morphism are generically connected,
the authors show that the fundamental group 71 (X \ D) surjects onto the orbifold funda-
mental group of S°, which, since S\ F(X \ D) # @, is a finitely generated free product
of cyclic groups. The extreme case for this morphism induced by F occurs when the sur-
jection becomes an isomorphism between 71 (X \ D) and the orbifold fundamental group
of §°®_ This motivates our use of these techniques for the study of quasi-projective vari-
eties whose fundamental group is a free product of cyclic groups, and raises the question
of the existence of such a morphism F realizing an isomorphism between (orbifold) fun-
damental groups in this setting. Indeed, similar connections between fundamental groups
of smooth varieties and orbifold fundamental groups have been studied by Arapura [4]
and Catanese [10] in the projective case (D = @), and by Bauer [7] and Catanese [9] in
the quasi-projective case where 771 (X \ D) is free (or more generally, it admits an epimor-
phism onto a free group with a finitely generated kernel).

In this paper, we provide both necessary and sufficient geometric conditions for a
smooth quasi-projective variety to have a free (finite) product of cyclic groups as its fun-
damental group. However, before stating our results in full generality, let us provide some
intuition by exhibiting some of their consequences in the case of plane curve comple-
ments. We show that if the fundamental group of the complement of a curve in P? is a
free product of cyclic groups, then it is isomorphic to I, * Z, * Z, for some r > 0 and
some p,q > 1 such that gcd(p, g) = 1. We prove the following structure theorem, which
provides necessary conditions and greatly constrains the type of polynomial equations
that can give rise to curves in P? whose fundamental group of their complement is a free
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product of two non-trivial cyclic groups. The following is an immediate consequence of
Corollary 3.15.

Corollary 1.1. Ifa curve complement in P2 has fundamental group Z, * 7.4, with p,q €
Z 1 coprime integers, then the curve is given by a polynomial equation of the form
fo + fF =0, for some f, and f; homogeneous polynomials in C[x, y, z] of degrees p
and q with no common factors, and such that neither of them is a k-th power of another
polynomial for any k > 2.

A partial converse is also proved by showing that the fundamental group of the com-
plement of any curve defined by qu + fqp =01is generically a free product of cyclic groups.

Theorem 1.2. Let f, (respectively, f;) be a homogeneous polynomial of degree p (res-
pectively, q) in C[x, y, z] with gcd(p, q) = 1. Assume that
s fp and f, define an admissible map F = [f, : fF]: P2\ B8 — P!, where 8 =
V(fp) NV (fy) is a finite set.
e The multiple fibers of F lie over a subset of {[0 : 1], [1 : O]} (this always holds if
p.q=2).
Letr > 0, and let Cy, . .., C, be the closures in P? of r + 1 distinct generic fibers
of F.Let C = \J;_, Ci. Then,

mi(P2\C) =F, xZp x Zq.
Moreover, assume that V(f,) is irreducible and 7t1(P*\ V(fp)) = Z,. Then

T (P>\(C UV(fp) =Fry1 % Zp.

In particular, this provides infinitely many examples of curves in P? like the ones in
the previously mentioned examples by Zariski, Oka and Némethi, that is, such that the
fundamental group of their complement is a free product of two non-trivial cyclic groups.
Zariski’s and Oka’s results were proved using braid monodromy computations (which
can be very complicated) applied to very expertly chosen specific examples. The methods
presented here are different and their scope is wider, as they rely on exploiting the extra
structure on these varieties endowed by morphisms to smooth complex quasi-projective
curves (such as F in Theorem 1.2). These morphisms are constructed using properties of
the fundamental group itself, not invariants of it such as the Alexander polynomial.

Overview of the main results

The main objects of this paper are curves in a smooth projective surface. Whenever we
refer to a divisor as a curve, the divisor is meant to have a reduced structure. One of the
main theorems of this paper provides geometric necessary conditions for the complement
of a curve D in a smooth projective surface X to have a free product of cyclic groups as
its fundamental group. These conditions include the existence of an admissible map to a
smooth curve S (see Section 2.1 for the definition of admissible map), and are stated using
orbifold notation S, 41,m), Where Zg C S is the set of #3¢ = n + 1 points removed and
m = (my, ..., my) represents the orbifold structure on s points of S\ X (see Section 2.4
for the relevant definitions).
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Theorem 1.3. Let X be a smooth connected projective surface, and let D C X be a curve.
Suppose that w1(X \ D) = ¥y % Zp, * -+ * Ly, is infinite. Then, there exist a smooth
projective curve S of genus gs and an admissible map F: X --> S such that:

(1) F induces an orbifold morphism
F‘ . X \ D — S(,H_l,,;,),

where S 41,m) is maximal with respect to Fj, n > 0 and m = (my, ..., my).
(i) Fe:mi(X \ D) = 7Y(S(n+1,m)) is an isomorphism.
(iii) D = Dy U Dy, where

* Dy = F~Y(Xy) is a fiber-type curve which is the union of the n + 1 fibers above
the distinguished points o C S, withn =r — 2gg,

* and the meridians of Dy are trivial in w1(X \ D).

In particular, the maximality condition of part (i) implies that F|: X \ D — S\ X is
a surjective algebraic map with exactly s multiple fibers of multiplicities (m1, ..., my),
determined by the torsion of 7r1 (X \ D). Theorem 1.3 is proved in Section 3.

The existence of the admissible map F is guaranteed by [3, 6] if r > 1 as long as
71(X \ D) # Z. The case w1 (X \ D) = Z has to be considered separately. If r = 0, the
structure of the group 7r1(X \ D) is used to construct a finite covering with free funda-
mental group. We then show that the Albanese morphism of this covering produces an
admissible map which, by the functoriality of the Albanese morphism, descends to the
desired admissible map F (after normalization in the target curve and Stein factorization).
Moreover, Corollary 3.9 discusses the role of the divisor D;.

Theorem 1.3 is extended in Section 3.2 to the case where 71(X \ D) is finite as
long as X is simply connected, under some extra assumptions that are always satisfied
if X = P2. As a result, we prove a refinement of Theorem 1.3 for the case X = P2 in
Section 3.3 (Corollary 3.15), and show that in this case, 71 (X \ D) = F, % Z, * Z, for
some p,q € Zx; coprime and r € Zxo, and that D = Dy is a union of irreducible fibers
of a pencil F: P2 --> P!, The already stated Corollary 1.1 is a particular case (r = 0 and
p,q > 1) of Corollary 3.15.

The second type of main results are referred to as addition-deletion theorems in Sec-
tion 4. Consider U a smooth quasi-projective surface and F': U — S an admissible map to
a smooth projective curve S, and define Up = U \ F~!(B) for any finite subset B C S. In
this context, we prove a deletion Lemma 4.9 that describes the fundamental group of Up
if F|:Upy¢py — S induces an isomorphism between (orbifold) fundamental groups. This
is done regardless of whether P € Bfr or not, for Br the set of atypical values of F,
that is, whether F~1(P) is a typical fiber or not. We also prove the following generic
addition-deletion lemma in Section 4.

Theorem 1.4 (Generic addition-deletion lemma). Let U be a smooth quasi-projective
surface and let F:U — S be an admissible map to a smooth projective curve S. Assume
B C S, where #B =n > 1, and let P € S\ (Br U B). Consider S, +1,m) (respectively,
S(n,im)) the maximal orbifold structure of S with respect to F|: Ugyipy — S\ (B U {P})
(respectively, F|:Ugp — S\ B).
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Then the following are equivalent.
o Fu:m(Ug) = wY™(S(um)) is an isomorphism,
* Fam(Upuipy) — ni’rb(S(n_H,,;l)) is an isomorphism.

Moreover, in that case,
71 (Upuipy) = Z * m1(Up).

As a consequence of this, we prove that the fundamental group of the complement
of r generic fibers of a primitive polynomial map from C? onto C is free of order r in
Corollary 4.11.

We finally devote Section 5 to a number of applications of these results to the calcula-
tion of fundamental groups of complements of projective curves, noting how the results in
Section 4 provide sufficient geometric conditions for these groups to be a free product of
cyclic groups. In particular, in Section 5.1 we prove the already stated Theorem 1.2. The
key ingredients in the proof of this theorem are the addition-deletion results, which allow
us to avoid any Zariski—Van Kampen/braid monodromy calculations.

Theorem 1.2 brings together several examples known in the literature. For instance, we
apply it in Section 5.2 to provide a Zariski—Van Kampen-free proof of a result on the fun-
damental group of a union of lines and conics due to Amram-Teicher (see Theorems 2.2
and 2.5 in [2]). As a last application, in Section 5.3 we generalize a classical result due to
Oka—Pho in [36] on fundamental groups of maximal tame torus-type sextics.

Let us remark that, after the initial preparation of this paper, more progress has been
made in this topic, more concretely, about potential refinements of the sufficient conditions
from Theorem 1.2 for the fundamental group of the complement in P2 of a plane curve to
be a free product of cyclic groups. More concretely, the examples of [12] show that those
sufficient conditions would need to involve more than local invariants.

Remark 1.5. The results in this paper could be generalized to the quasi-Kéhler (com-
plements of normal crossing divisors in a compact Kihler surface) case in the following
sense. Section 2 can be extended to quasi-Kihler surfaces. These results would provide
proofs of analogues to Theorems 1.3 and 1.4 in this context. However, our main interest in
this paper is the pair (X, D), where X is a projective surface and D is a curve on X (not
necessarily with normal crossings). The statements of Theorems 1.3 and 1.2 and Corol-
lary 1.1 describe some properties of the curve D in X.

2. Preliminaries

A short exposition on the main concepts and tools of this paper will be given in this section
in order to fix notation and for the sake of completeness.

2.1. Admissible maps on X

Following Arapura [3], we call a surjective morphism F:U — S’ from a smooth quasi-
projective surface U to a smooth quasi-projective curve S " admissible if it admits a sur-
jective holomorphic enlargement F:U — S with connected fibers, where U and S are
smooth compactifications of U and S’, respectively. As a consequence, note that the
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admissible map F has connected generic fibers, and in fact, both conditions are equiv-
alent (cf. Remark 2.2 in [12]).

If U is a Zariski dense subset of a smooth projective surface X, then F defines a
rational map F: X --» S which can be extended to an admissible map F: X \ 8 — S on
a maximal open set X \ B, where B is the finite subset of base points. Note that F' must
be surjective and that 8 = @ unless S = P, For convenience, this rational map will also
be referred to as admissible.

Remark 2.1. An admissible map F: X \ 8 — S has connected generic fibers and hence it
induces an epimorphism Fy: 71 (X \ 8) = 71(X) — 71(S). In particular, H;(X;C) =0
implies S = P!

Given P € S’ C S, the fiber F~1(P) C U defines an algebraic curve Cp. Assume
B C S’ is a finite set. We will denote Cg = | Jp ¢ g Cp. Any such curve will be referred
to as a fiber-type curve. It is well known that the minimal set of values Br for which
F:U\ Cp; — S’ \ BF is a locally trivial fibration is finite [39]. The points in Br are
called atypical values of F: U — S’. We will distinguish between F*(P) as the pulled-
back divisor and Cp as its reduced structure. Using this notation, one can describe the set
of multiple fibers as

21) Mp={PeS'| F*(P)=mD,m > 1, for some effective divisor D} C BF.

Note that, in general, the effective divisor D in (2.1) need not be reduced. If P € §, the
multiplicity of F*(P) is defined as m > 1 if F*(P) = mD for some D, and whenever
F*(P)=m'D’, thenm’ < m.

Remark 2.2. If X is a simply-connected surface and F: X --> S is an admissible map,
then S = P! by Remark 2.1 and an analogous argument to the one given in the proof of
Proposition 2.8 in [13] shows that the number of multiple fibers of F' cannot exceed two.

From now on, we will use the following notation.

Notation 2.3. Let F: U — S’ be an admissible map from a smooth quasi-projective sur-
face U to a smooth quasi-projective curve S’, and let B C S’ be a finite set. We denote by
Up := U \ Cp. Analogously, if F: X --> S is an admissible rational map from a smooth
projective surface X to a smooth projective curve S and B # 0, one defines Xp as Up for
U = X\ B.Note that Xg = X \ (Upcp F1(P)).

2.2. Fundamental groups of quasi-projective varieties

Let X be a smooth quasi-projective surface and let D = | J,c; D; be a curve in X,
where D; are its irreducible components.

When studying 1 (X \ D, p), one has the following generating homotopy classes of
loops: take a regular point p; on D; and consider a disk D; C X transversal to D; at p;
and such thatD; N D = {p;}. Let p; € 0D; and consider y; a loop based at p; around dID;
travelled in the positive orientation. Define §;: [0, 1] — X \ D a pathin X \ D starting at
the base point §; (0) = p and ending at §; (1) = p;. Denote by §; the reversed path defined
as usual as 6;(¢) := 8;(1 —t), t € [0, 1], starting at p; and ending at p. The following
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loop y; := 8; * P; * §; is based at p and defines a homotopy class called a meridian
around D;. The following two results are well known.

Lemma 2.4. Let y be a meridian around D;. A homotopy class y' is a meridian around D;
if and only if y' is in the conjugacy class of y in w1(X \ D, p).

Proof. See [31], and also Proposition 1.34 in [11], for a proof. [

Lemma 2.5. Consider X; := X \ (PU;es\ iy D)) and (ji)« : w1 (X \ D, p) — m1(Xi, p)
induced by the inclusion X \ D — X;. Then (j;)x is surjective, and ker(j; )« is the normal
closure of any meridian y; in w1(X \ D, p). In particular, if X is simply connected, then
any set of the form {y;}ic; normally generates mw1(X \ D, p), where y; is a meridian
around Dj foralli € 1.

Proof. See [31]. Also, as a consequence of Lemma 2.3 in [38]. ]

2.3. Homology of the complement

Consider X a smooth projective surface and let D = Dy U ---U D, C X be the decompo-
sition of a curve D into its irreducible components. Using excision and Lefschetz duality,
the homology exact sequence of (X, X \ D) becomes

Hy(X:Z) — H*(D:Z) - H\(X\ D;Z) — Hi(X:Z) — 0,

where H2(D;Z) = Z" ! is generated by the cohomology classes of each D; irreducible
component of D. Hence, if H;(X; Z) = 0 (respectively, if H;(X; Q) = 0), one obtains

2.2) Hy(X:7) 5 27+ = H{(X\ D:Z) — 0

(respectively, with Q-coefficients), where j(C)= Z;=0(C ,Di)x D; (see for instance [8]).
In particular,

(23) H{(X\D;Z)=Z"""/Imj (respectively, H;(X \ D;Q) = Q"*!/Im j).

The following condition on the irreducible components of a curve allows for a partic-
ularly simple description of the first homology of X \ D.

Condition 2.6. The curve D decomposes into irreducible components as D = | J;_, D;,
and the irreducible components are such that,

m;D; =mj;Dj for somemy,...,m, € Zsg,

where = here means numerical equivalence.

Example 2.7. The following are typical sources of examples satisfying Condition 2.6:
(i) For any D, if the surface X is such that NS(X) = Pic(X)/ Pic®(X) = Z. (ii) For
any X, if there exists an admissible map F' from X onto a curve and m; > 1 such that
D= U;=0 D; and m; D; is a (multiple if m; > 1) fiber of F. (iii) For any X, whenever D
is irreducible, since Im(j) C ZD.

The following result is immediate from (2.3).
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Lemma 2.8. If X is a smooth projective surface such that H\(X ; Z) is finite, and D is
a curve satisfying Condition 2.6, then H1(X \ D; Q) = Q". Moreover, if Hi(X;Z) =0,
then HI(X \ D;Z) = Z" X Z 4, where d € Z~ is determined by the components D;.

Remark 2.9. In particular, if D C X = P2 is a curve with r + 1 irreducible components,
then H1(X \ D;Z) = Z" x Zg4, where d is the greatest common divisor of the degrees of
the irreducible components of D (see Proposition (1.3) in Chapter 4 of [17]).

2.4. Orbifold fundamental groups and orbifold admissible maps

In this section, we will define the concept of orbifold fundamental groups and orbifold
morphisms induced by admissible maps. As a word of caution, the word orbifold might
be misleading, since we do not need to develop any theory of orbifolds or V -manifolds in
this context. This will become clear throughout the section. The first concept is a group
theoretical object associated with a smooth projective curve (or in more generality with a
projective manifold) and a divisor on it. The second concept is purely geometric and only
reflects the existence of non-reduced fibers of an admissible map.

Consider a smooth projective curve S of genus g and choose a labeling map ¢: S —
Z > such that ¢(P) # 1 only for a finite number of points, say ¥ = Xy U X C S, for
which ¢(P) =0if P € g and (Q) =mo > 1if Q € X. In this context, we will refer
to this as an orbifold structure on S. This structure will be denoted by S(;+1,7), where
n+1=#X, and m is a (#X1)-tuple whose entries are the corresponding mg’s. The
orbifold fundamental group associated with S, 41.), denoted by 7™ (S(y41,m)), is the
quotient of 771 (S \ ¥) by the normal closure of the subgroup (;L‘;;(P), P € %), where up
is a meridian in S\ T around P € E. Note that 7{"™(S¢,+1,7)) is hence generated by
{ai,bi}i=1,.,¢ U{up}pecx and presented by the relations

(2.4) upt =1, forPexy, and [ pp= [] la.bi
Pex i=1,..g

for appropriately chosen {a;, b; }i=1,...; and meridians {jtp}p ¢ x. In the particular case
where g # 0, (2.4) shows that 79" (S(,+1,4m)) is a free product of cyclic groups as fol-
lows:

T (Serrm) = 11 (S\ Zo)k (% (

kS mpz)> ~ Fy 4 Zopy % % Lo,

wherer =2g — 1+ #Xg =2g +n,s =#X,,andm = (mq,...,my).

Definition 2.10. Let S be a smooth projective curve endowed with an orbifold structure.
We refer to the orbifold fundamental group of S as an open orbifold group of S when the
orbifold structure on S is such that 3y # @, or equivalently, n > 0.

Definition 2.11. The orbifold Euler characteristic of Sg, 41 ,57) 18 given as

1 1
1 (Stnt-1.7)) ::2—2g—(n+1)—z<1—$) =1—(s+2g+n)+2$-
14 i 1

1
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Definition 2.12. Let X be a smooth algebraic variety. A dominant algebraic morphism
F: X — Sg+1,m) is called an orbifold morphism if for all P € § such that ¢(P) > 0, the
divisor F*(P) is a ¢(P)-multiple. The orbifold S(,41,m) is said to be maximal (with
respect to F) if F(X) = S\ Z¢ and for all P € F(X), the divisor F*(P) is not an
n-multiple for any n > ¢(P).

The following result is well known (see, for instance, Proposition 1.4 in [5]).

Remark 2.13. Let F': X — S(,41,7) be an orbifold morphism. Then F induces a mor-
phism Fy:m(X) — nfrb(S(nH,,;,)). Moreover, if the generic fiber of F is connected,
then F is surjective.

The following lemma extends [30].

Lemma 2.14. Consider G =Zy,, % -+ + % L, withs > 2, m; > 1, and m:= lem(m;,i € I),
for I ={1,...,s}. Let wey: G — Zy, be the natural epimorphism of G onto its maximal
cyclic quotient. Then ker(ny) = Fp, a free group of rank

1
p=1-—m +m2(1 - m—l> = l—m)(orb(IP’(ll,,h)).

iel

Proof. 1t is straightforward using Reidemeister—Schreier techniques and induction over
the number of distinct prime factors of m. ]

The following well-known result is a generalization of Lemma 4 in [36].

Lemma 2.15. Let G be a finitely generated free product of cyclic groups. Then G is a
Hopfian group, i.e., every endomorphism of G which is an epimorphism is an isomor-
phism.

Proof. Consider G = F, % Zy,, * -+ % Zy,, Wwherem; > 2foranyi el ={1,...,s}. Let
J =F,and H = Zp, * -+ * Z,,,. Finitely generated free groups are Hopfian, so J is
Hopfian. H is a free product of finitely many finite groups, so it is virtually free and thus
residually finite. Finitely generated residually finite groups are Hopfian, so H is Hopfian.
By [16], the free product of two finitely generated Hopfian groups is Hopfian. ]

2.5. Fundamental groups of complements of fiber-type curves

In this section, F: U — S is going to be an admissible map from a smooth quasi-projective
surface to a smooth projective curve S of genus gg. Following [24], we say the generic
fiber F~1(P) of an admissible map is of type (gF.sF) if F~!(P) is homeomorphic to a
smooth projective curve of genus gr with sf points removed. We will denote by

2.5 Q) = (al,...,ag,bl,...,bg,X(),..-»xs—l : Hf:l[aiabi] = 1_[}:}) xj)

the fundamental group of a smooth projective curve of genus g, where xo, ..., x;—; are
meridians around its s punctures.

As above, consider the admissible map F:U — S, B ={Py, P1,...,P,} C S,n>0.
LetT's ={y1,...,¥r},r = 2gs + n be a set of loops in 1 (Up) such that:
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(1) {F«(yk)})—, generates 71(S \ B) = F, forallk =1,...,r,

(2) the loops yx € 1 (Up) result from lifting a meridian around Py € S,fork =1,...,n,
(3) the product 7 = [172, [yn+2j-1,¥n+2;]1 (TTi=; i) ™" is such that Fy () is a meridian
around Py.

(4) For every Py € B such that F*(Py) is not a multiple fiber, yx is a product of merid-
ians (positively or negatively oriented) about irreducible components of Cp, C Cp
forallk =1,...,n.In the particular case where Cp, is irreducible, yj is a positively
oriented meridian about Cp, .

On the other hand, if P € S\ (Br U B), then the typical fiber F~!(P) is a smooth
curve of type (g, sF) and 711 (F~1(P)) = Q(gp.5p) as in (2.5). Let ['r denote the image
of such a set of generators as in (2.5) by the homomorphism induced by the inclusion
1 F~Y(P) = Usg.

Definition 2.16. Any set of loops I'r (respectively, I's) obtained as in the construction
above will be referred to as an adapted geometric set of fiber (respectively, base) loops
with respect to F' and B.

The following shows that adapted geometric sets of fiber (respectively, base) loops
exist for admissible maps.

Lemma 2.17. Let F: U — S be an admissible map from a smooth quasi-projective sur-
face U to a smooth projective curve S of genus gs. Consider B = { Py, P1,..., Py} C S,
n > 0. Then, there exists U's = {y1,...,yr}, r = 2gs + n, (respectively, I'r) an adapted
geometric set of base (respectively, fiber) loops with respect to F and B.

Proof. The statement with respect to I'r follows by construction. As for I'g, let us choose
aset of loopsin 71 (S \ B) = Qg4 n+1) satisfying (2.5). Since F has connected fibers and
is algebraic, Fi:m1(Up) — m1(S \ B) = F, is surjective and one can choose liftings yx
satisfying properties (1)—(3) above.

To see that we may choose I's so that it also satisfies condition (4), note that there
exists a meridian puc around each irreducible component C of F*(Py) of multiplicity
m = mult{C}, such that Fy(uuc) = F«(yx)™. Also note that

my = ged{mult(C) € Z> | C irreducible component in F*(Py)}.

Now, using Bézout’s identity, one can obtain a product of meridians u; whose image
is Fyx(yx)™ . In particular, puy = ay,znk for o € ker Fy. If F*(P) is not multiple, then
my = 1. Replacing yx by oy, condition (4) follows, and conditions (1)—(3) still hold. m

Lemma 2.18. Let F: U — S be an admissible map from a smooth quasi-projective sur-
face U to a smooth projective curve S of genus gs. Consider B = {Py, Py, ..., P,} C S,
n > 0. Suppose, moreover, that B O B contains the set Br of atypical values of F, and
let P € S\ B. Then w1(Up) is a semidirect product of the form

m(Up) = m(F~'(P)) x 71 (S \ B).
Moreover, w1(Up) has a presentation with generators I'r U I's for

I"F:{ai,bi,xj|i:1,...,gp,j:0,...,sF—1} and FS:{)/kHC:],...,I‘},
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where (gF, sF) is the type of F~1(P), T'r (respectively, T's) is an adapted geometric set
of fiber (respectively, base) loops with respect to F and B, and the following is a set of
relations:

[V ail = aik.

[k bil = Bik.

[kdjs. xj1 = 1,

Hj xj = [1;lai. bil,

where i €{l,...,gr}, j€{0,....,5F — 1}, ke{l,....,r =2gs +n}, and ok, Pi k.
and §; i are words in the elements of I'f.

2.6)

Proof. The condition B O BF implies that F: Up — S \ B is a locally trivial fibration,
with fiber F~1(P). Lett: F~!(P) < Up be the inclusion. The long exact sequence of a
fibration for homotopy groups yields

(S \ B) = 11 (F~Y(P)) 25 1, (Up) 25 m1(S\ B) — 1.

Note that, since 71 (S \ B) = F,, the epimorphism F, splits. Since S \ B is homotopy
equivalent to a wedge of circles, (S \ B) = 1, which concludes the result.

The description of the semidirect product 71 (F~'(P)) x m1(S \ B) is given by con-
sidering the action of y; on the group 71 (F ~!(P)) generated by I' . For the generators a;
(respectively, b;), one can write yk_la,-yk = a;dk ()/k_lb,- t = bija; ) for some a; i
(respectively, B;x) in w1 (F _I(P)). For the meridians x; around the point p; on the
boundary of F~1 (P) note that yk_ XjYr must be also a meridian around p; and hence
Yi iy =6, kxjc? for some §;  in 7t (F~!(P)). The last relation in (2.6) comes from
the choice of the adapted geometric set of fiber loops I'F. ]

Corollary 2.19. Under the notation and assumptions of Lemma 2.18, Fy: w1 (Ug) — F,
is an isomorphism if and only if F~1(P) is of type (0, 1) or (0, 0).
Moreover, if F:P? ——> P! and U = P?\ B, then Mr = B and hence #Br < 2.

Proof. The first statement is an immediate consequence of Lemma 2.18. If U is a Zariski
open subset of P2, any pencil has at least a base point and thus any fiber F~1(P) of
F:P2 --> P! must be an open curve, so the fibers of Fjyy will be open curves as well.
The ‘moreover’ part follows from Theorem 6.1 in [24] by direct inspection, since all the
pencils of type (0, 1) are classified. |

Example 2.20. In particular, according to Corollary 2.19, the classification of all rational
pencils on P2 of type (0, 1) given in [24] provides a list of examples of curves whose
complement have a free fundamental group.

In Lemma 2.18, BF C B. However, one can understand r; (Ug) for any non-empty
finite set B C ' as follows.

Corollary 2.21. Assume F:U — S is an admissible map, and let B C S, with #B =
n+ 1> 1. Then, 71 (Up) = n1(Upupr)/N, where N is the normal closure of meridians
y € m1(Upusy) of the components of Cpp\ .

Proof. The result follows from Lemma 2.5. ]
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The following result is well known in different settings (cf. [27,31,38]), but we include
it here for the sake of completeness.

Corollary 2.22. Let F: U — S be an admissible map, let B C S be a finite set with
#B=n+1>1,andlet P €S\ (B U BF). Let S(4+1,m) be the maximal orbifold structure
on S with respect to Fiy,. Then,

— Lx Fy
7 (F7Y(P)) = 71 (Ug) —> 7™ (Stut1,m)) — |
is an exact sequence.

Proof. Consider the commutative diagram:

| —— m(F~Y(P)) — m(Upug,) —=— m1(S\ (BU Br)) — 1

I | |

* F*
T (F7Y(P)) —%— 71(Up) ——— 7P®(Sut1.m))-

Here, the vertical arrows are all induced by inclusion, and the top row is exact, thanks to
Lemma 2.18. The surjectivity of the map Fx in the bottom row follows from the diagram
(but also from Remark 2.13). Also, Im(t«) C ker Fy. Let us prove the other inclusion. Since
Im(t4) is a quotient of a normal subgroup of 3 (Upyug;- ). it is a normal subgroup. Using
the exactness of the top row, the last paragraph of the proof of Lemma 2.17, Lemma 2.18
and Corollary 2.21, it is straightforward to see that the map

71(Up)/ Im(tx) = ™ (S(u1,m))

has a splitting o taking F(yy) to the class of y; for all y; € I's, where 'y is an adapted
geometric set of base loops with respect to F' and B U Br. The commutativity of the
diagram above implies that o is surjective. ]

Remark 2.23. Suppose that X is a projective surface, S a smooth projective curve, and
F:X — § is asurjective holomorphic map with connected fibers. Let S(g ) be the max-
imal orbifold structure of S with respect to F: X — S. As mentioned in the proof of
Lemma 4.2 in [9], one also has an exact sequence like the one in Corollary 2.22, namely
T (F~Y(P)) » m(X)— nfrb(S(o,,;,)) — 1, where the first arrow is induced by the inclu-
sion of a generic fiber F~1(P) over P € S.

2.6. Characteristic varieties

Characteristic varieties are invariants of finitely presented groups G, and they can be
computed using any connected topological space X (having the homotopy type of a
finite CW-complex) such that G = 71 (X, x¢), x¢o € X as follows. Let us denote H :=
H{(X;Z) = G/G’. Note that the space of characters on G is a complex torus Tg :=
Hom(G,C*) = Hom(H,C*) = H'(X;C*). This Tg can have multiple connected com-
ponents, but it only contains one connected torus, which we denote by Tcl;.
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Definition 2.24. The k-th characteristic variety of G is defined by
Vi(G) :={€ € T | dim H' (X, Cy) = k),

where H!(X, C¢) is classically called the twisted cohomology of X with coefficients in the
local system & € Tg. It is also customary to use Vi (X) for Vi (G) whenever 71(X) = G.

If G =F; % Zpy, %+ % Ly, the torus Tg is a disjoint union of TL =~ (C*)" and
translations Té of T} by every element A of C = Cp; X +++ X Gy, Where Cp, is the
multiplicative group of m-th roots of unity. Given a torsion element p € T, one can define

2.7) depth(p) := max{k € Zxo | T¢& C Vi(G)}.

Remark 2.25. In Proposition 2.10 of [6], a complete description of V;(G) is given for
orbifold fundamental groups of smooth quasi-projective curves. If § = S¢,41,7), one
can check that Vi (7™(S)) # @ if and only if 7¢"™(S) is not abelian, or equivalently,
if x°®(S) < 0, in which case S is called an orbifold of general type.

2.7. litaka’s (quasi)-Albanese varieties
Let X be a smooth projective variety. The Albanese variety is defined as
Alb(X) := HY(X, Q)Y / FreeH,(X; 7Z),

where V denotes the dual as a C-vector space, and Free H; (X ; Z) denotes the torsion-free
factor of H1(X;Z). It is an abelian variety. Moreover, fixing a base point xo € X, the
Albanese morphism ax: X — Alb(X) defined by x > (@ > [ ) is an algebraic mor-
phism. litaka [23] generalized this to smooth quasi-projective varieties U (for a detailed
description, see [21]), Alb(U) being a semiabelian variety in this case. The Albanese
map oy satisfies that (ay)«: H1(U;Z) — H1(Alb(U); Z) is surjective, whose kernel is
Torsz H1(U; Z). Moreover, if X is a smooth compactification of U such that D := X \ U
is a simple normal crossing divisor, and i : U < X is the inclusion, then we have an exact
sequence

2.8) 1 > (C*y — AIb@U) 22 Alb(x) — 1,

where r = dimec H°(X, Q}((log D)) —dimc H°(X, Q}l()
We include here two technical lemmas about Albanese varieties.

Lemma 2.26. Let U be a smooth quasi-projective surface such that w1(U) = Z. Then,
Alb(U) = C*, and ay: U — C* is an admissible map with no multiple fibers inducing
isomorphisms in fundamental groups.

Proof. We have that Alb(U) =~ C* because the latter is the only semiabelian variety whose
fundamental group is isomorphic to Z. Note that ¢y must be dominant.

Let us consider a holomorphic enlargement F: X — P! of ay. Since 7;(X) is a
quotient of Z by Lemma 2.5, using Stein factorization on F and Remark 2.1, we obtain
that oy factors through an admissible map f:U — V C P'. Thus, (V) = Z, and thus
V' = C*. By the universal property of the Albanese, f: U — C* coincides with oy up
to isomorphism of the target, so oy is admissible. Finally, by Remark 2.13, oy has no
multiple fibers. ]
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Lemma 2.27. Let S’ be a smooth quasi-projective curve such that w1 (S’) = ., forr > 1.
Let U be a smooth quasi-projective surface and let F:U — S " be an admissible map
such that F: X — S is a holomorphic extension of F with connected fibers, where X is
a smooth projective compactification of U, X \ U is a simple normal crossing divisor,
and S is a smooth projective curve of genus gs. Let iyy: U — X be the inclusion.
Suppose that Fy: w1 (U) — w1(S’) is an isomorphism.
(1) If gs =0, then

(@) ag:S" — AIb(S) is injective;

(b) Ab(U) = (C*)" = AlIb(S’);

(¢) AIb(F): Alb(U) — AIb(S") is an isomorphism;

(d) up to isomorphism in the target, the map F coincides with the restriction of oy
to its image, namely ay: U — ay (U).

(2) If gs = 1, then
() as:S — AIb(S) is injective;
(b) AIb(F): Alb(X) — AIb(S) is an isomorphism;

(c) up to isomorphism in the target, the map F coincides with the restriction of
ax o iy to its image, namely ay oiy:U — ax(U).

Proof. The variety Alb(S) has (complex) dimension gs. Similarly, since X is a projec-
tive variety, the dimension of Alb(X) is half of the rank of H;(X, Z). Let us show that
the rank of H;(X,Z) is 2gs. Applying Corollary 2.22 to F: U — §’, the morphism
71 (F~Y(P)) — m1(X) induced by inclusion can be seen to be trivial, where F ' (P) is
a generic fiber of F. Let S(o7) be the maximal orbifold structure of S with respect to
F:X — S.By Remark 2.23, F: 71(X) — 7{"™(S(0,)) is an isomorphism. Abelianiz-
ing, we obtain that the rank of H;(X;Z) is 2gs. In particular, if gg = 0, then Alb(X)
(respectively, AIb(S = P!)) is a point, and thus, using equation (2.8), Alb(U) (respec-
tively, Alb(S”)) is a torus, which must necessarily have dimension r. This concludes the
proof of part (1b).

Assume that gg = 0. Part (1a) is well known. Note that Alb(F): Alb(U) — Alb(S’)
is an algebraic map which is a homomorphism between (C*)" and itself and induces an
isomorphism on fundamental groups. By Cartier duality (see [37]), Alb(F') is an isomor-
phism, and part (1c) is proved. Part (1d) now follows both from the functoriality of the
Albanese map, and from parts (1a) and (1c).

Assume now that gg > 1. Part (2a) is the well-known Abel-Jacobi theorem. Let
us prove part (2b). Note that F : X — S is surjective, so the classical Albanese map
AIb(F): Alb(X) — AIb(S) is a surjective group homomorphism. Hence, Alb(F) must be
a fibration, and the dimension of the fiber is 0 when Alb(X) and Alb(S) have the same
dimension, which we know equals gg in both cases. Thus AIb(F): Alb(X) — Alb(S)
is a finite covering. Since the fibers of F: X — S are connected, the functoriality of the
Albanese and Remark 2.1 imply that Alb(F) is an isomorphism. In particular, oy (X) is
isomorphic to S. As in the gg = 0 case, part (2c) now follows both from the functoriality
of the Albanese map, and from parts (2a) and (2b). ]
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3. Main theorem

Our purpose in this section is to give a necessary geometric condition for a curve to have
the fundamental group of its complement isomorphic to Fy * Z,, * -+ % Z,,,. We will
show that these curves come from admissible maps, with the only possible exceptions
occurring when the fundamental group is finite and the compact surface is not simply
connected (see Remark 3.14). We will prove the main theorem in two stages. If r > 1, this
is done in Theorem 3.1. If r = 0 and the group is infinite, this is done in Theorem 3.2. The
strategy to find the admissible map in Theorem 3.2 heavily relies on the structure of the
fundamental group of 1 (X \ D). The idea is to find a free finite order subgroup whose
associated covering falls in the hypotheses of Theorem 3.1.

3.1. Proof of Theorem 1.3

Theorem 1.3 will be stated in two ways depending on whether or not the first Betti number
of X \ D vanishes.

Theorem 3.1 (Main theorem, r > 1). Theorem 1.3 holds if r > 1.

Proof. If my (X \ D)=Z, then parts (i) and (ii) of Theorem 1.3 follow from Lemma 2.26
for S(n-i—l,rh) :]P’(lz,_) =C*.

Let us now prove (i) and (ii) assuming that the group G := m1(X \ D) = F, %
L, * -+ * Lpm, is non-abelian (i.e., 22 Z). Using Remark 2.25 and Proposition 2.10
in [6], the 1-st characteristic variety of the group G has a positive dimensional irre-
ducible component Té associated with the torsion character A = (£1,..., &) € Tg, where
& € C is an m;-th primitive root of 1. Since Té has dimension r > 1, by Theorem 1
in [6], there exist an orbifold structure S, ), n’ > 0 on a smooth projective curve S
of genus gs and an admissible map F: X --> S which induces an orbifold morphism
Fi: X\ D — S i) such that S, ) is maximal with respect to Fj and F{* (Vi) = T2
for some component Vj; = Té; of the 1-st characteristic variety of the orbifold funda-
mental group G, = n;’rb(S(,,/,n-,/)). Since F has connected generic fibers, F| induces a
surjection of (orbifold) fundamental groups Fi: G — G (cf. Proposition 2.6 in [6]), and
hence an injection F*: Vi (G1) < Vi (G) for all k.

Since Té is positive dimensional, it contains a non-torsion character. By Lemma 6.4
in [6], the admissible map F is unique such that F, |* (11“{}’1 )= Té and depth(A) = depth(1').

Assume n’ = 0. According to the structure of its characteristic varieties (cf. Proposi-
tion 2.11 in [6]), one has dim Tg, = 2gs —2 =r — 1 = dim T. Finally, 1 € V;4+1(G1)
but 1 ¢ V,41(G). This contradicts the inclusion of characteristic varieties for k = r + 1.
Therefore n’ = n + 1, n > 0, and hence

orb ~
T (St 1)) 2= Fpr e Ly oo Ly

wheren = r’ —2gg. Fork = 0, Fl*(Té/l) = Té implies r = r’.

To show (i), it remains to show that s = s’ and m; = m; foralli =1,...,s. Using
Proposition 2.10 in [6] and (2.7), one obtains s + r — 1 = depth(A) = depth(1’) < s' +
r —1,s0s < s’. In addition, since Fl* induces injections between characteristic varieties,
one obtains s/ < s, which shows s = ’.
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Let G = (x1,..., %45 | X7 = x52 = ... = x5 = 1) be the presentation of G
that we have implicitly used to give coordinates to Tg. Since Fi is a surjection and the
only torsion elements of G and G; are conjugation of elements in the finite group free
factors, Lemma 2.15 implies that, for some reordering of the m}, we can find a presentation

(V1seoes Yrts | y;n/l = y;n/z == y;"/s = 1) of Gy such that Fy(x;) = y; forall j =
1,...,r + s. In particular, m: | m;. We want to see that m; =m; foralli =1,...,s. We
argue by contradiction. Without loss of generality, we may assume that m < m;. Hence,
F‘*: T, — Tg takes a generator of the Z,,, factor of Tg, 2 Zy, X +++ X Zpy, ¥ (C*)" to
an element of the subgroup (m/m’) of the Z,, factor of TG = Zp,, X -+ X Zm, x (C*)".
In particular, A is not in the image of F*, which yields a contradiction. This concludes the
proof of (i) if G is non-abelian.

The fact that F, is an isomorphism follows from Corollary 2.22 and Lemma 2.15. This
concludes the proof of (ii) if G is non-abelian.

Let B = X be the n + 1 points of S of label 0 in the orbifold structure S, 41 ). Note
that, by the maximality of the orbifold structure of S, 1) With respect to F1: X \ D —
S(n+1,m), the extension F': X --> § satisfies that F1(B)= DycCD,hence D =Dy U Dy,
where D, is the union of the irreducible components of D which are not in Dy. We can
further decompose D; as D, U Dy, where D, is the union of the vertical components
(irreducible components C such that F(C) is a point), and Dy, is the union of the horizon-
tal components (irreducible components C such that F(C) = §). Note that we can choose
a meridian around any irreducible component C of D which is contained in a generic
fiberof F: X\ D — S\ B. Hence, by Corollary 2.22, any meridian about any irreducible
component of Dy must be in the kernel of F,, thus it must be trivial as a consequence of
part (ii). Analogously, a meridian around an irreducible component of D, must be also in
ker F, since its image is a power of a meridian around P € S \ B which is the boundary
of a disk centered at P, and hence trivial. This concludes the proof of (iii). n

Theorem 3.2 (Main theorem, r = 0). Theorem 1.3 holds if r = 0 and 71 (X \ D) is
infinite.

Proof. Denote
G =m(X\D)=2Zm, *- % Lpm,,

where m; > 1foralliel ={1,...,s}ands > 2.

Consider the unramified covering associated with the projection onto the maximal
cyclic quotient v: G — Z,, where m :=lcm(m;,i € I). For any irreducible component D;
of D, denote by 1 < e; < m the order of v(y;) € Z,, where y; is any meridian around D;.
By Theorem 1.3.8 in [28], the cyclic unbranched covering 6: Y — X \ D associated with
v:G — Z,, extends to a finite Galois branched cover Y — X which branches at each
component D; with branching number e;. By Theorem 1.1.7 in [28], the deck action
of Z,, on Y extends to the Galois action on Y , such that Y/Z,, =~ X. Both of these
actions are by algebraic automorphisms.

By Lemma 2.14, the kernel ker v 2 771 (Y) is the free group Fp, where p=1—m +
my ier(I=1/m;) > 1. o .

Denote by Y a projective surface such that Y \ D = Y, where D is a normal-crossing
divisor obtained by resolving the singularities of #~'(D) C Y. We may assume that the
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action on Y (which on Y is the action by Deck transformations) extends to ¥ [42]. By
Theorem 3.1, Y is induced by an admissible map f”: Y — C’ onto an (open) smooth
curve C’ with no multiple fibers. Moreover, by Lemma 2.27 (1d) and (2c¢), up to an iso-
morphism of the curve, f” is the restriction of the Albanese map to Y and its image. By
the functoriality of the Albanese map, the deck transformations can be carried over to C’.

Consider §: C' — C the quotient map by this action, where C is an open curve (not
necessarily smooth). The map f": ’:Y — C' hence descends to a morphism f: X\ D —
C c C, where C is a projective curve. Note that C (and C) may not be smooth, but,
by the universal property of the normalization, f lifts to F:Xx \D — S, where S is the
normalization of C (a smooth projective curve). Applying Stein factorization, we know
that F = o F , where F: X \ D — S is admissible when restricted to its image, and
7.8 — § is a finite morphism.

Since the normalization S — C is a birational equivalence, a generic fiber of f is also
a generic fiber ij; , which is a disjoint union of generic fibers of F. Moreover, since the
generic fiber of 6 is finite, the preimage through 6 of a generic fiber of f is a disjoint
union of generic fibers of f’. Restricting to connected components, one finds P € S and
P’ € C such that 8: (f')"'(P') — F~!(P) is a finite covering map, where (f')"'(P’)
is a generic fiber of f/ and F~!(P) is a generic fiber of F.

Let us check that the morphism Fy: (X \ D) — n;’rb(S) is an isomorphism, where S
is endowed with the maximal orbifold structure with respect to F: X \ D — S. By Corol-
lary 2.22, this is equivalent to showing that the image of 71 (F~'(P)) in (X \ D) is
trivial. Since f’: U — C’ induces an isomorphism on fundamental groups, Corollary 2.22
tells us that the inclusion ( /")~ (P’) < U induces the trivial map on fundamental groups.
Consider the commutative diagram

m((f)7H(P)) —— m(U)

L

T(F7HY(P)) —2— m(X \ D) = Zm, * -+ % L,

where the horizontal arrows are induced by inclusion. Note that the arrow on the left is
a finite covering space, so its image is a finite index normal subgroup of 7y (F~!(P)).
The commutativity of the diagram above implies that the morphism i, factors through
the quotient 1 (F~1(P))/0«(m1((f)~'(P))). Hence, the image of iy is a finite sub-
group of Zpy,, * -+ * Zn,. Moreover, by Corollary 2.22, this subgroup is normal. By the
Kurosh subgroup theorem, the only finite normal subgroup of Z,, * - -+ * Z,,, is the triv-
ial subgroup. Hence, i is the trivial morphism, and thus Fy: 71(X \ D) — 7{"™®(S) is an
isomorphism.

Note that if S is a smooth projective curve such that 7™ (S¢, 7)) = Zm, * -+ * L,
then we will see that S = P!, and the image of F must be P! with one point removed.
Indeed, after abelianizing the presentation of n;’rb(S ) from Section 2.4, it follows that S
must have genus 0 (so S = P1). Moreover, F(X \ D) is either P! or C. Let us see that it
is indeed the latter. Suppose that F(X \ D) = P!, so none of the irreducible components
of D are fibers of F: X --> P!, Then, as in Theorem 3.1, the inclusion of X \DtoX
induces an isomorphism in fundamental groups, and thus 71 (X) is isomorphic to a non-
trivial free product. This is impossible by [22].
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We have shown that, under the assumptions of this theorem, if 71 (X \ D) = Zp,, *
ook Ly, for s > 2, withm; > 2 foralli = 1,...,s, then there exists an admissible
map F: X \ D — P!\ B that induces an isomorphism Fy: 7 (X \ D) — nfrb(]P’(ll,rh)),
where P! is endowed with the maximal orbifold structure with respectto F: X \ D — P!,
Note that m = (my, ..., my), and those are the multiplicities of the multiple fibers. The

remaining condition for D = Dy U D; can be proved as in 3.1. ]

Remark 3.3. The mere existence of zero-dimensional components of the characteristic
varieties of 771 (X \ D) is not enough to ensure the existence of the admissible map F. For
instance, in Theorem 4.5 of [5], an example of a quintic projective curve D considered
by Degtyarev is presented, where the characteristic varieties of 77 (P2 \ D) are the prim-
itive 10th roots of unity, but no admissible map P? --> P! exists inducing a surjection
from 771 (X \ D) onto 7{™ (P ).

Example 3.4. Examples of smooth quasi-projective surfaces having infinite fundamen-
tal groups of the form Z,,, * --- * Z,,, were found by Aguilar Aguilar in Theorem 1.2
of [1]. The author considers three concurrent lines L + L + L, in P? intersecting
at P, and blows up P and the infinitely near points P; on the strict transform L; of L;,
i =1,2.Hence n*(L;) = E +2E; + L;, where E is the exceptional divisor of the first
blow-up and E; is the exceptional divisor that appears when blowing up the infinitely
near points P;. Denote by P2 the resulting surface after the three blow-ups. The quasi-
projective surface X = P2 \ (L U Ly U L,) has a well-defined morphism onto the orbifold
IP’(II’ 2.2)) whose generic fiber is the strict transform of a generic line through P, which is a
rational smooth curve and hence simply connected. Hence 71 (X) = Z, * Z,. The author
shared with us how his method can be generalized by considering r 4+ s + 1 concurrent
lines and blowing up m; times at infinitely near points of P in L;,i = 1,...,s, so that
a*(Li))=E+2Ei»+ -+ mEin + Li, to produce surfaces

. rs+l mi—1
X:IP’Z\( U LU U U Ei,ki),

i=1 i=1,..,5 ki=1

with m1(X) =F, % Zyy, * -+ % Ly, forany r > 0, my, ..., mg > 0. In particular, every
finitely generated free product of cyclic groups can be realized as the fundamental group
of a smooth quasi-projective surface.

We now make an observation about the type of free products of cyclic groups that
can appear as fundamental groups of curve complements in simply-connected projective
surfaces.

Remark 3.5. Under the conditions of Theorem 1.3, if X is simply connected, then s < 2
(see Remark 2.2), that is, JTi)rb(P(l'_+l rh)) =T, xZ, * Zy4, where p,q > 1. Moreover, if D
satisfies Condition 2.6, then gcd(p, ¢) = 1 by Lemma 2.8.

Example 3.6. The simply-connectedness condition in Remark 3.5 is important. We will
see an example satisfying the hypotheses of Theorem 3.2 with a non-simply-connected
surface X, a curve D on X such that 7y (X \ D) =~ Zj3 * Z3, and a rational map real-
izing the isomorphism with the orbifold fundamental group of P(ll,(3,3))‘ Let X be the
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double cover of P2 ramified along a generic sextic C = {f; + f# = 0}, where f; is a
homogeneous polynomial in three variables of degree i. It is well known (cf. [43]) that
w1(P2\ C) = Zy * Z3 (also as a consequence of Theorem 1.2). A meridian around C
can be given as xy, where x> = y3 = 1. Using Lemma 2.14, one can show 7 (X \ D) =
Z3 % Z3 generated by yo := y and y; := xyx, where D is the preimage of C. Note that
the six-fold cover ramifies fully along C and thus its preimage is irreducible. Since this
cover factors through X, D must also be irreducible and thus it satisfies Condition 2.6.
The preimage of (yx)? = yoy; becomes a meridian of D, and by Lemma 2.5, one has
71(X) =m (X \ D)/ NCl(yoy1) = Hi1(X;Z) = Z3. Theorem 3.2 ensures the existence
of an admissible map F: X --> P! with two multiple fibers of multiplicity 3 and such
that D is the preimage of a point in P!

Corollary 3.7. Under the notation of Theorem 1.3, let us suppose that an admissible
map F: X --> S satisfies conditions (1)— (iii), so in particular, 7w1(X \ D) is isomorphic
through the map induced by F to an open orbifold group of S (not necessarily infinite).
If H\(X:Z) is torsion and D satisfies Condition 2.6, then S = P and r + 1 is in fact
the number of irreducible components of D. In particular, D = Dy is a fiber-type curve.

Proof. The result follows from Remark 2.1 and Lemma 2.8. ]

The following example will exhibit the importance of Condition 2.6 to establish that
r + 1 is the number of irreducible components of D.

Example 3.8. Let @ be a smooth conic in P2 and let P € @. Consider ¢ the tangent
line to @ through P and D a union of £ and r lines through P. The quadric surface
X =P! x P! can be defined as the 2:1 cover o : X — P? ramified along @. In particular,
X is simply connected. Also note that =1 (D) is a union of r 4 2 irreducible components,
namely r curves of bidegree (1, 1) and the rulings o~ (£) = £; U {5, for £; (respective-
ly, £) of bidegree (1,0) (respectively, (0, 1)) all of them passing through o~ (P). The
curve 0~ ! (D) has r + 2 irreducible components and does not satisfy Condition 2.6. Note
that 77; (P2 \ D) = F,, and one can check that also 71 (X \ 0~ 1(D)) = F,.

Theorem 1.3 gives necessary geometric conditions for a quasi-projective surface X\ D
to have an infinite fundamental group which is a free product of cyclic groups. The
curve D need not be of fiber-type, but Dy (which is a non-empty union of irreducible
components of D) is a fiber-type curve coming from an admissible map F: X --> S. The
following result illustrates that X \ Dy behaves exactly like X \ D in Theorem 1.3.

Corollary 3.9. Under the conditions of Theorem 1.3 and using the notation therein, the
inclusion induces an isomorphism 7w1(X \ D) = m1(X \ Dy), and Fyx: m (X \ Dy) —
Jrfrb(S(nH,,;,)) is an isomorphism.

Proof. The isomorphism 71(X \ D) = m1(X \ D) follows from Lemma 2.5 and the
fact that the meridians of D, are trivial in 71(X \ D). Now, using Corollary 2.22 for
U=X\(D;UB)and U = X \ B, we see that F|: X \ Dy — S\ ¢ must also induce
isomorphisms in (orbifold) fundamental groups, and that the maximal orbifold structure
on S with respect to Fi: X \ Dy — § \ X must coincide with the one with respect to
F:X\D — S\ X. |



J. 1. Cogolludo-Agustin and E. Elduque 1778

Example 3.10. Consider three concurrent lines L1, L, and L3 in P2. Blowing up P2 at
the intersection point one obtains an exceptional divisor £ and the strict transforms of the
lines Ll, Lz, and L3 in the blown-up surface X = P2, Note that any meridian around E
is trivial in 771 (X \ D) since it is the inverse of a product of meridians around each line.
Define D = E U Ll U L2 U L3 in X. Note that 71 (X \ D) = 5, Df =LU L1 U Lz
and D; = E in Theorem 1.3. As Corollary 3.9 states, 1 (X \ Dy) =

3.2. Extensions of the main theorem to finite cyclic groups

Theorem 1.3 describes the geometry of a curve D C X when 71 (X \ D) is an infinite
group of the form F, * Z,,, * --+ * Zy,_ (i.e., non-abelian or Z), where X is a smooth
projective surface. In this section, we give extra hypotheses under which similar results
hold in the remaining abelian cases (the trivial group and finite cyclic groups).

Proposition 3.11 (Main theorem, trivial group case). Let D C X be a curve in a smooth
projective surface X. Assume that w1(X \ D) is trivial. If D is an ample divisor, then
there exists an admissible map F: X --»> P! as in Theorem 1.3 for Sut1,m) = IP’(II’_)
satisfying conditions (1)—(iii).

Proof. Since D is ample, a multiple of D defines an embedding X \ D < C* for some k.
Projecting to a generic 1-dimensional subspace inside C¥, we get a dominant morphism
F: X\ D — C with connected fibers, which can be extended to a rational map F: X -->PL.
Using Remark 2.13, we have that Jr;"b(IF’(n i1, _)) is trivial, where IP’( 1) is the maximal
orbifold structure with respect to F: X \ D — C. This implies that n = 0 (so in particular
F: X\ D — C is surjective) and that m is the trivial orbifold structure. |

Remark 3.12. In order to clarify the hypothesis given in Proposition 3.11 we will exhibit
an example where the result does not follow when 71 (X \ D) = 1 and D is not an ample
divisor.

Consider a line L in a smooth cubic X. It is well known that 71 (X) = 7y (X \ L) =1
and L? = —1. Thus L cannot be the fiber of an admissible map X --> P

Proposition 3.13 (Main theorem, case Z,,, m > 1). Let D C X be a curve in a smooth
projective surface X . Assume that w1 (X \ D) = Z, form > 1. If X is simply connected,
then there exists an admissible map F: X --> P! as in Theorem 1.3 for Sm+1,m) =
]P’(ll’(m)) satisfying conditions (1)-(iii). Moreover, D = Dy is a fiber-type curve.

Proof. Let D = | J;_, D; be the decomposition of D into irreducible components. Any
meridian y; around an irreducible component D; of D has finite order e¢; dividing m.
Consider the divisor E = ) eﬂiD,-. Since 71 (X) is the result of factoring out 71 (X \ D)
by the normal closure of the meridians around all the D;’s, and X is simply connected,
we note that E is not a positive multiple of an effective divisor. By Theorem 1.3.8 in [28],
the unbranched universal covering Y > X \ D associated with G extends to a branched
covering Y — X . This implies there exists an effective divisor H in X such that E ~mH .
The linear equivalence provides a morphism F: X --> P! such that F:X\D — C (so
in particular, D is a fiber-type curve). After applying Stein factorization, we may assume
that F: X --> P! is the composition of F: X --> P! and B: P! — P!, where F has
connected fibers and where f is generically k : 1. In principle, D is a union of n + 1 fibers
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of F above points in P!, although it must be only one fiber, or else Fi: 71(X\ D) —

nfrb(IP(ln H,m)) would not be surjective, which would contradict Remark 2.13. Now, we

have that F*([1 : 0]) = E and that =1([1 : 0]) is just a point, so E must be k times
an effective divisor with support D, and hence k = 1. Thus, F: X --> P! has connected
fibers. We know that F*([0: 1]) =mH, so F induces a surjective morphism 71 (X \ D) —
nfrb(IP’(ll,(m))). Since Z,, is finite, this morphism is an isomorphism, and ]P’(ll,(m)) is the
maximal orbifold structure with respect to F|: X \ D — C. ]

Remark 3.14. To clarify the simply-connected hypothesis given in Proposition 3.13, we
will exhibit an example where the result does not follow when 71 (X) # 1. Consider a
surface X C P" with finite cyclic fundamental group Z,, and containing a line L C X.
Take a hyperplane H C P” intersecting X transversally such that L ¢ H. Note that
D = H - X defines a reduced irreducible divisor in X and LN D = L N H = {P}.
Hence, one can define a meridian y of D around P such that y C L. Since L is a rational
curve, y is trivial in X. If there was a map F: X --> S such that D is a fiber of F, then
Fom(X\D)— n{”b(S \ {p}) would be surjective. Since 1 (X \ D) = Z,, this implies
gs = 0 and the orbifold structure of S contains exactly one orbifold point of order m > 1.
However, in that case F.(y) would have order m, which is a contradiction since we have
proved that y is trivial.

3.3. Main theorem for curves in P2

We will pay a special attention to the case X = P2, in Theorem 1.3. Recall that every
curve in P2 satisfies Condition 2.6 and is ample. Hence, the extra hypotheses needed in
the relevant results of Sections 3.1 and 3.2 are always satisfied for curves in P2, and thus,
the following stronger version of the Main Theorem 1.3 holds.

Corollary 3.15 (Main theorem, curves in P2). Let D be a curve in P2. Suppose that
m1(P2\ D) is a free product of cyclic groups. Then, there exist r > 0and p > q > 1 with
gcd(p,q) = 1 such that w1 (P2\ D) = F, * Z, * Zg, and an admissible map F:P? --> P!
such that:

(i) F induces an orbifold morphism

ﬂ : PZ\D d ]P)(lr—i-l,rh)’

where IF’(er’rh) is maximal with respect to F|, and m = (p, q).

(i) Fx:m(P2\ D) — n;"b(P(erJh)) is an isomorphism.

(iii) D = F~1(Z¢) is a fiber-type curve which is the union of r + 1 irreducible fibers
of F.

Moreover; after possibly a change of coordinates in P, one has F = [ f dil : ddlz], where
dy > dp > 1 satisfy that ged(dy, d2) =1, fg, is a homogeneous polynomial of degree d;
fori = 1,2 which is not a k-th power of another polynomial for any k > 2, fg, and fg,
do not have any components in common, and Mp C {[0 : 1],[1 : 0]}. More concretely,
(1) if p>q > 1,thend, = p, dr = q, and the pencil F = [f} : f,] has exactly two
multiple fibers corresponding to [0 : 1],[1 : 0] ¢ X.
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2) If p>q=1,thend, = p, [1:0] € Xy, and the pencil F = [fdi D pdz] has at least
one multiple fiber corresponding to [0 : 1] ¢ Xy.

B)Ifq=p=1then F = [fd“;1 : fddlz] has at most two multiple fibers corresponding
to[0:1],[1:0] € Z.

Proof. The existence of an admissible map F:P? --> P! that induces an isomorphism
Fy:m(P2\ D) — ni’rb(P(erJh)) follows from Theorem 1.3 and Remark 2.1, as well
as from Propositions 3.11 and 3.13. By Remark 3.5, 71(X \ D) = [, * Z, * Z,. This
concludes the proof of parts (i) and (ii). Part (iii) follows from Corollary 3.7.

By Remark 2.2, after possibly a change of coordinates in P!, we may assume Mp C
{[0:1],[1: 0]}. F is of the form F = [fk? : fkallz] with where fi, is a homogeneous
polynomial of degree k; such that d1k, = dxky, fi, and f, have no common factors,
and f, is not a /-th power of another polynomial for any [ > 2, for i = 1, 2. The condi-
tion ged(dy, d2) = 1 is necessary for the fibers of F to be connected. In particular, there
exists [ € Z~¢ such that k; = d;l for i = 1,2. The rest of the proof is straightforward
using Remark 2.9, including the fact that / = 1 (and hence d; = k; fori = 1,2) in each
case (1)-(3). [

Remark 3.16. In a series of papers, Eyral-Oka calculated the fundamental group of the
affine complement of a curve of type g(x) = f(y) under certain conditions, as well as the
fundamental group of the projective complement of the corresponding projectivized curve
(see [33] for the case where the curve of that type is generic, see [19] for the semi-generic
case, and see [20] for curves satisfying a certain arithmetic condition).

Under their conditions, the fundamental group of the complement in P2 of the projec-
tivization of such a curve is a free product of cyclic groups if d = deg(f) = deg(g). Note
that, in this case, the projectivized polynomials g(x,z) and f(y, z) are of the form f;?
and fprq for some p and g coprime and r > 1, where f, and f; are, respectively, homoge-
neous polynomials of degree p and ¢ which are not a k-th power of any other polynomial
for k > 2 (in fact, f, and f; are products of powers of degree 1 polynomials). Hence, in
that case, the projective curve g(x,z) = f(y,z) is a union of r fibers of an admissible
map F = [f, : f]:P?\ 8 — P'. Moreover, the fundamental group of its complement
in P2 is Z, * Zq * F,_y. This agrees with Corollary 3.15.

4. Addition-deletion lemmas

In Section 3, we have seen geometric conditions for a quasi-projective surface X \ D
to have a free product of cyclic groups as its fundamental group. Under the hypotheses
and notation of Theorem 1.3, D = Dy U D;. Hence, if welet U = X \ (D; U 8), then
X\ D = U\ Dy is the complement of a fiber-type curve inside a smooth quasi-projective
surface given by an admissible map F': U — S onto a smooth projective curve S.

The purpose of this section is to prove addition-deletion results of fibers for comple-
ments of fiber-type curves inside smooth quasi-projective surfaces U whose fundamental
group is isomorphic by the map induced by F to an open orbifold fundamental group of S
Before we do that, we need some technical results regarding presentations of fundamental
groups of complements of fiber-type curves.
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4.1. Preparation lemmas

The results in this section give presentations of fundamental groups of fiber-type curve
complements, but they do not make use of any Zariski—Van Kampen type computations.
Instead, they follow from group-theoretical arguments and from Lemma 2.18, Corollar-
ies 2.21 and 2.22, and the results in Section 2.2.

Assume F: U — S is an admissible map and consider Mg C S (respectively, Br) the
set of multiple (respectively, atypical) values of F (see Section 2.1). In Lemma 2.18, we
gave a presentation of 71 (Up) in the case where B O Br. We now give a more explicit
presentation for 771 (Up) in the general case when B does not necessarily contain B .

Throughout this section, F: U — S will be an admissible map from a smooth quasi-
projective surface U to a smooth projective curve S. We will use the notation introduced
in Section 2.5.

Lemma 4.1. Assume that F: U — S is an admissible map. Let B C S, with #B > 1.
Consider ' (respectively, I's = I's (B U Bf)) an adapted geometric set of fiber (respec-
tively, base) loops with respect to F and B (respectively, B U Bfr). Let B' = MFp \ B,
andletr{s =Ts\{yx | Pr € BF \ (B U B)}.

Then, T' is an adapted geometric set of base loops with respect to F and B U B, and
71(U) has a finite presentation with generators I'r U I'g and relations of the form

R [yx.w] =1, forany w € I'r and any yy € T's a lift of a meridian of Py € B\ Bp,

(R2) [k, w] = zk,w. for the remaining yy € T, for any w € T'r, where zy , is a word
in T (that depends both on yy and w),

(R3) y =1 for a finite number of words y in I'F,

R4Y) z; = y,i"", for any yy € ng a lift of a meridian of Py € B’, where my is the
multiplicity of the fiber F*(Py), and zy is a word in T'p,

Proof. Note that B U BF satisfies the conditions of Lemma 2.18, and hence 71 (Upupg;)
admits a presentation generated by I'r U I's, where I'r (respectively, I's) is an adapted
geometric set of fiber (respectively, base) loops with respect to F and B U Br. Note
that I'r is an adapted geometric set of fiber loops with respect to F' and B U Bp if and
only if the same holds with respect to B.

By Corollary 2.21, a presentation of 71 (Up) can be obtained by factoring 71 (Upug)
by the normal closure of all the meridians about irreducible components of fibers above
points in Br \ B. We abuse notation and see both the elements of I'r and I's as elements
of w1 (Up), m1(Upup’) or w1 (Upup,) when no ambiguity seems likely to arise.

Let yx be such that Fy(yx) is a meridian around a point Py € Br \ (B U B’). Since
F*(Py) is not a multiple fiber, yy is trivial in 71 (Up) by condition (4) in Definition 2.16.
In particular, this proves that 7;(Up) can be generated by I'r U I'y. Since I's is an
adapted geometric set of base loops with respect to F and B U BF, then I'§ is an adapted
geometric set of base loops with respect to F and B U B’. As in the proof of Lemma 2.17,
there exists a meridian in 711 (Upug;) about any given irreducible component of Cp, of
the form wy,’c" for some m > 1, and for w € ker(ﬂUBUBF)*, which is a word in ['r by
Corollary 2.22. Hence, we have shown that the normal closure of the subgroup generated
by the meridians about each irreducible component of Cp, is the normal closure of a sub-
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group of 71 (Upup,) generated by yx and a finite number of words in I'z. This gives rise
to relations of the form (R3).

Let yx be such that Fy(yx) is a meridian around a point in B’. Similarly as in the
previous paragraph, we can choose a meridian in 71 (Upu g, ) about any of the irreducible
components of Cp, which is of the form w(y,':'")m for some m > 1, and w awordin I'p.
Let Ni be the normal closure of the subgroup generated by such choice of meridians about
each of the irreducible components of Cp,. Note that, by definition of yx € m1(Upus)
and Corollary 2.22, the equality y,:" ¥ = z; holds in 71 (Ug) for some word z; in I'r (an
element of ker F\). Hence, the relations given by w(y,i" kym — 1 coming from the chosen
generators of N (as a normal closure) together with the relation y,Z" ¥ = z; (which we
know holds in 7r1(Up)) are equivalent to a finite number of relations of the form y = 1
for words y in the letters of I'r (type (R3)) and the relation y,i" k = z; (all the relations of
type (R4)).

Let Py € B\ BF, hence Fi(yx) € 1 (P'\ (B U BF)) induces the trivial monodromy
morphism in the elements of 7, (F~1(P)), since Py ¢ Br.In other words, yx € m1(Up)
commutes with any word in I'r.

The result now follows from adding the relations found in the previous paragraphs to
the presentation of 73 (Upup,) given in Lemma 2.18: the relation ]_[j xj = [1;lai, bi
is of type (R3), the monodromy relations of m;(Upyup,) corresponding to Py are the
ones of type (R2) if P, € (BF N B) U B’), of type (R1) if P € B\ Br (by the pre-
vious paragraph), or become of type (R3) after using that y; is trivial in m;(Up) if
Pre BF\(BUB). [ ]

Our next goal is to describe cases in which w1 (Up) has a presentation on genera-
tors I'g. This will provide candidates for B C S such that Fy: 71 (Ug) = 7™ (S(n+1,m))
is an isomorphism (and, in particular, such that r; (Up) is a free product of cyclic groups).
This goal is achieved in Proposition 4.3, with the help of Lemma 4.2. We follow notation
from Section 2.5 and Lemma 4.1.

Lemma 4.2. Let F:U — S be an admissible map, B = {Py, ..., P,} C S a non-empty
set, and assume Q € B\ (BF N B). Let Sgu41,m) (respectively, S m)) be the maxi-
mal orbifold structure of S with respect to F|: Up — S \ B (respectively, with respect
to F|:Up\igy — S\ (B\{Q})). Consider K := ker Fy, the kernel of Fyx:m1(Up) —
ﬂi)rb(S(nH,rh))-

Moreover, assume that Fy: w1(Up\ {0}) — nfrb(S(n,,;,)) is an isomorphism, and fur-
thermore, either

e n=>1,or
* n=0and B # 0, where B’ :== Mg \ B.
Then K is an abelian group. Furthermore, an adapted geometric set of base loops

I's = T's(B U B’) with respect to F and B U B’ can be chosen so that K = N, where N
is the normal closure of the subgroup (y,:”k | P € B').

Proof. We use the presentation of 7r1(Up) given in Lemma 4.1 and the notation therein.
Since y;:”‘ € K for all Py € B’ and K is normal, N < K for every choice of I'g as in
Lemma 4.1.
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Assume now that F is an isomorphism and either n > 1 orn = 0 and B’ # @. We
will show that K is abelian and K < N for some choice of I'g. Let y € 71 (Up) be any
positively oriented meridian about the irreducible fiber Cg, such that Fi(y) is a positively
oriented meridian around Q in S \ (B U BF). Note the following:

(1) Since Cg is irreducible, NCI(y) is independent of the choice of the meridian y by
Lemma 2.4.

(2) K <NCl(y) < m1(Up) is a subgroup of the normal closure of (y) in 71 (Up). To see
this, consider w € K. The projection of w in 71 (Up\ {g}) is trivial by Corollary 2.22,
so w is an element of NCI(y).

(3) K < m;1(Up) is abelian. To see this, note that any meridian around the typical
fiber Co commutes with K = t,(F~!(P)) by Lemma 4.1 (R1). By Lemma 2.5,
this means NCI(y) is contained in the centralizer of K. By (2), K < NCI(y), and in
particular, K is an abelian subgroup.

(4) There exists an adapted geometric set of base loops I'g with respect to F and B U B’
such that one such positively oriented meridian y can be written as a word in I'§.
If n > 1, we may assume Q = P; and y = y; in ', which concludes (4) in the
casen > 1.
Suppose thatn =0 and o' =#B’ > 1. In this case, r = 2gs.Let ' =I's(B U B’)
be as in Lemma 4.1. By definition of I, if

gs 1
V= H[Vb’+2i—l» Vb +2il - ( l—[ Vk)
i=1

PyeB’

(see condition (3) in Definition 2.16), then one has that F () is a meridian around Q
in 71 (S \ (B U B")). By Corollary 2.22, there exists a word z in the letters I'z such
that y = yz is a meridian around Cp whose image by Fy is a meridian around Q.
After replacing y; by z7!y; in I'g, one can assume y = y. This concludes (4) in the
casen = Q0 and b’ > 1.

Finally, let us show K < N, where N is defined using the Fg found in observation (4)
above. By (4), y = w(y1.....¥r4p) isawordin I'y. Let : Fryp = (61,....6,1p) —
71(Up) be the group homomorphism given by 8; +> y; foralli €{l,...,r +b'}. Let«
be an element in NCI(y) and write & as a product [[;_, g Lydig; where g; is an ele-
ment of 1 (Up). By Lemma 2.18 applied to 771 (Upug,. ), gi in 71 (Up) can be written as
gi = w;h;, where w; is a word in 'z (so w; € K) and A; is a word in I‘g. Since y com-
mutes with the elements of K < r1(Up), « can be written as the product [}_, hi_l v9ih;.
In other words, we have shown that NCI(y) = ¢(NCl(a)), where NCl(a) is the normal
closure in IF, 4 5 of the subgroup generated by a, where a = w(éy, .. .,8,4p) (the word w
for y in the new letters 81, ..., 8,44). In particular, one has K < ¢(NCl(a)).

A similar argument, this time using that K is abelian, shows that

4.1) N = o(NCI((8;"* | Px € B'))).

Now, the composition Fy o ¢ induces an isomorphism in the quotients given by the
composition of

F, (P/:I;B/ ka) >~ Fr+b//NC1 ((8Jmk | P € B/)) — ﬂl(UB)/N
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with

T (UB)/N = 2 (Susrm) = Fr x (% Zmy ).

PreB

This implies that ker(F,) N Im(¢)/N is trivial. Recall that K = ker(F) and that, K <
¢©(NCl(a)). Hence K = ker(Fx) N Im(p) and thus we arrive at the equality K = N. This
concludes the proof. ]

Proposition 4.3. Under the same notation as that of Lemma 4.1 and the same hypotheses
and choice of T'y as in Lemma 4.2, every element of K can be written as a word in the
letters I'g. In particular, the presentation of w1(Ug) from Lemma 4.1 can be transformed
to a presentation on generators I' fg

Proof. Let us consider the presentation of m;(Upg) given in Lemma 4.1. The generators
of m1(Up) in I'r are elements of K, which equals N by Lemma 4.2. Equation (4.1) in
the proof of Lemma 4.2 implies that the elements of N are products of elements of the
form vy]znkv_l, where v is a word in F&, and Py, € B’. Using this, one can eliminate the
generators of 71 (Up) in I'r in the presentation given in Lemma 4.1. ]

Remark 4.4. Suppose that n > 1, and assume the hypotheses, choice of I'§ and notation
of Lemma 4.2. In the proof of Lemma 4.2, T’y was chosen so that y = y; € I'§. Since
NCl(y) is contained in the centralizer of N = K by (3) in the proof of Lemma 4.2, we can
assume that the elements of N are products of elements of the form v)/,Z" k=1, Pre B,
where v is a word in I'g \ {y1}, i.e., the letter y; = y does not appear in v.

Remark 4.5. Under the hypotheses, choice of I'y and notation of Lemma 4.2, suppose
moreover that U is simply connected, B = {Q} (Q ¢ BF), and Mr # . Note that in
this case r = n = 0 (Remark 2.1) and B’ = MF. In this setting, Corollary 2.21 implies
NCI(y) = 71 (Up). By (3) in the proof of Lemma 4.2, one has K = N is contained in the
center of 771 (Up). In particular, any subgroup generated by elements in K is normal, and
thus

N = (y{* | Px € MF).

The following two corollaries pertain to the case n > 1 (Corollary 4.6) andn =0, B’ =
Mpg \ B # @ (Corollary 4.7) in Lemma 4.2, respectively, and give useful presentations
of m1(Up). Note that in Corollary 4.7, S = P! and U are both assumed to be simply
connected.

Corollary 4.6. Assume F:U — S is an admissible map. Let B = {Py, P1,...,P,} C S
be such that#B = n 4+ 1 > 2. Let S(n41,m) (respectively, S, ;) be the maximal orbifold
structure of S with respect to F|:Up — S\ B (respectively, F|:Up\ (p,y = S\ (B\ {P1})).
Suppose that Fy:m1(Up\ (p}) — nfrb(S(n’,;,)) is an isomorphism, and that Py ¢ BF.
Let B' = MFp \ B, and let I'g = T'¢(B U B’) be an adapted geometric set of base loops
with respect to F and B U B’, as in Remark 4.4. Then 71(Up) has a finite presentation

71(Up) = (T : {R;}jes {Ri}ier).

where Rj is a word in T'g \ {y1} for all j € J and R; = [y1.wi] foralli € I, where w; is
aword in Tg \ {y1}.
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Proof. Consider the presentation of 71 (Up) explained in the proof of Proposition 4.3
on generators I'y, which arises from the presentation in Lemma 4.1. Using Remark 4.4,
we see that all of the relations appearing in our presentation are either of type R; (rela-
tions (R1) in Lemma 4.1, for k = 1) or of type R; (rest of the relations in Lemma 4.1). m

Corollary 4.7. Assume F:U — P is an admissible map, where U is a simply-connected
quasi-projective surface. Let Q € P\ B, and let IP’(II ) be the maximal orbifold struc-

ture of P! with respect to F: Uggy — P\ {Q}. Assume that Mp # 0.

Let T's be an adapted geometric set of base loops with respect to F and let {Q =
Po} U MF be given by Lemma 4.2. Then, 7t1(Uygy) has a finite presentation

1 (Ugoy) = (Ts AR }jes AWies v 1 Pespremr)

where my, is the multiplicity of the fiber F*(Py) and R; = HPkeMF ()/Z'k )i for some
ng; €4, jeJ.

Remark 4.8. By Remark 2.2, note that #Mr = 1 or 2 in Corollary 4.7.
Proof of Corollary 4.1. Since U is simply connected and F is admissible, nffb(]P’(lo )
must be trivial by Remark 2.13. Hence, Fy: 1 (U) — 7™ (]P’(l0 rh)) is trivially an isomor-
phism, and the hypotheses of Lemma 4.2 are satisfied.

By Remark 4.5, the elements of K = N (an abelian group) are all of the form

H (yp*)™.  whereny € Z.
PreMp

Since Remark 4.5 says that N is in the center of 71 (Upy}), we can add the relations
[yk,y;"'] for all P;, Py € MF to the presentation of 71 (Uygy) of Proposition 4.3 without
changing the group. After that, note that we can transform the relations already appearing
in the presentation of Proposition 4.3 (coming from (R2)—(R4) in Lemma 4.1) to elements
of K = N, and hence, as relations of type R;. ]

4.2. Deletion lemma

Theorem 4.9 (Deletion lemma). Let U be a smooth quasi-projective surface and let
F:U — S be an admissible map to a smooth projective curve S. Assume B C S is such
that#B =n>1andr:=2gg + n. Consider P€ S\ B. Let S(y41,m) (respectively, S )
be the maximal orbifold structure of S with respect to Fi: Upyipy — S \ (B U {P})
(respectively, F|:Ugp — S\ B).

If Fi:mi(Upugpy) — ni’rb(S(,,H,,;,)) is an isomorphism, then

Fi :m(Up) — ”?rb(s(n,rh’))

is an isomorphism.
Moreover, if mi(Upuipy) = Fr % Zyy, * -+ % Ly, and p > 1 denotes the multiplicity
of F*(P), then
Ti(UB) 2y % Zp % Ly, %+ % Ly,
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Proof. By hypothesis, m1(Upuipy) = 71 (St+1,m)) = Fr % Zp, * -+ % Ly, for integers
m; >2,i €l ={1,...,s}. Also, by Corollary 2.22, the inclusion of the generic fiber
(over a point Q € S\ (B U {P} U Br)) induces the trivial morphism 7;(F~1(Q)) —
m1(Upugpy)- Since Upy(py C Up, the inclusion of the generic fiber also induces the trivial
morphism 71 (F~1(Q)) — m1(Up). By Corollary 2.22,

Fy : w1 (Up) = 7™ (S(n )

is an isomorphism since n > 0.

For the moreover part, note that if m = (my, ..., my), then
l’;ll = n lfp - 17
(p,mq,...,mg5) ifp>1. [

Remark 4.10. The deletion lemma also holds in the case n = 0 in the following way: if
Fu: 1 (Ugpy) = 7™ (S(1,m)) is an isomorphism, then Fy: 7r1(U) — 7™ (S(0.) is also
an isomorphism. A more subtle proof can be given using the presentation of Uypy from
Lemma 4.1, taking into account that the elements of I' are trivial in 71 (Uypy}). Since the
result is not needed for the purpose of this paper, we omit it.

4.3. Proof of the generic addition-deletion lemma

Proof of Theorem 1.4. The ‘if” as well as the ‘moreover’ parts of the statement are a par-
ticular case of the deletion Lemma 4.9.

Let us show the ‘only if” part. Let Py = P, BU{P} = {Py,..., P,}. By Corollary 4.6
(and using the notation therein) applied to B and B U { P}, we have that 71 (Upy¢py) has
a presentation of the form

71 (Uguipy) = (T : {R;}jes. {Ri}ier)s

where R; are words in I'g \ {y1}, and R; = [y1. w;], where w; is a word in e\ {1}
Let H = (Tg\{y1} : {R;}jes), and let ¢ : Fypy = (81,...,8r4p) — m1(Up) be
the epimorphism sending §; to y; foralli = 1,...,r + b’. We have that ¢ factors through
¢:Z x H — m1(Upugpy), where the Z free factor is generated by the letter y;. In partic-
ular, ¢ is an epimorphism.
Moreover, according to the presentation of 71 (Upugpy) above,

m1(Up) = m1(Upupy)/ NCl(y1) = H.
Hence, we have found an epimorphism
¢ : Z % 11 (Up) — m1(Upu(py)-

Let Fy: w1 (Upuipy) — nfrb(S(nH,,;,)). Since ¢ is an epimorphism and F is also an epi-
morphism by Remark 2.13, Fy o @ is an epimorphism from Z * 71 (Ug) t0 7™ (S(4+1,7))»
which is a free product of cyclic groups isomorphic to Z * 79" (S, 7)) = Z * 71(Up).
Hence, Fx o ¢ is an isomorphism by Lemma 2.15. In particular, ¢ and Fy are both iso-
morphisms, and

m1(Upugpy) = Z * 71 (Up). "
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Corollary 4.11. The fundamental group of the complement of r generic fibers of a prim-
itive polynomial map f:C? — C is free of order .

Proof. Consider F:P? --> P!, F(x, y,z) = [7()6 y,z): zd], where 7()6, v, z) is the
homogenization of f(x,y)and d =deg(f). Since f is primitive (it has connected generic
fibers), F is an admissible map. Let 8B be the base points of F. Consider U = P2\ 8 and
F.U—-P ! The restriction F| I: C? — C induces an isomorphism of (trivial) fundamental
groups. Note that F: C 2 — C does not have multiple fibers, or else F, would factor
through a surjection from 71 (C?) to 7{™(C) for an orbifold on C, which is non-trivial.
Consider r generic fibers of F|. Then the result follows from the generic addition-deletion
Lemma 1.4 to F:U — P! and B = {[1 : 0]}. n

Example 4.12. Other examples of complements of curves with free fundamental groups
include the following. Consider a polynomial f(x, y) such that 7;(C2\ C;) = Z for
C1 = V(f = 0) C C? (for instance, if C; is irreducible and only has nodal singularities,
including at infinity). In this case, C; is irreducible and hence the polynomial map f(x, y)
induces an admissible map. We have that fy: 7, (C?\ C;) — m;(C*) is an epimorphism
from Z to itself, so it is an isomorphism. Note that f does not have multiple fibers, or
else fi would factor through a surjection from 71(C2\ C;) = Z to 7Y™®(C*) for an
orbifold of general type on C*, which is a non-abelian group. Consider Cs, . .., C, generic
fibers of f. Then the generic addition-deletion Lemma 1.4 yields (C? \ C) = F, for
C=CU---UC,.

Analogously, if f, (respectively, f;) is a form of degree p (respectively, g) with
ged(p,q) = Land 71 (P?\ Cy) = Z for C; = V(f,) U V(f,) C P2. This implies that f,
and f, are irreducible and in that case F = [f, : fF] is also an admissible map (see,
for instance, Lemma 2.6 in [12]). Consider Cs, ..., C; generic fibers of F = [f,} : fF].
Then we are under the hypotheses of the generic addition-deletion Lemma 1.4, and hence
71 (P2\C) =T, forC =C; U---UC,.

4.4. A base case for the addition lemma

Recall Notation 2.3. In light of Example 4.12, one might wonder if other pencils F: X =
P2 -—> P! give rise to curves whose fundamental group of their complement is isomorphic
to an open orbifold group of P! through the morphism induced by F . The following result
provides a base case for the addition lemma in the case Mr # 0.

Theorem 4.13. Let X be a simply-connected smooth projective surface, let F: X --> P!
be an admissible map, and let P € P! be such that F~(P) is a typical fiber. Suppose that
Mp # 0.

Let ]P’(IL ) be the maximal orbifold structure of P\ { P} with respect to F: X{py —
P\ {P}, where mw = (p.q), p>q > 1, and gcd(p.q) = 1. Then the following statements
are equivalent:

() Hy (X{P}) = qu’

(2) Fe:mi(Xpy) — nf‘b(]P)(ll’,h)) = Zp * L4 is an isomorphism.
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Proof. After an isomorphism in P!, we may assume that Mg C {[0 : 1], [1 : 0]} (see
Remark 2.2), the fiber above [0 : 1] has multiplicity p, the fiber above [1 : 0] has multi-
plicity g, and P ¢ {[0: 1],[1 : O]}.
(2)= (1) is trivial. Let us prove (1) = (2).
Assume that H1(X(py) = Zpq4. Note that
e #MFr = 2ifand only if ¢ > 1, and
e #Mfp = lifandonlyifg = 1.
Corollary 4.7 applied to U = P2\ 8 and Remark 4.8 say that 771 (X py) has a presentation
of the form

ki l;
4.2) m(Xeey) = v1.v2 [ vy bea . 3L [v2. vE])

where kj,[; € Z for all j € J.Indeed, this is clear if #Mf = b’ = 2 (i.e.,q > 1), butitis
also true if b =1 (i.e., ¢ = 1), picking k; = 0, I; = 1. Hence, from now on we assume
that 771 (X(p)) has a finite presentation as in equation (4.2).

Let k = ged;e s (kj), and | = ged; ¢ s (1), with the convention that the greatest com-
mon divisor of various 0’s is 0. Note that this group has a quotient

k I
(vi.v2 L v{", y§ s val)s
so the quotient map induces an epimorphism on the abelianization
Lipg = Lipk X Ly .

Hence, k = | = 1. Using that ylp and )/g commute, we can modify the presentation of
m1(X¢p}) in equation (4.2) to get

b
4.3) 1. v2 L vf 3 vt v V3L vz v D).
where b > 1,a € {0,...,b — 1} and gecd(a, b) = 1. Thus, a presentation matrix of the
abelianization of 71 (X{p}) as a Z-module is given by
_(pr O
M= (qa qb)'

By hypothesis, we know that the matrix M is equivalent (over Z) to the diagonal 2 x 2
matrix with diagonal (p, q), since both matrices present the same abelian group and have
the same dimensions and rank. In particular, both matrices have the same determinant, so
b = 1, and thus a = 0. Plugging that data back in for the presentation in equation (4.3),
we get that

mi(X¢py) = (1. v2 | v v3)s

and the epimorphism (recall Remark 2.13)
Fu: mi(X(py) = 77 (Saimy)

is in fact an isomorphism by Lemma 2.15. ]
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5. Applications

5.1. C, 4-curves revisited

In this subsection, we prove a generalization of Oka’s classical result on C, 4 curves.

Proof of Theorem 1.2. If p = q = 1, the result is trivial. Suppose that p > 1 or g > 1,
which implies that My # @. Let P € P! be such that F~!(P) is a typical fiber. In par-
ticular, F~1(P) is given by the zeros of an irreducible degree pq polynomial, and by
Remark 2.9, H1(X(py) = Zpq. In other words, (2) in Theorem 4.13 holds, and the result
for a finite union of generic fibers is proved for » = 0. The claim for » > 0 follows from
the generic addition-deletion Lemma 1.4 applied to U = P2\ B.

Now consider ]P’,%l, the maximal orbifold structure of P! \ {[0 : 1]} with respect to
Fi: P2\ V(fy) = Uggo.y — P\ {[0 : 1]}, and note that nf’b(]P’,}l) =~ Zp. Assume that
71 (P2\V(fp)) = Zp. Inthat case, Fy: 71 (P?\ V(fp)) — 7™ (PL) is an epimorphism be-
tween Z,, and itself, so it is an isomorphism. By the generic addition-deletion Lemma 1.4,
one obtains 71 (P2 \ (C U V(f»))) = Fri1 % Zp. "

Remark 5.1. Examples of these families also appear in Exercise (4.21) in Section 4 of
Dimca’s reference book [17]. Theorem 1.2 can serve as a proof for part (ii) of this exercise.

5.2. Fundamental group of a union of conics

Another instance where our results apply is given in a collection of conics in a pencil.
We provide a new proof of Theorems 2.2 and 2.5 in [2] which does not depend on braid
monodromy calculations.

Theorem 5.2. Let F = [f> : f] be a pencil generated by a smooth conic Cy = V( f2)
and a double line £ = V( f1). Consider C = Cy U ---U C, a union of r + 1 smooth conics
of F. Then

71 (P2\C) =T, * Zj.

Proof. This result can be obtained from Theorem 1.2 for p = 2,q = 1. ]

5.3. Fundamental group of tame torus-type sextics

In a remarkable paper, Oka—Pho [36] describe the fundamental group of the complement
of irreducible sextics in a pencil of type F = [f; : f3], where f; is a homogeneous form
of degree i, whose set of singular points are base points of the pencil, that is, Sing V(f) =
V(f2) N V(f3). The term torus type refers to the former property, and the term tame refers
to the latter. According to the authors, any such a sextic C satisfies 7, (P2 \ C) = Zy * Z3
except for the particular case where C has four singular points: one of type C3 9 and three
of type A,. Type C3,9 singularities have a local equation f(x, y) = x> + y° + x2y? €
C{x, y}, and A, singularities are ordinary cusps of local equation f(x,y) = x? + y3 €
C{x,y}.

It is enough to check the result on maximal irreducible tame torus-type sextics, that
is, those with maximal total Milnor number (either 19 or 20). According to [36], there are
seven types of such irreducible curves, which can be described by the configuration ¥ of
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singularities (see Table 1), since their moduli space is connected for each configuration.
Also, by the maximality of the total Milnor number, the multiple fibers C, := V( f2) and
C3 := V(f3) are uniquely determined by the moduli space of the curve V( f2) U V( f3),
that is, they depend only on the singularities of C, and C3 and the topological type of their
intersection. Such moduli spaces are connected in all cases.

by (u,r,8) fo. 3. C ={f5 + £ =0}
fr=yz—x*
(1) [C3,15] [(19,2,10)] 3= 40y3 +21xyz — 21x3
fr=y2-x?
@ | [Coo] [(19,2,10)] f3 = 2y%z —2x2z + 323
2

fa=yz—x
23.3

(3) | [C3,7.45] | [(11,2,6),(8,1,4)]
f3=35x3—5x%y +xyz + 5xy% — 54 y°

@ | 1Sp1.42) | [(18.1.9).2.1.1)] AR .

_ 2
) | [B3,10.42] | [(18.1.9).(2, 1, 1)] jfj_;fyzy_y iy 182
- 25

fo=y2—2yz 422+ x% 22

(6) [B3,87E6] [(14~ 177)’(67 173)]

f3=x2y
(7 | [C3,0.342] | [(13,2,7),(2,1,1)] fo=z
39202 o fr=y0z+ 52+ 3+ 2Py +y?)

Table 1. Configuration of singularities for maximal tame sextics of torus type (2, 3).

The following recovers the well-known result by Oka—Pho [36] on irreducible maxi-
mal tame torus sextic of type (2, 3) for families (1)—(6) in Table 1. For the sake of brevity,
we will only show the details for family (1), but the same strategy can be followed to prove
the remaining cases.

Theorem 5.3 ([36]). Let C ={f; + f = 0} be an irreducible maximal tame torus sextic
of type (2, 3) whose configuration of singularities ¢ # {[C3,9,3A42]} (see Table 1). Then

JTl(]PZ\C) = Zz *Z3.

Proof. The idea of the proof is to show that any irreducible maximal tame torus sextic
of type (2, 3) except for exceptional case X ¢ # {[C3,9,3A42]} (family (7) in Table 1) is a
generic member of a primitive pencil satisfying the conditions in Theorem 1.2.

We will do it in detail for C € M([C3,15]). Table 1 gives a possible equation C =
{f> + f# = 0} for such a curve as a member of a pencil generated by a smooth conic
C, = {f2 = 0} and a nodal cubic C3 = {f3 = 0} whose node P € C, is such that
(C3,C3)p = 6, thatis, C, N C3 = {P} (see Theorem 1 in [35]). To see that C is in fact
a generic member, one can obtain the resolution of indeterminacies is shown in Figure 1,
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where

F*([0:1]) =3C, + Er1 +2E25 +3E23+ Es 4, F*([1:0]) =2C5 + Eszq1+ E3p.

Ez1(-2) E31(-2)
/ \ D1(-2)

C3(=1)

@D E22(=2)

E>3(=2)

D3 (=2)
\ E.4(=3) /153,2(—2)

Figure 1. Resolution of indeterminacy.

The dicritical divisors D; and D, define 1:1 morphisms 1:]: D; — P1, so there is no
degeneration of fibers on the dicritical divisors. One can check that C has no singularities
outside the base point P. This implies that C is a generic fiber. ]

Remark 5.4. Let C = {f;> + f# = 0} be the curve in the moduli space M ([C3,9,342])
given by the equation corresponding to family (7) in Table 1. The curve C is not a generic
sextic in the pencil [f;’ : fZ]. If it were, Theorem 4.13 would contradict 71 (P?\ C) %
Z» * Z3 (Oka—Pho). Nonetheless, one can check directly that C is not a typical fiber,
since this pencil is of type (1, 6), but C is a rational curve. This is a consequence of C
being irreducible and §(C39) + 38(A2) = 7 + 3 = 10 (see Table 1).

Theorem 5.5. Let F = [f5} : f#]:P? --> P! be a pencil such that C = {f;> + f# =0}
is an irreducible maximal tame torus sextic of type (2,3) and a generic member of the
pencil F. Let Y¢ be its configuration of singularities. Consider B C P! be a collection
of r + 1 typical values, Cg = \J,cp Ca, and C; = V(f;) for j = 2,3.
(1) If ¢ # {B3,10, A2}, {B3 3, Ec}, {C3,9, 342}, namely, if C is a curve in a family
(1)—(4) (in Table 1), then

11 (P?\ Cp U C3) = Fryy * Z3.

(2) If Xc # {Sp1, A2}, {Cs,9,3A2}, namely, if C is a curve in a family (1)-(3), (5)
or (6), then
1i(P2\Cp U Cy) =Fry1 % Zo.

Proof. For the proof of part (1), note that these are the only families where Cj is irre-
ducible. As mentioned before Table 1, the curves C5 are well defined. In families (1)—(3),
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the curve Cj3 is a nodal cubic, and in family (4), it is a cuspidal cubic transversal to the
line at infinity. In both of these cases, 71 (P2 \ C3) = Z3. The result now follows from the
generic addition-deletion Lemma 1.4.

For the proof of part (2), note that these are the families where C, is irreducible (a
smooth conic). Note that family (7) also has irreducible C;, but it still does not satisfy the
hypothesis, since C is not a typical fiber in that pencil (Remark 5.4). Since C, is smooth,
w1 (P2 \ C3) = Z,. The result follows from the generic addition-deletion Lemma 1.4. m

Acknowledgments. The authors would like to thank Rodolfo Aguilar Aguilar, Enrique
Artal Bartolo, Moisés Herradon Cueto, Anatoly Libgober and Jakub Witaszek for useful
conversations. We also thank an anonymous referee for useful comments that have helped
improve the presentation.

Funding. The authors are partially supported by PID2020-114750GB-C31, funded by
MCIN/AEI/10.13039/501100011033. The first author is also partially funded by the De-
partamento de Ciencia, Universidad y Sociedad del Conocimiento of the Gobierno de
Aragén (Grupo de referencia E22_20R “Algebra y Geometria™). The second author is also
partially supported by the Ramén y Cajal Grant RYC2021-031526-1 funded by MCIN/AEI
/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.

References

[1] Aguilar Aguilar, R.: The fundamental group of partial compactifications of the complement of
areal line arrangement. Topology Appl. 283 (2020), article no. 107388, 19 pp.
7Zbl 1460.57023 MR 4155321

[2] Amram, M. and Teicher, M.: Erratum to “Fundamental groups of some special quadric
arrangements”. Rev. Mat. Complut. 22 (2009), no. 2, 517-550. Zbl 1172.14316
MR 2553947

[3] Arapura, D.: Geometry of cohomology support loci for local systems. 1. J. Algebraic Geom. 6
(1997), no. 3, 563-597. Zbl 0923.14010 MR 1487227

[4] Arapura, D.: Toward the structure of fibered fundamental groups of projective varieties. J. Ec.
polytech. Math. 4 (2017), 595-611. Zbl 1400.14078 MR 3665609

[5] Artal Bartolo, E. and Cogolludo-Agustin, J. I.: On the connection between fundamental groups
and pencils with multiple fibers. J. Singul. 2 (2010), 1-18. Zbl 1292.14020 MR 2763015

[6] Artal Bartolo, E., Cogolludo-Agustin, J.1. and Matei, D.: Characteristic varieties of quasi-
projective manifolds and orbifolds. Geom. Topol. 17 (2013), no. 1, 273-309.
Zbl 1266.32035 MR 3035328

[7] Bauer, I.: Irrational pencils on non-compact algebraic manifolds. Internat. J. Math. 8 (1997),
no. 4, 441-450. Zbl 0896.14008 MR 1460895

[8] Bredon, G.E.: Topology and geometry. Grad. Texts in Math. 139, Springer, New York, 1997.
Zbl 0934.55001 MR 1700700

[9] Catanese, F.: Fibred Kihler and quasi-projective groups. Adv. Geom. 3 (2003), special issue,
S13-S27. Zbl 1051.32013 MR 2028385


https://doi.org/10.1016/j.topol.2020.107388
https://doi.org/10.1016/j.topol.2020.107388
https://zbmath.org/?q=an:1460.57023
https://mathscinet.ams.org/mathscinet-getitem?mr=4155321
https://doi.org/10.5209/rev_REMA.2009.v22.n2.16299
https://doi.org/10.5209/rev_REMA.2009.v22.n2.16299
https://zbmath.org/?q=an:1172.14316
https://mathscinet.ams.org/mathscinet-getitem?mr=2553947
https://zbmath.org/?q=an:0923.14010
https://mathscinet.ams.org/mathscinet-getitem?mr=1487227
https://doi.org/10.5802/jep.52
https://zbmath.org/?q=an:1400.14078
https://mathscinet.ams.org/mathscinet-getitem?mr=3665609
https://doi.org/10.5427/jsing.2010.2a
https://doi.org/10.5427/jsing.2010.2a
https://zbmath.org/?q=an:1292.14020
https://mathscinet.ams.org/mathscinet-getitem?mr=2763015
https://doi.org/10.2140/gt.2013.17.273
https://doi.org/10.2140/gt.2013.17.273
https://zbmath.org/?q=an:1266.32035
https://mathscinet.ams.org/mathscinet-getitem?mr=3035328
https://doi.org/10.1142/S0129167X97000226
https://zbmath.org/?q=an:0896.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=1460895
https://zbmath.org/?q=an:0934.55001
https://mathscinet.ams.org/mathscinet-getitem?mr=1700700
https://doi.org/10.1515/advg.2003.2003.s1.13
https://zbmath.org/?q=an:1051.32013
https://mathscinet.ams.org/mathscinet-getitem?mr=2028385

Quasi-projective varieties whose fundamental group is a free product of cyclic groups 1793

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Catanese, F.: Differentiable and deformation type of algebraic surfaces, real and symplectic
structures. In Symplectic 4-manifolds and algebraic surfaces, pp. 55-167. Lecture Notes in
Math. 1938, Springer, Berlin, 2008. Zbl 1145.14001 MR 2441412

Cogolludo-Agustin, J. I.: Braid monodromy of algebraic curves. Ann. Math. Blaise Pascal 18
(2011), no. 1, 141-209. Zbl 1254.32043 MR 2830090

Cogolludo-Agustin, J.I. and Elduque, E.: On the topology of fiber-type curves: a Zariski pair
of affine nodal curves. Preprint 2025, arXiv:2306.07359v3.

Cogolludo-Agustin, J.I. and Libgober, A.: Mordell-Weil groups of elliptic threefolds and the
Alexander module of plane curves. J. Reine Angew. Math. 697 (2014), 15-55.
7Zbl 1326.14090 MR 3281651

Degtyarev, A.: Oka’s conjecture on irreducible plane sextics. J. Lond. Math. Soc. (2) 78 (2008),
no. 2, 329-351. Zbl 1158.14026 MR 2439628

Degtyarev, A.: Oka’s conjecture on irreducible plane sextics. II. J. Knot Theory Ramifications
18 (2009), no. 8, 1065-1080. Zbl 1174.14027 MR 2554335

Dey, I. M. S. and Neumann, H.: The Hopf property of free products. Math. Z. 117 (1970),
325-339. Zbl 0204.34205 MR 0276352

Dimca, A.: Singularities and topology of hypersurfaces. Universitext, Springer, New York,
1992. Zbl 0753.57001 MR 1194180

Eyral, C. and Oka, M.: On the fundamental groups of the complements of plane singular
sextics. J. Math. Soc. Japan 57 (2005), no. 1, 37-54. Zbl 1070.14031 MR 2114719

Eyral, C. and Oka, M.: On the fundamental groups of non-generic R-join-type curves. In
Bridging algebra, geometry, and topology, pp. 137-157. Springer Proc. Math. Stat. 96,
Springer, Cham, 2014. Zbl 1328.14052 MR 3297113

Eyral, C. and Oka, M.: On the fundamental groups of non-generic R-join-type curves, IL
J. Math. Soc. Japan 69 (2017), no. 1, 241-262. Zbl 1368.14041 MR 3597554

Fujino, O.: On quasi-Albanese maps. To appear in Boll. Unione Mat. Ital. (2024),
DOI 10.1007/540574-024-00448-1.

Gromov, M.: Sur le groupe fondamental d’une variété kihlérienne. C. R. Acad. Sci. Paris Sér.
I Math. 308 (1989), no. 3, 67-70. Zbl 0661.53049 MR 0983460

[itaka, S.: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23
(1976), no. 3, 525-544. Zbl 0342.14017 MR 0429884

Kashiwara, H.: Fonctions rationnelles de type (0, 1) sur le plan projectif complexe. Osaka J.
Math. 24 (1987), no. 3, 521-577. Zbl 0668.14017 MR 0923877

Kawashima, M. and Yoshizaki, K.: On (2, 3) torus of decompositions of QL-configurations.
SUT J. Math. 46 (2010), no. 1, 93—117. Zbl 1214.14023 MR 2732647

Kulikov, V. S.: On plane algebraic curves of positive Albanese dimension. Izv. Math. 59 (1995),
no. 6, 1173-1192; translation from Izv. Ross. Akad. Nauk, Ser. Mat. 59 (1995), no. 6, 75-94.
Zbl10939.14013 MR 1481615

Matsuno, T.: On a theorem of Zariski—van Kampen type and its applications. Osaka J. Math.
32 (1995), no. 3, 645-658. Zbl 0879.14005 MR 1367896

Namba, M.: Branched coverings and algebraic functions. Pitman Research Notes in Mathe-
matics Series 161, Longman Scientific & Technical, Harlow; John Wiley, New York, 1987.
Zbl 0706.14017 MR 0933557


https://doi.org/10.1007/978-3-540-78279-7_2
https://doi.org/10.1007/978-3-540-78279-7_2
https://zbmath.org/?q=an:1145.14001
https://mathscinet.ams.org/mathscinet-getitem?mr=2441412
https://doi.org/10.5802/ambp.295
https://zbmath.org/?q=an:1254.32043
https://mathscinet.ams.org/mathscinet-getitem?mr=2830090
https://arxiv.org/abs/2306.07359v3
https://doi.org/10.1515/crelle-2012-0096
https://doi.org/10.1515/crelle-2012-0096
https://zbmath.org/?q=an:1326.14090
https://mathscinet.ams.org/mathscinet-getitem?mr=3281651
https://doi.org/10.1112/jlms/jdn029
https://zbmath.org/?q=an:1158.14026
https://mathscinet.ams.org/mathscinet-getitem?mr=2439628
https://doi.org/10.1142/S0218216509007348
https://zbmath.org/?q=an:1174.14027
https://mathscinet.ams.org/mathscinet-getitem?mr=2554335
https://doi.org/10.1007/BF01109851
https://zbmath.org/?q=an:0204.34205
https://mathscinet.ams.org/mathscinet-getitem?mr=0276352
https://doi.org/10.1007/978-1-4612-4404-2
https://zbmath.org/?q=an:0753.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=1194180
https://doi.org/10.2969/jmsj/1160745812
https://doi.org/10.2969/jmsj/1160745812
https://zbmath.org/?q=an:1070.14031
https://mathscinet.ams.org/mathscinet-getitem?mr=2114719
https://doi.org/10.1007/978-3-319-09186-0_9
https://zbmath.org/?q=an:1328.14052
https://mathscinet.ams.org/mathscinet-getitem?mr=3297113
https://doi.org/10.2969/jmsj/06910241
https://zbmath.org/?q=an:1368.14041
https://mathscinet.ams.org/mathscinet-getitem?mr=3597554
https://doi.org/10.1007/s40574-024-00448-1
https://doi.org/10.1007/s40574-024-00448-1
https://zbmath.org/?q=an:0661.53049
https://mathscinet.ams.org/mathscinet-getitem?mr=0983460
https://zbmath.org/?q=an:0342.14017
https://mathscinet.ams.org/mathscinet-getitem?mr=0429884
https://zbmath.org/?q=an:0668.14017
https://mathscinet.ams.org/mathscinet-getitem?mr=0923877
https://doi.org/10.55937/sut/1279305513
https://zbmath.org/?q=an:1214.14023
https://mathscinet.ams.org/mathscinet-getitem?mr=2732647
https://doi.org/10.1070/IM1995v059n06ABEH000053
https://zbmath.org/?q=an:0939.14013
https://mathscinet.ams.org/mathscinet-getitem?mr=1481615
https://zbmath.org/?q=an:0879.14005
https://mathscinet.ams.org/mathscinet-getitem?mr=1367896
https://zbmath.org/?q=an:0706.14017
https://mathscinet.ams.org/mathscinet-getitem?mr=0933557

J. 1. Cogolludo-Agustin and E. Elduque 1794

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Némethi, A.: On the fundamental group of the complement of certain singular plane curves.
Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 3, 453-457. Zbl 0679.14004
MR 0906619

Nielsen, J.: The commutator group of the free product of cyclic groups. Mat. Tidsskr. B 1948
(1948), 49-56. MR 0029378

Nori, M. V.: Zariski’s conjecture and related problems. Ann. Sci. Ecole Norm. Sup. (4) 16
(1983), no. 2, 305-344. Zbl 0527.14016 MR 0732347

Oka, M.: Some plane curves whose complements have non-abelian fundamental groups. Math.
Ann. 218 (1975), no. 1, 55-65. Zbl 0335.14005 MR 0396556

Oka, M.: On the fundamental group of the complement of certain plane curves. J. Math. Soc.
Japan 30 (1978), no. 4, 579-597. Zbl 0387.14004 MR 0513071

Oka, M.: Geometry of reduced sextics of torus type. Tokyo J. Math. 26 (2003), no. 2, 301-327.
Zbl 1047.14002 MR 2020788

Oka, M. and Pho, D. T.: Classification of sextics of torus type. Tokyo J. Math. 25 (2002), no. 2,
399-433. Zbl 1062.14036 MR 1948673

Oka, M. and Pho, D. T.: Fundamental group of sextics of torus type. In Trends in singularities,
pp- 151-180. Trends Math., Birkhduser, Basel, 2002. Zbl 1054.14022 MR 1900785

Russell, H.: Generalized Albanese and its dual. J. Math. Kyoto Univ. 48 (2008), no. 4, 907-949.
Zbl 1170.14005 MR 2513591

Shimada, I.: On the Zariski—van Kampen theorem. Canad. J. Math. 55 (2003), no. 1, 133-156.
Zbl 1074.14517 MR 1952329

Thom, R.: Ensembles et morphismes stratifi¢s. Bull. Amer. Math. Soc. 75 (1969), 240-284.
Zbl 0197.20502 MR 0239613

Tokunaga, H.-0.: (2, 3) torus sextics and the Albanese images of 6-fold cyclic multiple planes.
Kodai Math. J. 22 (1999), no. 2, 222-242. 7Zbl 0990.14010 MR 1700594

Tokunaga, H.-o.: Irreducible plane curves with the Albanese dimension 2. Proc. Amer. Math.
Soc. 127 (1999), no. 7, 1935-1940. Zbl 0917.14015 MR 1637444

Villamayor U., O. E.: Equimultiplicity, algebraic elimination, and blowing-up. Adv. Math. 262
(2014), 313-369. Zbl 1295.14015 MR 3228431

Zariski, O.: On the problem of existence of algebraic functions of two variables possessing a
given branch curve. Amer. J. Math. 51 (1929), no. 2, 305-328. Zbl 55.0806.01 MR 1506719

Received April 9, 2024; revised January 5, 2025.

José L. Cogolludo-Agustin

Departamento de Matemadticas, [IUMA, Universidad de Zaragoza
Pedro Cerbuna 12, 50009 Zaragoza, Spain;

jicogo@unizar.es

Eva Elduque

Departamento de Matematicas, ICMAT, Universidad Auténoma de Madrid
Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;

eva.elduque @uam.es


https://doi.org/10.1017/S0305004100067505
https://zbmath.org/?q=an:0679.14004
https://mathscinet.ams.org/mathscinet-getitem?mr=0906619
https://mathscinet.ams.org/mathscinet-getitem?mr=0029378
https://doi.org/10.24033/asens.1450
https://zbmath.org/?q=an:0527.14016
https://mathscinet.ams.org/mathscinet-getitem?mr=0732347
https://doi.org/10.1007/BF01350067
https://zbmath.org/?q=an:0335.14005
https://mathscinet.ams.org/mathscinet-getitem?mr=0396556
https://doi.org/10.2969/jmsj/03040579
https://zbmath.org/?q=an:0387.14004
https://mathscinet.ams.org/mathscinet-getitem?mr=0513071
https://doi.org/10.3836/tjm/1244208593
https://zbmath.org/?q=an:1047.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=2020788
https://doi.org/10.3836/tjm/1244208862
https://zbmath.org/?q=an:1062.14036
https://mathscinet.ams.org/mathscinet-getitem?mr=1948673
https://doi.org/10.1007/978-3-0348-8161-6_7
https://zbmath.org/?q=an:1054.14022
https://mathscinet.ams.org/mathscinet-getitem?mr=1900785
https://doi.org/10.1215/kjm/1250271323
https://zbmath.org/?q=an:1170.14005
https://mathscinet.ams.org/mathscinet-getitem?mr=2513591
https://doi.org/10.4153/CJM-2003-006-2
https://zbmath.org/?q=an:1074.14517
https://mathscinet.ams.org/mathscinet-getitem?mr=1952329
https://doi.org/10.1090/S0002-9904-1969-12138-5
https://zbmath.org/?q=an:0197.20502
https://mathscinet.ams.org/mathscinet-getitem?mr=0239613
https://doi.org/10.2996/kmj/1138044044
https://zbmath.org/?q=an:0990.14010
https://mathscinet.ams.org/mathscinet-getitem?mr=1700594
https://doi.org/10.1090/S0002-9939-99-05116-3
https://zbmath.org/?q=an:0917.14015
https://mathscinet.ams.org/mathscinet-getitem?mr=1637444
https://doi.org/10.1016/j.aim.2014.04.013
https://zbmath.org/?q=an:1295.14015
https://mathscinet.ams.org/mathscinet-getitem?mr=3228431
https://doi.org/10.2307/2370712
https://doi.org/10.2307/2370712
https://zbmath.org/?q=an:55.0806.01
https://mathscinet.ams.org/mathscinet-getitem?mr=1506719
mailto:jicogo@unizar.es
mailto:eva.elduque@uam.es

	1. Introduction
	2. Preliminaries
	3. Main theorem
	4. Addition-deletion lemmas
	5. Applications
	References

