
Rev. Mat. Iberoam. 41 (2025), no. 5, 1957–1972
DOI 10.4171/RMI/1573

© 2025 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

Solvability of concordance groups and Milnor invariants

Alessio Di Prisa and Giovanni Framba

Abstract. Using Milnor invariants, we prove that the concordance group C.2/ of
2-string links is not solvable. As a consequence, we prove that the equivariant con-
cordance group of strongly invertible knots is also not solvable, and we answer a
conjecture by Kuzbary (2023).

1. Introduction

Recall that a strongly invertible knot is given by a pair .K; �/, where K ,! S3 is a knot
and �WS3 ! S3 is a smooth orientation preserving involution such that �.K/ D K and �
reverses the orientation on K. In [30], Sakuma introduced the definitions of equivariant
connected sum and equivariant concordance for (directed) strongly invertible knots. Using
these notions, he defines the group zC of equivariant concordance classes of strongly invert-
ible knots. Following Sakuma, strongly invertible knots have been a classic object of study.
Recently, there has been a strong new interest in this topic [5,8,17,22,23], and in particular
towards the direction of equivariant concordance [2, 4, 9, 13, 26, 29]. However, very little
is known concerning the group structure of zC ; even though the first author proved in [12]
that zC is not abelian, a lot of questions remain open. For instance, Alfieri and Boyle [2]
conjecture that the equivariant concordance group contains a non-abelian free group.

In this paper, we push the investigation of how far zC is from being abelian a step
further. In Section 4, we prove the following.

Theorem 4.6. The equivariant concordance group of strongly invertible knots zC is not
solvable.

The proof of Theorem 4.6 relies on the relations between strongly invertible knots,
theta curves and string links, which we outline in Section 3. Recall that a theta curve is
an embedding in S3 of a graph with two vertices and three edges joining them. Given n
distinct points p1; : : : ; pn in the interior of D2, an n-string link is (the image of) a proper
embedding � of

`n
kD1 Ii , the disjoint union of n copies of the interval I D Œ0; 1�, in

D2 � I such that � jIi .j / D .pi ; j / for each i and for j D 0; 1. Analogously to the knot
case, it is possible to give natural definitions of sum and cobordism/concordance for theta
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curves and string links. The set of cobordism classes of theta curves forms a group denoted
by ‚, while n-string links up to concordance form a group denoted by C.n/. One can
easily check that C.1/ coincides with the knot concordance group and hence is an abelian
group. As shown by Le Dimet [20], the pure braid group P .n/ naturally injects in C.n/.
Since for n � 3, P .n/ contains a non-abelian free subgroup, we easily get that C.n/ is
not abelian and in particular not solvable for n � 3. The same argument does not work in
the case n D 2, since P .2/ Š Z is a central subgroup of C.2/. De Campos [11] proved
that ‚ and C.2/ are related by the following theorem.

Theorem 4.4 (Proposition 2 in [11]) There is a split extension of groups

1! P .2/! C.2/! ‚! 1:

Miyazaki in [28] provided a proof that the group ‚ is not commutative (which would
imply that C.2/ is not abelian), appealing to a result of Gilmer [15]. However, Friedl [14]
found gaps in the proof of the result in [15]. Another proof of the fact that C.2/ is not
abelian can be found in Theorem 1.8 of [24]. In Theorem 1.1 of [19], Kuzbary proves
that for all n � 2, the group C.n/=hhP .n/ii is not abelian and conjectures that it is not
solvable either (see Conjecture 1.3 in [19]).

Using Milnor invariants [16, 27], we prove in Theorem 4.1 that a certain subgroup
Cu.2/ (see Section 4) of C.2/ is not solvable. Since the proof of this result is non-
constructive, we would like to propose the following problem.

Problem 1.1. For each k � 1, find a nontrivial explicit element �k 2 Cu.2/ lying in the
k-th term of the derived series.

From Theorem 4.1 we deduce Theorem 4.6. Moreover, the non-solvability of Cu.2/

implies the following theorem, which answers the question posed by Kuzbary.

Theorem 4.7 The quotient group C.n/=hhP .n/ii of the n-strand string links over the
normal closure of the pure n-braids subgroup is not solvable for any n � 2. In particular,
the cobordism group of theta curves ‚ Š C.2/=P .2/ is not solvable.

Content of the paper. In Section 2, we provide the basic notions and definitions regarding
the algebraic tools we need in Section 5. Section 3 contains a recap on strongly invertible
knots and string links. Moreover, we recall the definition of Milnor invariants. In Section 4,
we show how Theorem 4.6 and Theorem 4.7 are implied by Theorem 4.1. Lastly, Section 5
is devoted to the proof of Theorem 4.1.

2. Groups and Lie algebras

In this section, we introduce the notation and the preliminary results that we will need in
Section 5. For details on filtrations, see Section 1 of [10].

Definition 2.1. Let G be a group. A strongly central filtration G� D ¹Gkºk�1 on G is a
sequence of subgroups of G such that
• G1 D G,
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• GkC1 is a normal subgroup of Gk ,
• ŒGi ; Gj � � GiCj .

In the following, we will refer to a strongly central filtration just as a filtration.

Recall that the lower central series of a group G is defined inductively by setting
G1 D G and GnC1 D ŒGn; G�. It is not difficult to see that such a sequence of subgroups
is, in particular, a filtration on G. The group G is said to be nilpotent if Gn D 1 for
some n. Similarly, the derived series of G is defined by setting G.0/ D G and G.nC1/ D
ŒG.n/; G.n/�. The group G is said to be solvable if G.n/ D 1 for some n. Observe that, in
general, such a sequence of subgroups is not a strongly central filtration. Recall that the
two series are related by G.n/ � GnC1.

In the following, given a Lie algebra g, we denote by g.n/ the n-th term of its derived
series, which is defined analogously as in the group case.

Definition 2.2. The graded Lie ring associated with a filtrationG� on a groupG is defined
as the graded group

L.G�/ D
M
k�1

Gk=GkC1

with the Lie bracket induced by the commutator operation on G.

Definition 2.3. Let G� and H� be filtrations on G and H , respectively. An action of G�
on H� is a homomorphism �WG ! Aut.H/ such that for all i; j � 1, ŒGi ; Hj � � HiCj ,
where Œg; h� WD �.g/.h/h�1, for g 2G, h2H .

Given an action �WG ! Aut.H/ of G� on H�, we have an induced homomorphism
of Lie rings

J� W L.G�/! Der.L.H�//

called the Johnson homomorphism, where Der.L.H�// is the Lie ring of derivations on
L.H�/. Such homomorphism J' is defined on homogeneous elements g 2L.G�/k D

Gk=GkC1 by J'.g/ D Œg;��, where g 2G is an arbitrary lift of g. Observe that this is a
generalization of the Johnson homomorphism defined in [18] on the Torelli subgroup of
the mapping class group of a surface.

Lemma 2.4 (Proposition-Definition 1.8 in [10]). Let �WG ! Aut.H/ be a homomorph-
ism and let H� be a filtration on H . Then, the filtration G� given by

Gi D ¹g 2G j 8j � 1; Œg;Hj � � HiCj º;

is the unique maximal filtration on the subgroup G1 � G such that �jG1 WG1 ! Aut.H/
is an action of G� on H�.

Remark 2.5. Notice that the subgroup G1 in Lemma 2.4 is the largest subgroup of G
which admits a filtration G� such that �jG1 WG1 ! Aut.H/ is an action of G� on H�.

Lemma 2.6. Let G� be a filtration on a group G. If G is a solvable group, then L.G�/

is a solvable Lie ring.

Proof. We denote by G.n/ the n-th term of the derived series of G, and we denote by
G.n/ \ G� the filtration on G.n/ induced by the one on G. We begin by showing that
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L.G�/
.1/ D ŒL.G�/;L.G�/� is contained in L.G.1/ \ G�/. Fix a degree k � 1 of the

filtration. Then, by definition,

ŒL.G�/;L.G�/�k D

iCjDk

ŒGi=GiC1; Gj =GjC1� �
h ŒGi ; Gj � j i C j D k i

GkC1 \G.1/

�
Gk \G

.1/

GkC1 \G.1/
D L.G.1/ \G�/k :

By iteration, we obtain
L.G�/

.n/
� L.G.n/ \G�/:

Since G is solvable, for a large enough n the right-hand side will be zero, hence the
thesis.

Remark 2.7. Let g D
L
k gk be a graded Lie algebra. Then the degree completion of g

is given by
g D

Y
k�1

gk :

Lemma 2.8. Let g be a graded Lie algebra. Then g is solvable if and only if its degree
completion g is solvable.

Proof. We have that g � g, so if g is not solvable, g cannot be solvable. Vice versa,
assume that g is not solvable and consider, for all n2N, the ideals

In D
M
k�n

gk � g and I n D
Y
k�n

gk � g:

Denote by h.n/ the n-th term of the derived series of a Lie algebra h. We want to
prove that for every k 2 N, g.k/ ¤ 0. This follows by showing that for every such k there
exists nk large enough such that .g=Ink /

.k/ ¤ 0. Let �nW g ! g=I n be the projection.
Since �n is a Lie ring homomorphism and hence commutes with taking the brackets, we
have that for all k and n,

�n.g
.k// D .g=I n/

.k/:

Since g is not solvable, for all k � 1 there exist an xk 2 g.k/, xk ¤ 0. Let nk � 1 be
the degree of the first non-zero component of xk . Since �nk .xk/ ¤ 0, it follows that
.g=I nk /

.k/ is not trivial. Observe that g=I n D g=In, hence g.k/ is not trivial. Since this
holds for every k, we deduce that g is not solvable.

Recall that given a Lie ring g, a derivation on g is a linear map DW g! g such that
for every A;B 2g,

D.ŒA;B�/ D ŒD.A/; B�C ŒA;D.B/�:

We denote by Der.g/ the set of derivations of g, which can be endowed with the structure
of a Lie ring given by

ŒD1;D2� D D1 ıD2 �D2 ıD1:

In the following, we will denote by l2 the free graded Lie ring on two generators X
and Y in degree 1.
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Definition 2.9 (Definitions 3.2 and 3.5 in [1]). We say that a derivation D 2 Der.l2/ is
tangential if there exist U; V 2 l2 such that

D.X/ D ŒU;X� and D.Y / D ŒV; Y �:

A tangential derivation D is called special (or normalized) if D.X C Y / D 0. We will
denote by tDer.l2/ and sDer.l2/ the sets of tangential derivations and special derivations,
respectively. It is not difficult to check that

sDer.l2/ � tDer.l2/ � Der.l2/

as Lie rings. Observe that since l2 is graded, the Lie ring sDer.l2/ naturally inherits a
graded structure, whereD 2 sDer.l2/n if and only ifD.X/ andD.Y / lie in degree nC 1.
In a similar way, one can define the subalgebra of tangential and special derivations of the

Lie algebra lQ
2 D l2 ˝Q and of its degree completion lQ

2 (see also Section 3 of [1]).

Lemma 2.10. The following map induces an isomorphism of graded Lie rings:

sDer.l2/˝Q �! sDer.lQ
2 /

D ˝ p=q 7�! p=q �D:

Proof. It is not difficult to check that the inverse of the map above can be constructed as
follows. LetD2 sDer.lQ

2 / and letU;V 2 lQ
2 such thatD.X/D ŒU;X� andD.Y /D ŒV;Y �.

Then there exists n¤ 0 such that nU;nV 2 l2 � lQ
2 . Then clearly nD restricts to a special

derivation of l2, and we get the inverse map as

sDer.lQ
2 / �! sDer.l2/˝Q

D 7�! nD ˝ 1=n:

Lemma 2.11. The degree completion sDer.lQ
2 / of the special derivations of lQ

2 is natur-

ally isomorphic to sDer.lQ
2 /.

Proof. Take D 2 sDer.lQ
2 /. We can see D as a formal sum D D

P
i�1Di , where Di 2

sDer.lQ
2 /i . ThenD acts as a derivation on lQ

2 as follows. Given Z 2 lQ
2 , we can write it as

Z D
P
i�1Zj , with Zj 2 .l

Q
2 /j . Then we define D.Z/ as

D.Z/ D
X
i;j�1

Di .Zj /;

which is a well-defined element of lQ
2 , since for every n the number of terms Di .Zj / of

degree � n is finite. For every i � 1 take Ui ; Vi 2 .l
Q
2 /i such that Di .X/ D ŒUi ; X� and

Di .Y /D ŒVi ; Y �, and let U D
P
i�1Ui ; V D

P
i�1 Vi 2 lQ

2 . Then it is immediate to see

thatD.X/D ŒU;X� andD.Y /D ŒV;Y �, henceD is a tangential derivation of lQ
2 . Observe

that since Di .X C Y / D 0 for every i , we get that D.X C Y / D 0. Therefore we have a

map sDer.lQ
2 /! sDer.lQ

2 /. Its inverse is given as follows. Take D 2 sDer.lQ
2 /. Since it
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is a tangential derivation there exist U D
P
i�1 Ui ; V D

P
i�1 Vi 2 lQ

2 , Ui ; Vi 2 .l
Q
2 /i

such that D.X/ D ŒU;X� and D.Y / D ŒV; Y �. Since D is special, one can easily see that
ŒUi ; X� C ŒVi ; Y � D 0 for every i , by inspecting D.X C Y / in each degree. Let Di be
the derivation of lQ

2 defined by Di .X/ D ŒUi ; X� and Di .Y / D ŒVi ; Y �, and observe that
Di 2 sDer.lQ

2 /i . Hence we get an element

D D
X
i�1

Di 2 sDer.lQ
2 /:

Proposition 2.12. The Lie ring sDer.l2/ is not solvable.

Proof. First of all, observe that sDer.l2/ is solvable if and only if sDer.l2/˝Q is solv-
able, where sDer.l2/˝Q Š sDer.lQ

2 / by Lemma 2.10. Therefore, using Lemmas 2.11

and 2.8, it is sufficient to show that sDer.lQ
2 / is not solvable, By Theorem 4.1 in [1], we

know that sDer.lQ
2 / contains the Grothendieck–Teichmüller algebra grt (see Section 4.2

of [1]) as a Lie subalgebra. In [6] Brown proved that grt contains in turn a free Lie

algebra on infinite generators (see also Section 7.2.3 of [25]). Therefore sDer.lQ
2 / and

hence sDer.l2/ are non-solvable.

3. String links and strongly invertible knots

The aim of this brief section is simply to recall and clarify the definitions concerning
strongly invertible knots, theta curves, string links and Milnor invariants.

We start with the definition of a strongly invertible knot. Despite not being a funda-
mental definition in the following sections, we want to stress that all of this construction
originates from the goal to investigate the non-abelianity of zC .

Definition 3.1. A strongly invertible knot is a pair .K; �/ where K � S3 is an oriented
knot and �2 DiffeoC.S3/ is an involution such that �.K/ D K and � reverses the orient-
ation on K.

Recall that by resolution of the Smith conjecture [3], the fixed point set Fix.�/ of such
an involution � is always an unknot.

Definition 3.2. A direction on a strongly invertible knot .K;�/ is the choice of an oriented
half-axis h, i.e., one of the two connected components of Fix.�/ nK. We say that a triple
.K; �; h/ is a directed strongly invertible knot, or DSI knot.

Definition 3.3. We say that two DSI knots .Ki ; �i ; hi /, i D 0; 1 are equivariantly con-
cordant if there exists a smoothly and properly embedded annulus C Š S1 � I � S3 � I ,
invariant with respect to some orientation-preserving smooth involution � of S3 � I such
that:

• @.S3 � I; C / D .S3; K0/ t �.S
3; K1/,

• � is in an extension of the strong inversion �0 t �1 on S3 � 0 t S3 � 1,
• the orientations of h0 and �h1 induce the same orientation on the annulus Fix.�/,

and h0 and h1 are contained in the same component of Fix.�/ n C .
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The equivariant concordance group is the set zC of classes of directed strongly invert-
ible knots up to equivariant concordance, endowed with the operation induced by the
equivariant connected sum, which we denote by z# (see [4, 30] for details).

Definition 3.4. A labelled theta curve is a graph G with two vertices v1 and v2 and three
edges e1, e2 and e3 joining v1 and v2, which are considered to be oriented from v1 to v2.
A (spatial) theta curve is a piecewise linear locally flat embedding � WG! S3 (for details
see [32]).

In [32], Taniyama introduced a notion of cobordism between theta curves and defined
the so called cobordism group of theta curves ‚, which is a group with the operation of
vertex connected sum of theta curves.

Remark 3.5. Observe that there exists a natural homomorphism

� W zC ! ‚:

In fact, we can associate with a directed strongly invertible knot .K;�;h/ the theta curve �
given by the projection in S3=� Š S3 ofK [ Fix.�/. The theta curve is naturally labelled
as follows:

• the vertex v1 (respectively, v2) is the projection of the initial (respectively, final) point
of h,

• the edge e1 is the projection of h,
• the edge e2 is the projection of K,
• the edge e3 is the projection of Fix.�/ n h.

We now proceed with the definition of a string link, introduced originally in [20],
which generalizes the notion of a braid.

Figure 1. Example of a 2-string link.

Definition 3.6. Fix p1; : : : ; pk distinct points in the interior ofD2. A k-string link is (the
image of) a proper and piecewise linear locally flat embedding:

� W

ka
iD1

Ii ,! D2
� I
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D � I � ¹1º

D � I � ¹0º

�

�

Figure 2. Concordance of two 2-string links � and � . In yellow, the two trivial string links lying in
D � ¹1º � I and D � ¹0º � I . The red disks are the components .I � I /i of the concordance.

such that � jIi .0/ D pi � 0 and � jIi .1/ D pi � 1 for all i D 1; : : : ; k. The image of Ii
is called the i -th string of the string link � . We will also refer to the i -th string of � by
writing: I�;i . See Figure 1 for an example.

It is clear that each string of a string link inherits an orientation from the standard
orientation on the interval.

In analogy with braids, given two k-string links � and � , it is possible to define their
sum �#� , by stacking � over � .

The identity element of this sum is given by the trivial k-string link, which coincides
with the trivial k-braid. Considering string links up to isotopies that fix the endpoints, it is
easy to notice that the operation of sum is not commutative.

Now we want to define a suitable notion of concordance for string links (see Figure 2).

Definition 3.7. We say that two k-string links � and � are concordant if there exist k
properly and piecewise linear locally flat embedded disks

`k
iD1.I � I /i ,! D � I � I

such that:
• .I � 0/i D I�;i for all i D 1; : : : ; k.
• .I � 1/i D I�;i for all i D 1; : : : ; k.

• The string link
`k
iD1.0 � I /i ,! D � 0 � I is the trivial one.

• The string link
`k
iD1.1 � I /i ,! D � 1 � I is the trivial one.

Notice how the first two points above imply that, for each i , the disk .I � I /i is a
concordance disk from the i -th component of � to the i -th component of � . The concord-
ance group C.k/ of k-string links is defined as the set of k-string links up to concordance,
together with the operation of sum # defined above.

As shown by Le Dimet in [20], the group of pure k-braids P .k/ is naturally contained
in C.k/ as a subgroup.
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We now recall briefly the definition of Milnor invariants for string links, follow-
ing [16]. We will focus only on the construction for 2-string links, since it is the only
case we will need in Section 5.

Let � be a 2-string link and letD2 DD n ¹p1; p2º. Denote by j0 and j1 the inclusion
of D2 in D � I n � at time 0 and 1, respectively. Observe that, in general,

.j0/�; .j1/� W �1.D2/! �1.D � I n �/

are not isomorphisms, but they induce isomorphisms on integral homology. Therefore, by
Stallings’ theorem [31], we have that j0 and j1 give isomorphisms

.j0/�; .j1/� W
�1.D2/

�1.D2/n
!

�1.D � I n �/

�1.D � I n �/n

for all n, where �1.X/n is the n-th term of the lower central series of �1.X/.
Identifying �1.D2/ with the free group F on two generators x and y, we get an auto-

morphism An.�/ D .j1/
�1
� .j0/� of F=FnC1. As in Theorem 1.1 of [16], one can prove

that this actually defines a surjective homomorphism

An W C.2/! Aut0.F=FnC1/;

where Aut0.F=FnC1/ is the subgroup consisting of automorphisms which conjugate x
and y and fix the product xy. In particular, An is an invariant of string link concordance.

Remark 3.8. In the following, we will denote by F the algebraic closure of F in its pro-
nilpotent completion yF D lim

 �
F=Fn (see [21] for the definition), and by F � the filtration

on F given by the lower central series. As pointed out in Remark 1.2 of [16], Milnor
invariants for string links can be gathered to define a total Milnor invariant

A W C.2/! Aut0.F /:

Then, for every n we can retrieve the homomorphism An by composition with the projec-
tion

�n W Aut0.F /! Aut0.F =F nC1/;

since we can identify F=FnC1 Š F=F nC1:

4. Solvability of concordance groups

The aim of this section is to prove the non-solvability of multiple concordance groups.
In particular, we prove that the equivariant concordance group is not solvable, and we
confirm Conjecture 1.3 in [19] regarding the solvability of C.n/=hhP .n/ii.

First of all, let Cu.2/ be the subgroup of C.2/ generated by concordance classes of
2-string links that admit a representative whose first component is unknotted.

Theorem 4.1. The group Cu.2/ is not solvable.

In Section 5, we provide a proof of this result. We now investigate the consequences
of Theorem 4.1. It is straightforward that it implies the following.
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Corollary 4.2. The group C.2/ of the concordance classes of 2-strand string links is not
solvable.

Let lkW Cu.2/ ! Z be the homomorphism mapping a 2-string link l to the linking
number between its components, and denote by C0.2/ its kernel. Theorem 4.1 implies
easily the following.

Corollary 4.3. The group C0.2/ is not solvable.

Proof. Observe that we have the following short exact sequence:

1! C0.2/! Cu.2/
lk
�! Z! 1:

Since Z is abelian and Cu.2/ is not solvable, it follows that C0.2/ cannot be solvable.

We now need a way to deduce the non-solvability of the equivariant concordance
group of strongly invertible knots zC from the results above. The key ingredient is the
following result.

Theorem 4.4 (Proposition 2 in [11]). There is a split extension of groups

1! P .2/
i
�! C.2/

˛
�! ‚! 1;

where P .2/ is the group of pure braids on 2 strands, C.2/ are the concordance classes of
2-strand string links and ‚ is the cobordism group of theta curves.

Remark 4.5. Define a homomorphism ˇWC.2/!P .2/, where for a given 2-string link l ,
ˇ.l/ is the unique pure braid on 2 strands whose linking number is the same as that of l .
Then, according to the proof of Proposition 2 in [11], ˇ is a retraction of i and the restric-
tion of ˛ to ker.ˇ/ is an isomorphism onto ‚. We denote by � its inverse, which can be
described as follows.

Given a theta curve � 2‚, we can always find a diagram such that edge e3 is an arc
without crossings (see [32]). This can be achieved by pulling a vertex along e3 until it is
a short segment with no crossings. Let N .e3/ be a regular neighbourhood small enough
not to intersect any crossing on the diagram. Then, we define '.�/ as the 2-string link in
D2 � I given by � n e3�S3 nN .e3/ (see Figure 3). In order to obtain a well-defined map,
we must choose appropriately the identification between S3 nN .e3/ and D2 � I , which
is uniquely determined up to isotopy relative to the boundary by requiring the linking
number between the two strands of � n e3 to be 0. In Figure 3, this corresponds to adding
the blue compensatory twists.

Then we are able to define the following group homomorphism:

zC
�
! ‚

'
! C.2/;

where the map � sends a directed strongly invertible knot .K; �; h/ to its quotient theta
curve as in Remark 3.5.

Observe that the image of the composition ' ı � is exactly C0.2/.
(1) Im.' ı �/ � C0.2/.
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�

'

Figure 3. An example on the homomorphisms � and '.

The image lies obviously in C.2/. Since the first strand is the image of the chosen half
axis of the fixed points locus of the strong inversion we also know that the image is con-
tained in Cu.2/. Moreover, by the definition of ', the linking number between components
is zero, hence Im.' ı �/ is contained in C0.2/.

(2) C0.2/ � Im.' ı �/.
It is enough to glue back N .e3/ to obtain a theta curve. Observe that for such a theta

curve, the union of e1 and e3 forms an unknot. Hence we get back a directed strongly
invertible knot by considering the preimage of e2 in the double cover branched over the
unknot e1 [ e3.

Remark 4.5 allow us to finally show our claims.

Theorem 4.6. The equivariant concordance group of strongly invertible knots zC is not
solvable.

Proof. In Remark 4.5, we defined a surjective homomorphism zC ! C0.2/. By Corol-
lary 4.3, we know that C0.2/ is not solvable, therefore zC is not solvable since it has a
non-solvable quotient.

Theorem 4.7. The quotient group C.n/=hhP .n/ii of the n-strand string links over the
normal closure of the pure n-braids subgroup is not solvable for any n � 2. In particular,
the cobordism group of theta curves ‚ Š C.2/=P .2/ is not solvable.
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Proof. Notice that C0.2/\P .2/ D 1. Thus, by Corollary 4.3, we know that C.2/=P .2/,
and hence ‚, are not solvable.

Observe that for n > 2, we have an injective homomorphism inWC.2/! C.n/, which
maps a 2-string link to an n-string link by adding .n� 2/ trivial strands. The homomorph-
ism in has a retraction snWC.n/! C.2/ given by forgetting the last .n� 2/ strands of the
string link. It is not difficult to see that the maps above induce maps on the quotients

C.2/=P .2/
in
�! C.n/=hhP .n/ii

sn
�! C.2/=P .2/

which show that C.2/=P .2/ is a subgroup of C.n/=hhP .n/ii for every n � 2. Therefore
C.n/=hhP .n/ii is not solvable.

5. Proof of Theorem 4.1

We start with three preliminary lemmas.

Lemma 5.1. For every n, the restriction of the Artin representation on Cu.2/,

An W Cu.2/! Aut0.F=FnC1/;

is surjective.

Proof. The case nD 1 is trivial, since F2D ŒF;F �. For nD 2, Aut0.F=F3/ŠZ and given
� 2C.2/, we have that A2.�/ corresponds to the linking number between the components
of � . We proceed by induction on n. Consider the following commutative diagram (see
Theorem 1.1 in [16] for the notation and details), where the bottom row is exact:

Cu.2/

1 Kn Aut0.F=FnC2/ Aut0.F=FnC1/ 1:

AnC1
An

Suppose by induction that the restriction of An on Cu.2/ is surjective. In order to prove
the lemma, it is sufficient to show that for every ˛ 2 Kn, there exists � 2Cu.2/ such that
AnC1.�/ D ˛. Given such an ˛, let � 2 C.2/ be a string link such that AnC1.�/ D ˛, and
denote by y� its closure. Then by Lemma 3.7 in [16], we have that all Milnor invariants
of y� of length � n vanish. By Theorem 3.3 in [7], we know that there exists a link L with
unknotted components with the same Milnor invariants of y� of length � nC 1. Let now
� 2Cu.2/ be any string link with closure L. It follows from Corollaries 3.6 and 3.8 in [16]
that AnC1.�/ D AnC1.�/. Therefore AnC1WCu.2/! Aut0.F=FnC2/ is surjective.

Let ¹F kºk�1 be the filtration on F (see Remark 3.8) given by the lower central series,
and let A W Cu.2/! Aut0.F / be the total Milnor invariant.

Recall from Lemma 2.4 that ¹F kºk�1 induces a filtration on Cu.2/ via A, which is
given by

Cu.2/i D ¹� 2Cu.2/ j 8j � 0; Œ�; Fj � � F iCj º;

so that A gives an action of Cu.2/� on F � (see Definition 2.3).
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Lemma 5.2. For all n � 0, we have that Cu.2/n D ker.An/.

Proof. Observe that since An D �n ı A, we have that

ker.An/ D ¹� 2Cu.2/ j Œ�; F 1� � F nC1º;

and hence Cu.2/n � ker.An/.
Vice versa, given � 2 ker.An/ we prove by induction on j � 1 that

Œ�; Fj � � F nCj :

First of all, observe that given a;b 2 FjC1 such that Œ�; a�; Œ�; b� 2 F nCjC1, then Œ�; ab� 2
F nCjC1. In fact, we can write

Œ�; ab� D �.a/�.b/b�1a�1 D Œ�; a� Œ�; b� ŒŒ�; b��1; a�:

Since FjC1 D ŒF 1; Fj �, it is sufficient to prove that given a 2 F 1 and b 2 Fj , we have
Œ�; Œa; b�� 2 F nCjC1. An easy computation shows that

Œ�; Œa; b�� D ŒŒ�; a�; b� Œa; Œ�; b��;

up to elements in F nCjC2.

Let L.Cu.2/�/ be the graded Lie ring given by the filtration on Cu.2/. Denote by
JAWL.Cu.2/�/ ! Der.l2/ the Johnson homomorphism, where we identify L.F �/ Š

L.F�/ with the free Lie ring l2 with two generators of degree 1.
Since for every � 2Cu.2/, the automorphism A.�/ acts on F by conjugating the gen-

erators x and y and preserving the product xy, we have that the image of JA is actually
contained in sDer.l2/ (see Definition 2.9).

Lemma 5.3. Let Kn be the kernel of the map Aut0.F=FnC2/! Aut0.F=FnC1/. Then
we have a natural identification between Kn and sDer.l2/n.

Proof. Let
pn W .Fn=FnC1/

2
! FnC1=FnC2

be the homomorphism
.�1; �2/ 7! Œ�1; x� Œ�2; y�;

as defined in [16], and consider the map

ˆn W kerpn ! Kn

.�1; �2/ 7! '�1;�2 ;

where '�1;�2 is the automorphism defined by mapping x to Œ�1; x�x D �1x�
�1
1 and y

to Œ�2; y�y D �2y��12 . According to [16], ˆn is an isomorphism for n � 2, and one can
easily check that it is surjective for n D 1. Define an analogous map:

‰n W kerpn ! sDer.l2/n
.�1; �2/ 7! D�1;�2 ;

where D�1;�2 is the derivation defined by mapping X to Œ�1; X� and Y to Œ�2; Y �. By the
definition of special derivation, we see that ‰n is surjective.

We conclude by noticing that .�1; �2/ 2 kerˆn if and if Œ�1; x� D Œ�2; y� D 1 in
FnC1=FnC2 if and only if .�1; �2/ 2 kerˆn.
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Proof of Theorem 4.1. By Lemma 2.6, it is sufficient to show that L.Cu.2/�/ is not solv-
able. In order to do so, we prove that the Johnson homomorphism

JA W L.Cu.2/�/! sDer.l2/

is an isomorphism of Lie rings. Consider the following commutative diagram, with exact
rows:

1 Cu.2/n=Cu.2/nC1 Cu.2/=Cu.2/nC1 Cu.2/=Cu.2/n 1

1 Kn Aut0.F=FnC2/ Aut0.F=FnC1/ 1:

According to Lemma 5.3, we can identify Kn with sDer.l2/n. One can check that with
this identification, the map Cu.2/n=Cu.2/nC1 ! Kn coincides with the restriction of the
Johnson homomorphism in degree n. Finally, Cu.2/n=Cu.2/nC1 ! Kn is an isomorph-
ism, since we know from Lemmas 5.1 and Lemma 5.2 that the central and right map are
isomorphisms.

Finally, by Proposition 2.12, we know that sDer.l2/ is not solvable, therefore Cu.2/ is
not a solvable group.
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