
Rev. Mat. Iberoam. 41 (2025), no. 5, 1897–1924
DOI 10.4171/RMI/1556

© 2025 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

On endomorphism algebras of GL2-type abelian varieties
and Diophantine applications

Franco Golfieri Madriaga, Ariel Pacetti and Lucas Villagra Torcomian

Abstract. Let f and g be two different newforms without complex multiplication
having the same coefficient field. The main result of the present article proves that
an isomorphism between the residual Galois representations attached to f and to g
for a large prime p (depending only on g) implies that the endomorphism algebra
of the abelian variety Af , attached to f by the Eichler–Shimura construction (after
tensoring with Q), is a subalgebra of the endomorphism algebra of the abelian vari-
ety Ag attached to g. This implies important relations between their building blocks.
A non-trivial application of our result is that for all prime numbers d congruent to 3
modulo 8 satisfying that the class number of Q.

p
�d/ is prime to 3, the equation

x4 C dy2 D zp has no non-trivial primitive solutions when p is large enough. We
prove a similar result for the equation x2 C dy6 D zp .

1. Introduction

Let QN be a positive integer and let " be a Dirichlet character of conductor dividing QN . Let
g 2 S2.�0. QN/; "/ be a newform of weight 2, level QN and Nebentypus ". Let Kg denote
the coefficient field of the newform g (i.e., the minimum number field containing all the
Fourier coefficients an.g/ of g). For p a prime ideal ofKg , we denote �g;p the Galois rep-
resentation attached to g (by Eichler and Shimura). After choosing an appropriate basis
for the underlying vector space, one can always assume that the representation has coef-
ficients in the ring of integers of the completion of Kg at p, so it makes sense to consider
its reduction �g;p.

Let N be a divisor of QN and let f 2S2.�0.N /; "/ be another newform satisfying the
following conditions:

(1) The coefficient field Kf of f matches the coefficient field Kg of g.
(2) There exists a prime p such that the semisimplification of the residual Galois repres-

entations N�f;p and N�g;p are isomorphic for some prime ideal p of Kg dividing p.
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By the Eichler–Shimura construction, there exist abelian varieties Af and Ag defined
over Q of dimension ŒKf W Q� attached to each of the eigenforms with the property that

L.Af ; s/ D
Y

�2Hom.Kf ;C/

L.�.f /; s/;

and a similar relation for g. Let L=Q be a field extension, and denote by EndL.Af / the
ring of endomorphisms of Af defined over L.

Question 1. Is there a relation between EndL.Af /˝Q and EndL.Ag/˝Q?

By a result of Hecke (see [9], p. 811, Satz 1 and Satz 2), if the Fourier coefficients
an.f / D an.g/ for sufficiently many small values of n, then the two forms coincide. A
congruence between f and g modulo a large prime ideal p implies (as will be explained
in the proof of Theorem 2.5) that their first Fourier coefficients must be equal (due to the
Ramanujan–Petersson bound), proving the existence of a constant M (depending on the
level of f and the level of g) such that if p is a prime ideal whose norm is larger than M ,
then an isomorphism (of the semisimplifications of) N�f;p ' N�g;p implies that f D g.
In particular, their endomorphism algebras are isomorphic. The non-trivial problem is
whether given the form g, there exists a constant Mg (depending either on the form g or
on its level) such that if p > Mg then the endomorphism algebras of both varieties are
related for any form f .

One of the main results of the present article (Theorem 2.5) is to provide a positive
answer to this second problem when g does not have complex multiplication and QN=N is
square-free, namely, we prove the existence of a constant Mg such that if p > Mg , then
for any newform f without complex multiplication and satisfying conditions .1/ and .2/,
there exists an injective morphism  WEndL.Af /˝Q! EndL.Ag/˝Q.

Our method could be used to prove a similar result for modular forms with complex
multiplication; however, because of the applications we have in mind, in the present article
we restrict to the case of modular forms without complex multiplication. Similarly, the
hypothesis QN=N square-free can be removed if one makes a more detailed study of local
types, but it simplifies some proofs and is satisfied in our applications.

The proof is based on results of Ribet on the splitting of a modular GL2-type abelian
variety Af over a number field L (as developed in [22–24]). In such articles, the author
constructs endomorphisms of Af in terms of properties of Fourier coefficients of the
form f . Then to provide an answer to Question 1, it is enough to relate the Fourier coef-
ficients of f to those of g.

The proof of Theorem 2.5 consists on proving that the congruence between the new-
forms f and g implies that all inner twists of g are also inner twists of f . The constructed
morphism is not just a morphism of Q-algebras, but also a morphism of Gal.L=Q/-
modules. This provides a relation between the splitting (up to isogeny) of the abelian
variety Af and that of Ag over any field extension L=Q.

Here is, in our opinion, an interesting application of our main result to the study of
Diophantine equations (the original motivation for this article) following the modular
approach. Consider the equation

(1.1) x4 C dy2 D zp;
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for a fixed positive square-free integer d . A solution .a; b; c/ of a Fermat-type equation
such as (1.1) is called primitive if gcd.a; b; c/D 1, and is also said to be trivial if abc D 0.
To a putative primitive solution .a; b; c/, one attaches an elliptic curve E.a;b;c/ defined
over the imaginary quadratic field K WD Q.

p
�d/ given by the equation

(1.2) E.a;b;c/ W y
2
D x3 C 4ax2 C 2.a2 C

p
�db/x;

whose discriminant equals 512.a2 C b
p
�d/cp . The curve E.a;b;c/ has additive/multi-

plicative reduction at the primes dividing 2, multiplicative reduction at all odd primes
dividing c and good reduction at all other primes (our primitivity assumption implies
that gcd.c; d/D 1). The curve E.a;b;c/ turns out to be a Q-curve, hence in particular (by a
result of Ribet in [25], see the paragraph after Theorem 6.3), there exists a Hecke character
~WGalK !Q�, where GalK denotes the absolute Galois group ofK, such that the twisted
representation

� WD �E.a;b;c/;p ˝ ~ W GalK ! GL2.Qp/

extends to a representation Q� of the whole absolute Galois group GalQ. If the residual
representation of Q� is reducible, then Q� is modular by Theorem 1.0.2 in [19]. Otherwise, the
residual representation of Q� is modular by Serre’s conjecture (proven in [13, 14]). Then Q�
itself is modular by [15] (theorem in the second page), i.e., there exist a modular form
f 2S2.�0.N /; "/, where N is the conductor of the representation Q� and " its Nebentypus
(an explicit formula for N and " is given in Theorem 4.2 of [18]), and a prime ideal p in
the coefficient field Kf of f such that Q� ' �f;p.

The curve E.a;b;c/ has multiplicative reduction at all odd primes dividing c (since
the solution is primitive, if a prime q divides c, it cannot divide d ), so by a result of
Hellegouarch (Theorem 6.5.1 in [10]), together with Ribet’s lowering the level result,
there exists a newform g of level QN (only divisible by primes dividing 2d ) congruent
to f modulo p. Then one is led to compute the space S2.�0. QN/; "/ and to prove that
no newform can be related to a non-trivial primitive solution of (1.1). By an idea due
to Mazur (see [30]), one can discard all forms g whose coefficient field Kg does not
match that of f when the prime p is large enough. This justifies the first hypothesis in
Question 1. However, the newforms g whose coefficient field Kg matches Kf could pass
this elimination procedure. There is a plausible situation that might appear (because K is
an imaginary quadratic field) which is that the building block of Ag (see Section 3.1 for
a quick review of building blocks) might have dimension two (i.e., is related to a “fake
elliptic curve”, namely an abelian surface with quaternionic multiplication).

The abelian variety Af has a 1-dimensional building block, namely the elliptic curve
E.a;b;c/ itself. Suppose once again that the newform g does not have complex multiplica-
tion.

Question 2. Is it true that the building block Eg of Ag has dimension 1? If so, what is
the minimum field of definition of the elliptic curve Eg?

To our knowledge, no general method was developed before to provide an answer to
Question 2 (i.e., an unpleasant type of congruence between an elliptic curve and a fake
elliptic curve). A key result used in the pioneering article [26] is that fake elliptic curves
have potentially good reduction at all primes. In particular, if the elliptic curve attached to a
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putative solution of our favorite Diophantine equation has a prime of multiplicative reduc-
tion, the building block Eg must have dimension 1. This is the case for Fermat’s original
equation, as exploited in [26] while proving asymptotic results for general number fields.
Unfortunately, this is not the case for many Diophantine equations, like equation (1.1),
which motivated the results of the present article. A possible workaround (to get partial
results) is to impose some constraints on the solutions in order to ensure a prime of poten-
tially multiplicative reduction for the attached elliptic curve. For instance, this idea was
used in [11, 17] while studying equations xp C yp D z2 and xp C yp D z3.

One of the main contributions of the present article is to provide a positive answer
to Question 2 when p is large enough (see Proposition 3.5 and Theorem 3.6). Further-
more, we prove that the elliptic curve Eg can be defined over the quadratic field K
(see Theorem 3.6) and the building block is totally defined over K.

p
�2/. A non-trivial

strengthening of our solution to this problem (required while studying equation (1.1))
is that the curve Eg can be chosen so that the residual Galois representations N�E.a;b;c/;p
and N�Eg ;p are isomorphic (see Theorem 3.16).

The method used to answer Question 2 could be used to prove non-existence of solu-
tions of other Diophantine equations over number fields (like imaginary quadratic ones).

For proving non-existence of non-trivial primitive solutions of (1.1), the last missing
ingredient is a result on non-existence of elliptic curves with the same properties as Eg
defined over K. The key property that Eg satisfies is that it has conductor supported on
primes dividing 2 and it has a K-rational point of order 2. Some quite recent results on
Diophantine equations depend on results of non-existence of elliptic curves over number
fields whose conductor is supported at a unique prime (see for example [7]). Here is an
instance of such a result that we prove in the present article.

Theorem 3.17. Let d ¤ 3 be a prime number such that d � 3 .mod 8/, and 3 does not
divide the class number of K D Q.

p
�d/. Then the only elliptic curves defined over K

having aK-rational point of order 2 and conductor supported at 2 are those that are base
change of Q.

As a consequence, we can prove the following asymptotic result.

Theorem 3.23. Let d be a prime number congruent to 3 modulo 8 and such that the class
number of Q.

p
�d/ is not divisible by 3. Then there are no non-trivial primitive solutions

of the equation
x4 C dy2 D zp;

for p large enough.

A similar approach works while studying the Diophantine equation

x2 C dy6 D zp:

To a putative solution .a; b; c/ one can attach the elliptic curve

(1.3) zE.a;b;c/ W y
2
C 6b

p
�dxy � 4d.aC b3

p
�d/y D x3;

over the quadratic fieldK DQ.
p
�d/. The curve zE.a;b;c/ is again a Q-curve with aK-ra-

tional point of order 3 (namely the point .0; 0/). Such equation was also studied in [18].
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Once again, there is a character ~ such that the twisted representation � zE.a;b;c/;p ˝ ~
extends to an odd representation of GalQ. The main difference with equation (1.1) is that
the elliptic curve zE.a;b;c/ has bad additive reduction at all primes of K dividing d (extra
care must be taken at primes dividing 6, see Lemmas 2.13, 2.14 and 2.15 in [18]), while
the curve E.a;b;c/ had only bad reduction (either additive or multiplicative, depending
on d modulo 8, see Lemma 2.8 in [18]) at primes dividing 2. We will prove the following
result.

Theorem 3.24. Let d be a prime number congruent to 19 modulo 24 and such that the
class number of Q.

p
�d/ is not divisible by 3. Then there are no non-trivial primitive

solutions of the equation
x2 C dy6 D zp;

for p large enough.

The article is organized as follows. Section 2 recalls the definition and main properties
of inner twists as developed by Ribet in [22]. It also contains the proof of Theorem 2.5
providing an answer to Question 1. In Section 3.1, after recalling the basic definitions of
building blocks and fields of definition, we apply the theory of inner twists to the abelian
variety Af attached to the (non-quadratic twist of the) elliptic curve E.a;b;c/ coming from
a putative solution .a; b; c/ of (1.1). In particular, we compute explicitly the group of inner
twists of Af and use this information to answer Question 2 (and its consequences). The
last part of the article is devoted to prove Theorem 3.17 on non-existence of elliptic curves
over K with a 2-torsion point and bad reduction only at the prime 2. It also contains the
proof of Theorem 3.23 and of Theorem 3.24. The code used to prove Theorem 3.24 is
available at httpsW//github.com/lucasvillagra/Asymptotic-results.

2. Inner twists

Let f 2Sk.�0.N /; "/ be a modular form and let � be a Dirichlet character. The twist of f
by � (denoted f ˝�) is the newform attached to the modular form with Fourier expansionX

n�1

an.f /�.n/ q
n:

Definition. A modular form f 2 Sk.�0.N /; "/, with k � 2, has complex multiplication
(CM for short) if there exists a non-trivial Dirichlet character � such that f D f ˝ �.

As mentioned in the introduction, due to the applications we have in mind, during
this article we will restrict to modular forms without complex multiplication. Recall the
following definition of [22].

Definition. Let f 2 S2.�0.N /; "/ be a newform without complex multiplication, and
let Kf denote its coefficient field. The set of inner twists of f is defined as

�f WD ¹
 2 HomQ.Kf ;C/ W 9�
 a Dirichlet character with(2.1)

.ap.f // D �
 .p/ap.f / for almost all pº:

https://github.com/lucasvillagra/Asymptotic-results
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Remark 2.1. Although it is not explicitly stated in Ribet’s article, it is the case that we can
replace the condition “for almost all p” in (2.1) by “for all p not dividing the conductor
of �
 nor N ”.

Here are some facts about �f and its elements:
(1) For 
 2�f , 
.Kf / � Kf (see Proposition 3.2 in [22]). In particular, �f is a subset

of AutQ.Kf / and the values of �
 belong to Kf .
(2) The set �f is in fact an abelian group (see Proposition 3.3 in [22]).
(3) Given 
 2�f , the character �
 is unique (see [22], page 48).
(4) The conductor of �
 is supported at primes dividing N (see [22], page 48).

The third property implies that we can (and will) denote elements of �f by pairs .
;�/.

Example. If f is a newform in S2.�0.N /; "/, and the Nebentypus " is not trivial, then
the coefficient field Kf is a CM extension of Q, and the pair .c; "�1/, where c denotes
complex conjugation, is an element of �f (see Example 3.7 in [22]).

Lemma 2.2. If .
; �/2�f , then the conductor of � divides 8N .

Proof. Comparing the Nebentypus of 
.f / and f ˝�, we get the well-known relation

(2.2) �2 D 
."/=":

In particular, the conductor of �2 divides N . If p is an odd prime, the valuation at p of
the conductor of �2 is either 0 (so the valuation at p of the conductor of � is at most 1),
or it equals the valuation at p of the conductor of �. But the conductor of � is supported
at primes dividing N (because f ˝� has the same level N as f ), so we conclude that the
p-valuation of its conductor is at most vp.N /. At the prime 2, if �2 is unramified at 2,
then the conductor of � has valuation at most 3 at 2; otherwise, the valuation at 2 of the
conductor of �2 is one less than that of �.

Let End0.Af / WD End.Af /˝Q denote the algebra of endomorphisms defined over
the algebraic closure of Q. If L is an extension of Q, let End0L.Af / WD EndL.Af /˝Q,
where EndL.Af / denotes the ring of endomorphisms of Af defined over L. An important
consequence of the main results of [22] is that the endomorphism algebra End0.Af / can
be computed in terms of the group of inner twists �f . Concretely, in the proof of The-
orem 5.1 in [22], Ribet constructs for each inner twist .
; �/ 2 �f an endomorphism �
 ,
and proves that the algebra generated by Kf and the endomorphisms �
 (for all 
 2�f )
equals End0.Af / (see page 59 of [22]).

The construction of �
 given by Ribet is as follows: let .
; �/ 2 �f be an inner twist.
Let t be the order of � and let r be its conductor. As mentioned in Ribet’s article, without
loss of generality, we can assume that r2 jN . Otherwise, let h be the modular form

h D
X

.n; r/D1

an.f / q
n:

Then h is a modular form of level r2N (as proved for example in Proposition 17 in Sec-
tion 3 of [16]). In [22], Ribet proves (see Proposition 2.2 and page 57) that the abelian
variety Af is isogenous over Q to the abelian variety Ah, hence it is enough to define the
endomorphism �
 on Ah (see Section 5 of [22] for extra details).
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The first stated property at the beginning of the section implies that Kf contains the
t -th roots of unity, so for any integer u, the value ��1.u/ is an endomorphism of Af
(defined over Q). Then (as in page 57 of [22]) let

(2.3) �
 WD
X

u .mod r/

��1.u/ ı ˛u=r ;

where ˛u=r is the endomorphism corresponding to slashing by the matrix
�
1 u=r
0 1

�
in the

space S2.�.N // (see Section 2 of [22] and also Section 4 of [28]). The hypothesis r2 jN
is needed for the slashing operator to preserve the space.

As explained in Ribet’s article, the endomorphism �
 is defined over the field of r-th
roots of unity (because the map ˛u=r is defined over such a field, as explained in nSection 4
of [28]; see also Section 6 of [29]). The following result is well known to experts, but we
did not find a proper reference for its proof. Let Q.�r / be the field of r-th roots of unity.
Identify � with a character of Gal.Q.�r /=Q/ and let Q� be the field fixed by the kernel
of �.

Lemma 2.3. The endomorphism �
 is defined over Q�.

Proof. We know that �
 is defined at least over Q.�r /. Let �2Gal.Q.�r /=Q/, say �.�r /D
�ir . If f 2S2.�1.N //, then �.˛u=r .f // D ˛iu=r .�.f // (by looking at the q-expansion).
This relation implies the relation �.˛u=r / D ˛iu=r as endomorphisms of Af . Since the
endomorphism �.u/ is defined over Q,

�.�
 / D
X

u .mod r/

��1.u/ ı �.˛u=r / D �.i/
X

v .mod r/

��1.v/ ı ˛v=r ;

where the second equality comes from the change of variables v D iu. The result follows
from the fact that �.i/ D 1 if and only if � restricted to Q� is the identity.

It was already known to Hecke (see [9], p. 811, Satz 1 and Satz 2) that two modular
forms of weight k whose first coefficients coincide (up to an explicit bound C depending
on the level and the weight of the two forms) must be equal. For later purposes, we need a
little variant of Hecke’s result, whose elegant proof was communicated to us by Professor
Gabor Wiese.

Lemma 2.4. Let f 2 Sk.�1.N // and g 2 Sk.�1. QN// be newforms. Let S be a finite set
of primes. There exists a constant C depending only on N , QN , k and S , such that if
aq.f / D aq.g/ for all primes q � C , q … S , then f D g.

Proof. Let � be a character whose conductor is divisible by all primes in S . Applying
Hecke’s result to f ˝ � and g˝ �, there exists a constant C (depending only on k,N , QN
and the primes in S ) such that if an.f /�.n/ D an.g/�.n/ for all n � C , then f ˝ � D
g ˝ �. We claim that the constant C suffices for our purposes.

If aq.f / D aq.g/ for all primes q � C , q … S , then (since f and g are newforms)
an.f /D an.g/ for all positive integers n � C not divisible by primes in S , so an.f /�.n/
D an.g/�.n/ for all n � C and f ˝ � D g ˝ �. Since f (respectively g) is a newform,
f D .f ˝ �/˝ ��1 D .g ˝ �/˝ ��1 D g.
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The following result provides a partial answer to Question 1.

Theorem 2.5. Let g 2S2.�0. QN/; "/ be a newform without complex multiplication. There
exists a constantMg (depending only on g/ such that if f 2S2.�0.N /; "/ is any newform
without complex multiplication, satisfying the conditions:

(1) the coefficient field Kf of f equals the coefficient field Kg of g,

(2) QN jN and N= QN is square-free,

(3) there exists a prime p > Mg and a prime ideal p of Kg dividing p such that the
Galois representations N�f;p and N�g;p are isomorphic,

then, for any field extension L=Q, there exists an injective morphism between the Q-alge-
bras

 W End0L.Af /! End0L.Ag/:

Moreover, if L=Q is Galois, then the morphism  is also a morphism of Gal.L=Q/-
modules.

Proof. The endomorphism algebra End0.Af / is generated by Kf and by the endomorph-
isms �
 for .
; �/ 2 �f (the latter defined over the field Q� by Lemma 2.3). If we prove
that the set �f is contained in the set �g , then the morphism  we seek for sends the
endomorphism �
 of Af to the endomorphism �
 of Ag ; this morphism is clearly inject-
ive and Galois equivariant. The key point to prove the inclusion of the inner twists groups
is the fact that the group �f is defined in terms of a property of Fourier coefficients.

Let S be the set of primes dividing 2 QN and let M be the set of characters � whose
conductor is supported at primes dividing QN with the property that there exists 
 2�f sat-
isfying (2.2). Lemma 2.2 implies that the setM is finite. If � 2M and 
 2 HomQ.Kg ;C/,
Lemma 2.4 implies the existence of a constant C� (depending only on QN , � and S ) such
that if

(2.4) aq.
.g// D �.q/ aq.g/; 8q � C� ; q … S;

then 
.g/ D g ˝ � . Define the constant

Mg WD max
�2M
¹C 2� º:

Let f be a newform satisfying the stated hypotheses, so in particular there exists a
prime p > Mg such that the residual Galois representations N�f;p and N�g;p are isomorphic
for some prime ideal p of Kg dividing p. Let .
; �/2�f , so for all primes q not divid-
ing 2N ,

(2.5) 
.aq.f // D �.q/ aq.f /:

Let p be a prime dividingN but not dividing QN . Since " (the Nebentypus of f ) is unrami-
fied at p, (2.2) implies that either � is unramified at p, or it is ramified at p but its square
is not. We claim that the second hypothesis implies that the latter case cannot occur.

The eigenform f has associated an automorphic representation �f of the adelic group
GL2.AQ/, where AQ denotes the adèle ring of Q. The representation �f factors as a
restricted tensor product of components �f;v over places v of Q. The second hypothesis
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implies that if p jN and p − QN , then the local component �f;p is a Steinberg represent-
ation. Then the level of the twisted modular form f ˝ � has valuation 1 at p if � is
unramified at p, or 2 if � is ramified at p when p is odd. When p D 2 and � is ramified
at 2, the valuation at 2 of the level of f ˝ � equals 2 or 6. Since 
.f / has the same level
as f , �must be unramified at p, proving the claim. Then � 2M , and it is enough to prove
the equality

(2.6) 
.aq.g// D �.q/ aq.g/; 8q �
p
Mg ; q … S;

to deduce that .
; �/ 2 �g . Let q �
p
Mg be a prime number not in S . There are two

possibilities: either q divides N or it does not. If q −N , Remark 2.1 implies that


.aq.f // D �.q/ aq.f /:

The third hypothesis implies that

(2.7) aq.g/�.q/ � aq.f /�.q/ .mod p/ and 
.aq.g// � 
.aq.f // .mod 
.p//:

By the Ramanujan–Petersson conjecture (proved in [3]), for all embeddings � WKg ! C,
j�.aq.g//j � 2

p
q. Then, since

Norm.p/;Norm.
.p// � p > Mg � 4
p
q;

both sides of each congruence of (2.7) are in fact equal, so (2.6) follows from (2.5).
Suppose then that q jN but q − 2 QN (since q … S ). Then hypotheses (2) and (3) imply

that q is a prime of “level lowering” for f modulo p, so

aq.g/
2
� ".q/.q C 1/2 .mod p/:

Since the absolute value of the left-hand side is bounded by 4q, both sides of the congru-
ence are not equal. Then p must divide their difference, which is bounded by .

p
q C 1/2,

giving a contradiction, since Norm.p/ � p > Mg � q
2 > .

p
q C 1/2 (since q is odd).

Then this last case cannot happen.

3. Applications to the equations x4 C dy2 D zp and x2 C dy6 D zp

3.1. Decomposing the abelian variety attached to E.a;b;c/

Let us start this section recalling some general basic definitions (see for example the
second chapter of [20]). Let A be an abelian variety of GL2-type and let B be a simple
component (over Q) of A.

Definition. The simple abelian variety B is a building block of A if it satisfies:
• the variety B is a Q-variety, i.e., it is isogenous to all of its Galois conjugates,
• the endomorphism algebra End0.B/ is either a totally real field F of degree ŒF WQ�D

dimB or a totally indefinite quaternion algebra over a totally real field F of degree
ŒF W Q� D 1

2
dimB .
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Definition. Let L be a number field. A building block B of the variety A is totally defined
overL if the abelian varietyB is defined overL, all the isogenies betweenB and its Galois
conjugates are defined over L and all of its endomorphisms are defined over L as well.

Let .a; b; c/ be a non-trivial primitive solution of (1.1) for d ¤ 1, and let E.a;b;c/ be
the elliptic curve over K D Q.

p
�d/ defined in (1.2).

As explained in the introduction, there exists a finite order Hecke character ~ (whose
construction is given in Section 3 of [18]) ofK unramified outside 2 and primes ramifying
in K=Q such that the twisted representation �E.a;b;c/;p ˝ ~ extends to a representation
Q�WGalQ ! GL2.Qp/. Let f 2S2.�0.N /; "/ be the newform attached to Q� (see [18] for a
description of the Nebentypus ") and let Af be the GL2-type abelian variety constructed
via the Eichler–Shimura map.

Over Q, the variety Af is isogenous to a product of simple abelian varieties, Af �
B1 � � � � �Bk , each variety Bi being a building block of Af as defined before. In the par-
ticular case of abelian varieties coming from newforms, all building blocks are isogenous
to each other, so in particular Af � Bk (see [21]).

Lemma 3.1. The curve E.a;b;c/ does not have complex multiplication if p > 2.

Proof. Since K is an imaginary quadratic field, if E.a;b;c/ has complex multiplication,
then its j -invariant must be a rational number (in particular, a real one).

The j -invariant of the elliptic curve E.a;b;c/ equals

j D
64.5a2 � 3b

p
�d/3

cp.a2 C b
p
�d/

�

Since .a; b; c/ is a non-trivial solution, a and b are non-zero, so j is a real number if and
only if ´

jcp D 8000a4 � 8640db2;

jcp D �14400a4 C 1728db2:

Subtracting both equations gives the relation

175a4 D 81db2;

hence a2=b D ˙9
5

p
d=7. Since d is square-free, and both a; b are integers, d D 7 and

.a;b/D .˙3;˙5/. Since cp D a4C db2D 256D 28, we get that pD 2 and cD˙16.

Lemma 3.2. Let r D ŒKf WQ�. Then the endomorphism algebra End0.Af / is isomorphic
to Mr .Q/.

Proof. Let L D K~ . Then there are isomorphisms of Galois representations �Af ;pjGalL '

.�f;pjGalL/
r ' .�E.a;b;c/;pjGalL/

r , so Faltings’ isogeny theorem (see Corollary 1 in page 21
of [6]) implies that Af is isogenous to .E.a;b;c//r , hence the elliptic curve E.a;b;c/ is a
building block of Af which does not have complex multiplication.

Remark 3.3. The elliptic curve E.a;b;c/ is a building block of Af defined over K, but it
is totally defined over K.

p
�2/.
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Remark 3.4. Since the center of End0.Af / is the field of rational numbers Q, Ribet’s
result (Theorem 5.1 and the remark before Proposition 3.5 of [22]) implies that the field
generated by the numbers ap.f /2 ".p/�1 for p not dividing the level of f is the rational
one. Let us just verify that this is indeed the case (because a similar computation will be
needed later).

If K is a number field, we denote by IK its idèle ring. A key property of the charac-
ters ~ and " is that as characters of the respective idèle group, they satisfy the relation

(3.1) ~2 D " ıN;

where NW IK ! IQ is the norm map (see [18], page 2831). Consider the following two
cases:

• If the prime p splits, say p D p1p2, then relation (3.1) translates into ~.p1/2 D ".p/.
Then

ap.f /
2 ".p/�1 D

�
ap1.E/~.p1/

�2
".p/�1 D ap1.E/

2
2 Q:

• If the prime p is inert, relation (3.1) implies that ~.p/2 D ".p2/ D ".p/2. Then using
the relation between ap.f / and ap.E/,

ap.f /
2 ".p/�1 D ap.E/~.p/".p/

�1
C 2p D ˙ap.E/C 2p 2 Q:

The elliptic curveE.a;b;c/ has discriminant�.E.a;b;c//D 512.a2C b
p
�d/cp . From

the equality
.a2 C b

p
�d /.a2 � b

p
�d / D a4 C db2 D cp

and the hypothesis that .a; b; c/ is a primitive solution (so any prime ideal dividing both
a2 C b

p
�d and a2 � b

p
�d / must divide 2), it follows that .a2 C b

p
�d / is a p-th

power outside 2, and the same holds for�.E.a;b;c//. Let q −2d be a prime number. If q j c
and q ¤ p, then the curve E.a;b;c/ has multiplicative reduction at the primes dividing q
(in K), and the residual representation N�E.a;b;c/;p is unramified at (the primes dividing) q.
Since ~ is unramified at q (by construction), the same holds for �E.a;b;c/;p ˝ ~. If q D p,
then the residual representation corresponds to a finite flat group scheme (or equivalently,
its Serre’s weight equals 2) by a result due to Hellegouarch, and since ~ is unramified at
(primes dividing) p, the same holds for the twisted representation. Since the extension
K=Q is unramified at primes not dividing 2d , the residual representation of Q� D �f is
also unramified at all primes q not dividing 2d .

There is an explicit bound NK such that the residual Galois representation N�E.a;b;c/;p
is absolutely irreducible for all primes p > NK (see Theorem 5.1 in [18] and Propos-
ition 3.2 in [5]). Then by Ribet’s lowering the level result applied to f , there exists a
newform g 2 S2.�0. QN/; "/, where QN is a positive integer only divisible by 2 and by the
primes dividing d , such that N�f;p ' N�g;P, where p and P are some primes in Kf and Kg
(respectively) dividing p. As explained in the introduction, it will be sufficient to consider
the case whenKf D Kg and pD P. Note in particular that the value of QN is independent
of the solution .a; b; c/ we started with.

Suppose that the form g does not have complex multiplication. Let Ag be the abelian
variety attached to the newform g by Eichler–Shimura’s construction. An immediate con-
sequence of Theorem 2.5 is the following result.
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Proposition 3.5. Suppose that Kf D Kg . There exists a constant B (depending only
on QN/ such that if p > B , then we have End0.Ag/ ' End0.Af / ' Mr .Q/. In partic-
ular, the building block of the abelian variety Ag has dimension 1.

Proof. From the theory of building blocks, we know that there exists a simple abelian
variety E such that Ag � Et , hence End0.Ag/ ' Mt .End0.E//. Theorem 2.5 implies
that End0.Af /�End0.Ag/ (over Q under the map ), soMr .Q/�Mt .End0.E//, where
r D ŒKf WQ� D dim.Ag/ D t dim.E/, implying that r � t (since End0.E/ does not have
zero divisors). Then r D t and dim.E/ D 1, i.e., E is an elliptic curve. Since the form g

does not have complex multiplication, neither does E, hence Mr .Q/ D End0.Ag/.

It is a natural problem to determine the minimal field of definition (if it exists) of a
building block of Ag and whether it matches a building block of Af (namely K).

Theorem 3.6. There exists a 1-dimensional building block Eg for Ag defined over the
quadratic field K and totally defined over K.

p
�2/.

Proof. Let Eg denote any building block of Ag (which is 1-dimensional by the last pro-
position). Recall that Eg is a Q-curve, i.e., the curve Eg is totally defined over a Galois
number field L satisfying that for all � 2 Gal.L=Q/, the curve �.Eg/ is isogenous to Eg .
Let�� W�.Eg/!Eg denote such an isogeny. Abusing notation (as in Ribet’s article [22]),
we can attach to Eg a map cWGalQ �GalQ ! Q� given by

(3.2) c.�; �/ D �� ı �.�� / ı �
�1
�� ;

which is an element of End0.Eg/'Q�. The map c is actually a cocycle (by (5.7) in [22]).
In particular, its class is an element of H2.GalQ;Q�/, whose order is at most 2 (see
Remark 5.8 in [22] and Proposition 3.2 in [24]). Then, by Proposition 5.2 in [20], the build-
ing blockEg is isogenous (over Q) to a building block totally defined over a field F if and
only if Œc� lies in the kernel of the restriction map Res: H2.GalQ;Q�/! H2.GalF ;Q�/.

By a result of Ribet (Corollary 4.5 in [24]), the curve Eg does have a minimum field
of totally definition. Furthermore, it can be explicitly described (as done in the proof of
Theorem 3.3 in [24]): consider the natural isomorphism

Q� ' ¹˙1º �Q�=¹˙1º;

where now the second factor is a free group that can be identified with the group of positive
rational numbers Q�C. This induces an isomorphism

H2.GalQ;Q�/Œ2� ' H2.GalQ;Q�C/Œ2� � H2.GalQ; ¹˙1º/:

The short exact sequence

1 // Q�C
x 7!x2 // Q�C // Q�C=.Q

�
C/
2 // 1

induces an isomorphism of the cohomology groups

H2.GalQ;Q�C/Œ2� ' Hom.GalQ;Q�C=.Q
�
C/
2/:
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Our cocycle class Œc� then decomposes as a product (following Ribet’s notation) .c; c˙/,
where c 2 H2.GalQ;Q�C/Œ2� and c˙ 2 H2.GalQ; ¹˙1º/. The minimum field of totally
definition Kmin for a building block equals the fixed field of c.

There is a second way to define the cocycle Œc� in terms of the Q-algebra End0.Ag/
(see Chapter 1 of [20]). Let Kg , as before, denote the coefficient field of g (which also
equals End0Q.Ag/) and let  2 End0.Ag/. The group GalQ acts on the set End0.Ag/.
Let us denote by � the action of � 2 GalQ on an endomorphism  . Skolem–Noether’s
theorem implies the existence of an element ˛.�/ 2 K�g such that

� D ˛.�/ ı  ı ˛.�/�1

for every  2 End0.Ag/. We can then define a second cocycle

c.�; �/ D ˛.�/˛.�/ ˛.��/�1:

Then by Theorem 4.6 in [20], both definitions coincide. But by Proposition 3.5, the
Q-algebras End0.Af / and End0.Ag/ are isomorphic as GalQ-modules, hence with this
second definition it is clear that the cocycle attached toAf matches the one attached toAg ,
and in particular the minimum field of totally definition of both building blocks coincide,
so the building block Eg of Ag can be totally defined over the field Q.

p
�d;
p
�2/ D

K.
p
�2/ (see Remark 3.3). We need to prove that the elliptic curve Eg can furthermore

be defined over K.
Let �2 2 Gal.Q.

p
�d;
p
�2/=Q/ be the map given by

�2.
p
�d/ D �

p
�d and �2.

p
�2/ D

p
�2:

Denote by 1 the identity element in such a Galois group. Since the elliptic curve E.a;b;c/
is defined over K, we can take the isogeny ��2 D 1 (the identity) and �1 D 1 (i.e., the
isogeny corresponding to the identity element to be the identity map on E.a;b;c/), the
corresponding map e��2 on Eg satisfies that

1 D c.�2; �2/ De��2 ı �2.e��2/:

In particular, e��2 has degree one, hence is an isomorphism (so Eg is isomorphic to
�2.Eg/). Then the j -invariant of Eg lies in K, so we can take the curve Eg defined
over such a field.

Remark 3.7. Even when the building block Eg of Ag is defined over K, it is not true (in
general) that if L=K is a field extension where the abelian variety Ag has a 1-dimensional
building block E, then E is isogenous to Eg (this will become clear while proving The-
orem 3.16). Here is an example (that will be explained in detail while proving such
theorem): let L D K � Q", where Q" denotes the field fixed by the kernel of ". Then
there exists an elliptic curve E defined over L (actually E D E.a;b;c/ ˝ ~) such that the
abelian variety Af is isogenous over L to Er (where r D dim.Af /). However, the build-
ing block E is not defined over K and is not isomorphic (nor isogenous) to Eg over L
(although they clearly are isomorphic over Q).

A natural question (whose answer will be needed later) is the following:
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Question 3. Suppose that L is a number field, and suppose that an abelian variety A is
isogenous overL toEr for some building blockE. When isE the base change of a variety
(up to isogeny) that is defined over a smaller field K?

Note that if E is defined over K, then the cocycle c attached to E in the proof of
the last theorem is trivial while restricted to GalK (not just cohomologically trivial). In
Theorem 8.2 of [25], Ribet proves that the converse is also true, i.e., he proves that if the
cocycle c is trivial on GalK then there exists an abelian variety QE defined over K such
that E is isogenous to QE over L.

To relate the residual Galois representation of Eg to that of our original elliptic curve
E.a;b;c/, we need some understanding on the coefficient field Kf . Let M be the order of
the character ~ and let �M be a primitive M -th root of unity. Let Q.~/ D Q.�M / denote
the field obtained by adding to Q the values of ~.

Lemma 3.8. Following the previous notation, we have that Q.�M / � Kf .

Proof. The set of prime ideals p of K which are unramified in K=Q and with inertial
degree 1 over Q (i.e., f .pjp/ D 1) have density one in K, so by Chebotarev’s density
theorem, there exists a set S of primes with inertial degree 1 of positive density (in the
set of all primes of K) such that ~.p/ is a primitive M -th root of unity for all prime
ideals p 2 S . Our assumption that the curveE.a;b;c/ does not have complex multiplication
implies that for some prime p 2 S , the value ap.E.a;b;c// ¤ 0 (as the set of primes p of
good reduction where ap.E.a;b;c//D 0 has density zero by [27], page IV-13). In particular,
for such a prime (of norm p), it holds that

ap.f / D ~.p/ ap.E.a;b;c//

is non-zero. The result follows from the fact that ~.p/ is a primitiveM -th root of unity.

Let K~ denote the abelian extension of K fixed by the kernel of the character ~WGalK
! C�, and similarly, let Q" be the field fixed by the kernel of the character ".

Lemma 3.9. With the previous notation, K �Q" � K~ with index 2. Moreover, we have
the following field diagram:

K~

2

K �Q"

Q" K

Q:

Proof. Follows from the fact that as a Galois character, "jGalK D ~
2.
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Proposition 3.10. The coefficient field Kf is either

(1) the field Q.�M /, or

(2) a quadratic extension of Q.�M /.

Moreover, Kf D Q.�M ; ap.f //, where p is any prime inert in K=Q that does not divide
the level of f , of ordinary reduction for E.a;b;c/ and such that ap.f / ¤ 0.

Proof. By Lemma 3.8, we have Q.�M / � Kf . Let p be a rational prime not dividing the
level of f which is split in K, say p D pp. Then

(3.3) ap.f / D ap.E.a;b;c// ~.p/ 2 Q.�M /:

On the other hand, if p is an inert prime, we have the formula

(3.4) ap.f /
2
D ap.E.a;b;c// ~.p/C 2p".p/:

Recall that ~2 D " ı N, so ~.p/ D ˙".p/. Thus ap.f /2 2 Q.�M /. Formula (3.4) also
implies that for a fixed inert prime p, the extension L D Q.�M /.ap.f // has degree at
most two over Q.�M /, and clearly L � Kf .

Let ` be a rational prime, and let � be a prime in L dividing it and let lD �\Q.�M /.
In the usual basis, the twisted representation �E.a;b;c/;` ˝ ~ takes values in GL2.Q.�M /l/.
To extend it to a representation Q� of GalQ, it is enough to define it on an element � 2 GalQ
which is not in GalK , for example a Frobenius element Frobp at a prime p inert in K.

To ease notation, let t D ap.f / D Tr. Q�.Frobp// and s D p".p/ D det. Q�.Frobp//.
Assume that ap.f / D t ¤ 0 and that p is a prime of ordinary reduction for E.a;b;c/. The
ordinary hypothesis on p implies that t ¤ 2

p
s (otherwise (3.4) gives that ap.f /D˙2p,

so p is not ordinary for E.a;b;c/). The matrices �E.a;b;c/;`.Frob2p/~.Frob2p/ and
�
�s �st
t t2�s

�
are diagonalizable, have the same trace and the same determinant, hence there exists a
matrix W 2GL2.L�/ such that

W.�E.a;b;c/;`.Frob2p/ ~.Frob2p//W
�1
D

�
�s �st

t t2 � s

�
:

Conjugating the representation �E.a;b;c/;` ˝ ~ by W , we can assume, without loss of gen-
erality, that this twisted representation takes values in GL2.L�/ and that

(3.5) �E.a;b;c/;`.Frob2p/ ~.Frob2p/ D
�
�s �st

t t2 � s

�
:

We claim that then (since t D ap.f / ¤ 0),

Q�.Frobp/ D
�
0 �s

1 t

�
:

The reason is that if A is any 2 � 2 matrix with different eigenvalues, and B is another
2 � 2 matrix satisfying that

A2 D B2; Tr.A/ D Tr.B/ ¤ 0;

then A D B (which follows from an elementary computation, assuming that A is diag-
onal). This implies that the representation Q� can be chosen to take values in GL2.L�/. In
particular, for any prime q not dividing the level of f , Tr. Q�.Frobq//D aq.f / 2 L� for all
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primes � 2L, hence aq.f / 2L (by Lemma 3.12), and the same is true for primes dividing
the level of f (by Chebotarev’s density theorem). SinceKf is the smallest field containing
aq.f /, we conclude that Kf � L.

Remark 3.11. The first case of the last result can occur. For example, let E be a rational
elliptic curve attached to a rational modular form f , and let ~ be any quadratic character
of K which does not come from Q. Let QE WD E ˝ ~ be the twist of E by ~. Then the
coefficient field of QE equals Kf D Q, which is the trivial extension of Q.�2/ D Q.

Lemma 3.12. Let ˛ 2 Q and let L be a number field. Suppose that for all prime ideals p
of L, ˛ 2Lp. Then ˛ 2L.

Proof. Suppose that ˛ …L, so L.˛/=L is a non-trivial extension. Let p be a prime ideal
of L and let q be a prime ideal of L.˛/ dividing p satisfying that the inertial degree
f .q jp/ is not 1 (such an ideal always exists by applying Chebotarev’s density theorem to
the Galois closure of L.˛/ over L). Then ˛ …Lp, contradicting the hypothesis.

An important fact of the character ~ (and also of ") is that by construction it has order a
power of two (although this is not explicitly stated in [18], it follows from its construction
given in the proof of Theorem 3.2 in loc. cit).

Lemma 3.13. Suppose that Q.�M /¨Kf . Then the extensionKf =Q is an abelian Galois
extension. Furthermore, the field Kf is the compositum of a quadratic extension of Q
with Q.�M /.

Proof. As proved in the last proposition, the quadratic extension Kf =Q.�M / is obtained
by adding the coefficient ap.f / for p a prime that is inert in K and of ordinary reduction
for E.a;b;c/ satisfying that ap.f / ¤ 0. Recall that if p is an inert prime, then ~2.p/ D
".p2/, so ~.p/ D ˙".p/. Replacing this equality in (3.4), we get that

(3.6) ap.f /
2
D ".p/.˙ap.E.a;b;c//C 2p/:

Keeping the previous notation, letM be the order of ~ (a power of 2). The order of " equals
the degree of the extension ŒQ" WQ�. Since the character " is even (as proven in Section 3.1
of [18]), its fixed field is a totally real number field, so Q" \K DQ. In particular, ŒQ" WQ�
D ŒK �Q" W K� D M=2 by Lemma 3.9. Then ".p/ is a root of unity of order a divisor of
M=2, hence a square in Q.�M /, soKf DQ.�M /Œ

p
.˙ap.E.a;b;c//C 2p� as claimed.

The last lemma implies that if Q.�M / ¨ Kf , then the Galois group Gal.Kf =Q/ is
isomorphic to Z=2 � .Z=M/�. It turns out that (in our situation) each element of such a
Galois group gives an inner twists.

Theorem 3.14. Let M be the order of the character ~ and let ıK denote the quadratic
Dirichlet character corresponding to the extension K=Q. Write Kf D Q.�M / � F , where
F=Q is at most a quadratic extension, as in the previous lemma. Let j 2 .Z=M/� and let
�j 2 Gal.Q.�M /=Q/ be the map given by �j .�M / D �

j
M . Then all inner twists of Af are

the following:
• if �j acts trivially on F , then .�j ; ".j�1/=2/ is an inner twist;
• if �j does not act trivially on F , then .�j ; ıK".j�1/=2/ is an inner twist.
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Proof. Let p be a rational prime not dividing the level of f . If p splits in K=Q, let p a
prime ideal of K dividing p. Then ap.f / D ~.p/ap.E.a;b;c//, so

(3.7) �j .ap.f //D~j .p/ap.E.a;b;c//D~
j�1.p/.~.p/ap.E.a;b;c///D"

.j�1/=2.p/ap.f /;

where the last equality comes from the fact that ~.j�1/.p/D .~2.p//.j�1/=2, because j is
odd (recall that M is a power of 2). On the other hand, if p is inert in K, it is enough to
study the case when ap.f / ¤ 0. By (3.6), we have

ap.f /
2
D ".p/.˙ap.E.a;b;c//C 2p/:

To ease notation, let � D ˙ap.E.a;b;c//C 2p. Note that ".p/ D �2rM for some r (see the
proof of the last lemma), so ap.f / D �rM

p
� (for the right choice of the square root).

Applying �j to it we get

(3.8) �j .ap.f //D �
jr
M �j .

p
�/D ap.f /�

.j�1/r
M

�j .
p
�/

p
�
D ap.f /".p/

.j�1/=2 �j .
p
�/

p
�
�

If �j .
p
�/ D

p
� (i.e., if �j acts trivially on F ), then equations (3.7) and (3.8) imply

that .�j ; ".j�1/=2/ is an inner twist, while if �j .
p
�/D�

p
� (i.e., if �j does not act trivially

on F ), then both equations imply that .�j ; ıK".j�1/=2/ is an inner twist.

As an immediate application, using Lemma 2.3, we get the following result.

Corollary 3.15. All the endomorphisms of Af are defined over the field K �Q".

Let Mg be the constant coming from Theorem 2.5.

Theorem 3.16. In the previous notation, and under the assumption that Kf D Kg and
that p >Mg , there exists a building blockEg defined over the quadratic fieldK such that

N�E.a;b;c/;p ' N�Eg ;p:

Proof. Since all endomorphisms of Af are defined over L WDK �Q" (by Corollary 3.15),
Theorem 2.5 jointly with Proposition 3.5 implies that End0L.Ag/ ' Mr .Q/, where r D
dim.Af / D dim.Ag/. Then, over L, both varieties are isogenous to r-copies of an elliptic
curve. Let us explain in more detail the situation for Af . The extension L=K is an abelian
extension of order M=2, a power of 2. Over Q, E.a;b;c/ is a building block of Af , but it is
not a factor of its splitting over L as we now explain. By Eichler–Shimura’s construction,

�Af ;p '
M

�2Gal.Kf =Q/

��.f /;p;

hence a similar decomposition holds while restricted to GalK . For � the identity, we have
that �f;pjGalK ' �E.a;b;c/ ˝ ~, hence for any � 2 Gal.Kf =Q/, we get

��.f /;p ' �E.a;b;c/;p ˝ �.~/:

Recall that ~ has order M and �M 2 Kf , hence while � ranges over all elements of
Gal.Kf =Q/, �.~/ ranges over all conjugates of ~, which equals all its odd powers.
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Let M 0 be the order of Gal.Kf =Q/. By Proposition 3.10, M 0 equals M or M=2,
depending on whether Kf is a quadratic extension of Q.�M / or not. Then we get the
following decomposition:

(3.9) �Af ;pjGalK '

�M=2M
iD1

�E.a;b;c/;p ˝ ~
2i�1

�2M 0=M
:

The key point is that ~ restricted to GalL is a quadratic character (by Lemma 3.9), so
while restricted to GalL, the representation is isomorphic to r-copies of �E.a;b;c/;p ˝ ~.
In particular, the variety Af over L is isogenous to .E.a;b;c/ ˝ ~/r . The problem is that
the elliptic curve E.a;b;c/ ˝ ~ is not defined over K. For that purpose, we look at the
variety Af overK~ , and it is true that over such a field, Af is isogenous to .E.a;b;c//r (the
base change of a curve defined over K). In particular, the cocycle c attached to E.a;b;c/
(in the proof of Theorem 3.6) over K~ is trivial while restricted to GalK .

By Theorem 3.6 (and Remark 3.7), there exists a building block Eg of Ag defined
over K such that Ag is isogenous (over K~) to Erg . In particular, the semisimplification
of the residual Galois representations N�E.a;b;c/;p and N�Eg ;p are isomorphic while restricted
to GalK~ .

The extension K~=K is abelian, and the characters of Gal.K~=K/ are precisely pow-
ers of ~. Since Eg is defined over K, we have that

(3.10) IndGalK
GalK~

.�Eg ;pjGalK~ / '

MM
iD1

�Eg ;p ˝ ~
i :

Since the curve E.a;b;c/ is also defined over K, a similar splitting holds for

IndGalK
GalK~

.�E.a;b;c/;pjGalK~ /:

Then
MM
iD1

N�Eg ;p ˝ ~
i
'

MM
iD1

N�E.a;b;c/;p ˝ ~
i :

Note that since N�E.a;b;c/;p is absolutely irreducible, the same must hold for N�Eg ;p . In par-
ticular, N�E.a;b;c/;p must be a summand of the left-hand side, i.e.,

N�E.a;b;c/;p ' N�Eg ;p ˝ ~
i ;

for some exponent i . Taking determinants on both sides, it follows that either ~i D 1, or ~i

is a quadratic character. Note that since p is odd, and ~ has order a power of two, ~ and ~
have the same order, so either ~i is trivial, or it is a quadratic character. If ~i D 1 then the
result follows, while if ~i ¤ 1, then the elliptic curve Eg ˝ ~i is another building block
defined over K satisfying the required property.

3.2. The Diophantine equation x4 C dy2 D zp

Let us start with a general result on non-existence of elliptic curves over quadratic fields
with a 2-torsion point.
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Theorem 3.17. Let d be a positive integer larger than 3 such that the fieldK DQ.
p
�d/

satisfies the following properties:
• the prime 2 is inert in K=Q (i.e., d � 3 .mod 8//,
• the class number of K is prime to 6.

Then the only elliptic curves defined over K D Q.
p
�d/ having a K-rational point

of order 2 and conductor supported at the prime ideal 2 are those that are base change
of Q.

Proof. Let E=K be an elliptic curve satisfying the hypotheses. Since K does not have (in
general) trivial class group, there is no reason for the curve E to have a global minimal
model. However, it always has what is called a “semi-global” minimal model, i.e., a model
which is minimal at all primes dividing the conductor of the curve, but is not minimal at
most one extra prime p (which we assume is odd), and the discriminant valuation at p
equals 12 (see Exercise 8.14 in [32]). Our assumption that E has only bad reduction at
the prime ideal .2/ implies that �.E/ D 2rp12. In particular, p12 is a principal ideal.
Our assumption that the class number of K is prime to 6 then implies that p is principal,
hence E does have a global minimal model.

Take a global minimal model for the curve E. Doing the usual change of variables
y ! y � .a1x C a3/=2 and clearing denominators, we can assume that our curve E is
given by a model (which might not be minimal at 2 but is minimal at all other prime
ideals) with a1D a3D 0. Furthermore, we can assume (after a translation, which preserves
minimality of the model at all odd primes) that our 2-torsion point corresponds to the point
.0; 0/. Then the curve E is given by an equation of the form

E W y2 D x3 C ax2 C bx;

where a; b 2 ZŒ1C
p
�d
2

�. Minimality at all odd primes implies in particular that its dis-
criminant �.E/ D 24b2.a2 � 4b/ is a power of the prime ideal .2/, i.e., �.E/ D .2/r ,
for some r � 0. The hypothesis K ¤ Q.

p
�3/ implies that the only roots of unity in K

are˙1. Then

(3.11) b2.a2 � 4b/ D ˙2r�4:

SinceK is a Dedekind domain, it has unique factorization in prime ideals, so in particular

b D ˙2t ;

for some t � 0, and in particular, b 2 Z; since �.E/ is an algebraic integer, 2t C 4 � r .
Substituting in (3.11), we get that

(3.12) a2 D ˙2r�4�2t ˙ 2tC2 2 Z:

Suppose that a D .a1 C a2
p
�d/=2, with a1; a2 2 Z (and a1 � a2 .mod 2/). Since a2

is a rational number, a1a2 D 0. If a2 D 0 then both a and b are rational numbers, and
hence E is a rational elliptic curve as claimed.

Suppose then that a2 ¤ 0 and a1 D 0, i.e., a D a2
p
�d for some integer a2. Write a2

in the form
a2 D 2

s
Qa;
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where s � 0 and 2 − Qa. Substituting in (3.12), we obtain the equation

�d Qa2 D ˙2r�4�2t�2s ˙ 2tC2�2s;

where the exponents are non-negative integers and at least one of them must be zero (as
the left-hand side is odd). The left-hand side is a negative integer which is congruent to 5
mod 8. All solutions of the equation˙1˙ 2m � 5 .mod 8/ are´

1˙ 22 � 5 .mod 8/;
�1 � 2 � 5 .mod 8/:

Note that in both cases, the non-zero exponent is at most 2, so d is at most 3, which
contradicts our assumption d > 3.

Remark 3.18. The result is not true over Q.
p
�3/, since for example the curve 2.0.3.1-

4096.1-a1 has conductor 26, a 2-torsion point, but is not defined over the rationals (nor is
isogenous to a rational elliptic curve). It is, however, a Q-curve.

Remark 3.19. The last result is similar to Theorem 1 in [7], in the case ` D 2, although
in such an article the authors impose to the curve the condition that it has multiplicative
reduction at ` (while our curve has additive reduction). In particular the condition on the
class group being odd is the natural one (which matches theirs). The method of proof is
completely different though.

Remark 3.20. The hypothesis on the class group being odd is equivalent to d being a
prime number (under the assumption d � 3 .mod 8/). This was already discovered by
Gauss (see for example Section 6 of [2]). The Cohen–Lenstra heuristics (see (C2) in [1]
and also page 58 of loc. cit.) imply that the number of imaginary quadratic fields of prime
discriminant, where 2 is inert, and whose class group is not divisible by 3, should have
density 56:013% (so there should be many of them).

Lemma 3.21. Let E1 and E2 be two elliptic curves over a number field K. Let q be a
prime of K of good reduction for E1. Let p > max¹N.q/ C 1 C 2

p
N.q/; 4N.q/º be

a prime number such that N�E1;p ' N�E2;p . Then E2 also has good reduction at q and
aq.E1/ D aq.E2/.

Proof. The proof is similar to that of Theorem 1.4 in [8]. Since p > 3, the curve E2 must
have either good or multiplicative reduction at q (by Remark 7 in [8]). The reason is that
ifE2 has additive reduction, then its local type is either: a principal series, a ramified quad-
ratic twist of an elliptic curve with multiplicative reduction or supercuspidal. A ramified
quadratic character reduces modulo an odd prime to a ramified quadratic character, so the
second case cannot occur. Since the coefficient field of an elliptic curve is the rational one,
any character (in both the principal series or the supercuspidal type) appearing at a prime
of bad reduction has order n with �.n/ � 2 (where �.n/ denotes Euler’s totient function),
so n2 ¹1; 2; 3; 4; 6º. Then for p > 3, the local type of � is preserved by congruences.

If the reduction is multiplicative, we are in a “lower the level” case, hence

(3.13) aq.E1/ � ˙.N.q/C 1/ .mod p/:

http://www.lmfdb.org/EllipticCurve/2.0.3.1/4096.1/a/1
http://www.lmfdb.org/EllipticCurve/2.0.3.1/4096.1/a/1
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But Hasse’s bound implies that
ˇ̌
aq.E1/

ˇ̌
� 2

p
N.q/. Since the difference of the right

and the left-hand side of (3.13) is non-zero, then p must be smaller than their difference,
which contradicts the hypothesis p > 1C 2

p
N.q/CN.q/.

Once we know that both curves have good reduction at q, we get the congruence

aq.E1/ � aq.E2/ .mod p/:

If both numbers are different, p must divide their difference, which by Hasse’s bound is
at most 4N.q/, giving the result.

Lemma 3.22. Let .a; b; c/ a primitive solution of (1.1), where p is large enough so
that N�E.a;b;c/;p is absolutely irreducible and let q an odd prime. There exists a bound B
(depending only on d and on q/ such that if p > B , then q − c.

Proof. If q j c, then the curve E.a;b;c/ has multiplicative reduction at q, but it does not
divide the conductor of the residual representation N�E.a;b;c/;p . In particular, the form f has
level divisible by q, but the form g does not, i.e., we are in what is called the “lower the
level case”. In particular,

(3.14) p j N."�1.q/.q C 1/2 � aq.g/
2/:

Note that " depends only on d and there are finitely many possibilities for the value aq.g/
(since the form g is a newform in the space S2.�0. QN/; "/, which does not depend on
.a; b; c/), so it is enough to prove that the right-hand side of (3.14) is non-zero for any
newform g. But by the Ramanujan–Petersson conjecture, jaq.g/j2 � 4q < .q C 1/2, so
the difference cannot be zero.

Theorem 3.23. Let d be a prime number congruent to 3 modulo 8 and such that the class
number of K D Q.

p
�d/ is not divisible by 3. Then there are no non-trivial primitive

solutions of the equation
x4 C dy2 D zp;

for p large enough.

Proof. The case d D 3 was proven in [4], so we can restrict to values d > 3. Let .a; b; c/
be a non-trivial primitive solution and consider the elliptic curve E.a;b;c/ as in (1.2). The
assumption .a; b; c/ being non-trivial and primitive implies that E.a;b;c/ does not have
complex multiplication (by Lemma 3.1).

The discriminant of E.a;b;c/ equals 512.a2 C b
p
�d/cp , which is a perfect p-power

except at the prime 2. Furthermore, all odd primes dividing the conductor ofE.a;b;c/ are of
multiplicative reduction, so the residual representation N�E.a;b;c/;p is unramified outside 2.

Recall that there exists a Hecke character ~ and a newform f 2S2.�0.N /;"/ (whereN
depends on .a; b; c/, but the conductor of " is supported only at primes dividing 2d ) such
that the twisted representation �E.a;b;c/;p ˝ ~ extends to �f;p.

Note that if .a; b; c/ is a non-trivial solution of (1.1), clearly c ¤ 1. Looking at (1.1)
modulo 8, it follows that c is not divisible by 2, and by Lemma 3.22, we can assume
that c is not divisible by 3. Then there exists a prime number q larger than 3 such that c is
divisible by q. In particular, the curve E.a;b;c/ has a prime of multiplicative reduction not
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dividing 6. Ellenberg’s large image result (Theorem 3.14 in [5]) implies that there exists
a bound B (depending only on K) such that if p > B , then the projective residual image
of �E.a;b;c/;p is surjective.

In particular, for such primes p we are in the hypothesis of Ribet’s lowering the level
result, so there exists a newform g 2 S2.�0. QN/; "/ such that the residual representation
of �g;p is isomorphic to that of Q�, where QN is only divisible by primes dividing 2d . The
surjectivity of the residual representation of �E.a;b;c/;p implies that the form g cannot have
complex multiplication either (which justifies such an hypothesis made in the present
article), so we can apply our previous results.

Let g be any newform in the space S2.�0. QN/; "/ without complex multiplication and
suppose that it is related to a solution .a; b; c/ of (1.1). Let gBC denote its base change
to K. Let ` be a prime not dividing 2d and define

S` D ¹. Qa; Qb; Qc/ 2 F3` n ¹.0; 0; 0/º W Qa
4
C d Qb2 D Qcpº:

In practice, since p will be a larger prime (compared to `), raising to the p-th power is a
bijection of F`. For each point . Qa; Qb; Qc/ 2 S`, consider the curve E

.Qa; Qb;Qc/
over F`. Let l be

a prime of K dividing `. Then,
(1) either the curve E

.Qa; Qb;Qc/
is non-singular, in which case if .a; b; c/ is an integral

solution reducing to . Qa; Qb; Qc/, we must have that al.E.a;b;c// D al.E.Qa; Qb;Qc// and
furthermore

~.l/al.E.Qa; Qb;Qc// � al.g
BC/ .mod p/;

(2) or the curve E.a;b;c/ has bad reduction at l, in which case we are in the lowering the
level hypothesis, and

a`.g/ � ˙~
�1.l/.`C 1/ .mod p/:

Given . Qa; Qb; Qc/ 2 S`, let B.`; gI Qa; Qb; Qc/ be given by

B.`;gI Qa; Qb; Qc/D

8̂<̂
:
N.al.E.a;b;c//~.l/ � a`.g// if ` − Qc and ` splits in K;
N.a`.g/

2 � a`.E.a;b;c//~.`/ � 2`".`// if ` − Qc and ` is inert in K;
N."�1.`/.`C 1/2 � a`.g/

2/ if ` j Qc:

If . Qa; Qb; Qc/ belongs to case .2/, then clearly p jB.`; gI Qa; Qb; Qc/ (since ~.l/2 D ".`/). If
. Qa; Qb; Qc/ belongs to case .1/, the well-known formula for the Fourier coefficients of gBC

in terms of those of g implies that´
~.l/ al.E.Qa; Qb;Qc// � a`.g/ .mod p/ if ` splits;
~.l/ al.E.Qa; Qb;Qc// � a`.g/

2 � 2`".`/ .mod p/ if ` is inert:

In all cases, it holds that

(3.15) p j
Y

.Qa; Qb;Qc/2S`

B.`; gI Qa; Qb; Qc/:

As previously explained, the Ramanujan–Petersson conjecture implies that the third
row value in the definition of B.`; gI Qa; Qb; Qc/ is never zero. If the coefficient fieldKg does
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not match the coefficient fieldKf , then there exists some prime ` for which the first or the
second row (depending on whether ` is split or inert) is non-zero, so the right-hand side
of (3.15) is non-zero, giving finitely many possibilities for the value of the prime p (this
is an idea of Mazur). Then to finish the proof we are left to discard the newforms g whose
coefficient field Kg matches the coefficient field Kf of f .

By Theorem 3.16, if p is large enough, there exists an elliptic curve Eg , defined
over K, whose conductor divides QN such that N�Eg ;p ' N�E.a;b;c/;p . A priori, the curve Eg
has bad reduction at primes dividing QN (i.e., at primes dividing 2d ), but the curve E.a;b;c/
has good reduction at all odd primes dividing d , so in particular the same must be true for
the curve Eg if p > 3 (see Proposition 1.1 in [8] and also Remark 7).

The residual representation N�Eg ;2 has image lying in S3. Under the isomorphism
GL2.F2/ ' S3, the elements of order 1 or 2 are precisely the ones of trace 0, while the
ones of order 3 have trace 1. In particular, the image of the residual representation (is iso-
morphic to one that) lies in the Borel subgroup (i.e., the curve Eg has a K-rational point
of order 2) if and only if the trace of any Frobenius element is even if and only if the image
does not have elements of order 3. Let T denote the fixed field of the kernel of N�Eg ;2, so
the extension T=K is unramified outside 2 (by the Nerón–Ogg–Shafarevich criterion) and
is of degree at most 6. A well-known result of Hermite and Minkowski states that there are
finitely many field extensions of a given degree and bounded discriminant. In particular,
our field T is one of a finite list, say ¹T1; : : : ; Tnº, of at most degree 6 extensions of K
unramified outside ¹2º. Suppose that ŒTi W K� is divisible by 3 for some index i . Then an
explicit version of Chebotarev’s density theorem (see for example [34] and the references
therein) proves the existence of a bound B and a prime q 2 OK (the ring of integers ofK)
of norm at most B such that Frobq has order 3 in Gal.Ti=K/. In particular, if ŒT W K� is
divisible by 3, there exists a prime whose norm is bounded by B (independently of the
original solution .a; b; c/) such that

aq.Eg/ D Tr.�Eg ;2.Frobq// � 1 .mod 2/:

But Lemma 3.21 implies that if p is large enough (where the bound depends on the norm
of the prime q, which is bounded by B), then E.a;b;c/ has good reduction at q and further-
more aq.Eg/ D aq.E.a;b;c//. Recall that E.a;b;c/ has a 2-torsion point, so aq.E.a;b;c//

is even, giving a contradiction. Then T=K has degree 1 or 2 and the residual representa-
tion N�Eg ;2 has image in a Borel subgroup, so the curve Eg also has a K-rational 2-torsion
point.

Theorem 3.17 then implies that the elliptic curve Eg is in fact defined over Q. In
particular, if q is a prime integer that splits in K as .q/ D qq, then

aq.Eg/ D aq.Eg/:

However, the curve E.a;b;c/ satisfies the property (proved in Proposition 2.2 of [18])

aq.E.a;b;c// D
�
�2

q

�
aq.E.a;b;c//:

Recall that by Ellenberg’s result (Theorem 3.14 in [5]), we are assuming that the projective
residual image of �E.a;b;c/;p equals PGL2.Fp/. Its fixed field is an extension of K disjoint
fromK.

p
�2/ if q is odd. Then by Chebotarev’s theorem, there exists a prime ideal q ofK
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of prime norm q of good reduction for both Eg and E.a;b;c/ such that aq.E.a;b;c// is not
divisible by p (if for example �E.a;b;c/;p.Frobq/ is the identity matrix in PGL2.Fq/) and
.�2
q
/ D �1. This contradicts the fact that Eg and E.a;b;c/ are congruent modulo p.

3.3. The Diophantine equation x2 C dy6 D zp

Theorem 3.24. Let d be a prime number congruent to 19 modulo 24 and such that the
class number of K D Q.

p
�d/ is prime to 6. Then there are no non-trivial primitive

solutions of the equation
x2 C dy6 D zp;

for p large enough.

Proof. The proof mimics that of Theorem 3.23, in particular all results of Section 3.1 hold
for zE.a;b;c/, with the following important observation:

(1) The curve zE.a;b;c/ does not have complex multiplication if p > 3 by Lemma 3.2
in [8].

(2) The curve zE.a;b;c/ has additive reduction at the prime
p
�d , and acquires good

reduction over the extensionK. 6
p
�d/ (see Remark 2 in [18]). In particular, if QEg denotes

the elliptic curve defined over K that is obtained after applying the lowering the level
result to zE.a;b;c/ (whose existence is warranted by Theorem 3.16), then it also acquires
good reduction over the extension K. 6

p
�d/, hence its minimal discriminant valuation at

the prime
p
�d must be even.

(3) The curve zE.a;b;c/ has a K-rational 3-torsion point, so we would like to know that
the same is true for QEg . Since the curve zE.a;b;c/ has a point of order 3, for all prime ideals p

of good reduction, ap. zE.a;b;c// � N.p/C 1 .mod 3/. Using Lemma 3.21, we know that
ap. zE.a;b;c// D ap. QEg/ for all small prime ideals p. In particular, ap. QEg/ � N.p/ C 1
.mod 3/ for all small prime ideals, hence by the so called “Sturm” bound (see for example
Corollary 9.20 of [33]), the congruence holds for all prime ideals of good reduction. Then
by Theorem 2 in [12], there exists a curve E 0 over K which is isogenous to QEg over K
which has a rational point of order 3.

(4) The hypothesis d � 19 .mod 24/ implies that the primes 2 and 3 are inert inK=Q.
Then the curve zE.a;b;c/ has reduction type IV� at the prime ideal .2/ (by Lemma 22.14
in [18]), so it has additive but potentially good reduction. Then its local type is pre-
served by a congruence modulo any prime larger than 3 (as explained in the proof of
Lemma 3.21), so QEg has also additive but potentially good reduction at the prime ideal .2/.
The same is true for the prime ideal .3/, the curve zE.a;b;c/ has reduction type II or III (by
Lemma 2.15 in [18]).

Then there exists an elliptic curve E 0 defined over K with the following properties:

• The conductor of E 0 is supported at the prime ideals dividing 6d .
• If the model E 0 is minimal at the prime ideal .

p
�d/, then the discriminant �.E 0/

of E 0 has even valuation at .
p
�d/.

• The curve E 0 has a K-rational 3-torsion point P .
• The curve E 0 has potentially good reduction at .2/ and at .3/.
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Take a semi-global minimal model for E 0, i.e., a model which is minimal at all primes
except one extra prime ideal p, which we can assume that does not divide 6d . The coordin-
ates of the point P are algebraic integers (by Theorem 3.4 in Chapter VII of [32]), so after
a translation (a transformation which preserves the discriminant of the equation), we can
assume that the rational 3-torsion point is the origin .0; 0/, so the model is of the form

(3.16) E 0 W y2 C a1xy C a3y D x
3
C a2x

2
C a4x;

where a1, a2, a3 and a4 are algebraic integers. Let y D ˛x be the tangent line of E 0 at P
(for some number ˛). The fact that P D .0; 0/ is an inflection point of E 0 implies that
the substitution y D ˛x on equation (3.16) (and substracting the left-hand side with the
right-hand side) gives the polynomial �x3.

Then ˛2 C a1˛ � a2 D 0, so ˛ is an algebraic integer. The change of variables y0 D
y � ˛x, x0 D x (which preserves the discriminant and the properties of the model) sends
the tangent line to the line y0 D 0. In particular, we can (and do) assume that our semi-
global minimal model is of the form

E 0 W y2 C a1xy C a3y D x
3;

where a1; a3 2 ZŒ1C
p
�d
2

�. In particular,

�.E 0/ D a33 .a
3
1 � 27a3/ D 2

r 3q .
p
�d/2s p12:

The even exponent at .
p
�d/ comes from the fact that the model is minimal at .

p
�d/

and the second condition. In particular, the ideal p12 is a principal ideal, so under our
assumption on the class number of K being prime to 6, p is principal and hence E 0 does
have a global minimal model (of the same form). In particular, since the only roots of
unity in K are˙1, for the minimal model it holds that

(3.17) �.E 0/ D a33 .a
3
1 � 27a3/ D ˙2

r 3q d s :

If .
p
�d/ does not divide the gcd of the two middle factors (as elements ofK), a3 must be

a rational number. Then a31 is also a rational number and hence a1 is rational. On the other
hand, if .

p
�d/ divides the gcd of the two middle factors, then the minimality condition

of the model E 0 implies that v
.
p
�d/

.a3/ � 2, so it is either 1 or 2. If it happens to be 2,
then a3 is once again a rational number, and the same proof as before implies that a1 is
rational as well.

Suppose then that a3D
p
�d � ˇ for some algebraic integer ˇ not divisible by .

p
�d/,

and that a1 D
p
�d � ˛ for some algebraic integer ˛. Then the valuation at .

p
�d/ of the

middle term in (3.17) is 4, hence s D 2 and we get the equation

(3.18) ˇ3 .d˛3 C 27ˇ/ D ˙2r 3q :

Once again, ˛ and ˇ must be integers. Since the curveE 0 has potentially good reduction at
the prime ideals .2/ and .3/, there is a bound for r and q that we recall. By Theorem 10.4
in [31], the exponent conductor of E=K at the prime ideal .2/ is bounded by 8 and at
the prime ideal .3/ is bounded by 5. By Table 4.1 on page 365 of [31], the number of



F. Golfieri Madriaga, A. Pacetti and L. Villagra Torcomian 1922

irreducible components of the special fiber of Neron’s model is at most 9. Then Ogg’s
formula (Theorem 11.1 in [31]) implies that r � 16 and s � 13. Then we can run over all
possible exponents on the right-hand side within this bound, and verify for which values
we get a divisor ˇ such that˙2r3q=ˇ3� 27ˇ is a prime times a perfect cube. Furthermore,
we discard the solutions for which the curve E 0 does not have additive reduction at both
primes 2 and 3 (since the curve zE.a;b;c/ has this property). We get only four non-rational
candidates, all of them defined over the quadratic field K D Q.

p
�547/, corresponding

to the values
.˛; ˇ/ 2 ¹.�6; 2/; .�12; 16/; .6;�2/; .12;�16/º:

Clearly, there are only two non-isomorphic pairs (the map .x; y/ ! .x;�y/ gives an
isomorphism between a pair .a1; a3/ and a pair .�a1;�a3/). It is easy to verify that for
the two isomorphism classes of curves, the quotient by the 3-torsion point is a rational
elliptic curve, hence the curve E 0 is isogenous to a base change. As in Theorem 3.23, this
contradicts the fact that zE.a;b;c/ satisfies

aq. zE.a;b;c// D
�
�3

N.q/

�
aq. zE.a;b;c//;

for all prime ideals q − 3 of good reduction (as proven in Proposition 2.3 of [18]).
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