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On the volume conjecture for hyperbolic Dehn-filled
3-manifolds along the figure-eight knot

Ka Ho Wong and Tian Yang

Abstract. Using Ohtsuki’s method, we prove the asymptotic expansion conjecture and the vol-
ume conjecture of the Reshetikhin—Turaev and the Turaev—Viro invariants for all hyperbolic
3-manifolds obtained by doing a Dehn-surgery along the figure-8 knot.

1. Introduction

In [40], Witten interpreted values of the Jones polynomial using the Chern—Simons
gauge theory, and constructed a sequence of complex valued 3-manifold invariants
satisfying striking properties. This idea was mathematically rigorously formalized by
Reshetikhin and Turaev [32,33] though the representation theory of quantum groups
and surgery descriptions [18] of 3-manifolds. In [39], Turaev, and Viro developed a
different approach from triangulations, constructing a sequence of real valued invari-
ants of 3-manifolds. These two invariants turned out to be closely related [34,38,40],
and are expected to contain geometric and topological information of the manifold.
Kashaev’s volume conjecture [16, 17] (see also Murakami—Murakami [23]) ful-
filled such expectation by relating the colored Jones polynomials of a knot to the
hyperbolic geometry of its complement. More precisely, the volume conjecture asserts
that value of the nth normalized colored Jones polynomial of a hyperbolic knot eval-
uated at the nth primitive root of unit ¢t = e@ grows exponentially in n, and
the growth rate is proportional to the hyperbolic volume of the complement of the

knot. Recently, Chen and the second author [4] conjectured, now known as the Chen—

. . 27/—1
Yang volume conjecture, that for odd r the values at the root of unity ¢ = e =

of the rth Reshetikhin—Turaev and Turaev—Viro invariants of a hyperbolic 3-manifold

grow exponentially in r, with growth rate, respectively, proportional to the complex
volume and the hyperbolic volume of the manifold. This conjecture was later refined
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independently by Ohtsuki [27] and Gang—Romo—Yamazaki [12] to include the adjoint
twisted Reidemeister torsion [31] of the manifold in the asymptotic expansion of the
invariants.

In [1], Belletti, Detcherry, Kalfagianni, and the second author proved the Chen—
Yang volume conjecture for the family of fundamental shadow link complements.
The fundamental shadow link complements were shown [5] to form a universal class
of 3-manifolds in the sense that any orientable 3-manifold with empty or toroidal
boundary is obtained from the complement of a fundamental shadow link by doing
a Dehn-surgery along suitable components. Therefore, understanding the asymptotic
behavior of the invariants under Dehn-surgeries becomes a necessary step toward the
solution to the Chen—Yang volume conjecture.

An earlier work of Ohtsuki [27] was a result along this direction, where he obtained
the asymptotic expansion of the Reshetikhin—Turaev invariants of all hyperbolic 3-
manifolds obtained by doing an integral Dehn-surgery along the figure-8 knot. To-
gether with a sequence of his works [25, 26, 28-30], Ohtsuki developed a method
of attacking Kashaev’s and Chen—Yang’s volume conjectures consisting of a circle
of creative ideas including the use of Faddeev’s quantum dilogarithm functions, the
Poisson summation formula, and the saddle point approximation.

The main result of this article is our first attempt to understand the asymptotic
behavior of the Reshetikhin—Turaev and the Turaev—Viro invariants under Dehn-sur-
geries, which generalizes Ohtsuki’s result from integral Dehn-surgeries to rational
Dehn-surgeries along the figure-8 knot. We note that our approach also works for the
integral Dehn-surgeries, and is up to details the same as Ohtsuki’s. A new idea in our
approach is a use of the reciprocity of generalized Gaussian sum in the simplification
of our formula for the Reshetikhin—Turaev invariants. Another new feature is that we
clarify the geometric meaning of the critical values of certain involved functions relat-
ing them to the desired geometric quantities (see Section 5), which previously could
only be done by numerical computations. The argument in Section 3 can be directly
applied to rationally Dehn-filled 3-manifold along any other knot, and together with
Section 5 provides a reinforcement of Ohtsuki’s method.

Theorem 1.1. Let M be a closed oriented hyperbolic 3-manifold obtained by doing a

Dehn-surgery along the figure-8 knot, and let RT, (M) be its rth Reshetikhin—Turaev

invariant evaluated at the root ¢ = e~ . Then, as r varies along positive odd

integers,

C r 1
RT, (M) = 7r eM(Vol(M)+Jj1CS(M))(1 + 0(_)),

r

1
v Tor(M; Ad)

where C, is a constant of norm 1 independent of the geometric structure of M,
Tor(M; Ad,) is the adjoint twisted Reidemeister torsion, Vol(M) is the hyperbolic
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volume and CS(M) is the Chern—Simons invariant of M. As a consequence,
4
lim —~ logRT, (M) = Vol(M) + v/—1CS(M) (mod ~/—172Z).
r—>o00 r

. . T /—1
It is proved in [34, 38, 40], and at the root ¢ = e2 = in [7], that for a closed
oriented 3-manifold, the Turaev—Viro invariant is up to a scalar the square of the
norm of the Reshetikhin—Turaev invariant. As a consequence, we have the following

theorem.

Theorem 1.2. Let M be a closed oriented hyperbolic 3-manifold obtained by doing
a rational Dehn-surgery along the figure-8 knot, and let TV ,(M) be its rth Turaev—

Viro invariant evaluated at the root q = e~ . Then, as r varies along positive odd

b2 (M)=bo(M) | 1
TV,(M) = ——————2z V(1 L o =) ),
|Tor(M ; Adp)| r

integers,

where bo(M) and b, (M) are, respectively, the zeroth and the second 7., Betti-number
of M. As a consequence,
. 2w
lim —logTV,(M) = Vol(M).

r—>o0o r
Qutline of the proof. The proof follows the guideline of Ohtsuki’s method. In Propo-
sition 3.4, we compute the Reshetikhin—Turaev invariants of M and write them as a
sum of values of a holomorphic function f, at integral points; and a key ingredi-
ent in the computation is Lemma 3.6 that iteratively using a reciprocity of generalized
Gaussian sums, we can simplify a multi-sum into a single sum. The function f; comes
from Faddeev’s quantum dilogarithm function. Using Poisson summation formula in
Proposition 4.3, we write the invariants as a sum of the Fourier coefficients of f.
In Proposition 5.4, we show that the critical values of the functions in the two lead-
ing Fourier coefficients fr(s+, m™,0) and f,(s_, m~,0) for s* and m* defined in
Lemma 3.3 coincide with the complex volume of M and the determinant of the Hes-
sian matrix gives the adjoint twisted Reidemeister torsion of M. The key observation
is Lemmas 5.1 and 5.2 that the system of critical point equations is equivalent to the
system of hyperbolic gluing equations (consisting of an edge equation and a Dehn-
surgery equation) for a particular ideal triangulation of the figure-8 knot complement.
In Proposition 6.4, we verify the conditions for applying the saddle point approxima-
tion showing that the growth rates of the leading Fourier coefficients are those critical
values, i.e., the complex volume; and in Section 6.2, we estimate the other Fourier
coefficients. Finally, we complete the proof by showing in Proposition 6.10 that the
two leading Fourier coefficient do not cancel each other and the sum of all the other
Fourier coefficients is neglectable.
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2. Preliminaries

2.1. Reshetikhin—-Turaev invariants

In this article, we will follow the skein theoretical approach of the Reshetikhin—Turaev

. . /=1 .
invariants [2, 19] and focus on the case ¢ = e 1, and equivalently t = ¢? =

nf
e’ , for odd integers r = 3.

A framed link in an oriented 3-manifold M is a smooth embedding L of a dis-
joint union of finitely many thickened circles S! x [0, €] for some & > 0 into M. The
Kauffman bracket skein module K, (M) of M is the C-module generated by the iso-
topy classes of framed links in M modulo the following two relations:

(1) Kauffman bracket skein relation:

K=o ><+e

(2) framing relation:

/=1 /=1
Lu()= (meBF e

There is a canonical isomorphism
(): K (8% > C

defined by sending the empty link to 1. The image (L) of a framed link L is called
the Kauffman bracket of L.

Let K, (4 x [0, 1]) be the skein module of the product of an annulus A with
a closed interval. For any link diagram D in R? with k ordered components and
bi,....br € K, (A4 x[0,1)]), let

(b1,....bx)p

be the complex number obtained by cabling by, ..., by along the components of D
considered as an element of K, (S3) then taking the Kauffman bracket ( ).

On K, (A4 x [0, 1]), there is a commutative multiplication induced by the juxta-
position of A, making it a C-algebra; and as a C-algebra, K, (A4 x [0, 1]) = C|[z],
where z is the core curve of A. For an integer n = 0, let e,(z) be the nth Cheby-
shev polynomial defined by the recursive relations eg(z) = 1, e1(z) = z, and e, (z) =
zep—1(2) — en—2(z). The Kirby coloring w, € K, (A x [0, 1]) is then defined by

r—2

oy =Y (=1)"[n + len,

n=0
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where [n] is the quantum integer defined by

2nmw/—1 _2nm/—1
e r — r
n| = .
[ ] 2rv/—1 _2n/—1
e r —e r

Suppose M is obtained from S3 by doing a surgery along a framed link L, D(L)
is a standard diagram of L; i.e., the blackboard framing of D(L) coincides with the
framing of L, and o (L) is the signature of the linking matrix of L. Let Uy be the
diagram of the unknot with framing 1, and let

in 2=

Then, the rth Reshetikhin—Turaev invariant of M is defined as

—o(L
RT, (M) = Ur (/Lrwra ceey /Lrwr)D(L) (//Lra)r)Uj_( ) (21)

2.2. Dilogarithm and Lobachevsky functions

Let log : C~(—o00, 0] — C be the standard logarithm function defined by
logz =log|z| + vV—largz,

with —7 < argz < 7.
The dilogarithm function Li, : C~(1, 0c0) — C is defined by

Lis(z) = _/Z log—w) ;.
0

u

where the integral is along any path in C~(1, co) connecting 0 and z, which is holo-
morphic in C~[1, co) and continuous in C~(1, c0).
The dilogarithm function satisfies the following properties (see, e.g., Zagier [42]):

(1 , n? 1 )
Li| — ) = —Liz(z) — — — =(log(—2))~. 2.2)
z 6 2
In the unitdisk {z € C | |z| < 1},
o0 Zn
Liz(z) =) — (2.3)
n=1
and on the unit circle {z = ¢2vV"19 |0 < 0 < 7},

2
Liy(e2V"18) = % 00 — 1) + 2V=1A(0). 2.4)
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where A : R — R is the Lobachevsky function (see, e.g., Thurston’s notes [37, Chap-
ter 7]) defined by

0
AO) = —/ log |2sint|dt.
0
The Lobachevsky function is an odd function of period 7. It achieves the abso-

lute maximums at k7 + %, k € Z, and the absolute minimums at k7 + 57”, kel.
Moreover, it satisfies the functional equation

1 b
5A(29) = A0) + A(0 + 5)

2.3. Quantum dilogarithm functions

We will consider the following variant of Faddeev’s quantum dilogarithm functions

[9, 10]. All the results in this section are essentially due to Kashaev and some of them

could also be found in [3]. For the readers’ convenience, we also include a proof here.
Let » = 3 be an odd integer. Then, the following contour integral

(2.5)

41 ~/—1 e(22—n)x
ooy = T |
r Q

- ————dx
4x sinh(7 x) sinh(=7+)

defines a holomorphic function on the domain

T b4
{ZGC‘——<R€Z<7T—|——},
r r

where the contour is
Q = (—00,—g]U{z €C ||z]| =& Imz > 0} U[g, 00)

for some ¢ € (0, 1). Note that the integrand has poles at n+/—1, n € Z, and the choice
of €2 is to avoid the pole at 0.
The function ¢, (z) satisfies the following fundamental properties.

Lemma 2.1. We have the following fundamental properties.

(1) Forz e Cwith0 <Rez < m,

| VU2 _ yan @GP G+ ) (2.6)

(2) For z € C with —% <Rez < %

1+erilz — em(‘/’r(z)—<ﬂr(z+ﬂ)). 2.7)
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Proof. In the region enclosed by €2 in the upper half plane, the function %
has simple poles at x = n+/—1, n € Z . Hence, by the residue theorem,
r b4 4 b4
z—— |- z4+ —
Arv—1 Or p @r p
(2z—m)x
e
[
@ 2x sinh(wx)
00 e(2z—rr)x
=— 2wr~/—1-Res__ —_—
’; x_"ﬁ(2x s1nh(nx))
o 24/—1z\n
S o G A A )
n=1
which proves (1).
In the same region, the function ﬁizﬂ) has simple poles at x = @, ne
Z 4. Hence, by the residue theorem, we have
L (2) — gr (= + 7))
Z2)—@r(z 4+
VS
esz
== 2 inh 2w x X
@ 2x sinh(=*)
o0 e27x
= — 2n~/—1-Res ., | ——————
X_: x=\zﬁ(2x sinh(Z”—x))
n=1 r
00 ry/—1z\n
— _ (e ) — log(l + er\/:Z)’
(=D"n
n=1
which proves (2). ]

Using (2.6) and (2.7), for z € C with &= + w <Rez<m+ 2"7”, we can
define ¢, (z) inductively by the relation

n

Qk—Dx —r —2nmy_
l_[ (1 _ er/jl(Z—f)) = 64”\/_—1(([&(2 r ) (pr(Z))’ (28)
k=1

extending ¢, (z) to a meromorphic function on C. The poles of ¢, (z) have the form
(a+ D+ br—” or —am — br—” for all nonnegative integer a and positive odd integer b.

47/—1
Lett =e 7 , and let

On =[]0 =15).
k=1
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Lemma 2.2. We have the following properties.

(1) ForO0<n<r-—1,
_r_ Ty _ 2wn 4
)y = e4nﬁ(wr(r) or (5% +r)). (2.9)

Q) For= <n<r—1,

_r_ Ty_ 2nn | W _
(Z)n :264ﬂﬁ(wr(r) or( e 7'[)) (210)

Proof. Inductively, using (2.6), we have (1). To see (2), by (1), we have

)y = o T OrDmer G =) s (o (B —m) = (R4 )

By analyticity, (2.7) holds for all z that is not a pole. In particular, it holds for z =

Z”T" % — m, and we have

eﬁ(‘ﬂr(bﬁn+%—N)_¢’r(27;n+,l.)) -1+ er\/—71(27r”'+%—7r) =2,

which proves (2). ]

We consider (2.10) because there are poles in (7, 277), and we move everything
into (0, ) to avoid those poles.

The function ¢, (z) and the dilogarithm function are closely related as follows.
Lemma 2.3. We have the following properties.

(1) Forevery z with) <Rez < m,

2mw2e?V-lz 1
13 24/—1z = = o
0r(2) = Lia(e1) & o 0(r4). 2.11)
(2) Foreveryz with) < Rez < m,
1
gr(z) = —2+/—1log(l —e2V717) + 0(—2). (2.12)
r

(3) As r — 00, ¢,(2) uniformly converges to Liz(ezﬁz) and ¢|.(z) uniformly
converges to —2+/—11log(1 — ezﬁ2) on a compact subset of {z € C | 0 <
Rez < m}.

Proof. For (1), since

1 r TX 1
. 27X = -t 0 3 )
sinh(<*)  2mx  3r r
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we have
(2z—m)x 2\/__1 (2z—m)x 1
e g e
z) = +/—1 dx — dx + 0 — ).
¢r(2) /Q 2x2 sinh(x) r2 o 3sinh(mx) (r4)
By the residue theorem, we have
2z—m)x e(Zz )X
4/_1/ e— ] R -
2x2 smh(nx) d '12:1 Sr=nv=T\ 22 sinh(7 x)
ZFZ)n

= Li(e>/ 1),

where the last equality holds by (2.3) for z so that ¢2V=1Z is in the unit disk, and it
holds by analyticity for all z with0 < Rez < .
By the residue theorem again, we have

2./ (2z—m)x (2z—m)x
_T e. dx = Z Res, e—
r2 @ 3sinh(wx) =nv=1\3 sinh(m x)
22e2V12
3(1 — e2v/1z) 12’

_ 2l (ezﬁz)n

3r2
n=1

This proves (2.11).
(2) follows from (1), and (3) follows from (1) and (2). ]

2.4. A geometric proposition

Proposition 2.4. There is an ¢ > 0 such that for any relatively prime pair (p, q) #
(£5, £1) so that the closed oriented 3-manifold M obtained by doing a g Dehn-
surgery along the figure-8 knot K4, is hyperbolic,

1
Vol(M) > 3 Vol(S*~Ky,) + &.

Proof. By Futer—Kalfagianni—Purcell [11, Theorem 1.1], if M is obtained from the
complement of a hyperbolic knot K in S by a Dehn-surgery along a boundary curve

2\ 3
Vol(M) = (1 - (%) ) Vol(S3~K),

where L(y) is the length of y in the induced Euclidean metric on the boundary of the
embedded horoball neighborhood of the cusp. For the K4, complement, the bound-
ary of the maximum horoball neighborhood is a tiling of eight regular triangles of

y, then
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ak

QTS

Figure 1. The link L.

side 1. Hence, as drawn in Figure 4 (see also Thurston’s notes [37]), L(x) = 4 and
L(y) = 1. As a consequence, the meridian m = y and the longitude / = x + 2y
are perpendicular, L(m) = 1, L(l) = 2+/3 and L(pm + gql) = /p? + 12¢2. As a
consequence,

472

3
2
3
—m) VOI(S \K41).

Vol(M) > (1

2 2, _4n? __4n® 3.1
If p© + 12¢° > ) ~ 106.67, then (1 p2+12q2)2 > 5 and

WIN)

1
Vol(M) > 3 Vol(S3~Kj,).

Therefore, by the symmetry of K4, complement, we only need to check for the pairs
(p,q) =(6,1),(7,1),(8,1),(9,1) (1,2), (3,2), (5.2), and (7,2), where p? + 12¢? <
107, which could be numerically done by using SnapPy [8]. |

Remark 2.5. The end of the proof of Proposition 2.4 is the only place in this article
where we need a numerical computation.

3. Computation of the Reshetikhin—Turaev invariants

The main result of this section is Proposition 3.4 where we compute the Reshetikhin—
Turaev invariants of the closed oriented 3-manifold obtained by doing a g Dehn-
surgery along the figure-8 knot Ky,. Recall that if M is the 3-manifold obtained
from S3 by doing a g Dehn-surgery along a knot K, then it can also be obtained by
doing a surgery along a framed link L (see Figure 1) of k components with framings



On the volume conjecture for hyperbolic Dehn-filled 3-manifolds 429

ai,...,ar coming from the continued fraction

See, e.g., [35, page 273].

3.1. Continued fractions

We recall some notations related to the continued fraction of g, which will be used in
the computation of the Reshetikhin—Turaev invariants. For a pair of relatively prime
integers (p, q), let

)4 1
= ak — —1
q k=1 = - T
ai
be a continued fraction. For eachi € {1, ..., k}, consider the matrix
A; Bi ‘
=T%S...T§,

where
0 -1 1 1
S—|:1 0:| and T—|:O lj|,

and as a convention, let
Ao 1
= . 3.1

Lemma 3.1. We have the following properties.
(1) Fori € {1, e ,k}, Ai = a,-Ai_l — Ci—l and Ci = A,'_l.
(2) We have

A _p
Ce ¢
Proof. (1) follows directly from induction. For (2), we show that
A; 1
= a—
Ci Coai— —T
ai
foreachi € {1,...,k}. Fori = 1, we have

A |ar
gE -
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and é—: = a;. Assume (2) holds for i — 1. Then, by (1), we have

i aidi-1—Ci1 4 Ci—1 4 1 .
= — =4a; — =a; ———.
Ai—1 Ai—1 aj—1 — —1

A;
Ci

Let us observe that Ax and Cy are relatively prime because Ay Dy — By Cy =
det(T4 S --- T S) = 1. Then, by Lemma 3.1 (2), [é’;] = :I:[fl’]. Since a (p, q)
Dehn-surgery and a (— p, —¢q) Dehn-surgery provide the same 3-manifold M, we may
without loss of generality assume that

Ag p
= . 3.3
&=l s
Ar—1 q
= . 3.4
|:Ck—1:| |:—P+ak4:| e
)4 Dy
= 3.5
MR s

As a consequence, we have

We also let

so that pp’ + qq’ = 1.

Fori € {1,...,k}, we also consider the quantity
—DITISE 4
K=" T ria4G (3.6)
Ci

The following Lemmas 3.2 and 3.3 are crucial in the computation of the Reshetikhin—
Turaev invariants of M and the study of their asymptotics. The proofs are elementary,
and the readers can skip them at the first time and come back later when needed.

Lemma 3.2. Cy_1K;_1 + Cix—_1q is an even integer.

Proof. By Lemma 3.1 and the definition of Kj_;, we have

k=1 k—1
Kik1Cr1 = (=D* Y a;Ci = (—1)F (611 +azAr+ Y aiAi—l)
i=1 i=3
k—1
=(-D* (Al +(A2+C1)+ Z(Ai + Ci—l))
i=3
k—1
=(—1)"(A1 + (A2 + D+ ) (4 + Al-_z))
i=3
k—3
:(—l)k (1 +2 Z Ai + Ax—1 + Ak—z) =14+qg+Cx—1 (mod?2) (3.7

i=1
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and

Kik-1Ck—1 + Cr—1g =1+ g+ Cr—1 + C—19 (mod 2)
= +q¢—p+arq).

Now, if ¢ is odd, then 1 + ¢ is even and the product is even. If g is even, then p must
be odd since p and g are relatively prime. As a result, | — p + axq is even and the
product is even. |

Lemma 3.3. (1) Let
I1:{0,...,|qg|—1} —>{0,...,2|q| — 1}
be the map defined by
I(s) = —Cr—1(2s + 1 + Kx—1) (mod 2|q]).

Then, I is injective and its image is equal to the set of integers in {0, ...,2|q| — 1}
that have the same parity as 1 — q.
In particular, there exist a unique (s*,m™%) € {0,...,|q| — 1} x Z such that

IsT)=1-q+2mtyq
and a unique (s—,m~) € {0,...,|q| — 1} X Z such that

Is7T)=—-1—g+2mq.

Moreover,
st —s~=p (mod q). (3.8)
(2) Let
J:{0,...,lqgl -1} > Q
be the map defined by
k—1 i
2s +1 k (=1)*K;
J(@s)= —+ (-1 -
()= ==+ D) ——

Then, for the s* and s~ in (1), we have

J(sT) = %/ (mod Z)

and
p/
J(sT)=—-=— (mod Z).
q
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Moreover,
J(sT)y=—J(s7) (mod 27).
(3) Let
K:{0,....,]q| -1} - Q
be the map defined by
Cror(2s + 1+ Kpy)? 22 Cik?
K(s) = — — + L
= Cina
Then, for the st and s~ in (1),
p/
K(sT)=—-"—(mod Z)
q
and ,
Kis™)=-2  (mod 7).
q
Proof. For (1), suppose otherwise that there exist distinct s and s” in {0, ..., |¢| — 1}
such that 7(s) = I(s”) modulo 2|g|. Then, 2Cr_1(s — s’) = 2hq for some integer A,
and % = I Since Ag—1 Dg—y — Bx_1Cx—y = det(T%-1S--- T4 S) = 1 and

Cy—1 and g = Ay are relatively prime, ¢ | (s — s’), which is a contradiction because
|s —s’| < |g| — 1. This proves that the map I is injective. To determine the image of
I, foreachs € {0,...,|q| — 1}, by (3.7), we have

I(s) = —Cg—1(25 + 1) — Ck—1 Ky
=—Cr_12s+1)—1—qg—Cg—; (mod 2)
=-2Ck1(s+ 1) —1—¢q
=1—¢g (mod?2).

Since {0, ..., 2|¢g| — 1} contains exactly |¢| even integers and |¢g| odd integers and /
is injective, the image of I consists of all integers with parity of 1 — g.
For (3.8), by computing I(s*) — I(s™), we have

—2Ck_1(sT —sT)=24+2m" —m7)gq,
which by the fact that —Cy_; = p — arq implies
psT —s7) — (ak(s+ —s)+(mT - m_))q =1.

This completes the proof of (3.8).
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For the first two identities of (2), it suffices to show that
pqJ(sT) = £1 (mod q).
To this end, for each i € {2, ..., k}, we consider the quantity

(_1)1+1Kj.

j=1 Cj+l

Then, by that p = axq — Cr—1 = axCr — Cy—1, we have
+ k « DK,
PaJ(s™) = (arq — Ce—1)(2s™ + 1) + (1) (axCx — Cr—1)q Z TG
i=1 !
= —Cr—1(25% + 1 + Ki1)
k—1

( 1)l+1K )

+ q(ak(Zsi + 1)+ (—l)kak (Ck
i=1 t+1

- (= l)k(Ck 12( l)lilK ))

1

= I(sT) + q(ak(Zs + 1) + ap(—)FEx — (—D)F Ex_y).

Since I(s¥) = %1 (mod ¢) by (1), the result will follow if we can prove that both
Ey_1 and Ej are integers. For this, by a direct computation, we have that £, = a;
and E3 = ajza; + a; are integers. For i > 4, by Lemma 3.1, we have

Ci=A4i-1=ai14i-2—Ci—2 =a;1Ci—1 — Ci.

Then,
i—2 ;
(1K,
E;, =C(; C. ! +( 1) Ki—1
=1 j+1
i—2 i—2 i
(—1)/H1K; (—1)/H1K; .
=ai G Y ——— LS Ny () K
i—2 i—3
=D/'K; (—1)/TK
= d;_— C — - —
i—1%i 1; Cj+1 i 2; Cj+1
J= J=
-1 i_lK'_ .
i—2()c—l2 + (=D)'Ki—
i—1

=ai1Ei1—Ei>+a;,
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where the last equality comes from that

(_1)i_1 Kz

L, i
- Ci—zT + (=1)'Ki—
_ —(=D)'"C oK o+ (1) K1 Gy
B Ci—l
_ Z 214G +Z —a;C _ai1Gi1 _
- Cis oy

By induction, all E;’s, in particular Ex_; and Ej, are integers; and the first two iden-
tities follow.
For the last identity of (2), by the first two identities, it suffices to show that

J(sT)y—J(s7) = 27”/ (mod 27).

To see this, by (3.8), we have st —s~ = p' + nq for some integer n. Then, by the
definition of J,
2(st —s~ 2p'
JGsT) = J(s™) = 257 —s7) _ 20 +2n,
q q
which completes the proof.
For (3), by the definition of K; and E;, we first compute

k—1 k—1
> CiK? Zi( 1)l+1a]C K;
= Cin =4 Citi
k—1k—1
— ZZ( 1)l+1aJC K
j=li=j t+1
k—1k—1 k—1j—1
— ZZ( 1)l+1aJC K; _ZZ( 1)l+1aJC K;
iSiict Cit it Cit
k—1
( 1)’+1K) ( ( 1)z+1K)
aj C;
(Z ’ )(; Cit ]2; ; Cit
k—1
1 z—HK
_(_l)kck—lKk—IZ( )

+1

_Za,E = (—D)FCr_1 Kk IZ( DK (mod Z),

+1
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where the last equality uses that E;’s are integers from the proof of (3). Then, by that
Crk =4,

Cro1((2s% + 12 +22s% + 1)Ky_y) . A GiK?

K(s%) =
q o1 Cit1
_ Cea(@s™ + 12 42025 + DKy—y)
q
k—1 i
-1 l+1K.
+ (—1D)*Croy Kt Z C)T K (mod Z)
Cit

25t 4+ 1
= Cr—1(25™ + 1+ Ki_y)

2% 41 itk
+ Ck—lKk—l( p + (=D ()—I)
i=1

Citi

25T 41
—T](Si) + Cr1 K1 J (sF)

25t 4+ 1 N Cr—1Ki—1p'

q q
where the last equality comes from (1) and (2). To prove the result, it suffices to show
that

(mod 7Z),

:F

25T +1 | Croi Kk p'
q(qE 4 Ce—1Ke—1p
q
To this end, since pp’ + gq’ = 1 and p = arq — Cx_1, we have

25t 4+ 1 Cro1Kp—1p'
pq\ — +
q q

) =—1 (mod g).

) = —pQ2sT + 1) + Cr1 Ki—1 pp'
=—p2sT +1) + Cr1Kx—1  (mod ¢)
= —(arq — Ck—1)(2s* + 1) + Cr—1 Ky
= —arq2sT +1)—I(sT)=—-1 (mod q),
where the last equality comes from (2); and

28~ + 1 Ck—lKk—lp/
P4 - q

) =p2s™ + 1) — Cr—1 K1 pp’

= p(zs_ + 1) - Ck—lKk—l (mod q)
= (arq — Cr—1)2s~ +1) = Cr—1 K1
=arq(2s"+ 1)+ I(s7)=—-1 (mod q),

where the last equality comes from (2). This completes the proof. |
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3.2. The computation

Proposition 3.4. For an odd integer r = 3 and at the root of unity t = e n\rﬁ the rth
Reshetikin—Turaev invariant of the closed oriented 3-manifold M obtained by doing
the g Dehn-surgery along the figure-8 knot can be computed as

lgl-1 ==

RT, (M)_K,Z Z Z gr(s,m,n),

m=-r32 —2 p=max{—m,m}

where

(_1)3(k+1)+z lale”F(w(L)—Z _1ai-Yk Tor 1C )+ IV (6(L)+3ay)
Kyr = ,
’ 2r J/q
with o (L) the signature of the linking matrix of the link L in Figure 1, C; and K; as
defined in Section 3.1, the first summation over integers s in between 0 and |q| — 1, the
second summation over half-integers m in between —% and % and the third sum-
mation over half-integers n in between max{—m,m} and % Forse{l,...,|q|—1},

let 1(s), J(s) and K(s) be as defined in Lemma 3.3. Then,

gr(s,m,n)
2nm,27t7n)
b

2nm 1 2nm 2mn\ —2xmy—1 r
:sin( ——J(s)n) ( , )e e M
roq r r

where the functions €(x, y) and V, (s, x, y) are defined as follows: let ¢, be the quan-
tum dilogarithm function as defined by (2.5).

(1) Ifboth0 < y + x < 7, then e(x,y) = 2 and

x2 2w X T
Vi(s,x,y) = _pT + [(S)T + 4xy —(p,(zr —y—x— 7)

T
+ gor(y —x+ 7) + K(s)m>.

Q) If0<y+x<mandm <y —x <2m, thene(x,y) =1 and

x2 2w x T
Vi(s.x,y) = _pT + I(S)T +4xy—<p,(n—y —X - 7)

—|—<pr( —x—}—n——)—{—K(s)n
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B)Ifr<y+x<2mand0<y—x <, thene(x,y) = 1and

x2 2 x 7
Vi(s.x,y) = _pT + I(S)T +4xy —<Pr(27f —y—X- 7)

b4
+ ¢r (y —x+ 7) + K(s)>.
Remark 3.5. Here, by half-integers we mean rational numbers of the form n + %

nez.

Proof of Proposition 3.4. A direct computation shows that

_3_r#41 -
(Mrwr)U+ = e( ro 4 )n«/71.

Let

/ k+1 —o(L) sin 2% ot —o(L)(=2 -4 v/=1
i =y (prer)y = ) ¢ rea :

Then, by (2.1), we have

RT, (M) = k| {wr,...,or)D(L)

r—2
k kK ajm;(m;+2)
’ E: K gim. SOk 4imitniTa)
=« (_l)mk‘f‘Z,_ldﬂthl_l 7 [ml + 1]
my,...mg=0

k—1
x [Tl0m: + Dmi1 + Dlfem )ik,

i=1

where the second equality comes from the fact that e, is an ei;envector of the pos-
m@m+2)
4

itive and the negative twist operator of eigenvalue (—1)"¢* , and is also an
eigenvector of the circle operator c(e,) (defined by enclosing e, by e;) of eigenvalue

(—1)”%. By Habiro’s formula [14] (see also [22] for a skein theoretical

computation),

(em)D(K41) = (=D"[m + l]Jr/n+1(K41)

(_ l)m min{m,r—2—m}

{1}

(_1)m+1 min{m,r—2—m}

{m+1+n}!
{m —n}!

n=0

_ [—(m+1)(n+%)(t)m+l+n’
TR Omn

where J,, (K) is the mth normalized colored Jones polynomial so that J,, (unknot)=1.
Here, {m} =17 — =2, {m}! = [[{=, k) and (t)m = [Jr—; (1 — 5).
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Then
RT, (M)
’ r—2 min{my .y —2—my }
k k ajm;(m;+2)
= _{KTr} Z Z (_1)2[:1 aimitzizl GRS —(mi+D(n+1)
mi,..., my =0 n=0
k—1
(Dmy+1+4n
x [y + 1] [ lomi + D0mig1 + D) —
i=1 Mi=n
< r—1 r—1 min{mg—1,r—1—my} a(m N .
D S S e
mi,.... mr—_1=0my= n=0
k—1
(Dme+
x [m1] H [ml.ml.+1](t)m7k”’
i=1 myg—n—1

where the last equality is obtained by changing the variables m; to m; — 1 fori €

{1,...,k} and the fact that [0] = 0. By reordering the summations, we have
l
RT, (M) =
{1}
r—1 min{mg—1,r—1—my} r—1 | 4 (m -
o SR SR (R S

myg=1 n=0 mi,....mi_1=0

k—1
x ] H[mim,-+11)
i=1

(mZ—1)
X (—1)“"(’”“1%%—"'/(("%)—(’)mk“

(t)mk—n—l
r—1 min{mg—1,r—1—my} s
=K, Z S(mk)(—l)“k'”ktak;nk —my (n+%) (Omy+n ’
myi=1 n=0 (Z)mk—n—l
where
" _ ( l)zl_la’l‘ Zl—lTl ,
T (1)k+1 Ky
is a constant independent of m, ..., my, and
r—1 k—1 aim? m2 my my
S(mye) = Y, = 1Xi=t aimi Vi (tT - t—T)
my,....mg_1=0

k—1
mimj4q _mimj4q
T -

i=1
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is a quantity depending only on myj. By Lemma 3.6 in Section 3.3, the multi-sum
S (my) can be computed as the following single sum:

2|g|—-1
V=1 Ck—1 Kk—17 | (=D¥ >
Sem) =7 ) o T s+ SR G
s=0
2|g|—1 K _ 1k
Z o r *l(mk—l—sr-i- k;l’ 1) )2
b
where
=
k—1 i+1
— _ ¢ 1 V=1r vk—2 Ci K k—2 (—Ditlk;
(=D = ok—2, k51 = iy D D o e MDD c+1:F VELYiol —opg
Vi
are constants independent of my.
Then, we observe that, for each s € {0, ..., |q| — 1},
zd/=1 Ckfl kal” —l)k 2 V=1 Ck—1 Kk—17 | (=D >
¢ -z (my+(s+q)r+—5-1- ) e—”,—.T(mkﬂrJrTiCﬁ)

Indeed, since all of Cr_y, my, s, g, and r are integers, a direct computation shows
that

—l)k

—z=l Ck_l (mg+(s+q)r+ k—1f:|:( )2
¢ = o TV (Kg—1Cr—1+Cr—19) — |
/=1 Cr—1 Kyp_1r | (=Dk ’
e—%T(mk'HH‘kTiﬁ)z

where the last equality comes from Lemma 3.2 that Kz_1Cr_; + Cx—_1¢ is an even

integer.
As a consequence, we have

S(@my)
lal=1 Cizt K17 4 =Dk o lal=l o o oy K1 Dk
—2'E+ Z e T (my+sr+—5— +ﬁ) —27 Z e 4 (mk+~\r+f*ﬁ)
5s=0 5=0
lgl—1 nf = ((m}\+”+1<k 1 2 “+1 iy
=27 e
s=0
— +1
lg=1 S g 2mi+2sr+ Ky 1 +TECT 2(1:4“[&))
— e [
s=0
lgl—1 1
_ /=1 Ck—1 Kk—17y2 | 1)it1K;
=¢ ) e 7 Tq (mehsrETE) sm(—ﬂ(i( ) @myg +2s1) + Z CUT K ,
s=0 i=1 Cl+l

where in the computation of the quantity in the sine we use that Cy = ¢,

2
n«/ Z 1 _n/—1r Zlg—z CiK,'
l—l C; Cz+1 4 i=1 Ci+1
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and

/=1 Ck—1 21
r q
7 =4/ —17e Ci—1

2
—1) 4 _ n\/ 1 _n—=1r k=2 CiK;
_ ( 1) zkrle Zl—l C; Cl-‘r] 4 Zi=l Cl_;’_ll .

As a consequence,

lgl—=1 r—1 min{m;—

1,r—1—my}
_a/=1Ck—1 Kk—17y2
RT, (M) = K;/T/ Z Z Z e % Lmy+sr+~451)
s=0 mip=1 n=0

Xsm(_n(( Dk (2mk+2sr)+zﬂ))

l+1

2
(= 1)ty S5k —mpc e y)_Omycen

(l)mk—n—l
Let
r , r—=2
m = —-—Mg, Nn = —n
2 2
and 5
Ci K7
3agr 7/ —1r k=2
Kk = (=1) 4 The =1 T k't
we have
RT (M)
—2 —2
lgl—1 = 3 /=1 Cr—1 (— ,+(2S+1+Kk71)f)2 —1r Zk —2 Ci K|
T S SIS et
5s=0 m/=—% n’=max{—m’,m’}

4 apm’? ey ) — —
x sin(znll - J(s)n)tik‘l ' /44y Dr—m'—w—1. (3.9)
roq (On'—m’
By a direct computation and that Cy = g, we have

Ky =

(_l)z(k+1)+zl_la,e”F(30(L)—Z —1aiYio,

e HYEIE (e (LBa L o (1)

2r /q '

(2s+1+Kk Drya_ nﬁr k—2 Ci K7
) Yi=i Ty

nfck Ck=1 (i

e

Cp_ / /
— o _l( kq 1(27Trm )2+27T;(S)(27Trm )+K(s)7r2)

and
agm? _

2m’ /=1 2mm’ 2mm’y2mn’
(e ) T ey (Car (T2 AT (20))

440
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and by Lemma 2.2, we have the following:

(1) if0<n’ £m' <5, then

(t)r—m/_n/_l . 26L V_l(—(pr(ﬂ—z%"/—M—l)—{-w (2nn 27:Tm’+%))

([)n/_m/ o
Q) ifosn +m' < %and% <n —m' <r—1,then
(Z)r—m/—n’—l _ 477\/7( —or (n_i_z%m/_l)_i_w'(brn 2n'm 71-‘,—”))
([)n’—m’

3) if%sn/+m/Sr—1and0§n’—m’§%,then

(l)r —m'—n'—1 e4nﬁ( or (zn_Zﬂn _27rrm’_1)+(pr(27rn 27rrm’+%)).
(t)n’—m’

Putting all these together and using the fact that

Ck—1 = —p + axq,

we complete the proof. |

3.3. Lemma 3.6

Lemma 3.6. For eachi € {1,...,k} and two non-zero integers mo and m; 41, let
r—1 i i ajm i m; m/+l m;j ml+1
Si(mo.mip1) = Y (—1)Zi=19imj 1 Xj=1 =3 [ -t~ )-
miy,....m; =0 j=0

Let A;, C;i, and K; be the quantities introduced in Section 3.1. Then,

+2|A1| 1 = (71)i+1m0)2
Si(mo.miy1) =1, e G
s=0
2|4;|-1 — C: i+1
o r_l%(mi+1+sr+l< LD o )2
9
s=0
where
+ _
T =
( 1)4 i Zl—l 1 JT«/ er—l G j:F F Zl_l (—])j+lKj
T hi-1,5 T mo Jj=1T;C; 1 i T Imo Jj=1"Cjy1
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In particular, the quantity S(my) in the proof of Proposition 3.4 equals Si_1(1, my),
and by Ax—1 = ¢, we have

2|g|—-1 k
S Z n«/r Ck k=1 (4574 Ky 1’_,_( 1) )2
() =7, Y e

s=0

2|q|-1
_ /=1 Ck—y Kk—17 _(=Dk >
-1, E e 7 a (mitsr+=5 o)

The proof of Lemma 3.6 relies on the following reciprocity of generalized Gaus-
sian sums.

Proposition 3.7 ([15, Proposition 2.3]). For m,n € Z, if mn is even and ny € Z,
then
[n|—1
e

m
A=0

. o\ 4 i -
mA2x /=T oydn/ T _ (__ ”) D

s=0

I\)

and 12" are perlodlc in m with perlod r. As a consequence, we have
Si(mo,mi+1 +71) = Si(mo,miy1),  Si(mo, —miy1) = —=Si(mo, mi41). (3.10)

Now, we use induction. For i = 1 and non-zero integers mg and m,, we have

r—1
aym 1 mqomy _ mgom mjpmop _mymp
Si(mo.ma) = Y (=N (T~ ) T~ 7))
m1=0
=1 aym 1 momj __mqgm mymo
= Z( 1)a1m1t a ( Pl —t > )t >
m1=0
2 momj _mgmy _ _mpmp
Z( 1)a1m1t 4 ( > —t > )[ > )
ml—

For the second sum, we have

E (_1)a1m1talz:n% (tmozml _[_mozml )t_mlzmz
m1=0
r—1
_ Z( I)Cll( ml) ay (= m1) (tmo( my) _t_mo(;ml))[(—m;)mz
m1=0
o “1’”% mony momy - mjnp
D G i e (e S T
mp=—r-+1
2r—1

2
apmy mom| _ mgmy mypmop
= E (_1)alm1t 1 (; 27—t 2 )2,

mi=r
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where the last equality comes from the periodicity of the summands in 7, and that

both {—r 4+ 1,...,0} and {r,...,2r — 1} are a full period. Therefore,
2 aymi mom, monmy - mymp
Si(mo.ma) = Y (=D)™™yw (@2~ 2 )2
ml—
i aymi momy mymy
=Y (=D)mTE e
m1=0
i “lm% momy mjmy
D D Gl T A B S
m1=0

2r—1
Qaymia~/—
_ Z ¢ ayr 2;7 2(m2+m0+a1)m17t /7

m1=0

2r

2r—1
2a1m rr\/
R T e G SUE

m1—

Then, by Proposition 3.7 with m = 2a;,n = 2r and ¢ = m + 5, we have

E e 2aq

3 2atl=1  ppqm2tmo a1y, oy
S1(mo, m3)

(5

1r 1 2|a1 [—1 2r(s4 2710 4 41y25 /T
— e_ 2a
a1 5s=0
12]4;]-1 2
_ 2 J=1C K (—1)
_ ( 1r e Lo masr = 4 T M0)2
A
1 s=0

(ma+sr+

|
N
0
—_
-
N——
Nl—
)
2
T
|
N
<
Iy
A0

Kir _ (—1)2m0 )2
1

where the last equality uses the fact that A; = K; = a; and C; = 1. In this case, we

have rl = ( )2
Now, assume that

2[4;—11-1 i
av/=1Ci—] Ki_1r , &D'mgyo
+ - =L my+sr+ 2510+ =10
Si—1(mo,m;) = T E e Ay 2 Cior )
s=0
2[4;—11-1 i
V=1 C;_1 . Ki_1r (=D'mgy2
- 7/1;_1 (mitsr+—=7"— I ermT ) )

— - r
T, E e

s=0

(3.11)
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By (3.10), we have

r—1 2
L amy omimjg _mimi4
Si(mo,miy1) = Z (=D#™ig=a @ 2 —t 27 )Si—1(mo, m;)

m; =0

r—1 2

. . aim< m~m-+1
Yo (=DEmieTE 2 S (mo.m;)
m;=0

r—1
. . a; (—m;)? (—=mj)m; 4
t Z (=% My =T TS (mg. —my)

m;=0

0

r—1 2
“aimi ml-ml-+1
(T4 3 )enmm S g m)

m; =0 m;=—r+1

r—1 2
. . a;ms; m~m<+1
=2 ) (-nEmi Ty 2 S (mo, m;),

m;=0

where the last equality comes from that both {—r + 1,...,0} and {0,...,r — 1} are a
am2 am

full period for m;. Since the quantities (—1)#™¢ 4~ and ¢ 2 have period r in m, we

have, for any integer s,

ajmi mim;y a;mj+sr)? (mj+srim;

(_l)a,‘ml‘t Tt > 1:(_1)a,-(mi+sr)t i t 5

. c(m;+sr)2 (mj+srym;
— (_1)_(—1)1ai(mi+sr)tal 177,4 LAl t : > i+l

- , “1ia:
— o= i Omy sy 2m /=T - U oy 5

Then, by this and (3.11), we have

Si(mo,mjy1)
r—1 2|Ai,1‘—l
— +
=2t ) X
m;=0 s=0

/=1 mj (=Dia; /=1 Cj— Ki_ (=D?
Xe” r 1ai(mi+sr)2+271v—l(’fﬂ—Ta’)(mH-sr)—”flﬁ(mi-‘rsr-‘r’flr-‘r%)z

r—1 2|A4;—1]-1
=27, E : E :
m;=0 s=0

— ms “Dia: /=1 C;i_ Ki_1r —ni
« e” I=1 0 (mj+sr)242m /1 (L - T (s ) - T/ AT (mitsr+ iz1r _{ CI,)_TO)Z

We observe that, as s runs over {0, ...,2|A4;_1| — 1} and m; runs over {0, ..., r — 1},
the quantity m; + sr runs over all integers in {0, ...,2|4;—1|r — 1}. Thus, by letting
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A = m; + sr, we can change the double sum above into the following single sum:

2|Aj—1lr—1 . i . i
=g — Mgl (=Dia; \,  xJ=T Gy Ki_r | (=Dimg >
S‘(moami+1)=21’-+l Z e 7 ATV TOATET AL TR )
A=0
2|Aj—qlr—1 : —1yi C K; —n!
I = F NS NI P SRR
i
A=0
2Adicalr=1 o Ciziyy2 Mmipl _ (=Dia;  Kj1Ciy <'>‘mo nszl Kizir Dimg o
=27t . Z P e - Z- e T A ( +o )
i
A=0
Adialr=1 Ciz1y52 mipy (=Da K Cioy Dm0 /7T Ciy (Kimir _ (=Dimg
AT S S ko e B Ll S = L
; .
A=0

By Lemma 3.1, we have 4;—1 = C;, a; — % = é—; and by the definition of Kj,

we have (—l)ia,- + % = —K;. As a consequence,
1
_ = Cl—l z—l" (*1) mO 2
+ ( + )
Si(mo,mi+1) =2tr;" e 7
2|Cilr—1 24,227 /1 (_1)I+l'"0),l /1

z+1
Z e 2Cir o +5+
A=0

_n— Cl—l( 1—1’ (_1)im0)2

—211.__1 roAj_g Ci—1
2IC‘llr_l 24:22 V=1 m; K: —_i+l
x Z o cir— 2 Ly S - e 0)An nV/=1
A=0
Finally, letting
) 1
1 Ci_q Kj_ —1)! “1C.7)\ 2
£, o G Rl Gy (VLG 2y
'[l. = 2e i—1 i—1 _— Ti—l'
A;

By Proposition 3.7 with 1 =24;,n=2C;r and y =741 4 Ki 4 GOm0 e paye

- K (—Ditlm
24il=1 2¢;r(o+ ML Bl CU 02 o

Si(mo,miy1) = 7, E e 24
s=0
A:l— mi4 | K; (= 1)’+1m0 2
2| il=1 G res+—F=+5~ SRV

Ty

2|A1| 1 i+1
(G ))
+ e —zy1 (m,+1+sr+ +c71mo)2
2|A1| 1 aJ=1 (—1)I+lmo)2
C;

Z e (m,+1+sr+

§S=
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By induction and the fact that A;_; = C; for each j,

" v—=lr éll—[ 5 NS l( LTI l)j’"O)Z v—I1Cjr
* — e
Tl Al iz A/

i
_ (_1)42,'_1’,'j
VA;
— =2 L _x/Chr [mim Y, CELK
X e Z/ 1C;Ci Z IC-G-I:F]Ir Lmo Z Ci+1 |

4. Poisson summation formula

The main result of this section is Proposition 4.3 where, using the Poisson summation
formula, we write the rth Reshetikhin—Turaev invariant of M as a sum of integrals.

Proposition 4.1. For ¢ > 0 and s € {1, ..., |q| — 1}, we can choose a sufficiently
small § > 0 so that if one o 2”" + Z”Tm and Z”T” — Z”m isnotin (8,% — &) U (w +
8, 37” — 8), then
187 (5. m.n)| < O(ede G VIS ~Kep)te)),
To prove Proposition 4.1, we need the following estimate, which first appeared

in [13, Proposition 8.2] for t = e ”F and in [6, Proposition 4.1] fort = e ”F.

Lemma 4.2. For any integer 0 <n <r andatt = e ,
2nmw
log |{n}!| = ——A( n ) + O(logr).
2 r

Proof of Proposition 4.1. By (3.9), we have

2 1
sin( - J(s))
roq
and by Lemma 4.2, we have

r 2n(r—m—n—1) r 27 (n —m)
log |gr(s,m,n)| = _EA( . )+EA(f +O(logr).

|gr(s.m.n)| =

r—m—n—l}!‘

{n —m}!

Choose § > 0 so that

A@S) < g

Now,ifoneofz’TT”+Z”Tmandz’r‘—”—z”Tmisnotin(c?,%—8)U(n+5,37”—8),

then
r T £ r (1
1 —(A[=)+=)=—=WIS>~K .
°g|g’(s’m’")|<2n( (6)+2) 47[(2\/0(5\ 41)+8)
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|
Dj Dy
Ds
-7 'O n

Figure 2. Regions Dg, Dé, and Dg.

The last equality is true because by the properties of Lobachevsky function A(%) =
%A(%), and the volume of S*~ K}, equals 6A(3). [

For § = 0, let

Ds = {(x,y) e R?

g g
5 < <—=—=488<y—x<—-96¢%,
y+x 3 y—Xx 2 }

Dy = {(x,y) €R?

3
8<y+x<£—8,n+8<y—x<—n—8
2 2
and

Dy = {(x’y) eR?

3
n+8<y+x<7n—8,8<y—x<g—8},

and let D5 = Ds U Dy U Dy If § = 0, we omit the subscript and write D = Dy,
D' = Dy, D" = Dy and D = D U D’ U D”. See Figure 2.

For a sufficiently small § > 0, we consider a C *°-smooth bump function ¥ on R?
such that

Y(x,y) =1, (x.y) € i)_%,
0<y(x,y) <1, (x,y)€ :o\_%,
Vv(x,y) =0, (x,y) € D,

and let
2nm 2mn

fr(s,m,n)zw( ,T)g,(s,m,n).

r
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Then, by Proposition 4.1, we have

lgl—1
RT,(M) =k, D 3 frls,mn) + OeFrGVICKat9) 4y
5=0 (m,n)e(Z+1)2

Since f, is C°°-smooth and equals zero outside of D, it is in the Schwartz space
on R2. Recall that by the Poisson summation formula (see, e.g., [36, Theorem 3.1]),
for any function f in the Schwartz space on R¥,

Z flmy,...,myg) = Z f(nl,...,nk),

(ml,...,mk)EZk (nl,...,nk)GZk

where f(nl, ...,ng) isthe (ny,...,ng)th Fourier coefficient of f defined by
fny,....ng) = / f(xl,'--,Xk)(?Zf:‘z”ﬁ"-’x’dxl ceedxg.
Rk

As a consequence, we have the following proposition.

Proposition 4.3. We have

lgl—1
RT (M) =k Y D frs.m.n)+ O (e 3 VoIS™Ka)+e)),

5=0 (m,n)ez?

where

2
ﬁ(s,m,n)=(—1)'"+"(i) / w(x,y)sin(f—m)n)s(x,y)
2r) Jo q

% e—x«/—l-i—ﬁ(Vr(s,x,y)—4rrmx—4rrny)dx dy.

Proof. To apply the Poisson summation formula, we need to make the summation
in (4.1) over integers instead of half-integers. To do this, let m’ = m + % and n’ =
n -+ % Then, for each s € {0, ..., |gq| — 1},

Z fr(s,m,n) = Z fr(S,m’—%, ,_%).

(m,n)e(Z+1)2 (m’ ,n")eZ?
Now, by the Poisson summation formula, the right-hand side equals
Z / Ir (s, m' — l ny — 1)ez’“g“m’“”‘/jlb”/dm’a’r/.
R2 2 2
(a,b)ez?

; : _ 2mm _ 2zm’ _ xm _ 2mn _ 2mn’ e
Using the change of variables x = =2% = =% — L and y = =% = 2% — &,

get the result. |
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In Section 6, we will show that among all the Fourier coefficients in this summa-
tion, the two f,(s*,m™,0) and f,(s~,m™,0) are the leading ones, where s* and m*
are as defined in Lemma 3.3 (1). In the rest of the paper, let

Vi(x,y) =Ve(st,x,y) —dam™x,

and let
Vi(x,y)=Ve(s",x,y)—dmm x.

Then, by Lemma 3.3 (1), we have

—px2 42
Vr+(x,y)=M_an—l—élxy—(p,(n—y_x_Z)
r
T -2
+§0r(y_x+7)+K(S )7
and
—px2 -2
Vr_(x,y):M—an+4xy—gor(n—y_x_£)
q r

T
+ ¢r (y —x+ 7) + K(s7)m?

on the region D, and we have a similar formula on the regions D’ and D”. As stated
in Lemma 6.2 in Section 6, the functions Vri are closely related to the functions

2
— 2
V+(X, y) = M —2wx + 4xy _Liz(e—Zv—l(y+x))
+Li2(62ﬁ(y—x)) 4 K(S+)ﬂ2
and
—px2 —2mwx . 2V=T
V7(x,y) = ———" —2mx + 4xy — Lip (e 72V 10 F)

+ Li, (ezle(y—x)) + K(s_)J'[2

whose critical values will determine the exponential growth rate of the invariants.
We also notice that V.= (x, y) and V*(x, y) define holomorphic functions on the
regions D¢ s, D(’C s> and D(’é s of C2, where for § = 0,

Dcs = {(x,y)eC2 ‘ § <Re(y)+Re(x) < %—8,8<Re(y)—Re(x)<g—8},

3
Dy = {(x, y)eC? ‘ § <Re(y)+Re(x) < %—5, 748 <Re(y)—Re(x) < 7”—3},
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Figure 3. Thurston’s ideal triangulation of the figure-8 knot complement.

and
3
D¢ s = {(x,y)eC2 ‘ T+8 <Re(y)+Re(x)<;—8,8<Re(y)—Re(x)<%—5}.

When § = 0, we denote the corresponding regions by D¢, D¢ and D¢, and let D¢ =
D¢ U D[z U D[.

5. Geometry of the critical points

The goal of this section is to understand the geometric meaning of the critical points
and the critical values of the functions V* defined in the previous section. The main
result is Proposition 5.4, which shows that the real and imaginary parts of the critical
values of V¥ are the volume of M and modulo 727 the Chern-Simons invariant of
M respectively, and the determinants of the Hessian matrices of V¥ at the critical
points give the adjoint twisted Reidemeister torsion of M. The key observation is
Lemmas 5.1 and 5.2 that the system of critical point equations of V'* is equivalent
to the system of hyperbolic gluing equations (consisting of an edge equation and
a g Dehn-surgery equation) for a particular ideal triangulation of the figure-8 knot
complement.

According to Thurston’s notes [37], the complement of the figure-8 knot has an
ideal triangulation as drawn in Figure 3. Let A and B be the shape parameters of the

two ideal tetrahedra, and let
A/:; A”:l—l B,:L B//:]—i
1—-A4° A 1-B’ B’
In Figure 4 is a fundamental domain of the boundary of the complement of a
tubular neighborhood of the figure-8 knot.

Recall that for z € C~(—00, 0], the logarithmic function is defined by
logz =In|z| + vV—1largz,

with —m < argz < 7.
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e

y
\
e

Figure 4. Combinatorics around the boundary.

Then, the holonomy H(e) around the edge e depicted in Figure 4 is
H(e) = log A + 2log A” + log B + 21og B”,
and the holonomies of the curves x and y depicted in Figure 4 are, respectively,
H(x) = 2log B + 2log B” —2log A —2log A”

and
H(y) =log B’ —log A”.

By [37], we can choose the meridian m = y and the longitude / = x + 2y. Hence,
H(m) = log B’ —log A”,
and
H(l) =2log B +2log B’ + 2log B” —2log A — 4log A”
= 2mv/—1—2log A —4log A",
Then, the system of hyperbolic gluing equations

H(e) = 2 +/—1,
pH(m) + gqH(l) = 2/—1

can be written as

5.1)

log A+ 2logA” +log B + 2log B” = 2n+/—1,
p(log B" —log A”) + q2n~/—1 —2log A — 4log A”) = 2w~/ —1.
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Now, for the critical point equations of V*, by taking the partial derivatives, we

have
a;/xi - pxEIm, 4y — 27 — 27/ Tlog(l — e~2V710+0)
+2+/~1log(1 — ezﬁ(y_x))
and
% = 4x —2v/—1log(1 — e‘zﬁ(y”)) —2+/~Tlog(1 — ezﬁ(y_x)).

Hence, the system of critical point equations of V¥ (x, y) is

4x —2+/—1log(1 — e—zﬁ(erx)) —2+v/—1log(1 - ezﬁ(y_")) =0,
S2PXEN 4 gy — 27 — 24/~ Tlog(1 — e 2V T10740) (5.2)
+2¢/=Tlog(1 — e2V=1079) = 0,

Lemma 5.1. In Dc, if we let A = e2¥=10%9) qnd B = ¢2V=10-%) then the sys-
tem of critical point equations (5.2) of V' is equivalent to the system of hyperbolic
glueing equations (5.1).

Proof. In D¢, we have

logA = 2/—1(y + x),

o =nav—1-2v—- + x) —log(l —e V™

log A = /=1 —2/=1(y + x) — log(1 — e"2V=10+0),
log A” = log(1 — e‘zﬁ(w")),

log B =2v—1(y — x),

log B' = —log(1 — e>V=10-9),

log B” = m+/—1 —2+/—1(y —x) + log(1 — ezﬁ(y—x)).

For one direction, we assume that (x, y) € D¢ is a solution of (5.2) with the “+4”
chosen. Then,

H(e) = log A +2log A” +log B + 2log B”
= 4xv/—1+2log(1 — e_zﬁ(y“c)) + 2log(1 — ez‘/jl(y_x)) +27/—1
=2~/ —1,

where the last equality comes from the first equation of (5.2). Hence, the edge equa-
tion is satisfied.
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Next, we compute H(m) and H(/). We have
H(m) = log B’ —log A”
— —log(1 — ezﬁ(y—x)) —log(1 — e—zﬁ(erx))
2x+/—1, (5.3)

where the last equality comes from the first equation of (5.2); and

H(l) = 2n+/—1—2log A — 4log A”
=2mv/—1—2log A+ (4x~/—1 —2log B') —2log A”

= —4yV 1+ 277/~1 —2log(1 — e 2Y710#9) | 210g(1 — £2V71079),
(5.4)

where the second equality comes from (5.3). Equations (5.3), (5.4) and the second
equation of (5.2) then imply that

pH(m)\i]—_l—{—Zﬂ FHOWT =0,

which is equivalent to the g Dehn-surgery equation
pH(m) 4+ gH(l) =27 v —1.

For the other direction, assume that (A, B) is a solution of (5.1). Then, the edge
equation implies the first equation of (5.2); and (5.3), (5.4), and the Dehn-surgery
equation imply the second equation of (5.2). ]

Lemma 5.2. In D¢, if we let A = ¢2V=107%) gnd B = 2V=10%2) then the system
of critical point equations (5.2) of V™~ is equivalent to the system of hyperbolic glueing
equations (5.1).

Proof. This time we have

log A = 2v/~1(y — ).

log A’ = —log(1 — ezﬁ(y_x)),

log A" = 13/=1 = 2/=1(y — x) + log(1 — e2V=10-9),
log B = 2+/=1(y + x),

log B' = /=1 — 24/=1(y + x) — log(1 — e~2V=10+0),
log B” = log(1 — e—zﬁ(erx))'
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The rest of the proof is similar to that of Lemma 5.1. For one direction, we assume
that (x, y) € Dc is a solution of (5.2) with the “—” chosen. Then,

H(e) =logA +2log A” +log B+ 2log B” = 27~/ —1.

Hence, the edge equation is satisfied.
For the computation of H(m) and H(/), we have

H(m) = log B’ —log A”
= —4x+v/—1—log(1 — ezﬁ(y_x)) —log(1 - e—zﬁ(erx))
= —2xv-1, 5.9

where the last equality comes from the first equation of (5.2); and
H(l) = 2n+v/—1—2log A — 4log A”
=27+/—1—2log A + (—4x~/~1—2log B') —2log A”
= 4yv/—1—27+/~1+ 2log(1 — e_zﬁ(”x)) —2log(1— ezﬁ(y_x)),
(5.6)

where the second equality comes from (5.5). Equations (5.5), (5.6) and the second
equation of (5.2) then imply that

—pH(m)«q/—_l—ZJT —H(l)«/—_l _o.

which is equivalent to the g Dehn-surgery equation
pH(m) + gH(l) =27 v/ —1.

For the other direction, assume that (A, B) is a solution of (5.1). Then, the edge
equation implies the first equation of (5.2); and (5.5), (5.6), and the Dehn-surgery
equation imply the second equation of (5.2). ]

By Thurston’s notes [37], for each coprime of integers (p,q) # (£1,1), (£2,+£1),
(£3, 1) and (£4, 1), there is a unique solution Ag and By of (5.1) withIm Ay > 0
and Im By > 0. Then, by Lemmas 5.1 and 5.2, we have the following corollary.

Corollary 5.3. The point

log Ag —log By log Ag + log By
(x0, y0) =

4/=1 44/—1

is the unique critical point of V" in D¢, and (—xq, yo) is the unique critical point of
V™ in Dc.
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Proposition 5.4. (1) Let Vol(M ) and CS(M), respectively, be the hyperbolic volume
and the Chern—Simons invariant of M. Then,

oo = (K67 + 2 ) = Voo - (K67 + )
for the integer p’ defined in (3.5), and
VT (x0, y0) = V™ (=x0, o) = V—1(Vol(M) + ~/~1CS(M)) (mod 7>Z).

(2) Let . = pm + ql, let p be the holonomy representation of the hyperbolic structure
on M restricted to S*~ Ky, and let Tor,,(S3~K4,; Ad,) be the Reidemeister torsion
of S3\K41 twisted by the adjoint action of p with respect to the curve p [31]. Then,

16
det(Hess V ) (x¢, yo) = det(Hess V™) (—xo, yo) = — Tor,(S>~Ky,; Ad,) # 0.
q

(3) Let p be the holonomy representation of the hyperbolic structure on M and let
Tor(M ; Ad,) be the Reidemeister torsion of M twisted by the adjoint action of p [31].
Then,

sin(3 — J(sT)m) B sin(_TxO — J(sT)m) . J=q
Jdet(Hess V) (x0, yo)  y/det(Hess V- )(—xo, yo)  8y/Tor(M:Ad,)

with the sign £ equal to (—l)J(er)_%.

Proof. For (1), (x,y) € D¢, we have

. oz . - 1 - 2

6
—2y? —2x? — 7% Fdxy + 27y + 27x,

= Li, (ezﬁ(yix)) + n2

where the first equality comes from (2.2), and the second equality comes from that
0 < Re(y) & Re(x) < 7, and hence,

log(—ezﬁ(yix)) =24/=1(y £ x) — v/ —1.

From this, we have, for all (x, y) with 0 < Re(y) £ Re(x) < Z,
p/
VE(x,y)— (K(s+) + —)712
q

2 572
= (—3—2))62—1-Lx—2y2—i-271y—i
q q 6

/12
+ Lig(e2V=10+9) 4 Lip(e2V-10-9) - 27 (5.7)
q
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and

Vo (—x,y) — (K(s_) + %/)nz

2 572
I
q q 6
/2
+ Lip (¢2V710H9) 4 Lip (¢2V7107m) - 2 ©8)

q

which proves the first equality of (1).
For the second equality of (1), by (5.7) and (5.8) and Lemma 3.3 (3) that K (s*) +

4
Z_is an integer, we have

q
V*(x0.y0) = V™ (=x0.y0) (mod 7°Z),
and it suffices to show that
V' (x0. y0) = V—1(Vol(M) + v/—=1CS(M)) (mod 7°Z).

To this end, we need the following result of Yoshida [41, Theorem 2] that if the
manifold M is obtained by doing a hyperbolic Dehn-filling from the complement of a
hyperbolic knot K in S3, m and [ are, respectively, the meridian and longitude of the
boundary of a tubular neighborhood of K, y is isotopic to the core curve of the filled
solid torus, and H(m), H(/) and H(y) are, respectively, the holonomy of them, then

®(H(@m))  H@m)H() n mwH(y)
V=1 4v/-1 2

where @ is the function (see Neumann—Zagier [24]) defined on the deformation space

Vol(M) 4+ ~/—1CS(M) = (mod v—1727),

of hyperbolic structures on S3~K parametrized by the holonomy of the meridian
u = H(m), characterized by

u ~— 2 (59)

0®w) _ HOD)
{ ®(0) = v—1(Vol(S*~K) + /=1 CS(S>~K)).

‘We will show that

®(H(m)) = 4x0y0 — 27 X0 — Lip (e 2V7100+x0)) 4 [, (¢2V7100=30)) (5 10)
H(m)H(/) —px3 + 7wX0
4 q

(5.11)

and

(5.12)
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so that

V' (xo, vo) — (K(s+) n %/)nz — O(H(m)) — H(miH(l) n ”*;__IH(y),

from which the result follows.
For (5.10), let

U(x,y) = 4xy —2nx — Lip (e_zﬁ(yﬁ‘)) + Liz(e2ﬁ(y—x))’

and define
V() = Ulx, y(x)),
where u = 2x+/—1 and y(x) is such that

1%
—_ =0.
AR IPRTes)
Since
oU v+ v+ 0
— = —— and — =0,
dy Ay A IPRTes)
we have

u dx w2

oW(u) (oU U
o\ dx ady

8y) ox dUdx  H()
.y () 9%

where the last equality comes from (5.4). Also, a direct computation shows y(0) = %,
and hence,

W(0) = U(o, %) — 4¢-1A(%) = V=1 (VoI($*~K4,) + V=1 CS(S*~K4))).
Therefore, W satisfies (5.9), and hence, W (u) = ®(u).
Since y(xg9) = yo, and by (5.3) H(m) = 2x9+/—1, we have
®(H(m)) = ¥(2xov—1) = U(xo, yo).

which verifies (5.10).
For (5.11), by (5.3), we have that H(m) = 2x¢9+/—1 and

2n~/—=1—pH(m)  2m~/—1—2pxov/—1
q q '

H(l) =

Then,
2
AL + mXxo

2rv—1—=2pxov—1 4
q q ’

H(m)H(l) = 2xov/—1 -

from which (5.11) follows.
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For (5.12), since pp’ + qq’ = 1, we can choose y = —¢'m + p’l sothat -y =
(pm +ql) - (—¢'m + p'l) = 1. Then,

27 —1—2pxo~/—1

H(y) = —¢'H(m) + p'H(l) = —¢ - 2xov/—1 + p’ - q

2 Y )
kol I (5.13)

== _1. .

from which (5.12) follows.
This completes the proof of (1).

For (2), by (5.7), we have

’

Hess V1 (x0. y0)
_ZJ_4_ 402V —1(yo+x0) _ 402V —1(yo—x0) _ 402V —1(yo+x0) 4 402V —1(yg—x0)
q 1—e2V=1(o+x0) 1.2V —1(yg—x0) 1—e2V=1(o+x0) |2V —1(yg—x()
_ 4e2v—1gtx0) 402V~ 109—x0) 4 402V 100 +x0) 4,2V —1(¥p—x0)
1—e2V—1o+x0)  1_.2vV—1(yg—x0) 1—e2V—1o+x0)  1_p2v—1(yg—x0)

and by (5.8), we have

Hess V™ (—xo, y0)
402~ —1(yo—x0) 402V —1(yo+x0) 402V —100+x0) 4,2V —1(¥p—x0)
1—e2V—1(o+x0) | _p2vV—1(yg—x0)

_2p_ 4 _
4 1—e2V=1(0=x0) | _e2v/—1(rp+x()

402V 100 +x0) 4,2V —1(39—xp) 4 402V 100 —x0) 4.2V —1(o+x0)
1—e2V—1(o+x0) 1_p2v—1(yg—x0) 1—e2V—1o—x0) 12V —1(g+x0)

Hence,
det(Hess V ™) (xo, yo) = det(Hess V) (—xo. yo).

and it suffices to prove that

16
det(Hess V) (xq, yo) = ? Tor,L(S3\K41;Adp).

To this end, for simplicity, let Xo = e2V=1%0 and Y, = €2V~170_ Then, the first

equation of (5.2) implies

Xo+Xo' =Yoo+ Y, '+ 1. (5.14)
We have
2V 2p 4X0Y, 4X;1Y,
v(xo,yo) =———4- - 1
X q 1— X()Y() 1— XO Yo
2 4(Yy — Y ! 2
— __p (_(; 0 ) — — __p —4(Y0 _ YO_I)’
q Yo+ Yy —Xo— X, q
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where the last equality comes from (5.14). Similarly, by (5.14), we have

2Vt 4XoY, 4X71Y,
——(x0, yo) = —4 — — 0 = —4(Yy - Y, !
52 (x0. ¥0) = Xo¥o 1—X.1Y, Yo—Yy )
and 27+ 1
02V 4X,Yo 4X:1Y, _
xay (0 Y0 =TTy Ty, = X=X,
0
Therefore,

det(Hess V ) (xo, o)
B (_27]) —4(Yo — Yo_l))(_4(Y0 —¥h) — (~4(Xo — X3 1)°
= Ly =¥y +16((Y0 — Y57)% = (Xo — X5)?)
= Lo— Y5 +16((Y0 + Y5 )% = (Xo + X5 1?)
= 2 (Y- Y5 )+ 16(Yo + Y5 + Xo + X7 ) (Yo + Y3 — Xo — X5
= S (Yo—Y ) —16(Yo + Y5 ' + Xo + X5 ). (5.15)
where the last equality comes from (5.14).

Next, we will show that 1q—6 Tor, (S 3 ~Kj4,; Ad,) equals the same quantity. For
this, by the change of curve formula [31, Theorem 4.1 (ii)], we have

M|
dH(m) |,

Tor, (S*~Ky4,; Ad)) = Tor, (S~ Ky, ; Adp). (5.16)
To compute the right-hand side, let X = ezﬁx and Y = ezﬁy . Then, as the con-
vention in Lemma 5.1, the shape parameters A = XY and B = X 1Y . Recall that the
deformation space of the hyperbolic structures on M with this ideal triangulation con-
sists of the shape parameters A and B that satisfy the edge equation H(e) = 27 V-1,
which can be written as the first equation of (5.1). Then, by Lemma 5.1, it is equivalent
to the first equation of (5.2), which implies

X+X'=v+v7v 141 (5.17)

As a consequence,
Y  Y32(X2-1)
—_ == (5.18)
X  X*2(Y?2-1)

By (5.3) and (5.4), we have

H(m) = 2x+/—1 = log X (5.19)
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and
H(/) =27+v—1—2log A —4log A”
=27+ —1—2log(XY) —4log(l — X'y ~h).
Then,
oH(m) 1
X X’
and by (5.18), we have
OH()) 2 4 Y 2+ 4
X X XXY—-1) ax\Y YXY-1I
2 4 Y2(x%2-1) 2+ 4
X X(XY-1) X2(¥Y2—-1\Y YXY -1

22X+ X' +Y4Y Y
N XY —-Y-1) ’

and by the chain rule,

oH() MO (x4 x4y 47
OH(m) 3ilm) N Yy —y-1 ‘

Asa consequence,

OH(w) _ A(pHOm) +qH() _  2q(X + X'+ Y + 77

OH(m) 9H(m) -7 Y —v! (5:20)

On the other hand, by [31, Example 1, page 113], for the holonomy representation
PH(m) of a (possibly incomplete) hyperbolic structure on S3~ K4, with H(m) the
holonomy of the meridian m,

\/(eH(m) + e_H(m) — 3)(eH(m) + e_H(m) + ])
2

_ i\/(X +XT-3)X+X1+1)

Tory (S*~K4,; Adpy,,) = +

S S (5.21)

where the second equation comes from (5.19) and the last equation comes from (5.17).
Notice that the Reidemeister torsion is a quantity defined up to %, and here we choose
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the “+” sign. Then, by (5.16), (5.20), and (5.21), we have

16 9H
16 OH(u) Torm (S3~Ks,; Ad,)

16
— Tor, (S?~Ka,; Ady) =
q

_16Yo—Y;! 2q(Xo + X'+ Yo+ Y5 1)
s 2 7 Yo— Y

8
= ?p(Yo — Yo ) —16(Xo + Xo ' + Yo + Y5 ).
Comparing with (5.15), we have
+ 16 3
det(Hess V' ") (xq, yo) = — Tor,, (S°~K4,; Ad,).
q

Finally, since the adjoint twisted Reidemeister torsion Tor,, (S~ Kj4,; Ad,) is a
non-zero quantity, det(Hess V ") (xo, yo) = det(Hess V") (—xo, yo) # 0 and the Hes-
sian matrices Hess VT (xg, yo) and Hess V ~(—xo, yo) are non-singular.

For (3), by Lemma 3.3 (2) that J(sT) = —J(s™) (mod 27Z), we have

sin(@ _ J(s+)7r) - _ sin(_—xo - J(s_)n). (5.22)
q q
Together with (2), we have

sm(x" J(sT)m) sin(=X2 xO — J(sT)m)

V/det(Hess Vt)(xo, yo) T \/det(Hess V=) (=x0. y0)

and it suffices to prove that

sin(+2 — J(sTm) . V=7 .
V/det(Hess V*)(xo, yo) 8/Tor(M; Ad,)

To this end, we will use the surgery formula [31, Theorem 4.1 (iii)] that

Tor(M; Ad,) = o) Tor, (S*~K4,; Ady). (5.23)
=
By (5.13), we have
xo pm /-1
— - = ——H().
q q 2

Then, by Lemma 3.3 (2) that J(s*) = %/ (mod Z), we have

’ /
sm(ﬁ - J(s+)n) = (-1’7 sm(ﬁ 7 ”)
q q q

= (1) % /T sinh ) (”) (5.24)
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Finally, by the surgery formula (5.23) and (2), we have

sin(%t — J(s¥)7) _ (_1)J(s+)_%’ /—¢ sinh 1
V/det(Hess V1) (xo, yo) V16 Tor, (S3~Ky,; Ad,)
_ (_I)J(s"')—%/ N '
8/Tor(M; Ad,)

The following Lemmas 5.5 and 5.6 are crucial in the estimate of the Fourier coef-

ficients in Section 6.

Lemma 5.5. In D¢ = Dc U D¢ U D¢, Im V*(x,y) is strictly concave down in
Re(x) and Re(y), and is strictly concave up in Im(x) and Im(y).

Proof. Using (5.7), taking the second derivatives of Im ¥+ with respect to Re(x) and
Re(y), we have

Hess(Im V¥)
_4me2VTIOHY  qme2VTI0m0 4 me2V D) 4Ime2V 10—
_ |1_e2\/—l(y+x)|2 |1_62s/—l(y—x)|2 |1_e2\/—l(y+x)|2 |1_62«/—1(y—x)‘2
_ 4Ime2Vo1Oo+w 4Ime2V=1O=0  4im2VolOHY)  gme2V 1O
|1_92\/—1(y+x)|2 |1_62«/—1(y—x)|2 ‘1_22«/—1(y+x)‘2 |1_e2«/—1(y—x)|2
Ime2V—1(r+x)
_ |2 2| e 0 2 2
N 2 2 0 Ime2V—10—X) -2 21|
|1_e2\/—1(y—x)|2

Since in D¢, Im e2V=10+%) = 0 and Im e2V=10=) > 0, the diagonal matrix in the
middle is positive definite, and hence, Hess(Im Vi) is negative definite. Therefore,
Im V is concave down in Re(x) and Re(y). Since Im V¥ is harmonic, it is concave
up in Im(x) and Im(y). ]

Lemma 5.6. We have Im(xg) # 0.

Proof. By (5.3), the holonomy of the meridian H(m) = 2x9+/—1. We prove by con-
tradiction. Suppose Im(xg) = 0; then, H(m) is purely imaginary. As a consequence,
H(]) = h‘ﬁlq—_pH(m) is also purely imaginary. This implies that the holonomy of the
core curve of the filled solid torus H(y) = ¢'H(m) — p’H(!) is purely imaginary; i.e.,

y has length zero, which is a contradiction. ]

6. Asymptotics of the Reshetikhin—-Turaev invariants

The goal of this section is to prove Theorem 1.1 by estimating each of the Fourier
coefficients f;(s,m,n) in Proposition 4.3. In Section 6.1, we estimate the two leading
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ones fr(er, m™,0) and f;(s_, m~,0), and in Section 6.2, we estimate the others.
Finally, in Section 6.3, we show that f,(s™,m™*,0) + f.(s~,m™,0) has the desired
asymptotic behavior and the sum of all the other Fourier coefficients are neglectable,
which completes the proof. We will also prove Theorem 1.2 at the end of Section 6.3.

6.1. Estimates of the leading Fourier coefficients

The main result of this section is Proposition 6.4, where we estimate the integrals
in the Fourier coefficients f,(s*,m*,0) and f,(s~,m™,0) on the region D¢ s as
defined in Section 4, which turn out to be the leading terms in the summation of
Proposition 4.3.

We need the following Proposition 6.1, which is a generalization of the standard
steepest descent theorem (see, e.g., [21, Theorem 7.2.8]) and is also stated and proved
by Ohtsuki [25, Proposition 3.5, Remarks 3.3, 3.6] in a slightly different form. For the
readers’ convenience, we include a proof in the appendix.

Proposition 6.1 ([25]). Let D be a region in C" and let f(z1,...,2n), €(Z1,...,2Zn)
be holomorphic functions on D independent of r. Let fy(z1,...,zy) be a holomorphic
function of the form

Vr(Z1,...,Z
Jr(@t.ooozn) = f21, .0 z0) + ol 1}’2 ”)

Let S be an embedded real n-dimensional closed disk in D and let (cq, ..., cy) be a
pointon S. If

(1) (c1,...,cp) is a critical point of f in D,
2) Re(f)(c1,....cn)>Re(f)(z1,...,2n) forall (z1,...,zn)€S~{(c1,...,Cn)},
(3) the domain {(z41,...,z,) € D |Re f(z1,...,24) <Re f(c1,...,cn)} defor-

mation retracts to S~{(c1,...,cn)},
(4) the Hessian matrix Hess(f)(cy,...,cn) of f at (cy,...,cy) is non-singular,
(5) gler,...,cn) #0, and
(6) |vr(z1,...,2zy)]| is bounded from above by a constant independent of r in D,

then

/ g(z1,. .., Zn)erﬁ~(z1,...,z;z)dzl vdzy,
S

_ (2_7[)3 g(cl,...,cn) erf(cl,...,cn)(l + 0(1))
r) Jdet—Hess(/)(cr,-... ) r))
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To apply Proposition 6.1, we need the following Lemma 6.2. Recall from Sec-
tion 4 that for § = 0, the region

Dcs = {(x,y) € C? |8 <Re(y) +Re(x) < % —4,8 <Re(y) —Re(x) < % —8},

and for (x, y) in D¢ g, the functions

Vri(x, y) = Vp(sT,m*,0) — dem*x
—px? £ 2mx T
= — 2nx+4xy—@ | —y —x— —
q r

T
+ ¢r (y — X+ 7) + K(s*)n?,

and

—px?2+2

VE(x.y) =
+ Lip (e 2Y71079) 4 K(sF)n2.
Lemma 6.2. In {(x,y) € W,(g | [Imx| < L,|Imy| < L} for§ > 0and L > 0,
VE(x,y) = VE(x, )
_ 2nv/=1(log(1 — e72YT10H0) 4 Jog(1 — 27100

r

n Ur(xiy)’
r

with |v, (x, ¥)| bounded from above by a constant independent of r.

Proof. Expanding in }, we have
b/ 4 b/ 1
wr(n—x—y—7) =<pr(ﬂ—x—y)—<p£(ﬂ—x—y)~7+0(r—2)
and :
14 4
wr(y—er;) =¢r(y=x) + ¢y —x)- -+ 0(—2)-
By Lemma 2.3 (1), we have

—¢r(m—x—y)+ e (y—x)
— _Li(e—zﬁ(yﬂ)) + Li(ezﬁ(y—x))

272~ 2V=1(y+x) 2722V =1(r—x) 1 |
_ 1.5 ’
( 3(1 — e 2V-10+x)) + 3(1— ezﬁ(y_x))) ) + ( )
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Re(y)

S+

side

Re(x)
Figure 5. The deformed surface S7+.
and by Lemma 2.3 (2), we have

T T
(p;(N—X—y)-?-i-(p;(y—X)-?

2rv—1 log(1 — e—2ﬁ(y+x))
.

2w A/—1
r

log(1 — ezﬁ(y_x)) + 0(%)
r

The result then follows with

220 2V—1(r+x) 272e2V-10-) 1
r5,3) = - ;)

(0]
3(1 — e2V-10+)) * 3(1 — e2V-16—x)) + r

Let (xo, yo) be the unique critical point of ¥ in D¢, and by Corollary 5.3,
(—xo, yo) is the unique critical point of V'~ in D¢. Let § be as in Proposition 4.1, and
as drawn in Figure 5, let ST = StZ,Lp U Ss—itje U (D%\Dg) be the union of D% ~Dg with
the two surfaces

Sey ={(x.y) € Dc s | (Im(x).Im(y)) = (Im(xo). Im(yo))}
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and

= {(61 + V=1t Im(xo), 6> + ~/=1¢ Im(yp)) | (61,62) € dDs, ¢ € [0, 1]};

91de

andlet S™ =S,_ US

wop Y Sgiae U (D 5 ~Djs) be the union of D s ~Ds with the two surfaces

Sep = {(x,¥) € Dc s | (Im(x), Im(y)) = (= Im(xo), Im(yo))}
and
Sage = {01 — V=1t Im(xo), 02 + v~ 1t Im(yo)) | (61, 6,) € aDs,t € [0, 1]}.

Then, ST are homotopic to D 5 ; and since § is sufficiently small, S * respectively,
contain (£xg, yo).

Proposition 6.3. Im V' achieves the only absolute maximum at (xq, yo) on S, and
Im V'™ achieves the only absolute maximum at (—xg, yo) on S™.

Proof. First, by Propositions 4.1 and 2.4, on D% ~Dg, ImV(x,y) < % Vol(S3~Ky,) +
& < Vol(M) = Im V™ (xq, yo).

By Lemma 5.5, Im V' * is concave down on Stop Since (xo, yo) is the critical point
of Im V'*, it is the only absolute maximum on Stng.

On the side S, , for each (81, 6,) € dDg, consider the function

side?

g(—zl ,92)(0 =Im V+(91 + /=1t Im(xo), 62 + vV —11 Im(yo))

on [0, 1]. We show that g(;l,gz)(t) < Im V™ (xg, yo) for each (0, 6,) € dDs and t €
[0, 1]. Indeed, since (61, 02) € 0Dy, g(’;l,ez)(O) =ImV*(0,0;) < %VOI(S3\K41) +
g < Vol(M) = Im V¥ (xg, yo); and since (6; + ~/—1Im(xp), 62 + ~/—1Im(yg)) €
Stjp, by the previous step

89,6, = Im V¥ (61 + v/ =11m(x0), 6> + v/=11m(yo)) < Im V™ (x0, yo).
Now, by Lemma 5.5, g(t)l 6) is concave up; hence,

g:éhgz)(t) < max{g(_zl,%)(()), g(—zl,gz)(l)} <Im V+(x0’ Y0)-

Putting all these together, we have Im V't (x, y) <Im V™t (x¢, yo) on ST.
The other case is similar. By Lemma 5.5, Im V'™ is concave down on S,

(—xo, yo) is the critical point of Im V', it is the only absolute maximum on S
On the side S_,, for each (61, 8,) € 0Dy, consider the function

side?

Since

top*

86,.0,)(1) =Im V™ (6; — v/=11 Im(xp). 62 + v/ =11 Im(yp))
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on [0, 1]. We show that g, ’92)(t) < Im V™= (—xg, yo) for each (61,6,) € dDgs and t €
[0, 1]. Indeed, since (61, 02) € 0Dy, g(_elﬁz)(O) =ImV~=(61,0;) < %VOI(S3\K41) +
e < Vol(M) = Im V™ (—xg, yo); and since (6; — v—1Im(xq), 6> + v/—1Im(yp)) €
Siop» by the previous step gy o\ (1) =Im V™ (6; — V/—=11Im(x¢), 62 ++/—1Im(y¢)) <
Im Vi(—x(), vo). Now, by Lemma 5.5, g(_a1 8) is concave up; hence,

80,001 < max{g(_@l’ez)(O), g(_el,ez)(l)} < Im V™ (%£x0, yo0).
Putting all these together, we have Im V= (x, y) < Im V™ (xq, yo) on S—. ]

Proposition 6.4. We have the following estimations.
(1) For the integral in f»(s*,m™,0), we have
(x +
Y(x,y)sin| ——J(sT)m |e(x, y)
D 3 q
% e—xﬁ-i—ﬁ(%(s+,x,y)—4nm+x)dx dy

+
= etosonsaTesmn (14 o( 1)),

Tor(M:;Ad,) r

where

2 , )
C+ = _M(—I)J(S—F)_%e_%_lr(l{(s_‘—)-f—%)‘
r

(2) For the integral in f;(s_, m~,0), we have

/ w(x,y) sin(f - J(s_)n)g(x, y)
D% q

x e—xx/jl‘Fm(Vr(siaxay)_“'ﬂmix)dx dy

_ ¢ eg,(vOl(MHﬁCS(M))(l N 0(1))
v/ Tor(M; Ad,) r
where 5
o = TN (I eht KGO
r
Proof. By Lemma 6.2, we have
e—xﬁ+‘mrﬁ(Vr(si,x,y)—4nmix)
— e—x«/jl‘l'ﬁVri(xJ)

—2v—=1(y+x)) 10g(1_g2\/*1()’*!€))
2 - 2

r

—x«/jl— log(1—e
=e

r + vr(x.y)
+4nﬁ(V (xx,»)+-= )'
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By analyticity, the integrals remain the same if we deform the domains from D 5
to S*.
Now, we apply Proposition 6.1, with the region

D =D = {(x,y)eD(c,% | [Imx| < L,|Im y| <L}

for a sufficiently large L, the embedded disk S = S*, the functions f(x, y) =
V@), Sy = S (VR ) + ),

g6 y) = ¥(x.y) sin(;—“ - J(si)n)s(x, 9

log(1—e =2V =T +X))  jog(1—e2V—10¥=X))
2 - 2

’

x e XV TI=

and the point (c1, c2) = (£x0, yo)-

Then, by Corollary 5.3, (£x¢, yo) are, respectively, the critical points of Vi,
and hence, of f, and (1) of Proposition 6.1 is satisfied. By Proposition 6.3, Re(f) =
ﬁ Im V'* achieves the only absolute maximum on S¥ at (£x¢, yo), and (2) of Propo-
sition 6.1 is satisfied.

To verify (3) of Proposition 6.1, for each (6;, 6) € D% , let

P,.6,) = {(x.y) € D | Re(x) = 601, Re(y) = 65},
and let

D5, 4,y = {(x.¥) € Pg, 60 | ImVF(x, y) < Im V*(&x0, yo)}.

Then, we claim that

+ e _
D Re(xo) Re(r0)) = P Re(—x0).Re(r0)) = 9

D(Tgl 9,) 18 homeomorphic to a disk for (01, 62) # (Re(xg),Re(yp)), and D, 0,18
homeomorphic to a disk for (61, ) # (Re(—xg), Re(yo)), from which we conclude
that the domains

{(x, y) € Dg | Im Vi(x, y) < Im Vi(:txo,yo)},

respectively, deformation retract to S~ (=xg, yo) by shrinking each D(ﬂgl 9,)> Tespec-
tively, to {(01 £ v—1Im(xg), 6> + ~/—11Im(yy))}, verifying (3) of Proposition 6.1.
To prove the claim, we by Lemma 5.5 have that, on P(re(+x(),Re(y))> 1M Ve,

respectively, achieve the absolute minimum at (f+Xx¢, yo); hence, D
@. For (01, 02) # (Re(£xo),Re(yo)), we have

+ —
(Re(£x0),Re(y0)) ~

min ImVE < ImVE(6; £ v=11Im(xp), 0> + v—1Im(yo)) < Im VE(£xo, yo),

P(91 ,62)
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where the last inequality comes from that both (6; £ V—=1Im(xg), 6> + v—1Im(yp))
and (%x¢, yo) are on Stfp and Im V' * achieve the only maximum at (£xg, yo). Then,
by Lemma 5.5 that Im V¥ is concave up on Pg, 4,), D(s,.6,) is @ convex subset of
P, 6,), which is homeomorphic to a disk. This proves the claim, and verifies (3) of
Proposition 6.1.

By Proposition 5.4 (2), det(Hess f)(c1,¢2) = —# det(Hess V) (£xo, yo) #0,

and (4) of Proposition 6.1 is satisfied. At the critical points (4xg, ¥o), by the first
equation of the system of critical equations (5.2), we have

log(1 — e=2Y=100£x0))  Jog(] — ¢2V=100Fx0))

V-1 0.
Fxo0 5 >
Together with (5.24) and (5.22), we have
+ / H
gler,cz) = 2Sin(ﬂ — J(si)n) — +(=1)’ %2/ T sinh (2”) £0,
q

where the inequality comes from that Re(H(y)) is the length of the core curve y of
the filled solid tori, which is non-zero. Hence, (5) of Proposition 6.1 is satisfied. (6) of
Proposition 6.1 follows from Lemma 6.2. Therefore, all the conditions of Proposi-
tion 6.1 are satisfied.

By Proposition 5.4 (1), the critical values

_ VE(£x0, o)
flcr,c2) = ﬁ
_ 1 — — P 2)
= 47“/__1(x/_1(V01(M) +V/—1CS(M)) + (K(s )+ p )71 :
and by Proposition 5.4 (3), we have
g(c1,c2) B Zsin(% —J(sH)m)
Vdet(—Hess(f)(c1, ¢2)) \/— 161”2 detHess(V*)(£xo, yo)

+)— o

_ Vg
~ JTor(M:Ad,)

from which the result follows. n

6.2. Estimate of other Fourier coefficients

Fors €{0,...,|g| — 1} and (x,y) € Oc = Dc U D U D¢, let

2
— 2
Vis,x,y) = px + I(s)ﬂ +4xy — Li2(e_2V_1(y+X))
q q

+ Li, (ezﬁ(y_x)) + K(s)m2.
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Then, similar to Lemma 6.2, we have the following lemma.

Lemma 6.5. In {(x,y) € DcsU D¢ g UD{ 4| |Imx| < L, [Imy| < L} fors >0
and L > 0,
Vr(va’)’) = V(va’y)
2w +/—1(log(1 — e‘zﬁ(ﬁx)) + log(1 — ez‘/jl(y_x)))

r

Ur(x,y)
r2

+

with |vy (x, y)| bounded from above by a constant independent of r.

6.2.1. Estimate on D 5

Proposition 6.6. There is an ¢ > 0 such that for each triple (s, m,0) with (s, m) #
(st.m%) and (s,m) # (s—,m"),

‘ v(x,y) sin(f — J(s)n)g(x, y)e—xﬁ+ﬁ(v,(s,x,y)_4nmx)dx dy
q

N o

O(eﬁ(Vol(M)—e)).

Proof. We recall the surface ST = S

wop U St U (D%\D(g) from Section 6.1, where

Sep = {(x,¥) € Dcs | (Im(x),Im(y)) = (& Im(xo), Im(yo))}

and
SEe = {(61 £ V=1t Im(xo), 6> + V=1t Im(y0)) | (61, 6,) € dDs, ¢ € [0, 1]},

with (£x¢, o) the critical points of V¥ given in Corollary 5.3. We will prove that for
some ¢ > 0,
Im(V(s, X,y)— 471mx) < Vol(M) —¢

either on S or on S™. Then, the result follows form Lemma 6.5 and the analyticity
of V, that the domain of integral D 5 could be deformed to S*.

By Lemma 5.6, Im(xg) # 0. Without loss of generality, we may assume that
Im(xg) > 0, since otherwise, we can consider Im(—xg).

Now, fors € {0,...,|q| — 1} and m € Z, let

I(s)—1

kt(s,m)=— —142m

and
I(s) +1

k= (s,m) = —1+42m.
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Then, by a direct computation,

V(s,x,y) —d4nmx = V*(x,y) —2rnk™(s,m)x + (K(s) — K(S+))7T2
=V~ (x,y) —2nk” (s.m)x + (K(s) — K(s7))n>.

By Lemma 3.3 (1), (s,m) = (sT,m™) is the only pair such that k* (s, m) = 0,
and (s,m) = (s—,m™) is the only pair such that k= (s, m) = 0. By Lemma 3.3 (1),
elements of

[k®(s,m) | s€{0,....]qg] — 1} and m € Z}
differ by a multiple of %; and for each (s, m), kt(s,m) —k=(s,m) = %. This implies
that for each pair (s, m) other than (s*, m*), kT (s, m) and k~(s, m) are either both

strictly positive, or both strictly negative.

By Proposition 6.3, for any (x, y) € Slfp we, respectively, have

Im VE(x, y) < ImVE(xxq, yo) = Vol(M).

Then, for (s, m) with k* (s, m) > 0, we have on Stj;p that

Im(V(s, X,y)— 471mx) =Im V™ (x,y) —2mk™(s,m)Im(xg) < Vol(M) — ¢

for some ¢ > 0; and for (s, m) with ki(s, m) < 0, we have on S[gp that

Im(V(s, x,y) —4rmx) =ImV 7~ (x,y) + 2wk~ (s,m) Im(xg) < Vol(M) — &
for some & > 0.

By (2.4), Proposition 2.4, and the same computation as in the proof of Lemma 4.2
and the ¢ therein, we have on D s ~Dj; that

Im(V(s, x,y) —4drmx) =ImV(s,x,y) = 2A(y + x) + 2A(y — x)

1
< 2A(%) +e= EVOI(S3\K41) + e < Vol(M) —e.

On Ssjfde, we notice that V(s, x, y) — 4wmx differs from V* by a linear function.

Hence, by Lemma 5.5, for each (61, 6,) € dDs, the function

+
81,6, (")
= Im(V(s, 01 £ V=11 Im(xo), 2 + v/—11 Im(yo)) — 471m(01 + /1t Im(xo)))

is concave up on [0, 1]. Therefore, for (s, m) with k* (s, m) > 0, we have on S:i:je that

Im(V(s, X,y)— 4nmx) = g(“gl’ez)(t) < max{g(“gbez)(O), g(;l,ez)(l)} < Vol(M) —¢;
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and for (s, m) with k= (s, m) < 0, we have on S, that

Im(V(s, X,y)— 47rmx) = 8(6,.0) (1) < max{g(_el,ez)(O), g(_el’ez)(l)} < Vol(M) —e.

Putting all these together, we have for (s, m) with k% (s, m) > 0, Im(V (s, x, y) —
4mx) < Vol(M) — & on ST, and for (s, m) with k*(s, m) < 0, Im(V (s, x, y) —
4rmx) < Vol(M) —eon S™. ]

Proposition 6.7. There is an ¢ > 0 such that for each triple (s, m,n) withn # 0,
‘/ V(x,y) sin(f — J(s)n)s(x, y)e_xﬁ+m(vr(S’x’y)_‘mmx_wny)dx dy
D 3 q
< 0(€#(V0](M)_8)).
Proof. For L > 0, let
Slit = Sl:,t,top U Sl:‘t,side U (D%\D‘S)’

where
Sitep = {(x.¥) € Dc s | Im(x) = 0,Im(y) = +L}
and
Siee = {01,602, £ ~=11) | (61,6,) € 0Ds.1 € [0, L]}.
Then, S ZE are homotopic to D% .
We want to show a stronger statement: if L is sufficiently large, then there is an
& > 0 such that, for each triple (s, m, n) with n # 0,

Im(V(s, x,y)—4nmx — 4nny) <Vol(M) —¢

either on SZF oronS;.
Then, the result follows form Lemma 6.5 and the analyticity of V..
To this end, first on D 3 ~Dg, by Propositions 4.1 and 2.4, we have

1
Im(V(x, y) —4dmrmx — 47my) =ImV(x,y) < > Vol(S3\K41) + &< Vol(M) —e.
In D¢, we have
0 < arg(l— e—zﬁ(y+x)) < —2(Re(y) + Re(x))

and
2(Re(y) — Re(x)) — 7 < arg(l — e2V~10=9)y < ¢,
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Forn > 0,let y = Re(y) + +/—1!. Then,

dIm(V (s, x,y) —dmmx — 4mwny)
ol
= 4Re(x) + 2arg(1 - e_zﬁ(y‘*x)) 4 2arg(1 _ eZﬁ(y—x)) _dnr
< 4Re(x) + 2(wr —2(Re(y) + Re(x))) + 0 —4nn
=2m —4Re(y) —d4nnw < —2m,

where the last inequality comes from that 0 < Re(y) < 7 and n > 0. Therefore, push-
ing the domain Dy along the /=11 direction far enough (without changing Im(x)),
the imaginary part of V (s, x, y) — 4wmx — 4mwny becomes as small as possible. In
particular, for a sufficiently large L, there is an & > 0 such that

V(s,x,y)—4mnmx —4nny < Vol(M) — ¢

+
on SL,tOP.

Since Im(V (s, x, y) — 4mwmx — 4mwny) is already smaller than the volume of M

on 0Dg and on 08 Zr by Lemma 5.5, it becomes even smaller on the side, i.e.,

top?

V(s,x,y)—4mmx —4nny < Vol(M) — ¢
+

on SL,side‘

Putting all these together, we have, for a sufficiently large L,

Im(V(s, x,y)—4nmx — 4nny) <Vol(M) —¢

on SZr for each triple (s,m,n) withn > 0.
Forn < 0, let y = Re(y) — ~/—11. Then,

dIm(V(s,x,y) —4dnmx — 4mny)
al
= —4Re(x) —2arg(l — e‘zﬁ(ﬁ"‘)) —2arg(1 — ezﬁ(y—x)) + 4nmw
< —4Re(x) —0—2(2(Re(y) —Re(x)) — ) + 4nn
=2x —4Re(y) + 4nn < —2m,

where the last inequality comes from that 0 < Re(y) < 5 again and n < 0. Therefore,
pushing the domain Dy along the —+/—1/ direction far enough (without changing
Im(x)), the imaginary part of V (s, x, y) — 4wmx — 4wny becomes as small as pos-
sible. In particular, for a sufficiently large L, there is an &€ > 0 such that

V(s,x,y) —d4nmx —4nny < Vol(M) — ¢

on SL,tOp.
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Since Im(V (s, x, y) — 4mwmx — 4wny) is already smaller than the volume of M

on dDgs and on 45, top? by Lemma 5.5, it becomes even smaller on the side, i.e.,

V(s,x,y) —4mmx —4nny < Vol(M) — ¢

on SL_, ,side*
Putting all these together, we have, for a sufficiently large L,

Im(V(s, x,y)—4nmx — 4nny) <Vol(M) —¢
on §; for each triple (s, m,n), withn < 0. ]

6.2.2. Estimate on D’.
2

Proposition 6.8. There is an ¢ > 0 such that, for each triple (s,m,n),

X _ {4 r_ _ _
T R
D’ q

I3
2
< O(e#(Vol(M)—s))
Proof. For L > 0, let
+ + +
SIC = Si,top U Sli,side U ( /%\Dé)»

where
Sihep = {(x.¥) € Dg g | Im(x) = 0,Im(y) = +L}
and
SiEige = {(01.6, £ V/=11) | (61.6,) € 0D} 1 € [0, L]}.

Then, S;* are homotopic to D’s.

2
We want to show a stronger statement: if L is sufficiently large, then there is an
& > 0 such that, for each triple (s, m, n),

Im(V(s, X,y)—4nmx — 471ny) <Vol(M) —¢

either on S;* oron S;~.
Then, the result follows form Lemma 6.5 and the analyticity of V.
To this end, first on D’ \Dg, by Propositions 4.1 and 2.4, we have
2

1
Im(V(x, y) —4mrmx — 471ny) =ImV(x,y) < 3 Vol(S3\K41) + e < Vol(M) —e.
Then, in D(’C s> we have

0 < arg(l —e V71049 < 7 _2(Re(y) + Re(x))
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and
2(Re(y) —Re(x)) — 37 < arg(l — ezﬁ(y_x)) < 0.
Forn = 0, let y = Re(y) + ~/—1/. Then,
oIm(V(s,x,y) —4dnmx — 4mny)
al

= 4Re(x) + 2arg(l — e‘zﬁ(y“‘)) + 2arg(1— eZM(y_x)) —dnm
< 4Re(x) +2(r —2(Re(y) + Re(x))) + 0 —4nn
=27 —4Re(y) — dnw < =24,

where the last inequality comes from that 7 + % <Re(y) <m— % and n = 0. There-
fore, pushing the domain D along the /=11 direction far enough (without changing
Im(x)), the imaginary part of V (s, x, y) — 4wmx — 4mwny becomes as small as pos-
sible. In particular, for a sufficiently large L, there is an € > 0 such that

V(s,x,y)—4mnmx —4nny < Vol(M) — ¢

on Sf;op.
Since Im(V (s, x, y) — 4wmx — 4mwny) is already smaller than the volume of M

on aDé and on 0 Z’pr, by Lemma 5.5, it becomes even smaller on the side, i.e.,
V(s,x,y)—4mmx —4nny < Vol(M) —¢
+
on Sl/,,side‘
Putting all these together, we have, for a sufficiently large L,

Im(V(s, x,y)—4nmx — 471ny) < Vol(M) —¢
on Sfr for each triple (s,m,n) withn = 0.
Forn < 0,let y = Re(y) — /—11. Then,
dIm(V(s,x,y) —4dnmx — 4mny)
ol

= —4Re(x) — 2arg(l — e‘zﬁ(y’Lx)) —2arg(l - ezﬁ(y_x)) + 4nmw
< —4Re(x) —0—2(2(Re(y) —Re(x)) —37) + 4nn
= 6 —4Re(y) + 4nmw < =28,

where the last inequality comes from that 5 + % <Re(y) <m— % again and n < 0.
Therefore, pushing the domain Dj along the —+/—11 direction far enough (without
changing Im(x)), the imaginary part of V (s, x, y) —4nxmx — 4w ny becomes as small
as possible. In particular, for a sufficiently large L, there is an & > 0 such that

V(s,x,y) —4mmx —4nny < Vol(M) —¢

—
on SL,tOp.
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Since Im(V (s, x, y) — 4mwmx — 4wny) is already smaller than the volume of M
on 8D(§ and on 08 pr, by Lemma 5.5, it becomes even smaller on the side, i.e.,

V(s,x,y) —4mmx —4nny < Vol(M) — ¢

—
on SL,side'

Putting all these together, we have, for a sufficiently large L,
Im(V(s, x,y)—4nmx — 4nny) <Vol(M) —¢
on S;~ for each triple (s, m,n) withn < 0. n

6.2.3. Estimate on D].
2

Proposition 6.9. There is an ¢ > 0 such that, for each triple (s,m,n),

X Y R _ _
‘ ¥ (x,y) Si“(__f (s)”)g(x,y)e I (e T g gy
/ q

f

2

< O(e#(Vol(M)—s))
Proof. For L > 0, let

nx _ gonx "=+ " "
SLT = SLop Y SLisice Y (D%\Ds)’

where
Sl ep = {(x.¥) € D¢ 5 | Im(x) = 0,Im(y) = +L}
and
SZ:JEide = {(61.6, = V=1I) | (61.65) € Dy, 1 € [0, L]}.
Then, S* are homotopic to Dj.

2
We want to show a stronger statement: if L is sufficiently large, then there is an
& > 0 such that for each triple (s, m,n),

Im(V(s, x,y)—4nmx — 471ny) <Vol(M) —¢

either on S;'* oron S; .
Then, the result follows form Lemma 6.5 and the analyticity of V.
To this end, first on D \Dg’ , by Propositions 4.1 and 2.4, we have
2

1
Im(V(x, y) —4mrmx — 471ny) =ImV(x,y) < 3 Vol(S3\K41) + e < Vol(M) —e.
Then, in D(’é s> we have

0 < arg(1 — e 2V=T0+9) < 37 _2(Re(y) + Re(x))



On the volume conjecture for hyperbolic Dehn-filled 3-manifolds 477

and
2(Re(y) —Re(x)) — 7 < arg(l — ezﬁ(y_x)) <0.
Forn > 0, let y = Re(y) + ~/—1/. Then,
oIm(V(s,x,y) —4dnmx — 4mny)
al

= 4Re(x) + 2arg(l — e‘zﬁ(y“‘)) + 2arg(1— eZM(y_x)) —dnm
< 4Re(x) + 237 —2(Re(y) + Re(x))) + 0 — 4nx
= 61 — 4Re(y) —dnm < =26,

where the last inequality comes from that 7 + % <Re(y) <m— % and n > 0. There-
fore, pushing the domain D} along the +/—1/ direction far enough (without changing
Im(x)), the imaginary part of V (s, x, y) — 4wmx — 4mwny becomes as small as pos-
sible. In particular, for a sufficiently large L, there is an € > 0 such that

V(s,x,y)—4mnmx —4nny < Vol(M) — ¢

on SZ,J{OP.
Since Im(V (s, x, y) — 4wmx — 4mwny) is already smaller than the volume of M

on aDg and on 98 Z}LOP, by Lemma 5.5, it becomes even smaller on the side, i.e.,
V(s,x,y)—4mmx —4nny < Vol(M) —¢
+
on SZ,side‘
Putting all these together, we have, for a sufficiently large L,

Im(V(s, x,y)—4nmx — 471ny) < Vol(M) —¢
on SZJF for each triple (s, m,n) withn > 0.
Forn <0,let y = Re(y) — /—11. Then,
dIm(V(s,x,y) —4dnmx — 4mny)
al

= —4Re(x) — 2arg(l — e‘zﬁ(y’Lx)) —2arg(l - ezﬁ(y_x)) + 4nmw
< —4Re(x) —0—2(2Re(y) —Re(x)) —7) + 4nx
= 2w —4Re(y) + 4nm < =28,

where the last inequality comes from that % + % <Re(y) <m— % again and n < 0.
Therefore, pushing the domain Dy along the —+/—11 direction far enough (without
changing Im(x)), the imaginary part of V (s, x, y) —4nxmx — 4w ny becomes as small
as possible. In particular, for a sufficiently large L, there is an & > 0 such that

V(s,x,y) —4mmx —4nny < Vol(M) —¢

"—
on SL,tOp.
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Since Im(V (s, x, y) — 4mwmx — 4wny) is already smaller than the volume of M

on BD(’;/ and on 05 Z_mp, by Lemma 5.5, it becomes even smaller on the side, i.e.,

V(s,x,y)—4mnmx —4xny < Vol(M) —e on Si:ide.
Putting all these together, we have, for a sufficiently large L,
Im(V(s, x,y)—4nmx — 4nny) <Vol(M) —¢

on SZ_ for each triple (s, m,n) withn < 0. ]

6.3. Proof of Theorems 1.1 and 1.2
Theorem 1.1 follows from the following proposition.
Proposition 6.10. (1) The sum of the two leading Fourier coefficients
ST mT0) + fr(s™.m™.0)
_ Cr e;ﬂ(vm(M)Jrﬁcs(M))(l + 0(1))
r

v/ Tor(M; Ad,)

where / - /
¢ = —(~)" G TR, g2 0,

(2) The sum of all the other Fourier coefficients
Z |fr(&m,n)’ < O(eﬁ(VOI(M)_E)) for some & > 0.
(s,m,n)#(sE,m*,0)
Proof. For (1), recall that @% = D% U D’; U D’} Then, by Propositions 4.3, 6.4, 6.8,
2 3

and 6.9, we have

frsTom*0) + f(s7,m™,0)

2
=(—1)m+(§) /@ wx,y)sin(;ﬁ—J(s+>n)e(x,y>

_ {4 I + — +
e X1 = (Ve 57 ox, ) —4mm x)dxdy

2
+(=D™ (é) /:D v(x,y) sin(;—c — J(s_)n)e(x, y)

« e—x«/TI+ﬁ(Vr(s_,x,y)—Mrm_x)dx dy

mTt m- ,—
_ (L)Z((_l) ot + (=1 cr)eé‘ro(vOl(MHECS(M))(l i O(l))
27 /Tor(M; Adp) r

+ 0T OID=0))
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where

2 ’ /
ot = N a8 e+
r

and

2 / —1r _ /
P 2 ﬂ(_l)J(ﬁ)—%e—” L (K(sT)+20)
’

r

are the constants in Proposition 6.4; and we are left to prove that

2
(=" e + (—1)mc;)( d ) = ¢y

2

We claim that

_(_1)m+e_71 4_HK(5‘+) _ (_l)m—e_@[((s—)’

6.1)

from which the result follows. Indeed, by the definition of K and Lemma 3.3 (1), we
have

K(sT)—K(s7) = —2(1(s+) + I —s5T) = —4mT +m™ —1)(sT —57).

Then,
iyt B K

(_l)m_e_n ;lr K(s™)

_ (_1)m++m——1e—” F(KGT)-K (7))

— (_1)(m++m_—1)(l+r(s+—s_))‘

The result will follow if we can prove that (m*™ +m~ — 1)(1 + r(sT —s7)) is even.
For this, by Lemma 3.3 (1) and computing /(s™) — I(s™), we have
Cro1(sT—s)+(mT —m)g = —1.

Therefore, st — s~ and m™ — m™ cannot be both even. As a consequence, since r is
odd, m™ +m~ —1and 1 + r(s* — s7) cannot be both odd. This completes the proof
of (1).

For (2), let

§ ={(s,m,n) €{0,....|g| — 1} x Z? | (s,m,n) # (st,m*,0),(s7,m™,0),

and (m,n) # (0,0)}.

Then, § contains all but finitely many triples in {0, ..., |¢| — 1} x Z2. By Propo-

sitions 6.6, 6.7, 6.8, and 6.9, for each (s, m,n) # (si, m*, 0), especially for those
finitely many that are not in S,

| fr(s.m n)| < O ez VWIAD=2))
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for some ¢ > 0. Therefore, it suffices to prove that

S | felsm,m)| < O (e (DI0D-0)

(s,m,n)eS

for some & > 0.
Now, for each s, let

hA&XJO==¢Uaﬂsm(§-ﬂﬂﬂﬂ)dLY)

—x\/j log(1—e 2" 1(y+x)) _ log(1— ez\‘ 1y— x))+vr(x )
X e ar/—1r

Then, for each (s, m,n) in §, since ¥ (x, y) vanishes outside of O, by the integration
by parts, we have

rt(m* + n4)/ hr(s, x, y)em(v(s’x’y)_hmx_mny)dx dy
D

0% 0t —r (- —a4rn
/ hy (s, x, y)e4ﬂFV(sxy)((ax4 + W)e“”ﬁ( drmx=4 ny))dxdy

4 4 L —4nrmx—4mn
:/ (({i—4 + 884)(h (s, x, y)e4ﬂfv(sxy)))em( 4 4 y)dxdy
D

:/ (S x, y)e4nF(V(sxy) 4rmx— 47my)d dy,
D

where .
gﬁ+wnmuxywwf*“”)

V(s,x,y)

)

he(s,x,y) =
e471«/7

is a smooth function independent of m and », and has the form
h~r(s,x, y) = h~(s,x, y)-r*+ 0@r?)

for a smooth function ﬁ(s, x, y) independent of r. (Here, the remaining term being

of order O(r?) uses the fact that as r — oo all the partial derivatives % and
W of v, (x, y) uniformly converge on a compact subset of {z € C |0 < Rez <

7}; hence, for i, j < 4 are bounded by a constant independent of r.) Therefore, on
the compact subset S* U S Li us ii us Zi of Dc¢, M is bounded from above
by some C > 0 independent of (s, m,n), where S+, S i, S ii and S Zi are the sur-
faces constructed in the proof of Propositions 6.6, 6.7, 6.8, and 6.9. Let A be the
maximum of the areas of these surfaces, and let & be the minimum of those &’s in
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Propositions 6.6, 6.7, 6.8 and 6.9. Then, we have

> |rsmm)
(s,m,n)es
2
r _r__ _ _
_ (L Z / hr(s’x’y)e‘m\/_fl(V(s,x,y) 4mwmx 4zrny)dx dy
21 D
(s,m,n)€S
5 -
_ L Z 1 / ]’lr(S,X,y)e‘mrﬁ(V(s,x,y)—Mrmx—Mmy)dx a’y
2 m* +n4|Jo r4
(s,m,n)€S
2
r 3AC r / r e
<(— 20 Yo (edm VM=) < O (odx VIM)-5)).
() (( X 55)o )< of )
(s,m,n)eS
The summation converges because ), »)-£(0,0) m does; and the proof is com-
pleted with ¢ = %/ |

Proof of Theorem 1.1. By Propositions 4.3 and 6.10, we only need to compute the
constant C,. By a direct computation, we have

(1) 2D+ TE 0y B GoW-Tiny ai=Ts ot 0 +3a0)

Zrﬂ

. (_(_1)m++J(s+)—%/e—%*/j”(K(s+)+%/)rﬁ)

KrCr =

_ NS k Kk
(—1) el vk al-+m++J(s+)—%e”f(3U(L)—Zi=1 ai—)i=> ﬁ)

2

B (L) +3ax—K(sT)-2)
Therefore, C, = 2k,c, has norm equal to 1.
To compute the exponential growth rate, by Lemma 3.3 (3), we have that K (s+) +

4
Z_is an integer, and

q
4
lim —~ logRT, (M) = Vol(M) + ~/—1 CS(M)
r—oo r
/
+ V1 (o(L) ¥ 3ag — K(sT) — p—)n2
q

= Vol(M) + vV/—1CS(M) (mod v/—172Z). .

271\/7

Proof of Theorem 1.2. At the root of unity ¢ = e 7= for an odd integer r, let
TV,.(M) be the SO(3) Turaev—Viro invariants as defined in [7], namely, summing
over even colors instead of all integral colors in the definition. Then, by [7, Theo-
rem 2.9],

TV, (M) = 2b2(M)—=bo(M) TV.(M);
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and by the same argument as in [7, 34, 38,40], we have
TV, (M) = |RT'(M)?,

where RT,. (M) is the SO(3) Reshetikhin-Turaev invariants. (See [2, 20, 32], and for
the exact definition used here, see [7, Definition 2.1].)

Next, we show that
RT, (M) = 2RT,(M).

Indeed, in the SO(3) theory, the Kirby coloring

r—3
2

w, = 2[2;1 + 1lean.

n=0

Then, by [2, Lemma 6.3 (iii)], we have
oy =20,

in the Kauffman bracket skein module K, (D? x S!) of the solid torus, and the con-
stant 5

_1 2sin<Z
1y = ((0p)vy (op)u-) * = ﬁr =2,

where Uy are the diagram of the unknot with framing £1. As a consequence,
[y = froy
in K,(D? x S1), and
RT, (M) = ju, (o, .. -’/’L/rw;)D(L)<M/rw;)(_]j_(L)
= 20U {br@p, . .., hr@r)D(L) </’Lrwr)[_]j_(L) = 2RT,(M).

Putting all these together, we have

TV, (M) = 202M)=bo(MD+2 R (p1) 2,

and by Theorem 1.1, we have
b2 (M)—bo(M) | 1
TV,(M)= ——— e VM1 4 o =] ). n
| Tor(M; Ad,)| r

A. Proof of Proposition 6.1

To prove Proposition 6.1, we need the following lemmas, where the first one is the
standard complex Morse lemma (see, e.g., [43, Lemma 1.6]).
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Lemma A.1 (Complex Morse lemma). Let f : C* — C be a holomorphic function
with a non-degenerate critical point at (c1, ..., cy). Then, there exists a holomor-
phic change of variables (z1, ...,zy) = V(Z1,...,Zy) on a neighborhood V of
(c1,...,cn) such that ¥ (0,...,0) = (c1,...,¢Cn),

f(l/f(zlv---,zn))=f(C1,...,C,,)—Z%—---—Z,%

and

NS

2
B V/det(—Hess(f)(c1, ..., )

Lemma A.2. Forany & > 0, there exists a § > 0 such that

detDy/ (0, ..., 0)

rz

(1) the asymptotics of the integral of e~ > over [—e, €] is given by

/ e—rzzdz — \/z_i_ O(e—5r)
—e r

rz

and

(2) the asymptotics of the integral of z%e™ > over [—e, €] is given by

€ 1
/ Zze_rzzdz = — 1 + 0(6_8r).
e 2V r3
Proof. For (1), we have

& 5 [e.¢] 5 —& o0 5
/ e " dz =/ e '? dz—[ e "% dz—/ e " dz,
—& —0Q —00 &

where the first term
*© 2 T
/ e "t dz = | —
oo r

is a Gaussian integral, and the other two terms

—& 5 o0 5 o0 e—r€
/ e " dz :/ e " dz $/ e "dz =
oo . R re

For (2), by integration by parts, we have

&€ &€
) —_rr218 .2
/ e dz = zeTF |_8—|—2r/ 22e " dz;

—& —&

N

2

= 0(e7).

hence, by (1),

& 1 € 1
/ 204 = — / e dz —2ee ) = —,/1 + O(e™%). [
e 2r\J_; 2V r3

Lemma A.3. Let D be a region in C" containing the origin 0 and g be a holomorphic
function on D. Then, there exist functions hy, ..., hy, and k1, . .., ky, such that

(1) h; has variables z; 41, ..., zy and is holomorphic in them,



K. H. Wong and T. Yang 484

(2) ki has variables z;, . . ., z, and is holomorphic in them, and

(3) the holomorphic function g can be written as

n n
g(z1,. ... 2n) = g(0) + Zhi(zi+1,...,zn)zi + Zki(zi,...,zn)ziz.

i=1 i=1

Proof of Lemma A.3. We use induction on n. For n = 1, if z; # 0, then we can write

— o(0 _ dg 0
g(Zl) = g(O) + j_g(o)zl + (g(Zl) g( )2 dzl( )21)2%’
Z1 Z]
and let
hi = g(0)
and )
— g(0) — 28.(0
kl(Zl) _ g(Zl) g(z)z dz]( )Zl ‘
1

By computing the Laurent expansion of k1(z1), one sees z; = 0 is a removable sin-
gularity, and k1 (z;) extends as a holomorphic function. This proves the case n = 1.

Now, assume that the result holds whenn = [. Forn = [ + 1, if z; # 0, then we
have

g(217"'321+1)

a
=g0,z2,...,2141) + 5(0, Z2, .. Z141)71
1

(g(zl, cesZi41) — 80,25, ..., 2141) — ;Z—gl(O, Zo, ... ,Z]_H)Zl) )
_|_

Z1,
z2 !
and let
g
hi(za,....z141) = 8_(0’22’ cenZig1)
Z1
and
9
gz1y. . z141) — 80,22, ..., Z141) — %(0, Zo,. . Z141)71
kl(Zl,--le—l—l): 22 .
1

By computing the Laurent expansion again, one can see that k1 holomorphically
extends to z; = 0. Since g(0, z3, ..., z;41) has [ variables, by the induction assump-
tion,

I+1 I+1
g(0,z2,...,2141) = g(0) + Zhi(zi_l,_], e Zi+1)Zi Zki(zi, .. ,zl+1)zi2.

i=2 =2
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As a consequence, we have

I+1 I+1

485

2122, zi4) = 8O) + ) hiGigrs s zip)zi + Y ki(E o zie)2]

i=1 i=1

This completes the proof.

Proof of Proposition 6.1. For simplicity, we use the bold letters z = (zq, ..

dz=dzy---dzy,c = (c1,...,¢,)and 0 = (0,...,0).
We first consider a special case

c=0, S=[-¢¢"CR"CC”
and

f@)y ==}z
i=1

Let

vr(z)

1
o,(z) = vr(z)/o e r ’ds.

Then, we can write

vr(z) Or(Z
e _ |, 0@

r
and

1
g@e"® = g’ P + —g(@)o, ()P
r
Since |v,(z)| < M for some M > 0 independent of r,

1 M
r 1

|o,(z)|<M/ eArlsds=M(e - )<2M.

0 T

If M is big enough, then |g(z)| < M on S, and by Lemma A.2 (1), we have

2
- %/ @ 4y
rJs

OIM? (72 s 1
() o= )

' [ L e @0, e ®
s

By Lemma A.3, we have

n n
g(z1,...,zn) = g(0) + Zhi(zi+1,...,zn)zi + X:ki(z,-,...,zn)zi2
i=1

i=1

L Zn)7

(A.1)

(A.2)
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for some holomorphic functions {/;} and {k;} on D, where i = 1,...,n. Then, by
Lemma A.2 (1), we have

/ 2(0)e’ @y = g(())(;)z + o). (A3)
S

2,
"Zi" is odd, we have

&€
2
/ zie "Fidz; = 0.

—&

Since each z;e™

As a consequence, for each i, we have

/ hi(zit1,... ,Zn)Zierf(z)dZ
[—6,8]”

&

= / h,‘(ZH_l, . ,Zn)e_ij;‘éi 2-72 Hde . / Zie_rzidei =0. (A4)
[—&,e]"1 i —&

Besides, if M is big enough, |k; (z)| < M forallze S,i € {1,...,n}. By Lemma A.2,
we have foreachi € {1,...,n}

& &
/ ki(z)z2e" @ dz| < M(/ Zize_”izdzi) l_[(/ e_rzfz'dzj)
S —& —¢

J#i
1
= 0( n+2), (A.5)
N1

Putting (A.3), (A.4), and (A.5) together, we have the result for this special case.
For the general case, let (V, ) be the change of variable for f in the complex
Morse lemma, and let U C V such that

Yy '(U) =[[{Zi € C | —& <Re(Z) < &.—& < Im(Z;) < &}.

i=1

Let A be the volume of S~U . By the compactness and by conditions (2) and (5), there
exist constants M > 0 and § > 0 such that

lg@)] <M

and

Re f,(z) <Re f(c) —§
on S~U. Then,

< MAe"® SO0 = g(erRe/©O=0)) (A.6)

/ g(z)erfr(z)dz
S\U
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cn A
_____________________ v,
i (shuy
a s
S l/ [_8’ E]n R

Figure 6. The image of ¥ ~! around the non-degenerate critical point ¢ of f.

In Figure 6, the shaded region is where
n
Re ( -> z,?) <0.
i=1

In ¥ ~1(U), there is a homotopy H from ¥~1(S N U) to [—¢, ¢]® C R” defined by
“pushing everything down” to the real part. This is where we need condition (3). Let

S'=HOy (S NU)x[0,1]).

Then, ¥ ~1(S N U) is homotopic to S’ U [—¢, &]". Denote Z = (Z1, ..., Z,). Then,
by analyticity,

f g@e’’ P dz = / g(¥(2)) det D(y(Z2))e™/r VP gz
SNU v=1(SNU)
~ [ str@)den@ye v @az
S/
+ / g(Y(Z)) det D(y (Z))e™ "V @ g7, (A7)
[—e.e]"
Since ¥ (S’) ¢ S~\U,

| e @)deap@ne VDaz~ [ g@erOdn= ofer IO,
s’ ¥ (S
(A.8)
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and by the special case,

/ g((Z)) det D(y (Z))e™ "V @ g7,
[—e,e]”

Ur(II/(Z)))
2 dZ

=9 [ g @) dan@)e A
[—e.e]”

"7 © ¢(_(0)) det D(v(0)) (%) : (1 ) G))

() e (1+0(3))
_(r) Jdet(— Hess(f)(c)) t+o(;))

Together with (A.6), (A.7), and (A.8), we have the result. ]
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