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Abstract. A unitary fusion category is called Z=2Z-quadratic if it has a Z=2Z group of invert-
ible objects and one other orbit of simple objects under the action of this group. We give a
complete classification of Z=2Z-quadratic unitary fusion categories. The main tools for this
classification are skein theory, a generalisation of Ostrik’s results on formal codegrees to ana-
lyse the induction of the group elements to the centre, and a computation similar to Larson’s
rank-finiteness bound for Z=3Z-near group pseudounitary fusion categories. This last compu-
tation is contained in an appendix coauthored with attendees from the 2014 AMS MRC on
Mathematics of Quantum Phases of Matter and Quantum Information.

1. Introduction

In the past several decades, unitary fusion categories (UFCs) have seen broad applica-
tions to many areas of mathematics and physics, including representation theory, oper-
ator algebras, topological quantum field theory (TQFT), theoretical condensed matter,
and quantum information. Given the complete list of 6j -symbols for a UFC, one can
build unitary TQFTs which compute quantum invariants of links and 3-manifolds [4,
15], together with physical lattice models which realise these TQFTs [31, 32]. These
computations are increasingly difficult in the presence of multiplicity, i.e., where there
is a fusion channel with a dimension greater than 1, a.k.a. a fusion coefficient which
is larger than 1.

While many classification techniques work well for multiplicity free fusion cat-
egories, more techniques are required to achieve classification in the multiplicity
setting. We note that at the time of writing UFCs have only been classified up to
rank 3 [46, 49]. For rank 4 fusion categories with a dual pair of simple objects, there
is a classification of possible fusion rings in the pseudounitary setting [30]; our The-
orem A (and Corollary B) below completes the classification of rank 4 UFCs with
a dual pair of simples. The case of rank 4 with 4 self-dual objects still seems out
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of reach at this time. Multiplicity free fusion rings up to rank 6 admitting unitary
categorifications have been classified [36].

Surprisingly, all currently known fusion categories fit into four families:

(1) those related to1 groups,

(2) those related to quantum groups at roots of unity [1, 2, 18, 52, 54–56],

(3) the Haagerup–Izumi quadratic categories [3, 12, 13, 20, 24–26, 53],

(4) the extended Haagerup fusion categories [7, 19]. Given a finite group G, a
G-quadratic fusion category is a fusion category C with a finite group G of
simple objects and one other G-orbit ¹g�ºg2G of simple objects. (The col-
lection of all G-quadratic fusion categories over all finite groups G is exactly
the family (3) above.) The term “quadratic” comes from the existence of a
quadratic relation for the self-fusion of an object � which generates the other
G-orbit. For a family of fusion rings with a fixed rank, we say the family has
rank-finiteness if only finitely many of these rings admit a categorification.
Surprisingly, for a fixed group G beyond the trivial group, rank-finiteness is
not known for G-quadratic fusion categories (for the trivial group, see [46]).
The case

G D Z=2Z

is classified in the pivotal setting in [49], and rank-finiteness for G D Z=3Z

is achieved in the pseudounitary setting in [30].

In this article, we give a complete classification of Z=2Z-quadratic unitary fusion
categories. While we do not find any new fusion categories in this article, we provide
important techniques for finding 6j -symbols for fusion categories with multiplicity.
Our main theorem is as follows.

Theorem A. The complete list of Z=2Z quadratic UFCs is as follows.
The 3 object categories are:

• the Ising/Tambara–Yamagami categories of the form T Y.Z=2Z; �;˙/ [53] with
A3 fusion rules, of which there are exactly 2: the case “C” is Temperley–Lieb–
Jones at q D exp.2�i=8/, and the case “�” is SU.2/2,

• the three UFCs with Rep.S3/ fusion rules [11, Remark 6.6] and [25, Theorem
5.1],

• the two complex conjugate UFCs with Ad.E6/ fusion rules [8, 24]: these are
exactly the adjoint subcategories of exceptional quantum subgroups of Temperley–
Lieb–Jones at q D exp.2�i=24/ and SU.2/10 [29, 45].

1Here, “related to” means obtained by iterating known constructions, such as equivariantisa-
tion, Morita equivalence, etc.
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The 4 object categories are:

• the pointed categories Hilb.Z=4Z; !/, where ! 2 H 3.Z=4Z; U.1// and Hilb.Z=
2Z � Z=2Z; !/, where

! 2 H 3.Z=2Z � Z=2Z; U.1//=Aut.Z=2Z � Z=2Z/

Š .Z=2Z/3=Aut.Z=2Z � Z=2Z/

[10, Remark 4.10.4],

• the Deligne products Fib� Hilb.Z=2Z; !/ for ! 2H 3.Z=2Z; U.1//, which have
the A4 fusion rules: these two categories are also Temperley–Lieb–Jones at q D
exp.2�i=10/ and SU.2/3,

• Ad.SU.2/6/, which is also equivalent to the adjoint subcategory of A7 Temperley–
Lieb–Jones category with q D exp.2�i=16/,

• the even parts of the two complex conjugate subfactor planar algebras with prin-
cipal graphs

� 0 D

from [26, 34]: these categories are also de-equivariantisations of 2Z=4Z1 near
group fusion categories [25, Example 9.5] [35, Example 2.2].

• the even part of the 2D2 subfactor planar algebra with principal graph

from [39] and [26, Corollary 9.3]: this category is also a de-equivariantisation of
the even part of the 3Z=4Z subfactor from [26, 51].

All these UFCs are related to quantum groups at roots of unity or near group fusion
categories [13, 25].

Remark 1.1. The results of Theorem A make no assumptions on the existence of a
braiding on the category. The categories appearing in our classification which do not
admit braidings are: the two UFC’s with Rep.S3/ fusion rules which are not equival-
ent to Rep.S3/ [47, Section 4.4], the two UFC’s with Ad.E6/ fusion rules [47, main
theorem], the even parts of the two complex conjugate subfactor planar algebras with
principal graphs � 0 [34], and the even part of the 2D2 subfactor (which can be seen
to not admit a braiding from the centre analysis in Section 3.2). It is interesting to
note that the even parts of the subfactors with � 0 principal graphs admit � -braidings
as defined in [34, Definition 3.2].

The result [30, Theorem 1.1] gave a finite list of possible fusion rings for rank
4 pseudounitary fusion categories with a dual pair of simple objects, but included
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one fusion ring not previously known to be categorifiable (the case c D 2 from [30,
Theorem 1.1 (6)]), and left open the classification of those fusion rings from [30,
Theorem 1.1] which were previously known to be categorifiable.

Corollary B. We have a complete classification of rank 4 unitary fusion categories
with a dual pair of simple objects. In particular, there is no UFC with c D 2 from
[30, Theorem 1.1 (6)].

One tool to prove our classification is an adaptation of Larson’s rank-finiteness
bound for Z=3Z-near group pseudounitary fusion categories [30, Section 4]. This
adaptation appears in Appendix A below, coauthored with attendees from the 2014
AMS MRC program on the Mathematics of Quantum Phases of Matter and Quantum
Information.

Our main new technical tool to achieve Theorem A is a generalisation of Ostrik’s
results on formal codegrees of a spherical fusion category [48,49]. We use the results
of [41, Section 5], but we use the conventions of [23]. Suppose that C is a spherical
fusion category, and denote by F W Z.C/! C the forgetful functor and let 	 W C !

Z.C/ be its adjoint. Let A be the tube algebra of C , and let AX X be the corner of
A corresponding to X 2 Irr.C/. We pick a non-degenerate trace TrX on AX X given
by

TrX

0BBB@ f

X
xW

W

X
1CCCA WD ıWD1 dim.X/ trC .f /:

Given an irreducible representation .V; �V / of AX X , its formal codegree [38, 48]
with respect to TrX is given by

fV WD
X
b

TrV .�.b//�.b_/;

where ¹bº is a basis of AX X and ¹b_º is the dual basis with respect to the non-
degenerate pairing .a; b/ WD TrX .ab/ on AX X . Observe that fV is independent of
the choice of basis ¹bº, but depends on the choice of TrX . We refer the reader to
Section 2.2 for more details.

Theorem C. There is a bijective correspondence between irreducible representations
.V; �V / of AX X and simple subobjects �V � 	.X/ 2 Z.C/. The formal codegree
fV of .V; �/ with respect to TrX is a scalar, and the categorical dimension of �V
is given by dim.C/

fV dim.X/ . Moreover, if Y 2 Irr.C/ and X�Y is the action of AX X on
AX Y , then

dim HomC .F .�V /! Y / D dim Hom.�V ! X�Y /:
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In the case X D 1 2 Irr.C/, this theorem recovers [49, Theorem 2.13], which
allowed the computation of the simple decomposition of 	.1/ in terms of representa-
tions of the fusion algebra of C . Our theorem generalises this result in several ways.
The main improvement is that this result allows us to determine the simple decom-
position of 	.X/ by studying the representations of the corner of the tube algebra
AX X . When X D 1, this algebra is isomorphic to the fusion algebra of C . However,
when X is non-trivial, this corner depends on certain 6j -symbols of the category
involving X . One immediate application of this theorem comes from the fact that the
dimensions of simple objects in Z.C/ are highly restricted, which implies the rep-
resentations of AX!X (which depend on the 6j -symbols) are also restricted. Hence,
we obtain obstructions based on 6j -symbols. We make use of this application in this
article to determine several non-trivial 6j -symbols involving the invertible object of
a Z=2Z-quadratic UFC.

The other improvement Theorem C offers is that for each simple � � 	.X/, we
can determine F .�/ 2 C . This information is encoded in the action of AX X acting
on the entire tube algebraA. As these algebras are semisimple, it is easy to decompose
this action into irreducibles and hence apply Theorem C. A surprising application of
this theorem comes from the fact that if we know the action of AX X acting on the
entire tube algebra A up to isomorphism, we can often determine the action on the
nose. As this action is determined by the 6j -symbols of C , this allows us to find
many linear equations involving the 6j -symbols. We use this application later in this
article to get our hands on many 6j -symbols. In the general setting, this result allows
the combinatorial data of the forgetful functor Z.C/! C to be leveraged into the
categorical data of the 6j -symbols of C . As the forgetful functor can often be easily
determined from the fusion ring of C [40], we expect this application to have many
exciting future uses.

2. Preliminaries

We refer the reader to [10] for the basics of fusion categories. We refer the reader
to [22,50] for the basics of unitary fusion categories. In particular, we always assume
a unitary fusion category is equipped with its unique unitary spherical structure where
the daggers of cups are caps and the quantum dimensions are equal to the Frobenius–
Perron dimensions [37].

2.1. The tube algebra

One of the key tools in this paper is Ocneanu’s tube algebra (or equivalently the annu-
lar category) of a fusion category. This algebra was first introduced by [44] and [14] in
the context of subfactors and by [23, 24] and [41] in the context of fusion categories.
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Definition 2.1. Let C be a spherical fusion category whose spherical trace is denoted
by trC . The tube algebra A of C is the finite dimensional semisimple algebraM

X;Y2Irr.C/

AY X ; where AY X WD
M

W 2Irr.C/

C.W ˝X ! Y ˝W /:

We graphically represent a fixed basis element of A as

f

X
xW

W

Y

; f 2 C.W ˝X ! Y ˝W /:

The multiplication onA is defined by composition of the tubes and applying the fusion
relation obtained from semisimplicity to the strands around the outside. In more detail,
we pick a basis ¹˛º � C.U ˝ V ! W / for all U; V; W 2 Irr.C/, and let ¹˛_º �
C.W ! U ˝ V / be the dual basis with respect to the non-degenerate pairing . � ; � / W
C.U ˝ V ! W / � C.W ! U ˝ V /! C determined by the formula .h; k/ idW D
h ı k 2 EndC .W /. We have the fusion relation

U

U

V

V

D

X
W 2Irr.C/

˛

U V

U V

W

˛

˛_

;

which gives the following formula for composition in the tube algebra, which is inde-
pendent of the choice of basis ¹˛º:

f

Y
xU

U

Z

�

g

X
xV

V

Y

WD g

f

X
xV

V

Y
xU

U

Z

D

X
W 2Irr.C/

˛

˛

˛_

g

f

X

xW

W

Y

U

V

V

U

Z

:

There is a non-degenerate linear functional � on A given by

f

X
xW

W

Y

7�! ıXDY ıWD1 dim.X/ trC .f /:
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Its restriction to AX X is tracial for all X 2 Irr.C/, and we denote it by TrX .

Note that each of the spacesAX X is the corner 1XA1X ofA, where we cut down
by the idempotent

1X WD
X
;

and AX X acts on the spaces AX Y by multiplication.
The tube algebra of C is intimately related to the Drinfeld centreZ.C/ of C . From

the data of Z.C/, we obtain a basis of matrix units for the spaces AX Y given by

e.�/.X;i/;.Y;j / WD
dim.�/

dim.C/
p

dim.X/ dim.Y /

X
W 2Irr C

dim.W /

X

�
xW

W

�

Y

j 0

i

ˇW;�
;

where .�; ˇ�/ 2 Irr.Z.C//, ¹iº is a basis for C.X ! F .�//, and ¹j º is a basis
for C.Y ! F .�//, where F W Z.C/ ! C is the forgetful functor. Here, ¹j 0º �
C.F .�/! Y / denotes the dual basis of ¹j º with respect to the pairing

k0 ı j D ıjDk idY :

With respect to our functional � on A, we have that

�.e.�/.X;i/;.Y;j // D ıX;Y ıi;j
dim.X/ dim.�/

dim.C/
;

and so, the dual basis with respect to the �-pairing is given by

e.�/_.X;i/;.Y;j / D
dim.C/

dim.X/ dim.�/
e.�/.Y;j /;.X;i/:

The construction above shows us that Z.C/ entirely determines the structure of
the tube algebra of C . The converse is also true. The tube algebra of C entirely determ-
ines the Drinfeld centre of C . The following theorem gives a bijective correspondence
between representations of the tube algebra and objects of Z.C/.

Theorem 2.2 ([23] and [41, Section 5]). There is a bijective correspondence between
equivalence classes of irreducible representations of the tube algebra of C and iso-
morphism classes of simple objects in Z.C/. This bijection sends

.V; �/ 7! �V WD
M

X2Irr.C/

V jAX X ˝X:



C. Edie-Michell, M. Izumi, and D. Penneys 500

Further, we have that the minimal central projection zV 2 A corresponding to .V; �/
is given by

zV D
X

X2Irr.C/;
¹iº�C.X!F .�V //

e.�V /.X;i/;.X;i/:

2.2. A new result on formal codegrees

If one knows the full tube algebra of C , then Theorem 2.2 essentially gives you the
full data of Z.C/. However, in many situations, such as in this article, we only know
information about some sub-algebra of the tube algebra, and we wish to leverage this
information into partial information about Z.C/. Towards this goal, we introduce the
formal codegree of a representation.

Definition 2.3 ([38,48]). Let B be a finite dimensional semisimple algebra equipped
with a non-degenerate trace TrB , and let .V; �/ be a finite dimensional representation
of B . We define the formal codegree of .V; �/ as follows:

fV WD
X
b

TrV .�.b//�.b_/ 2 �.B/ � End.V /;

where we sum over a basis ¹bº � B , and ¹b_º denotes the dual basis with respect to
the TrB -pairing. Observe that fV is independent of the choice of basis, but depends
on the choice of trace TrB .

The following theorem allows us to determine the simple summands of 	.X/ 2

Z.C/ by classifying the representations of the subalgebra AX X . Here, 	 W C !

Z.C/ is the induction functor which is adjoint to the forgetful functor F WZ.C/! C .
Moreover, we can compute categorical dimensions in terms of formal codegrees of
AX X with respect to TrX .

Theorem (C). Let C be a spherical fusion category, and let A be the tube algebra of
C . Fix X 2 Irr.C/. There is a bijective correspondence between equivalence classes
of irreducible representations .V; �/ of AX X and isomorphism classes of simple
subobjects

�V � 	.X/ 2 Z.C/:

The formal codegree fV of .V; �/ with respect to TrX is a scalar, and the categorical
dimension of �V is given by

dim.�V / D
dim.C/

fV dim.X/
:

Moreover, if Y 2 Irr.C/ andX�Y is the action of AX X on AX Y , then

dim.C.Y ! F .�V /// D dim.Hom.�V ! X�Y //:
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Proof. Let .V; �/ be an irreducible representation of AX X . Since AX X is semi-
simple, .V; �/ corresponds to a simple summand of AX X . As AX X is a corner
of A, each simple summand of AX X is of the form AX Xz� for a simple object
.�; ˇ/ 2 Irr.Z.C//. Hence, there is a simple .�V ; ˇ�V / corresponding to .V; �/, and
by Theorem 2.2,

zV 1X D
X
i

e.�V /.X;i/;.X;i/:

Moreover, for any other simple object ƒ 2 Irr.Z.C//, we have that

�.e.ƒ/.X;i/;.X;i// D 0

unless ƒ Š �V . In particular,

TrV .�.e.ƒ/.X;i/;.X;j /// D 0

unless ƒ D �V and i D j . We now compute

fV D
X

ƒ�	.X/
i;j

TrV .�.e.ƒ/.X;i/;.X;j ///�.e.ƒ/_.X;i/;.X;j //

D

X
i

dim.C/
dim.X/ dim.�V /

�.e.�V /.X;i/;.X;i//

D
dim.C/

dim.X/ dim.�V /
�.zV 1X /:

Thus, the formal codegree of .V; �/ is given by

fV D
dim.C/

dim.X/ dim.�V /
and dim.�V / D

dim.C/
fV dim.X/

:

Finally, we observe that

dim.Hom.V ! X�Y // D dim.Hom.V ! 1XA1Y //

D dim.Hom.V ! zV 1XA1Y //

D dim.Hom.V ! zV 1XA1Y zV //

D

X
j

dim.Hom.V ! zV 1XAe.�V /.Y;j /;.Y;j ///„ ƒ‚ …
D1

D dim.C.Y ! F .�V ///:

Note that if we just consider the subalgebra A1 1 Š K0.C/, the fusion algebra of
C , then the above theorem recovers [49, Theorem 2.13], which shows that irreducible
representations of K0.C/ are in bijective correspondence with simple summands of
	.1/. Thus, our theorem generalises Ostrik’s in two ways: (1) it gives us the simple
summands of 	.X/ where X is any simple object of C , and (2) it tells us the image
under the forgetful functor of each of these summands.
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2.3. Z=2Z-quadratic fusion categories

A Z=2Z-quadratic fusion category is a fusion category C whose invertible objects
form the group Z=2Z, i.e., Inv.C/ D ¹1; ˛º with ˛2 Š 1, with one other orbit of
simple objects under the Z=2Z-action. A simple associativity argument shows that
we have three cases:

(Q1) simple objects: 1; ˛; �; fusion rules determined by �2 Š 1˚m�˚ ˛,

(Q2) simple objects: 1; ˛; �; ˛�, � not self-dual; fusion rules determined by �2 Š
m�˚ n˛�˚ ˛,

(Q3) simple objects: 1; ˛; �; ˛�, � self-dual; fusion rules determined by �2 Š
1˚m�˚ n˛�.

Note that in all three cases we have

˛2 Š 1 and ˛� Š �˛:

2.3.1. Multiplicity bounds and categorifiability. The case (Q1) was classified in
the pivotal setting in [49, Theorem 4.1], where it was shown thatm� 2. The complete
classification of such unitary fusion categories which was known prior to this article
is as follows:

(m D 0) such a fusion category is a Tambara–Yamagami category of the form
T Y.Z=2Z; �;˙/ [53], of which there are exactly 2. Both such categor-
ies are unitarisable.

(m D 1) such a fusion category has the fusion rules of Rep.S3/. There are exactly
three such unitary fusion categories [25, Theorem 5.1].

(m D 2) such a fusion category has the fusion rules of Ad.E6/, and there are
exactly 4 such fusion categories [21], all within the same Galois orbit,
and each admits a spherical structure. Two of these are unitary and com-
plex conjugate to each other [24].

The case (Q2) was studied in the pseudounitary setting (dim.C/ D FPdim.C/)
in [30], where it was shown thatmD n� 2. The classification of such fusion categor-
ies prior to this article is as follows:

(m D 0) such a fusion category is necessarily pointed with Z=4Z fusion rules. It
is thus of the form Vect.Z=4Z; !/ for ! 2 H 3.Z=4Z; U.1// D Z=4Z,
of which there are 4 categories [10, Remark 4.10.4].

(m D 1) this case was open. Two such unitary fusion categories which are com-
plex conjugate were known to exist from [26, 34].

(m D 2) this case was open. No such examples were known to exist.

We finish this classification for unitary fusion categories in Theorem 4.1 below.
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In Appendix A, we adapt the results of [30] in the pseudounitary setting to (Q3),
where we prove the following theorem.

Theorem 2.4. Suppose that C is a pseudounitary fusion category with the fusion
rules (Q3). Then, .m; n/ must be equal to one of .0; 0/, .0; 1/, .1; 0/, .1; 1/, .2; 2/.

Proof. By Theorem A.12 in Appendix A, we must havemC n� 5. If eitherm or n is
zero, then there is a fusion subcategory with 3 simple objects, so .m; n/ must be one
of .0; 0/; .0; 1/; .1; 0/ by [46]. If 0 ¤ m ¤ n ¤ 0, then mC n � 11 by Remark A.2
in Appendix A. The result follows.

The proof thatmC n � 5 that appears in Appendix A below was written by Ryan
Johnson, Siu–Hung Ng, David Penneys, Jolie Roat, Matthew Titsworth, and Henry
Tucker at the 2014 AMS MRC on The Mathematics of Quantum Phases of Matter
and Quantum Information.

By [27, 33] (and applying Galois conjugation), any fusion category with fusion
rules (Q3) with .m; n/ 2 ¹.0; 1/; .1; 0/º factorizes as a Deligne product of a fusion
category with Fibonacci fusion rules, of which there are two, namely, Fib and YL,
and a Z=2Z-pointed fusion category which must be of the form Vect.Z=2Z; !/ for
! 2 H 3.Z=2Z; U.1//, of which there are two. Thus, there are exactly 4 such fusion
categories, and 2 are unitarisable.

When m D n � 2, the complete classification of such unitary fusion categories as
in Theorem 2.4 is given in Theorem 3.1 below.

3. The self-dual case

In this section, we will focus on the unitary categorification of the fusion ring with
four simple objects 1; ˛; �; ˛� and fusion rules

˛ ˝ ˛ Š 1; �˝ � Š 1˚m�˚m˛�: (R.m/)

Let us write (R.m/) for such a fusion ring. By Theorem 2.4 above, we know that
m � 2. Our main result of this section is as follows.

Theorem 3.1. The complete classification of unitary fusion categories Cm with K0
.Cm/ Š (R.m/) for m � 2 is as follows:

(m D 0) C0 is pointed and thus equivalent to one of the four monoidally distinct
categories Vect!.Z=2Z � Z=2Z/, where

! 2 H 3.Z=2Z � Z=2Z; U.1//=Aut.Z=2Z � Z=2Z/

[10, Remark 4.10.4].
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(m D 1) C1 is equivalent to C.sl2; 7/
ad, which is also equivalent to the even part

of the A7 Temperley–Lieb–Jones category with

q D exp.2�i=16/

[26, Example 9.1].

(m D 2) C2 is equivalent to the even part of the 2D2 subfactor from [26, 39].

Proof. It suffices to restrict our attention to the cases of m D 1 and m D 2. The first
step in our proof is to provide a set of numerical data which fully classifies a cat-
egorification of (R.m/); we do this in Section 3.1. By describing a sufficient list of
local relations in our category, we are able to come up with such a set of numerical
data. This data consists of 8m4 complex scalars and a collection of small roots of
unity. This data is precisely a subset of the 6j C 4k symbols of such a categorific-
ation. Using techniques developed in the subfactor classification program, we prove
that this subset of the 6j C 4k symbols is sufficient to describe the entire category.

In Section 3.2, in order to get a foothold on the numerical data of a categorification
of (R.m/), we study the Drinfeld centre of such a category. By studying certain small
representations of the tube algebra of the category (using basic combinatorial argu-
ments), we are able to deduce a surprising amount of numerical data of the category.
This centre analysis tells us nearly all of the small roots of unity in our numerical
data and even gives us highly non-trivial linear equations involving the 8m4 complex
scalars.

To reduce the 8m4 complex scalars down to a more manageable number, in Sec-
tion 3.4, we apply the tetrahedral symmetries of the 6j C 4k symbols. These symmet-
ries only apply in the unitary setting and give S4 symmetries of these 8m4 complex
scalars2. This essentially reduces the complexity of the problem by a factor of 24. For
example, in themD 2 case, we reduce from 128 complex scalars to roughly 10 (some
of the S4 symmetries are redundant). These symmetries turn an intractable amount of
data into a set that can easily be dealt with by hand.

To finish off this section, we explicitly solve for the remaining numerical data
which describes a categorification of (R.m/) in Section 3.5. The results of the previ-
ous sections essentially determine everything except the remaining complex scalars.
By evaluating diagrams in our category in multiple ways, we are able to obtain equa-
tions of these complex scalars. In the m D 2 case, we find a single solution, which
necessarily has to correspond to the even part of the 2D2 subfactor. We prove this in
Theorem 3.31 below.

2 While writing this article, the article [17] was posted to the arXiv, which describes tet-
rahedral symmetries for general fusion categories. It would be interesting to use their work to
extend our results to the non-unitary setting.
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3.1. Numerical data

Let Cm be a unitary fusion category with K.Cm/ Š (R.m/), m 2 ¹1; 2º. The goal
of this section is to pick nice basis for our morphisms spaces in Cm and to determine
some local relations that these basis elements satisfy. These local relations will depend
on the following data:

• two choices of signs ��; �˛ 2 ¹�1; 1º which are the 2nd Frobenius–Schur indic-
ators of ˛ and �, respectively,

• a choice of sign � 2 ¹�1; 1º,

• 2m choices of �1;i 2 ¹�1; 1º and �˛;i 2 ¹�
p
�˛;
p
�˛º for 0 � i < m,

• 2m choices of 3rd roots of unity !1;i ; !˛;i 2 ¹1; e
2�i 13 ; e2�i

2
3 º for 0 � i < m.

In the following section, we are able to pin down the data � and � by analysing the
centre of Cm.

To simplify notation, we define

d WD dim.�/;

which is the largest solution to d2 D 1C 2md . If m D 1, then d D 1C
p
2, and if

m D 2, then d D 2C
p
5. We choose orthonormal bases for our hom spaces

� �

�

i 2 Cm.�˝ �! �/;

˛

� �

�

i 2 Cm.�˝ �! ˛�/; 0 � i < m:

We also choose unitary isomorphisms3

˛

x̨

2 Cm.˛ ! x̨/;

�

N�

2 Cm.�! N�/; and

�

�

˛

x̨

2 Cm.�˝ ˛ ! x̨ ˝ �/:

We can unambiguously write their inverses as

x̨

˛

2 Cm.x̨ ! ˛/;

N�

�

2 Cm. N�! �/; and

�

�

x̨

˛

2 Cm.x̨ ˝ �! �˝ ˛/:

3Using the convention of switching the orientation of the ˛-strand through the crossing
works better for Z=2Z-equivariantisation, which is related to the 3Z=4Z-subfactor [26]. In the
non-self-dual case in Section 4 below, we will use a more natural convention from a diagram-
matic point of view which does not change the orientation of the ˛-strand.
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The duals of these first two isomorphisms are related to their inverses, respectively,
by the Frobenius–Schur indicators of ˛ and � via the following equations:

˛

x̨

D �˛

˛

x̨

;

�

N�

D ��

�

N�

; �˛; �� 2 ¹˙1º:

We can rescale the crossing so that

�

�

˛

˛

WD

�

�˛

˛

D

�

�˛

˛

due to the implicit inverses on both sides. Semisimplicity gives us the local relations

˛ x̨

D

˛ x̨

˛ x̨

� �

D
1

d

� �

� �

C

mX
iD0

� �

i

i

��

C

mX
iD0

� �

i

i

��

D D 1 D D d

�

i
D

�

i
D 0 i

�

D 0

�

˛

i D

�

˛

i
D 0

�˛

i D 0:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

: (3.1)

Definition 3.2. Let � 2 C� such that

˛ �

N�

D �

˛

˛

�

N�

:

Clearly, �2 D 1.
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In order to choose a natural basis for the spaces Cm.�˝ �! �/ and Cm.�˝ �!

˛�/, we introduce the following linear operators on these spaces. We often suppress
the orientation on the ˛ strands, as it may be inferred from the other orientations in
the diagram:

K1

 
i

!
WD i and K˛

 
i

!
WD i :

We also define the anti-linear Frobenius operators

L1

 
i

!
WD i ; L˛

 
i

!
WD i ;

R1

 
i

!
WD i ; R˛

 
i

!
WD i :

These operators are unitary with respect to the tracial inner product on hom spaces.
By a straightforward but tedious calculation, one proves that these operators satisfy
the following relations:

K1
ıK1

D �˛ Id; K˛ ıK˛ D Id;

L1
ı L1

D �� Id D R1
ıR1; L˛ ı L˛ D ��� Id D R˛ ıR˛;

K1
ı L1

D �.L1
ıK1/; K˛ ı L˛ D ��˛.L

˛
ıK˛/;

K1
ıR1

D �.R1
ıK1/; K˛ ıR˛ D ��˛.R

˛
ıK˛/;

.R1
ı L1/3 D 1 D .L1

ıR1/3; .R˛ ı L˛/3 D 1 D .L˛ ıR˛/3:

We can diagonalise our basis of Cm.�˝ �! �/ and Cm.�˝ �! ˛�/with respect
to these operators to obtain the following lemma.

Lemma 3.3 (˛-jellyfish). We can choose bases for Cm.�˝ �! �/ and Cm.�˝ �!

˛�/ such that

K1

 
i

!
D �1;i i and K˛

 
i

!
D �˛;i i ;

R1
ı L1

 
i

!
D !1;i i and R˛ ı L˛

 
i

!
D !˛;i i ;

where �21;i D �a, �2˛;i D 1, and !31;i D !
3
˛;i D 1.
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In particular, we have the local relations

˛ � �

�

i D �1;i
i

and

˛

˛

� �

�

i D �˛;i i :

Proof. From the above relations, we have that K1 and R1 ı L1 commute. Further-
more, we have

.K1/4 D 1 and .R1
ı L1/3 D 1:

Hence, we can simultaneously diagonalise these operators to obtain the basis of Cm

.� ˝ � ! �/ claimed in the statement of the lemma. As .K1/2 D �˛ , we have that
�21;i D �˛ , and as .R1 ı L1/3 D 1, we have that !31;i D 1. The same argument gives
the claimed basis for Cm.�˝ �! ˛�/.

The local relations in the statement of the lemma follow by applying a local ˛
relation to the operators K1 and K˛ .

In the case thatmD 1, we have that the spaces Cm.�˝ �! �/ and Cm.�˝ �!

˛�/ are 1-dimensional. Hence, the earlier operators are all scalars. In this special case,
we determine the scalars �˛ , ��, and �.

Corollary 3.4. If m D 1, then �˛ D �� D � D 1.

Proof. As m D 1, we have that L1 acts by a scalar l1 2 C. As L1 is anti-linear,
the relation L1 ı L1 D �� gives l1 xl1 D ��. Hence, �� D 1. The same analysis on the
relationL˛ ıL˛ D ��� gives that ���D 1, and so, �D 1. Finally, from Lemma 3.3,
the linear operator K˛ is a real scalar. The relation

K˛ ı L˛ D ��˛.L
˛
ıK˛/

then gives us that �˛ D 1.

Note that when m D 1 and �˛ D 1, we have the classification of categories C1

from [26, Example 9.1]. Hence, we have the following corollary of the above lemma.

Corollary 3.5. The statement of Theorem 3.1 is true when m D 1.

Hence, for the remainder of this section, we may assume that m D 2.
Note that, at this point, we cannot fully determine the action of the operators L

and R on our basis. However, we can make the following observation.

Lemma 3.6. We have two cases depending on the value of �˛� 2 ¹1;�1º:

(1) If �˛� D 1, then the operators L1 and R1 preserve the eigenspaces of K1,
and the operators L˛ and R˛ preserve the eigenspaces of K˛ .
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(2) If �˛� D �1, then the operators L1 and R1 exchange the eigenspaces of K1,
and the operators L˛ and R˛ exchange the eigenspaces of K˛ . In particular,
�1;0 D ��1;1 and �˛;0 D ��˛;1.

Proof. This follows from the commutation relations above, along with the fact that
our L and R operators are anti-linear. Let us illustrate a few examples.

Suppose that �˛� D 1, and let v be an eigenvector for K1 (with eigenvalue �).
Then, the relation K1 ı L1 D �.L1 ıK1/ gives that

K1
ı L1.v/ D �˛ x�L

1.v/:

If �˛ D 1, then � is real by Lemma 3.3, and we get thatK1 ıL1.v/D �L1.v/. If �˛ D
�1, then � is imaginary by Lemma 3.3, and we get that K1 ı L1.v/ D �x�L1.v/ D

�L1.v/. The argument for the eigenspaces of K˛ is similar (and easier).
Suppose that �˛�D�1, and let v be an eigenvector forK1 (again with eigenvalue

�). Now, the relation K1 ı L1 D �.L1 ıK1/ gives that

K1
ı L1.v/ D ��˛ x�L

1.v/:

The same argument as above shows thatK1 ıL1.v/D��L1.v/. Thus,L1 exchanges
the eigenspaces ofK1, which then must be 1-dimensional. In particular, we must have
that �1;0 D ��1;1. The same argument holds for the eigenspaces of K˛ .

The above arguments also work verbatim for the operators R1 and R˛ .

3.2. Centre analysis

In this section, we will analyse the Drinfeld centre of the categories C2 in order to pin
down the values of our data �, � and the operators L and R.

Our main tool in this section is Theorem 2.2. We remind the reader that, this result
states that for an object X 2 C , the irreducible representations V of AX!X are in
bijective correspondence with simple summands �V � 	.X/ 2 Z.C/, the dimension
of �V is given by dim.C/

dim.X/fV
, where fV is the formal codegree of the representation V ,

and the multiplicity of Y 2 F .�V / is equal to the multiplicity of V in the left action
of AX!X on AX!Y .

With this tool in mind, we aim to study the tube algebra for C2:

A D

A1 1 A1 ˛ A1 � A1 ˛�

A˛ 1 A˛ ˛ A˛ � A˛ ˛�

A� 1 A� ˛ A� � A� ˛�

A˛� 1 A˛� ˛ A˛� � A˛� ˛�
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By determining the irreducible representations of the sub-algebras AX X , and their
multiplicities in the left action of AX X on AX Y , we can determine the simple
objects of Z.C2/ and their images under the forgetful functor.

Performing this computation over all of the tube algebra is far too computationally
taxing. Instead, we restrict our attention to the sub-algebra

A1 1 ˚ A˛ ˛ ˚ A1 � ˚ A˛ � ˚ A1 ˛�:

We pick the following bases for these spaces:

A1 1 D span

8<: ; ; ;

9=; ;
A1 � D span

8̂̂<̂
:̂

0

;
1

;
0

;
1

9>>=>>; ;

A1 ˛� D span

8̂̂̂<̂
ˆ̂:

0

;
1

;
0

;
1

9>>>=>>>; ;

A˛ ˛ D span

8̂̂̂<̂
ˆ̂: ; ; ;

9>>>=>>>; ;

A˛ � D span

8̂̂̂̂
<̂
ˆ̂̂:
0 ; 1 ; 0 ; 1

9>>>>=>>>>; :
By direct computation, we obtain the following:

• The algebra A1 1 has four 1-dimensional representations, which are

�0 1 1 2C
p
5 2C

p
5

�1 1 1 2 �
p
5 2 �

p
5

�2 1 �1 1 �1

�3 1 �1 �1 1

The formal codegrees of these representations are then 20C 8
p
5, 20 � 8

p
5, 4,

and 4, respectively. Hence, by Theorem C, the object 	.1/ is a direct sum of 4
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simple objects Xi with dimensions

dim.X0/D 1; dim.X1/D 9C 4
p
5; and dim.X2/D dim.X3/D 5C 2

p
5:

• Direct computation on the basis elements of A˛ ˛ gives the following multiplic-
ations:26664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

37775
26664
0 1 0 0

�˛ 0 0 0

0 0 0 �˛

0 0 1 0

37775
26664
0 0 1 0

0 0 0 �˛

� 0 �1p
�˛

�˛

0 �˛� �˛�˛
�1p
�˛

37775
26664
0 0 0 1

0 0 1 0

0 �˛� �˛�˛
�1p
�˛

�˛� 0 �˛
�1p
�˛

�˛�˛

37775;
where �1 WD

p
�˛.�1;0 C �1;1/ 2 ¹�2; 0; 2º and �˛ WD �˛;0 C �˛;1 2 ¹�2; 0; 2º.

Here, we fix our choice of square roots so that
p
�˛ D 1 if �˛ D 1, and

p
�˛ D

i if �˛ D �1. From this, we determine that A˛ ˛ has the four 1-dimensional
representations:

�0 1
p
�˛

�1C�˛C
p
4��˛C.�1C�˛/2

2
p
�˛

�1C�˛C
p
4��˛C.�1C�˛/2

2

�1 1
p
�˛

�1C�˛�
p
4��˛C.�1C�˛/2

2
p
�˛

�1C�˛�
p
4��˛C.�1C�˛/2

2

�2 1 �
p
�˛

�1��˛C
p
4��˛C.�1��˛/2

2
p
�˛

�1��˛C
p
4��˛C.�1��˛/2

�2

�3 1 �
p
�˛

�1��˛�
p
4��˛C.�1��˛/2

2
p
�˛

�1��˛�
p
4��˛C.�1��˛/2

�2

Hence, by Theorem C, the object 	.˛/ is a direct sum of 4 simple objects Yi with
dimensions

dim.Y0/ D
dim.C/

2C 1
2
j�1 C �˛ C

p
4��˛ C .�1 C �˛/2j2

;

dim.Y1/ D
dim.C/

2C 1
2
j�1 C �˛ �

p
4��˛ C .�1 C �˛/2j2

;

dim.Y2/ D
dim.C/

2C 1
2
j�1 � �˛ C

p
4��˛ C .�1 � �˛/2j2

;

dim.Y3/ D
dim.C/

2C 1
2
j�1 � �˛ �

p
4��˛ C .�1 � �˛/2j2

:
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From [23, Lemma 5.4], we have that t � p�i D �Yip�i , where p�i D
P
b �.b/b

� 2

A˛ ˛ is the minimal central idempotent corresponding to �i , and in our case, the
operator t is simply right multiplication by the 2nd basis element. Hence, we have
that

�Y0 D �Y1 D �˛
p
�˛ and �Y2 D �Y3 D ��˛

p
�˛:

• Let Zi be the remaining simple objects of Z.C2/. Then

F .Zi / D pi�˚ qi˛�

for some pi ; qi 2 N. Further

dim Hom.	.�/;	.�// D 20 D dim Hom.	.˛�/;	.˛�//;

dim Hom.	.˛�/;	.�// D 16:

• Let 1�� be the action of A1 1 on A1 �. Then

1��

� �
D

26664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

37775 ; 1��

� �
D

"
� �0

�0 �

#
;

1��

0@ 1A D "�0 �

� �0

#
;

where � and �0 are the operators on Hom.�˝ � �/ defined by

�

 
i

!
D

X
j

j

j

i
;

�0

 
i

!
D

X
j

j

j

i
;

which we can identify as operators on the two spaces:

´
0

;
1

µ
and

8̂̂<̂
:̂

0

;
1

9>>=>>;
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by local insertion, i.e., the elements of A1 1 which involve �; �0 above act on
A1 � by applying �; �0 locally on the trivalent vertices in our standard basis of
A1 �.

• Let 1�˛� be the action of A1 1 on A1 ˛�. Then

1�˛�

� �
D

26664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

37775 ; 1�˛�

� �
D

"
 0  

  0

#
;

1�˛�

0@ 1A D "  0

 0  

#
;

where  and  0 are the operators on Hom.�˝ �! ˛�/ defined by

 

 
i

!
D

X
j

j

j

i
;

 0

 
i

!
D

X
j

j

j

i
:

As before, we can naturally identify ; 0 as operators on the following two spaces
by local insertion:8̂<̂

: 0

;
1

9>=>; and

8̂̂̂<̂
ˆ̂:

0
;

1

9>>>=>>>; :
• Denoting by ˛�� the action of A˛!˛ on A˛ �, we have

˛��

0@ 1A D
26664
0 0 1 0

0 0 0 1

�˛ 0 0 0

0 �˛ 0 0

37775 :
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We begin by analysing the corner of the tube algebra A1 1, and its actions on
A1 � and A1 ˛�. This gives us the following result.

Lemma 3.7. There exists b 2 ¹0; 1; 2º such that

F .X0/ D 1;
F .X1/ D 1˚ 2�˚ 2˛�;
F .X2/ D 1˚ b�˚ .2 � b/˛�;
F .X3/ D 1˚ .2 � b/�˚ b˛�:

Furthermore, if b 2 ¹0; 2º, then the operators � and  are both the same scalar

� D  D
1C b �

p
5

2
;

and if b D 1, the operators � and  have the two eigenvalues

1 �
p
5

2
and

3 �
p
5

2
:

Proof. First, note that as X0 is the tensor unit of Z.C/, we have that 1�� and 1�˛�

contain no copies of �0. From the above computations, we have that

Tr
�

1��

� ��
D 0:

As 1�� is 4-dimensional, and �0 is not a sub-representation, we must have that

1�� Š 2�1 ˚ b�2 ˚ .2 � b/�3; where b 2 ¹0; 1; 2º:

Thus, F .X1/ contains two copies of �, and a dimension count shows that

F .X1/ D 1˚ 2�˚ 2˛�:

From this, we can deduce three possibilities for the restrictions of X2 and X3.

Case 1. F .X2/D F .X3/D 1˚ �˚ ˛�, in which case, 1�� Š 1�˛� Š 2�1 ˚ �2 ˚

�3, and, in particular,

Tr
�

1��

� ��
D 4 � 2

p
5:

Case 2. F .X2/ D 1˚ 2� and F .X3/ D 1˚ 2˛�, in which case, 1�� Š 2�1 ˚ 2�2

and 1�˛� D 2�1 ˚ 2�3, and, in particular,

Tr
�

1��

� ��
D 6 � 2

p
5:
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Case 3. F .X2/ D 1˚ 2˛� and F .X3/ D 1˚ 2�, in which case, 1�� D 2�1 C 2�3

and 1�˛� D 2�1 C 2�2, and in particular,

Tr
�

1��

� ��
D 2 � 2

p
5:

We now aim to deduce more information about the operator  . Note that

z1 WD
1

dim.C/

0@ C C .2C
p
5/ C .2C

p
5/

1A
is the minimal central idempotent corresponding to the representation �0; i.e.,

z1 � x D �0.x/ � z1:

As 1�� contains no copies of �0, we get

1��.z1/ D 0;

and so,"
1 0

0 1

#
C
�
2C
p
5
�
.� C �0/ D 0 H) �0 D �

 
� C

"
1

2C
p
5

0

0 1

2C
p
5

#!
:

To solve for �, we use the fusion rule �2 D 1˚ 2�˚ 2˛� to get

�2 C
�p
5 � 2

�
� D

"
1

2C
p
5

0

0 1

2C
p
5

#
:

Together with knowing the trace of 1��.�/ in each of the above cases, we can solve
to get the statement of the lemma.

To obtain the statement about  , we repeat the above analysis with 1�˛�.

This completes our analysis of 	.1/. We now analyse the object 	.˛/. Our first
goal is to show that the object ˛ never lifts to the centre. To begin, we prove the
following lemma.

Lemma 3.8. Suppose that ˛ has a lift to the centre Z.C2/. Then, b D 1.

Proof. For a contradiction, suppose that b D 2.
By a relabeling, we can assume that Y0 is a lift of ˛ to Z.C2/, and that Yi D

Y0˝Xi . As F is a˝-functor, this gives us F .Yi / in terms of the b from Lemma 3.7.
We then have

	.�/ D 2X1 ˚ 2X2 ˚ 2Y1 ˚ 2Y3 ˚
M

piZi ;

	.˛�/ D 2X1 ˚ 2X3 ˚ 2Y1 ˚ 2Y2 ˚
M

qiZi :
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This gives us the following:

20 D dim Hom.	.�/;	.�// D 16C
X

p2i ;

20 D dim Hom.	.˛�/;	.˛�// D 16C
X

q2i ;

16 D dim Hom.	.�/;	.˛�// D 8C
X

piqi :

Hence, X
p2i D 4 D

X
q2i and

X
piqi D 8;

which is impossible.
The contradiction when b D 0 is nearly identical.

With this lemma in hand, we can now show that ˛ never lifts to the centre.

Lemma 3.9. The object ˛ does not have a lift to the centre.

Proof. For a contradiction, suppose that ˛ lifts to the centre. We have two cases
depending on the value of �˛ .

First, suppose that �˛ D 1. From Lemma 3.8, we have that b D 1, the same style
of argument from the proof of this lemma shows that

	.�/ D 2X1 ˚X2 ˚X3 ˚ 2Y1 ˚ Y2 ˚ Y3 ˚
M

piZi ;

	.˛�/ D 2X1 ˚X2 ˚X3 ˚ 2Y1 ˚ Y2 ˚ Y3 ˚
M

qiZi ;

with X
p2i D 8 D

X
q2i and

X
piqi D 4:

In particular, X
pi .pi C qi / D 12:

We now use the Ng–Schauenburg formula for the 2nd Frobenius–Schur indicator of
� to obtain

�� dim.C2/ D 2.1C 4d/.�2X1 C �
2
Y1
/C .1C 2d/.�2X2 C �

2
Y2
C �2X2 C �

2
Y3
/

C

X
pi .pi C qi /d�

2
Zi

D 8C 24d C
X

pi .pi C qi /d�
2
Zi
:

For either case of ��, we have that j
P
pi .pi C qi /�

2
Zi
j � 4

p
5C 8 > 12. Hence, ˛

cannot have a lift in this case.
Now, suppose that �˛ D �1. By analysing the dimensions formulas for Yi over

all the different cases of �; �1, and �˛ , we see that ˛ can only lift if � D �1, and
j�1j D j�˛j D 2. In this case, we have that the other Yi have dimensions 9C 4

p
5 and
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5C 2
p
5 occurring twice. Furthermore, we see that the dimension 1 object and the

dimension 9C 4
p
5 object have the same twist. Hence, by relabeling, we may assume

dim.Y0/ D 1; dim.Y1/ D 9C 4
p
5; dim.Y2/ D dim.Y3/ D 5C 2

p
5;

�Y0 D �Y1 D ˙i; �Y2 D �Y3 D �i; Yi D Y0 ˝Xi :

As �Y0 D˙i, we have that hX0;Y0i is a modular subcategory of Z.C2/. Hence, Z.C2/

factors as Z.C2/0 � hX0; Y0i. Note that we have a simple W 2 Z.C2/0 if and only if
�W˝Y0 D �W �Y0 . This implies that ¹X0;X1;Y2;Y3º 2Z.C2/0, and ¹X2;X3;Y0;Y1º 2
Z.C2/0˝ Y0. Let us write ¹Ziºi2ƒ0 for the remaining simple objects of Z.C2/which
live in Z.C2/0. We then have

	.�/ D 2X1 ˚X2 ˚X3 ˚ 2Y1 ˚ Y2 ˚ Y3 ˚
M
i2ƒ0

piZi ˚
M
i2ƒ0

qiY0 ˝Zi ;

	.˛�/ D 2X1 ˚X2 ˚X3 ˚ 2Y1 ˚ Y2 ˚ Y3 ˚
M
i2ƒ0

qiZi ˚
M
i2ƒ0

piY0 ˝Zi :

From 20 D dim Hom.	.�/;	.�// and 16 D dim Hom.	.˛�/;	.�//, we obtainX
i2ƒ0

p2i C q
2
i D 8 and

X
i2ƒ0

2piqi D 4:

Hence, X
i2ƒ0

.pi C qi /
2
D 12 and

X
i2ƒ0

.pi � qi /
2
D 4:

By Cauchy–Schwarz applied to the vectors .pi C qi /i and .jpi � qi j/i ,X
i2ƒ0

jpi � qi j
2
D

X
i2ƒ0

.pi C qi /jpi � qi j �
p
12 � 4 D 4

p
3:

Again, we use the Ng–Schauenburg formula for the 2nd Frobenius–Schur indicator
of � to obtain

�� dim.C2/ D 2.1C 4d/.�2X1 C �
2
Y1
/C .1C 2d/.�2X2 C �

2
Y2
C �2X2 C �

2
Y3
/

C

X
i2ƒ0

pi .pi C qi /d�
2
Zi
C

X
i2ƒ0

qi .pi C qi /d�
2
Y0˝Zi

D

X
i2ƒ0

.p2i � q
2
i /d�

2
Zi
:

From this, we obtain X
i2ƒ0

jp2i � q
2
i j �

dim.C2/
d

D 4
p
5:

Hence, ˛ cannot have a lift in this case.
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We can now deduce that both �1 and �˛ are 0. That is, �1;1 D ��1;2 and �˛;1 D
��˛;2.

Lemma 3.10. We have that �1;0 D ��1;1 and �˛;0 D ��˛;1. In particular, we may
assume that �1;0 D

p
�˛ , �1;1 D �

p
�˛ , �˛;0 D 1, and �˛;1 D �1.

Proof. If �˛� D �1, then we have the first statement of the lemma from Lemma 3.6.
Hence, we can assume that �˛� D 1.

First, consider the case that j�1j D j�˛j D 2. Then, the earlier dimension formulas
for dim.Yi / show that one of these dimensions is 1, which implies that ˛ lifts to the
centre. But this contradicts Lemma 3.9.

In the case that �1 D 0 and j�˛j D 2, or j�1j D 2 and �˛ D 0, then one of the Yi ’s
has dimension 5C2

p
5

2C
p
2

, which is impossible.
The only remaining case is that �1 D 0 and �˛ D 0, which implies the first state-

ment of the lemma.
As �21;i D �˛ and �2˛;i D 1, we may reorder our basis to give the statement of the

lemma.

As a result of the above lemma, we know that the eigenspaces of K1 and K˛ are
1-dimensional. We can pair this information with Lemma 3.6 to obtain the action of
the L and R operators on our eigenbasis.

Lemma 3.11. The basis of the spaces C2.� ˝ � ! �/ and C2.� ˝ � ! ˛�/ from
Lemma 3.3 can be chosen so that

R1

 
i

!
D �i� Qi ; R˛

 
i

!
D .���/

i
Qi ;

L1

 
i

!
D �iC1� !�11;i Qi ; L˛

 
i

!
D .���/

iC1!�1˛;i Qi ;

where i 7! Qi is an order two involution on the indexing set ¹0; 1º. If �˛� D 1, then
Q0 D 0 and Q1 D 1. If �˛� D �1, then Q0 D 1 and Q1 D 0, and in this case, we have
that !1;0 D !1;1 and !˛;0 D !˛;1. Furthermore, if �� D �1, then �˛� D �1, and if
��� D �1, then �˛� D �1.

We are free to exchange our distinguished basis elements and to rescale them by

i 7! z1;i i ; Qi 7! z1;i Qi ; z1;i 2 U.1/;

i 7! z˛;i i ; ei 7! z˛;i ei ; z˛;i 2 U.1/:
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Proof. Let us begin with the operator R1. In the case of �˛� D 1, we have from
Lemma 3.6 that R1 preserves the eigenspaces of K1. As these eigenspaces are 1-
dimensional, by Lemma 3.10, we have that R1 is of the form (using linear operator
notation, even though R1 is anti-linear)

R1
D

"
R1
0;0 0

0 R1
1;1

#
:

As .R1/4 D 1, we have that these coefficients are elements of U.1/, and as R1 is
anti-linear, we can rescale out two basis vectors byq

R1
0;0 2 U.1/ and

q
R1
1;1 2 U.1/

to arrange that both these coefficients are 1. Note that this rescaling does not affect
the relations of Lemma 3.3 as the operators K1 and R1 ı L1 are linear.

In the case of �˛� D �1, we have from Lemma 3.6 that R1 exchanges the eigen-
spaces of K1. We thus have that R1 is of the form

R1
D

"
0 R1

0;1

R1
1;0 0

#
:

By choosing our second basis vector as the image under R1 of the first, we arrange
that R1

0;1 D 1. Again, this does not affect the relations of Lemma 3.3 as R1 is unitary.
We now use the relation .R1/2 D �� to see that R1

1;0 D ��.
Together, these give the action of R1 as in the statement of the lemma. The action

of L1 follows from the action of R1 ı L1 from Lemma 3.3, along with the relation
.R1/2 D ��. In the case of �˛� D �1, we can perform that same argument on L1 ı

R1 D .R1 ı L1/�1 to see that !1;0 D !1;1.
Finally, from the relation .R1/2 D ��, we can see that if �� D �1, then only the

case �˛� D �1 is possible.
The same analysis on the operators R˛ and L˛ gives the remaining statement of

the lemma.

Now that we have pinned down �1 and �˛ , we can describe the objects Yi � 	.˛/

in more detail.

Lemma 3.12. We have that

F .Y0/ D ˛ ˚ c0�˚ .2 � c0/˛�;

F .Y1/ D ˛ ˚ .2 � c0/�˚ c0˛�;

F .Y2/ D ˛ ˚ c2�˚ .2 � c2/˛�;

F .Y3/ D ˛ ˚ .2 � c2/�˚ c2˛�;

where c0; c2 2 ¹0; 1; 2º:



C. Edie-Michell, M. Izumi, and D. Penneys 520

Proof. As �1;1 D ��1;2 and �˛;1 D ��˛;2, we have that �1 D �˛ D 0, and so each
of the objects Yi has dimension 5C 2

p
5. We thus have

F .Y0/ D ˛ ˚ c0�˚ .2 � c0/˛�;

F .Y1/ D ˛ ˚ c1�˚ .2 � c1/˛�;

F .Y2/ D ˛ ˚ c2�˚ .2 � c2/˛�;

F .Y3/ D ˛ ˚ c3�˚ .2 � c3/˛�:

For some integers, ci 2 ¹0; 1; 2º.
From the computations in Section 3.2 determining the matrix for the operator ˛��,

we see that

Tr

0@
˛��

0@ 1A1A D 0:
On the other hand, from Theorem C, we have that

˛�� Š c0�0 ˚ c1�1 ˚ c2�2 ˚ c3�3:

From the earlier tube algebra computations, we know the value of the representations

�i on the element . In particular, we know the trace of this value. As traces are

preserved under direct sums, we obtain that

c0 C c1 � c2 � c3 D 0:

From the formula

dim Hom.˛;R	.�// D dim Hom.	.˛/;	.�// D 4;

we obtain c0 C c1 C c2 C c3 D 4. Together, we get the statement of the lemma.

With the restrictions of the objectsXi and Yi now understood, we can give a fairly
explicit formula for the even Frobenius–Schur indicators of �. This formula will come
in handy at several points later in this article.

Lemma 3.13. We have that

�2n.�/ dim.C/ D 28C 12
p
5C �n˛.20C 8

p
5/C .2C

p
5/
X

pi .pi C qi /�
2n
Zi
;

where pi and qi are integers satisfying
P
pi .pi C qi / D 16, and the �Zi are roots of

unity.

Proof. From Lemmas 3.7 and 3.12, we know the image under the forgetful functor
of each of the simple objects appearing in 	.1/ and 	.˛/, up to some small integers
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b; c0; c2. Then, we can write

	.�/ D 2X1 ˚ bX2 ˚ .2 � b/X3 ˚ c0Y0 ˚ .2 � c0/Y1 ˚ c2Y2 ˚ .2 � c2/Y3

˚

M
piZi ;

	.˛�/ D 2X1 ˚ .2 � b/X2 ˚ bX3 ˚ .2 � c0/Y0 ˚ c0Y1 ˚ .2 � c2/Y2 ˚ c2Y3

˚

M
qiZi :

Using the fact that F .	.�// Š
L
X2Irr.C/X�X

�, we obtain

20 D dim Hom.	.�/;	.�// D 4C b2 C .2 � b/2 C c20 C .2 � c0/
2

C c22 C .2 � c2/
2
C

X
p2i ;

16 D dim Hom.	.˛�/;	.�// D 4C 2b.2 � b/C 2c0.2 � c0/C 2c2.2 � c2/

C

X
piqi ;

so, 36D dim Hom.	.�˚ ˛�/;	.�//D 20C
P
p2i C

P
piqi , and thus,

P
pi .pi C

qi / D 16.
We have from the earlier computations that �2Xi D 1 and �2Yi D �˛ . We can use the

Ng–Schauenburg formula for the 2nth Frobenius–Schur indicator [42, Theorem 4.1]
to obtain

�2n.�/ dim.C/ D
X

W 2Z.C/

dim Hom.F .W /! �/ dim.W /�2nW

D 28C12
p
5C�n˛.20C8

p
5/C.2C

p
5/
X

pi .piCqi /�
2n
Zi
:

We finish this section by showing that � D 1 in all cases.

Lemma 3.14. We have that � D 1.

Proof. First, suppose that �˛ D �, and for a contradiction, suppose that � D �1
so that �˛ D �1. We thus have that one of �� or ��� is �1. We thus get from
Lemma 3.11 that �˛� D �1, which is our contradiction.

Now, suppose that �˛ D��, and for a contradiction, suppose that �D�1 so that
�˛ D 1. As � D �1, we can exchange � and ˛� if necessary to arrange �� D �1 (as
a direct computation shows that �2.�/ D � � �2.˛�/).

We can now use Lemma 3.13, along with the fact that the 2nd Frobenius–Schur
indicator of � is �� to get the equation

�20 � 8
p
5 D 48C 20

p
5C .2C

p
5/
X

pi .pi C qi /�
2
Zi
;

where
P
pi .pi C qi / D 16. Thus,

P
pi .pi C qi /�

2
Zi
D �4� 12

p
5. However, The-

orem A.9 implies that it takes at least 12�.10/ D 48 roots of unity to write �4 �
12
p
5, contradicting

P
pi .pi C qi / D 16. Hence, � D 1.
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3.3. Sufficient relations to evaluate closed diagrams

In this section, we will introduce several more 6-j style local relations in our category
C2 and furthermore show that the full collection of relations described completely
determine the category C2. We will do this via the standard technique of showing
that our relations suffice to evaluate every endomorphism of the tensor unit to a
scalar. These additional local relations will be determined by 8m4 complex scalars
A
i;j

k;`
; B

i;j

k;`
; C

i;j

k;`
; D

i;j

k;`
; OA

i;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
2 C for 0 � i; j; k; ` < 2. These com-

plex scalars are entries of the F -tensors F �;�;�� ; F
�;�;�
˛� ; F

˛�;�;�
� , and F ˛�;�;�˛� .

3.3.1. Jellyfish relations. In this section, we will introduce the following 128 com-
plex scalars.

Lemma 3.15 (�-jellyfish). There exist scalars

A
i;j

k;`
; B

i;j

k;`
; C

i;j

k;`
;D

i;j

k;`
; OA

i;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
2 C; 0 � i; j; k; ` < 2

such that the following local relations hold in C2:

� �

N�

D
��

d
C

X
i

�i�
i

Qi
C .��/

i

i

Qi

� � �

�

` D
�`C1� !1;`

d
Q̀ C

��

!1;`
`

C

X
i;j;k

A
i;j

k;`

k

j

i

C B
i;j

k;`

k

j

i

C C
i;j

k;`

k

j

i

CD
i;j

k;`

k

j

i

˛ � � �

˛ �

` D
�`C1� !˛;`

d
Q̀ C

��

d!˛;`
`

C

X
i;j;k

OA
i;j

k;`

k

j

i

C yB
i;j

k;`

k

j

i

C yC
i;j

k;`

k

j

i

C yD
i;j

k;`

k

j

i
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Proof. We provide the proof for the third relation, and the other two are left to the
reader. We compute

˛ � � �

˛ �

` D
1

d

`
C

X
i

`

i

i

C
`

i

i

D
�

d

`
C

X
i

`

i

i

C `

i

i

D
�2

d

` L˛.`/�

C

X
i

1

d `

i

i„ ƒ‚ …
D0 by (3.1)

C
1

d `

i

i

C

X
i;k

`

i

i

k

k

C `

i

i

k

k

C `

i

i

k

k

C `

i

i

k

k

D
�`C1� !˛;`

d
Q̀ C

��

d

X
i

`

i

i

(3.2)

C

X
i;j;k

OA
i;j

k;`

k

j

i

C yB
i;j

k;`

k

j

i

C yC
i;j

k;`

k

j

i

C yD
i;j

k;`

k

j

i

For the final four sums of diagrams after the
P
i;k before the final equality above,

we express each of the sub-diagrams in the dotted blue boxes in terms of our chosen
basis for C2.�

2 ! �/ and C2.�
2 ! ˛�/. For instance, for the diagram directly after

the
P
i;k , the sub-diagram in the blue box lives in C2.˛�

2 ! �/ Š C2.�
2 ! ˛�/, so

the sub-diagram can be expressed as a linear combination of 4-valent vertices. The
coefficients OAi;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
then arise as arbitrary basis coefficients.
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For the second diagram in the last line above, we used the relation that for f 2
C2.�

2 ! ˛�/,

f D .L˛ıR˛/.f / (3.2)

which can be verified by a straightforward diagrammatic calculation. We then use the
relation in Lemma 3.3 to obtain .L˛ ı R˛/.f /. We leave the final simplification of
this second diagram using the ˛-jellyfish relation of Lemma 3.3 to the reader.

Remark 3.16. Recall that the associator F -tensors of a unitary fusion category are
determined by the formula

ZYX

U

W

`

k

D

X
V 2Irr.C/

0�i<dim Hom.X˝Y!V /
0�j<dim Hom.V˝Z!W /

�
F
X;Y;Z
W

�.V Ii;j /
.U Ik;l/

ZYX

V

W

i

j

:

We have the following identification between the above 128 complex scalars and cer-
tain F -tensors of the category C2:

A
i;j

k;`
D
�
F �;�;��

�.�Ii;j /
.�Ik;`/

; OA
i;j

k;`
D
�
F ˛�;�;�˛�

�.�Ii;j /
.˛�Ik;`/

;

B
i;j

k;`
D
�
F �;�;��

�.˛�Ii;j /
.�Ik;`/

; yB
i;j

k;`
D
�
F ˛�;�;�˛�

�.˛�Ii;j /
.˛�Ik;`/

;

C
i;j

k;`
D
�
F �;�;�˛�

�.�Ii;j /
.�Ik;`/

; yC
i;j

k;`
D
�
F ˛�;�;��

�.�Ii;j /
.˛�Ik;`/

;

D
i;j

k;`
D
�
F �;�;�˛�

�.˛�Ii;j /
.�Ik;`/

; yD
i;j

k;`
D
�
F ˛�;�;��

�.˛�Ii;j /
.˛�Ik;`/

:

In the name of readability, we will not use this F -tensor notation in this article.

Remark 3.17. With the above jellyfish relations, we can describe the operators � and
 from Section 3.2 in terms of our free scalars. We have

�

 
i

!
D

X
j

j

j

i
D

X
j;k

A
j;k
j;i k ;

�0

 
i

!
D

X
j

j

j

i
D �1;i

X
j;k

D
j;k
j;i k
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and

 

 
i

!
D

X
j

j

j

i
D

X
j;k

OA
j;k
j;i k ;

 0

 
i

!
D

X
j

j

j

i
D �˛�˛;i

X
j;k

yD
j;k
j;i k :

3.3.2. Absorption relations. Using the nomenclature from [7], a closed diagram in
our generators is said to be in jellyfish form if all trivalent and tetravalent vertices and
their labels appear on the external region of the closed diagram. By a slight abuse of
nomenclature, we will say that a morphism in a hom space is in jellyfish form (or a
train in the nomenclature of [6]) if all labels of trivalent and tetravalent vertices in the
morphism meet the leftmost region of the morphism. In the examples below, the left
diagram is not in jellyfish form, and the right diagram is in jellyfish form.

i

j

i

j

Lemma 3.18 (Absorption). Using the relations from Sections 3.1 and 3.3.1, any two
trivalent/tetravalent vertices in jellyfish form connected by two of their � strands so
that the composite is still in jellyfish form may be simplified into a diagram with no
trivalent/tetravalent vertices.

Proof. There are 16 words of length 2 on the symbols´
; ;

˛

;
˛

µ
;

and up to adjoints, 10 are distinct. Given any word of length 2, there is a unique
composite in jellyfish form with two � strands connected, up to labels and moving
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tags through crossings. There are thus 10 cases to consider:

i

j

i

j

i

j

i

j

j

i

i

j

i

j

i

j

i

j

i

j

We give a full proof for the last case, and the others are similar and omitted:

i

j

D

i

j

D .��/
iCj

i

j

D ıiDj .��/
iCj :

3.3.3. Evaluation algorithm. With these local relations in hand, we can show that
the numerical data we have described uniquely determines the category C2.

Proposition 3.19. There is at most one unitary fusion category C2 realising each
tuple of data �

�˛; ��; !; A;B; C;D; OA; yB; yC ; yD
�
:

Proof. The proof is an adaptation of Bigelow’s jellyfish algorithm [5, 7]. Given any
closed diagram in our generators, we show that it can be evaluated to a scalar using
our relations. This immediately implies the stated result by [9, Lemma 2.4] which
is the unshaded pivotal category version of [7, Proposition 3.5] for shaded planar
algebras. Indeed, let C 0 be the quotient of the free category in our generators, modulo
the relations corresponding to the data .�˛; ��; !;A;B;C;D; OA; yB; yC ; yD/. If we can
show that any closed diagram in our generators can be evaluated to a scalar using the
given relations, then we have that every ideal of C 0 is contained in the negligible ideal.
We then have an equivalence

C 0=Neg.C 0/! C2

which shows that C2 is uniquely determined by the above tuple of data.
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By the jellyfish relations from Lemmas 3.3 and 3.15, it suffices to show we can
evaluate any closed diagram in jellyfish form, in which all trivalent and tetravalent
vertices and their labels appear on the external boundary of the closed diagram. There
are 3 cases for such a diagram.

Case 1. There are no vertices at all in the closed diagram. Then, we may use (3.1) to
evaluate the closed diagram to a scalar.

Case 2. There is a trivalent/tetravalent vertex connected to itself. Then, we may use
(3.1) to show that this closed diagram is equal to zero.

Case 3. There are two neighbouring trivalent/tetravalent vertices that are connected
by at least 2 of their � strands. Then, using the absorption relations from Lemma 3.18,
we can express our closed diagram in jellyfish form as a linear combination of dia-
grams with strictly fewer vertices, which are still in jellyfish form.

We are finished by a simple induction argument on the number of vertices in our
closed diagram in jellyfish form.

Remark 3.20. We wish to point out that we can also give an existence result for the
categories Cm by realising them as actions by endomorphisms on the Cuntz algebras

O2mC1 Ì Z2:

To obtain existence, one needs to verify a finite list of polynomial equations that the
above tuple needs to satisfy. As we can conclude existence of the examples in this
article from the existing literature, we will not include the details of this existence
result.

3.4. Symmetries

With the results of the last section in hand, the major task in front of us is to determine
the 128 complex scalars

A
i;j

k;`
; B

i;j

k;`
; C

i;j

k;`
; D

i;j

k;`
;

OA
i;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
:

In theory, we could begin evaluating diagrams in our category in multiple ways in
order to obtain equations of these variables. However, in practice, this task is too
complicated, given that we have 128 unknowns. To make our task of pinning down
these scalars easier, we aim to find symmetries between them and to show that many
of them must in fact vanish. The symmetries of these scalars come from the tetrahedral
symmetries of the 6j symbols, which were rigorously studied in [16], and have been
used in previous works of the second author [25, 26]. (See also footnote 2.)
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The main result of this section is as follows.

Lemma 3.21. The scalars B i;j
k;`
; C

i;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
can be expressed in terms of

the Di;j

k;`
as

B
i;j

k;`
D �1CiCk� �˛

p
�˛.�1/

`!1;`D
j; Qk

Qi ;`
;

yB
i;j

k;`
D �1CjC`� �˛

p
�˛.�1/

i!1;j!
2
1;i!˛;`D

Q̀;i

k; Qj
;

C
i;j

k;`
D �1CjCk� �˛

p
�˛.�1/

`!21;`D
Qk;i
Qj ;`
;

yC
i;j

k;`
D �1CjCk�

p
�˛.�1/

k!1;k!
2
1;j!˛;iD

i; Qk

`; Qj
;

yD
i;j

k;`
D

p
�˛.�1/

kCj!1;i!
2
1;k!˛;`!

2
˛;jD

j;i

`;k
:

The scalarsAi;j
k;`

and OAi;j
k;`

satisfy S4 symmetries generated by the order three rotation

A
i;j

k;`
D�1CiCk� !1;`A

j; Qk

Qi ;`
D�1CjCk� !21;`A

Qk;i
Qj ;`
OA
i;j

k;`
D�1CiCk� !˛;` OA

j; Qk

Qi ;`
D�1CjCk� !2˛;`

OA
Qk;i
Qj ;`

and the order two flips

A
i;j

k;`
D !1;k!

2
1;iA

Qk; Q̀

Qi ; Qj
D �jC`� A

k; Qj

i; Q̀
; OA

i;j

k;`
D !˛;k!

2
˛;i
OA
Qk; Q̀

Qi ; Qj
D �jC`�

OA
k; Qj

i; Q̀
:

The Di;j

k;`
scalars satisfy the Z=2Z � Z=2Z symmetries generated by

D
i;j

k;`
D �jCl� D

k; Qj

i; Q̀
D �˛.�1/

jC`!˛;k!
2
˛;iD

Qk; Q̀

Qi ; Qj
D �iCk� �˛.�1/

jC`!˛;k!
2
˛;iD

Qi ;`
Qk;j
:

Finally, we have

A
i;j

k;`
D OA

i;j

k;`
D D

i;j

k;`
D 0 if i C j C k C ` 6� 0 .mod 2/:

This result reduces the number of complex scalars to solve for down to 11 in the
�˛ D 1 case and 7 in the �˛ D �1 case. This simplification makes it feasible to solve
for these scalars in the next section.

Lemma 3.22. We have

A
i;j

k;`
D OA

i;j

k;`
D D

i;j

k;`
D 0 if i C j C k C ` 6� 0 .mod 2/:

Proof. We will prove the statement of the lemma in the case of the Ai;j
k;`

coefficients,
as the remaining two cases are nearly identical. We have

A
i;j

k;`
D

j

i

`

k

D
�1;k�1;`

�1;i�1;j
j

i

`

k

D
�1;k�1;`

�1;i�1;j
A
i;j

k;`
)A

i;j

k;`
D
�1;k�1;`

�1;i�1;j
A
i;j

k;`
:
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Recall from Lemma 3.10 that �1;i D .�1/
i
p
�˛ . Thus, if i C j C kC ` 6� 0 .mod 2/,

then �1;k�1;`
�1;i�1;j

¤ 1, which implies that Ai;j
k;`
D 0.

Now that we know that half of our coefficients vanish, we move on to describing
the symmetries between them. As mentioned before, these symmetries are the stand-
ard tetrahedral symmetries of the 6j -symbols. This completes the proof of the main
result of this section.

Proof of Lemma 3.21. We include enough examples to illuminate the necessary tech-
niques, all of which involve using the Frobenius maps defined in Section 3.1. The
symmetries of the Ai;j

k;`
coefficients are the easiest, as the diagrams only involve �

strands. We compute the following symmetries:

A
i;j

k;`
D
1

d
j

i

`

k

D
�`C1�

d

j

i

Q̀

k

D
�`�

d

i

Q̀

k

j
D
�
`Cj
�

d
i

Q̀

k

Qj

D �`Cj� A
k; Qj

i; Q̀
;

A
i;j

k;`
D
1

d
j

i

`

k

D
�1C`�

d
!1;`

j

i

Q̀

k

D
�1C`�

d
!1;`

j

i

Q̀

k

D
�1CiC`�

d
!1;`

j

Q̀

Qi

k

D �1CiC`� !1;`A
Qi;k

j; Q̀
;

A
i;j

k;`
D
1

d
j

i

`

k

D
1

d

j

i

`

k

D
�k�

d
!1;k

j

i

`

Qk

D
�iCk�

d

!1;k

!1;i
j

Qi

`

Qk

D
�iCk�

d

!1;k

!1;i
Qk

j

Qi

`

D �iCk�

!1;k

!1;i
A
Qi;`

Qk;j
:
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Together this shows that

A
i;j

k;`
D �iCk� !1;`A

j; Qk

Qi ;`
D �1CjCk� !21;`A

Qk;i
Qj ;`

and
A
i;j

k;`
D �iCjCkC`�

!1;i

!1;k
A
Qk; Q̀

Qi ; Qj
D
!1;i

!1;k
A
Qk; Q̀

Qi ; Qj

as claimed. These three tricks work to determine all of the symmetries in the statement
of the lemma. In order to show how to deal with ˛ strands, we include one final
example as follows:

OA
i;j

k;`
D
1

d
j

i

`

k

D
�`C1�

d

j

i

Q̀

k

D
�`�

d

i

Q̀

k

j D
�
`Cj
�

d
i

Q̀

k

Qj

D
�
`Cj
�

d
i

Q̀

k

Qj

D �`Cj�
OA
k; Qj

i; Q̀
:

We leave the verification of the remaining identities to the reader.
To finish off this section, we explicitly compute the 4th Frobenius–Schur indicator

of � in terms of our free variables. This formula will be useful in the next section.

Lemma 3.23. We have that

�4.�/ D
1

d
C ��

X
i;j

!1;i!1;jA
i;j
i;j C ���˛

X
i;j

.�1/iCj!˛;i!˛;j OA
i;j
i;j :

Proof. We pick the following orthonormal basis of C2.�
˝4 ! 1/:²

1

d

³
[

´
1
p
d i j

µ
i;j

[

´
1
p
d i j

µ
i;j

:
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With this basis, we compute

�4.�/ D
1

d2
C
1

d

X
i;j

i j

i j C
1

d

X
i;j

i j

i j

D
1

d
C
��

d

X
i;j

i j

i j C
��

d

X
i;j

i j

i j

D
1

d
C
��

d

X
i;j

!1;i!1;j

j

i

j

i

C
��

d

X
i;j

!˛;i!˛;j
j

i

j

i

D
1

d
C
��

d

X
i;j

!1;i!1;jA
i;j
i;j C

���˛

d

X
i;j

�˛;i�˛;j!˛;i!˛;j

j

i

j

i

D
1

d
C ��

X
i;j

!1;i!1;jA
i;j
i;j C ���˛

X
i;j

.�1/iCj!˛;i!˛;j OA
i;j
i;j :

3.5. Classification

In this final section, we complete the classification result in the self-dual case (Q3);
i.e., we complete the proof of Theorem 3.1 and classify all categorifications of the
rings (R.m/). We have two cases to consider depending on �˛ D ˙1.

3.5.1. The case �˛ D 1. In the case of �˛ D 1, we have determined that

�� D 1; � D 1; Qi D i; and �1;i D �˛;i D .�1/
i :
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Thus, all that remains is to deduce the 3rd roots of unity !1;0; !1;1; !˛;0; !˛;1, along
with the free variables Ai;j

k;`
; OA

i;j

k;`
;D

i;j

k;`
. We express these free variables in the matrix

form 26666664
X
0;0
0;0 X

0;0
0;1 X

0;0
1;0 X

0;0
1;1

X
0;1
0;0 X

0;1
0;1 X

0;1
1;0 X

0;1
1;1

X
1;0
0;0 X

1;0
0;1 X

1;0
1;0 X

1;0
1;1

X
1;1
0;0 X

1;1
0;1 X

1;1
1;0 X

1;1
1;1

37777775 ; X D A; OA;D: (3.3)

By applying the symmetries of Lemma 3.21, we have that our free variables are of the
form

A D

2666664
a0 0 0 !1;0a2

0 a2 !21;0a2 0

0 !21;0a2 a2 0

!1;0a2 0 0 a1

3777775 ;

OA D

2666664
Oa0 0 0 !˛;0 Oa2

0 Oa2 !2˛;0 Oa2 0

0 !2˛;0 Oa2 Oa2 0

!˛;0 Oa2 0 0 Oa1

3777775 ;

D D

2666664
d0 0 0 �

!˛;1
!˛;0
xd4

0 d2 d4 0

0 �
!˛;0
!˛;1

d4 d3 0

xd4 0 0 d1

3777775 ;
all of which are real apart from d4. If these free coefficients are non-zero, then the
tetrahedral symmetries imply conditions on our twists !. We have

a0 ¤ 0 H) !1;0 D 1;

a1 ¤ 0 H) !1;1 D 1;

Oa0 ¤ 0 H) !˛;0 D 1;

Oa1 ¤ 0 H) !˛;1 D 1;

a2 ¤ 0 H) !1;0 D !1;1;

Oa2 ¤ 0 H) !˛;0 D !˛;1:
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In order to solve for these complex variables, we evaluate certain morphisms in our
categories in two ways to obtain equations of these variables. We compute

ık;k0ı`;`0 D ı`;`0
k0

k

D

`0

`

k0

k

D
!1;`

2C
p
5 `0

k0

`

k

C

X
i;j

A
i;j

k;`

`0

i

k0

j

k

k

C B
i;j

k;`

`0

i

k0

j

k

k

D ık;`ık0;`0
!1;`!

2
1;`0

2C
p
5
C

X
i;j

A
i;j

k;`
A
i;j

k0;`0
i

i

j

j

k0

k0

C B
i;j

k;`
B
i;j

k0;`0
i

i

j

j

k0

k0

D

�
ık;`ık0;`0

!1;`!
2
1;`0

2C
p
5
C

X
i 0;j 0

A
i;j

k;`
A
i;j

k0;`0
C B

i;j

k;`
B
i;j

k0;`0

�
D

�
ık;`ık0;`0

!1;`!
2
1;`0

2C
p
5
C

X
i 0;j 0

A
i;j

k;`
A
i;j

k0;`0
C .�1/`C`

0

!1;`!
2
1;`0D

j;k

i;`
D
j;k0

i;`0

�
D

�
ık;`ık0;`0

!1;`!
2
1;`0

2C
p
5
C!1;`!

2
1;`0

X
i;j

A
j;k

i;`
A
j;k0

i;`0
C.�1/`C`

0

!1;`!
2
1;`0D

j;k

i;`
D
j;k0

i;`0

�
:

Note that if ` ¤ `0, then the left-hand side vanishes, and we can cancel the !1;`!
2
1;`0

terms. If ` D `0, then !1;`!
2
1;`0 D 1. In either case, we can remove the !1;`!

2
1;`0 terms

from the above equation. This leaves us with the equationX
i;j

A
j;k

i;`
A
j;k0

i;`0
C .�1/`C`

0
X
i;j

D
`;i
k;j
D
`0;i
k0;j
�C.2 �

p
5/ık;`ık0;`0 D ık;k0ı`;`0 :
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In a similar fashion, we can evaluate the diagrams

`0

`

k0

k

`0

`

k0

k

`

k

and
`

k

in two ways4 to obtainX
i;j

OA
i;k
j;`
OA
i;k0

j;`0
C

X
i;j

D
j;k

i;`
D
j;k0

i;`0
� .2 �

p
5/ık;`ık0;`0 D ık;k0ı`;`0 ;X

i;j

yD
i;j

k;`
yD
i;j

k0;`0
C .�1/`C`

0

!1;`0!
2
1;`

X
i;j

D
i;j

k0;`0
D
i;j

k;`
D ık;k0ı`;`0 ;X

i

A
i;k
i;`
C .�1/`

X
i

D
i;k
i;`
� .2 �

p
5/ık;` D 0;X

i

OA
i;k
i;`
C

X
i

.�1/iD
`;i
k;i
� .2 �

p
5/ık;` D 0:

In terms of our free variables, this gives us the following equations:

3 �
p
5 D a20 C a

2
2 C d

2
0 C d

2
3 D a

2
1 C a

2
2 C d

2
1 C d

2
2 D Oa

2
0 C Oa

2
2 C d

2
0 C d

2
2

D Oa21 C Oa
2
2 C d

2
1 C d

2
3 ; (3.4)

1

2
D a22 C jd4j

2
D Oa22 C jd4j

2
D d20 C jd4j

2
D d21 C jd4j

2

D d22 C jd4j
2
D d23 C jd4j

2; (3.5)

2 �
p
5 D .a0 C a1/a2 � d0d2 � d1d3 D . Oa0 C Oa1/ Oa2 C d0d3 C d1d2; (3.6)

2 �
p
5 D a0 C a2 C d0 C d3 D a1 C a2 � d1 � d2 D Oa0 C Oa2 C d0 � d2

D Oa1 C Oa2 � d1 C d3; (3.7)

0 D .!˛;0 C !
2
˛;0/a

2
2 C !˛;0!

2
˛;1d

2
4 C !

2
˛;0!˛;1

xd4
2

D .!˛;0 C !
2
˛;0/ Oa

2
2 C !

2
˛;0!˛;1d

2
4 C

xd4
2
; (3.8)

0 D .1 � !˛;0!
2
˛;1/.d2

xd4 � d
2
3 /

D d4.d1 C d0/ � xd4.!
2
˛;0!˛;1d0 C !˛;0!

2
˛;1d1/: (3.9)

4 When we say we evaluate a diagram in two ways to obtain a relation, one way is trivial,
and the other uses the jellyfish relations from Lemmas 3.3 and 3.15. For the non self-dual case
in Section 4 below, we use the jellyfish relations from (4.2), (4.3), and Lemma 4.4 instead.



Classification of Z=2Z-quadratic unitary fusion categories 535

While we could begin solving these equations directly, instead we opt for a more
measured approach and use our previous centre analysis to simplify our solution.

Lemma 3.24. There exists a � 2 ¹�1; 1º such that

a0 D a1 D Oa0 D Oa1 D
2C 3� �

p
5

4

and

a2 D Oa2 D d0 D �d1 D �d2 D d3 D
2 � � �

p
5

4
:

In particular, as a0; a1; Oa0, and Oa1 are all non-zero, we have !1;0 D !1;1 D !˛;0 D

!˛;1 D 1.

Proof. We first observe from equation (3.5) that

a22 D Oa
2
2 D d

2
0 D d

2
1 D d

2
2 D d

2
3 D

1

2
� jd4j

2;

and, in particular, we have that a2; Oa2; d0; d1; d2, and d3 are real numbers which are
equal up to sign. With this information in hand, we can now see from equation (3.4)
that

a20 D a
2
1 D Oa

2
0 D Oa

2
1 D 3 �

p
5 � 3d20 :

To make additional progress on solving these equations, we recall the operators �
and  . In our case, via equation (3.7), we have that

� D

"
a0 C a2 0

0 a1 C a2

#
D

"
2 �
p
5 � d0 � d3 0

0 2 �
p
5C d1 C d2

#
;

 D

"
Oa0 C Oa2 0

0 Oa1 C Oa2

#
D

"
2 �
p
5 � d0 C d2 0

0 2 �
p
5C d1 � d3

#
:

From Lemma 3.7, we know that � and  have entries in ¹3�
p
5

2
; 1�
p
5

2
º, so

d0 C d3;�d1 � d2; d0 � d2; d3 � d1 2

²
3 �
p
5

2
;
1 �
p
5

2

³
:

In particular, as the values d0; d1; d2, and d3 are real numbers which are the same up
to sign, we have that

d0 D �d1 D �d2 D d3 D
2 �
p
5 � �

4

for some � 2 ¹�1; 1º.
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From equation (3.7), we can deduce that a0 D a1 and Oa0 D Oa1. We know that a2
and c0 are the same up to sign. If we have a2 D �c0, then equation (3.7) would imply
that

a0 D 2 �
p
5 � d0:

Plugging this value of a0 into equation (3.4) gives a contradiction. Thus, a2 D c0, and
so, equation (3.7) gives

a0 D 2 �
p
5 � 3d0 D

2C 3� �
p
5

4
:

A similar argument shows that Oa2 D c0, and thus, Oa0 D a0.

To pin down the value of � , we return to our analysis of the centre of C2. By
computing the 4th Frobenius–Schur indicator of � in two ways, we can show that
� D 1.

Lemma 3.25. We have that � D 1.

Proof. From Lemma 3.23, we have that �4.�/ D 3� . On the other hand, we can use
Lemma 3.13 to obtain

�4.�/.20C 8
p
5/ D 48C 20

p
5C .2C

p
5/
X

pi .pi C qi /�
4
i ;

where
P
pi .pi C qi / D 16 and the �i ’s are roots of unity. Thus,X

pi .pi C qi /�
4
i D 4

�
� 1 � 2

p
5C 3�

p
5
�
:

If � D �1, then Theorem A.9 implies that it would take at least 24 roots of unity to
write 4.�1� 2

p
5C 3�

p
5/, and hence,

P
pi .pi C qi / � 24, giving a contradiction.

Thus, we must have � D 1.

Now that we know all of our real free variables, we can solve for d4, the one
complex variable.

Lemma 3.26. We have that

d4 D �1
i

2
C �2

1

2

s
�1C

p
5

2
; where �1; �2 2 ¹�1; 1º:

Proof. From Lemmas 3.24 and 3.25, we have a2 D 1�
p
5

4
. By equations (3.5) and

(3.8), we have

jd4j
2
D
1C
p
5

8
and d24 C

xd4
2
D

p
5 � 3

4
:

The 4 intersection points of this hyperbola and circle yield the statement of the lemma.
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Now that we have pinned down all of our variables, we can prove part of our main
theorem which states that there is no fusion category when �˛ D 1.

Theorem 3.27. There is no unitary fusion category that categorifiesR.2/with�˛D1.

Proof. By evaluating the diagram

`0

`

k0

k

in two ways (see footnote 4), we obtain the equation

.�1/kC`
X
i;j

xD
k;`
i;j
xD
i;j

`0;k0
C

X
i;j

D
`0;k0

i;j D
i;j

k;`
D 0:

Taking k D `0 D 0 and `D k0 D 1, we see that
P
i;j D

0;1
i;j D

i;j
0;1 D d

2
2 � d

2
4 2R. Since

d2 2 R by Lemma 3.24, this means that d24 2 R, which contradicts Lemma 3.26.

3.5.2. The case �˛ D �1. In the case of �˛ D �1, we have determined that

� D 1; Qi D 1 � i; !1;0 D !1;1;

!˛;0 D !˛;1; �1;i D .�1/
i i; �˛;i D .�1/

i :

Thus, all that remains is to deduce ��, the 3rd roots of unity !1;0 and !˛;0, along
with the free variables Ai;j

k;`
, OAi;j

k;`
, and Di;j

k;`
. By studying the 4th Frobenius–Schur

indicator of �, we are able to show that �� D 1 and !˛;0 D !21;0, along with the values
of several of our free variables.

Lemma 3.28. We have that �� D 1, and !˛;0 D !21;0. Further, we have that

A
0;0
0;0 D

3 �
p
5

2.1C !1;0/
and OA

0;0
0;0 D

3 �
p
5

2.1C !21;0/
:

Proof. Recall the operators � and  . By applying the symmetries of Lemma 3.21, we
have that

� D

"
A
0;0
0;0 C A

1;0
1;0 0

0 A
0;1
0;1 C A

1;1
1;1

#
D

"
A
0;0
0;0.1C ��!1;0/ 0

0 A
0;0
0;0.1C ��!1;0/

#
;

 D

"
OA
0;0
0;0 C

OA
1;0
1;0 0

0 OA
0;1
0;1 C

OA
1;1
1;1

#
D

"
OA
0;0
0;0.1C ��!˛;0/ 0

0 OA
0;0
0;0.1C ��!˛;0/

#
:
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Thus, the operators � and  are scalars, and Lemma 3.7 tells us that

A
0;0
0;0 D

2 �
p
5C �

2.1C ��!1;0/
and OA

0;0
0;0 D

2 �
p
5C �

2.1C ��!˛;0/

for some � 2 ¹�1; 1º.
From Lemma 3.23, we can write the 4th Frobenius–Schur indicator of � as

�4.�/ D
p
5 � 2C ��!

2
1;0.A

0;0
0;0 C A

0;1
0;1 C A

1;0
1;0 C A

1;1
1;1/

� ��!
2
˛;0.
OA
0;0
0;0 �

OA
0;1
0;1 �

OA
1;0
1;0 C

OA
1;1
1;1/

D
p
5 � 2C ��!

2
1;0A

0;0
0;0.2C 2��!1;0/ � ��!

2
˛;0
OA
0;0
0;0.2 � 2��!˛;0/

D
p
5 � 2C ��!

2
1;0.2 �

p
5C �/ � ��!

2
˛;0.2 �

p
5C �/

1 � ��!˛;0

1C ��!˛;0

D

�
� 2C ��!

2
1;0.2C �/ � ��!

2
˛;0.2C �/

1 � ��!˛;0

1C ��!˛;0

�
C
p
5

�
1 � ��!

2
1;0 C ��!

2
˛;0

1 � ��!˛;0

1C ��!˛;0

�
:

As �4.�/ 2 ZŒi �, �� is a second root of unity, and !1;0 and !˛;0 are third roots of
unity, we have

1 � ��!
2
1;0 C ��!

2
˛;0

1 � ��!˛;0

1C ��!˛;0
D 0:

This implies that �� D 1, and that !˛;0 D !�11;0 . By simplifying the formula for �4.�/
further, we find that �4.�/ D � .

To determine � , we use Lemma 3.13 to write

�.20C 8
p
5/ D �4.�/ D 48C 20

p
5C .2C

p
5/
X

pi .pi C qi /�
4
i ;

where X
pi .pi C qi / D 16;

and the �i ’s are roots of unity. If � D �1, then we haveX
pi .pi C qi /�

4
i D �4 � 12

p
5:

However, Theorem A.9 implies that it takes at least 48 roots of unity to write �4 �
12
p
5, giving a contradiction. Thus, � D 1, which gives

A
0;0
0;0 D

3 �
p
5

2.1C !1;0/
and OA

0;0
0;0 D

3 �
p
5

2.1C !21;0/
:

Now that we know �� D 1, the symmetries of Lemma 3.21 become much simpler.
Using the same matrix notation as in the �˛ D 1 case from (3.3), we can use these



Classification of Z=2Z-quadratic unitary fusion categories 539

symmetries to express our free variables as

A D

266664
!1;0r 0 0 xa1

0 !21;0r r 0

0 r !21;0r 0

a1 0 0 !1;0r

377775 ; OA D

266664
!21;0r 0 0 xO 1a

0 !1;0r r 0

0 r !1;0r 0

Oa1 0 0 !21;0r

377775 ;

D D

266664
d0 0 0 xd2

0 xd0 d1 0

0 xd1 � xd0 0

d2 0 0 �d0

377775 ;
where r D 1

!1;0C!
2
1;0

3�
p
5

2
2 R, and if either of a1 or Oa1 are non-zero, then we have

that !1;0 D 1.
Now that we have reduced our free variables down to 5 complex variables, all that

remains is to solve for these variables and to determine the 3rd root of unity !1;0. As
in the �˛ D 1 case, we get equations of these variables by evaluating the diagrams

`0

`

k0

k

;
`0

`

k0

k

;
`0

`

k0

k

;
`0

`

k0

k

; `

k

;
`

k

in two ways (see footnote 4). This gives us the following equations:

ık;k0ı`;`0 D
X
i;j

A
i;k
j;`
A
i;k0

j;`0
C .�1/`C`

0
X
i;j

D
i;k
j;`
D
i;k0

j;`0
� .2 �

p
5/ık;`ık0;`0

ık;k0ı`;`0 D
X
i;j

OA
i;k
j;`
OA
i;k0

j;`0
C .�1/`C`

0
X
i;j

D
1�`0;i
1�k0;j

D
1�`;i
1�k;j

� .2 �
p
5/ık;`ık0;`0

ık;k0ı`;`0 D
X
i;j

D
i;j

k;`
D
i;j

k0;`0
C .�1/`C`

0
X
i;j

D
i;j

1�k0;1�`0
D
i;j

1�k;1�`

0 D
X
i;j

.�1/iA
i;j

k;`
D
1�`0;i
k0;1�j

C .�1/`C1
X
i;j

D
j;1�k

1�i;`
OA
i;j

k;`

� !21;0.
p
5 � 2/iık;1�`ık0;1�`0

0 D
X
i

A
i;k
i;`
C .�1/`C1i

X
i

D
i;k
i;`
� .2 �

p
5/ık;`

0 D
X
i

OA
i;k
i;`
C i

X
i

.�1/iC1D
1�`;i
1�k;i

� .2 �
p
5/ık;`:
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In terms of our free variables, this gives us the following equations:

Im.d0/ D
1 �
p
5

4
D �

!21;0

1C !21;0

�1C
p
5

2
; (3.10)

r2 C jd0j
2
D
3 �
p
5

2
; (3.11)

r2 C ja1j
2
C jd1j

2
C jd2j

2
D r2 C jOa1j

2
C jd1j

2
C jd2j

2
D 1; (3.12)

jd1j
2
D jd2j

2
D
1

2
� jd0j

2; (3.13)

.!1;0 C !
2
1;0/r

2
� .d20 C d0

2
/ D 2 �

p
5; (3.14)

ra1 D d1d2; (3.15)

r Oa1 D � Nd1d2; (3.16)

d2 xa1 C Oa1 xd2 D d1 xa1 C xO 1a xd1 D 0: (3.17)

Remark 3.29. From equation (3.10), we see that
!21;0
1C!21;0

D 1=2, which implies that

!1;0 D 1.

It is now straightforward to solve the above system of equations.

Lemma 3.30. A general solution to equations (3.10)–(3.17) is given by

a0 D Oa0 D
3 �
p
5

4
; a1 D .3C

p
5/d1d2; Oa1 D �.3C

p
5/ xd1d2;

jd1j
2
D jd2j

2
D
�1C

p
5

8
; d0 D �

1

2
C i

1 �
p
5

4
:

With this lemma in hand, we can show the existence and uniqueness of the unitary
fusion category with fusion ring R.2/.

Theorem 3.31. There exists a unique fusion category categorifying the ring R.2/
with �˛ D �1. This unitary fusion category can be realised as the even part of the
2D2 subfactor.

Proof. Note that, from Lemma 3.11, we are free to rescale our basis elements of
C2.�˝ �! �/ and C2.�˝ �! ˛�/ by

0 7! z1 0 ; 1 7! xz1 1 ;

0 7! z˛ 0 ; 1 7! xz˛ 1 ;
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where z1; z˛ 2 U.1/. This rescaling changes the phase of our free variables d1 and d2
by z�21 z2˛ and z�21 z�2˛ , respectively. Thus, we can arrange so that

d1 D d2 D i
1

2

r
1

2

�
� 1C

p
5
�
:

Hence, up to choice of our basis elements, we have a unique solution of all free para-
meters determining our category. Thus, Proposition 3.19 gives that we have at most
one unitary fusion category with fusion ring R.2/, and �˛ D �1.

We know that the even part of the 2D2 subfactor is a unitary fusion category with
fusion ring R.2/; hence, this must be the unique example.

Let us write C2 for the categorification of R.2/ we have classified in this section.

Remark 3.32. We wish to point out the above solutions to our free variables can be
used to construct a system of dualizable endomorphisms of the Cuntz algebra O5 Ì
Z=2Z. This gives an independent construction of the category C2.

To finish up, we connect C2 to the even part of the 3Z=4Z category.

Corollary 3.33. There is a monoidal Z=2Z action on C2 such that equivariantisation
by this action gives the 3Z=4Z category of [26, 51].

Proof. Using the same gauge choice as in the previous theorem, we can define an
order two monoidal equivalence on C2 by

0 $ 1 ; 0 $ 1 ; and $ � :

By equivariantising by this order two monoidal auto-equivalence, we obtain a unitary
fusion category generated by the four morphisms

0 C 1 ; 0 C 1 ; 0 � 1 ;

0 � 1

and the isomorphism
W ˛˝4

�
�! 1:

This is the presentation of the 3Z=4Z category from [26].
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4. The non-self-dual case

In this section, we focus on the unitary categorification of the fusion rings with four
simple objects 1; ˛; �; ˛� and fusion rules

˛ ˝ ˛ Š 1; �˝ � Š ˛ ˚m�˚m˛�: (S.m/)

Let us write (S.m/) for such a fusion ring. By [30], we know that (S.m/) has a cat-
egorification only if m D 0; 1; 2.

Our main result of this section is as follows.

Theorem 4.1. Let Dm be a unitary fusion category withK0.C/Š(S.m/). Then, either

• m D 0, in which case D0 is equivalent to one of the four monoidally distinct
categories Hilb.Z=4Z; !/, where ! 2 H 3.Z=4Z;C�/, or

• mD 1, in which case D1 is equivalent to the monoidally distinct even parts of the
two complex conjugate subfactors with principal graphs � 0 from [26, 34].

In particular, the case m D 2 from [30, Theorem 1.1 (6)] is not categorifiable.

Proof. ThemD 0 case is easily seen to be pointed, and hence, the claim of the above
theorem follows from [10, Remark 4.10.4]. Thus, it suffices to restrict our attention to
the cases m D 1 and m D 2.

The general outline of this section follows for the most part as in the self-dual case.
In Section 4.1, we begin by writing down a list of numerical data (essentially the 6-j
symbols of the category) which fully describe a unitary fusion category with fusion
ring (S.m/). In Section 4.2, by studying the Drinfeld centre via the tube algebra of the
category, we are able to deduce the precise values of some of these numerical data.
To reduce the complexity of our numerical data, in Section 4.3, we use tetrahedral
symmetries to essentially cut down the number of free variables in our numerical data
by a factor of 24. Finally, in Section 4.4, we solve for this numerical data by evaluating
various morphisms in our categories in multiple ways to obtain equations.

In the case m D 1, we reduce our numerical data to two possible solutions, which
shows that there are at most two distinct unitary fusion categories categorifying S.1/.
From the subfactor classification literature [26, 34] we know that two such categories
exist. We then show that there are no solutions to the numerical data in the casemD 2,
and hence, there are no such unitary fusion categories.

4.1. Numerical data
We now produce a set of numerical data which completely describes a categorification
of the ring S.m/. Let us write Dm for such a unitary fusion category. We will show
that the category Dm can be described by the following data:

• an 8th root of unity � D e˙i�
1
4 ,
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• m choices of signs �i 2 ¹�1; 1º,

• m choices of 3rd roots of unity !i 2 ¹1; e2i�
1
3 ; e2i�

2
3 º,

• 8m4 complex scalars Ai;j
k;`
; B

i;j

k;`
; C

i;j

k;`
; D

i;j

k;`
; OA

i;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
2 C for 0 �

i; j; k; ` < m. These complex scalars are the entries of the F -tensors F �;�;�� and
F
�;�;�
˛� .

While the 128 complex scalars in the m D 2 case seem infeasible to deal with as is,
we will use tetrahedral symmetries later on to reduce this 128 to a more workable
number.

To simplify notation, we define d WD dim.�/, which is the largest solution to d2 D
1C 2md . If m D 1, then d D 1C

p
2, and if m D 2, then d D 2C

p
5. We pick

orthonormal bases for the hom spaces

� �

˛

2Dm.�˝ �! ˛/;

� �

�

i 2Dm.�˝ �! �/;

˛

� �

�

i 2Dm.�˝ �! ˛�/;

where 0 � i � m, so we have the local relations

� �

D

� �

��

C

X
� �

i

i

��

C

X
� �

i

i

��

D D 1 D D d

�

i
D

�

i
D 0 i

�

D 0

�

˛

i D

�

˛

i
D 0

�˛

i D 0

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

: (4.1)

We also choose unitary isomorphisms

˛

x̨

2 Dm.˛ ! x̨/ and

�

�

˛

˛

2 Dm.�˝ ˛ ! ˛ ˝ �/:
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We normalise this last morphism so that

�

�

˛

x̨

D

�

�x̨

˛

:

We are still free to rescale the crossing up to sign.
Note that, as pointed out in the proof of [30, Theorem 5.8], we may assume that ˛

has second Frobenius–Schur indicator �1, so

˛

x̨

D �

˛

x̨

:

Let � be the scalar defined by

D � : (4.2)

Note that from our normalisation we have that �2 D �1.

Lemma 4.2. Without loss of generality, we have the relation

D
�

d
; where � D exp.˙�i=4/:

Proof. First, by our normalisations for orthonormal bases of hom spaces, we observe
that

D D D
1

d
D
1

d
H) D

�

d

for some unimodular scalar �. By computing

�

d
D D � D

� N�

d
;
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we find that �2 D �. By rescaling the crossing by a sign, we may assume that � D
e
˙�i
4 .

In order to define natural orthonormal bases for the spaces Dm.� ˝ �! �/ and
Dm.�˝ �! ˛�/, we define the operators

K1

 
i

!
D i and K˛

 
i

!
D i

and the Frobenius operators

R1

 
i

!
D
p
d

i

;

R˛

 
i

!
D
p
d

i
;

L1

 
i

!
D
p
d

i

;

L˛

 
i

!
D
p
d

i

on these spaces. Direct computation shows that these operators satisfy the following
relations:

K1
ıK1

D 1; K˛ ıK˛ D �1;

R˛ ıR1
D �; R1

ıR˛ D ��1;

L˛ ı L1
D ��1K1; L1

ı L˛ D ��1K˛;

K˛ ıR1
D �.R1

ıK1/; K˛ ı L1
D �.L1

ıK1/;

.R˛ ı L1/3 D �1; .R1
ı L˛/3 D �K˛:

As a consequence of these relations, we can diagonalise the action of the operatorK1,
and set

i WD R1

 
i

!
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to obtain that there exist scalars �i 2 ¹�1; 1º and !i 2 ¹1; e2�i
1
3 ; e2�i

2
3 º such that

K1

 
i

!
D �i i ;

K˛

 
i

!
D ��i i ;

R1

 
i

!
D i ;

R˛

 
i

!
D � i ;

L1

 
i

!
D ��!2i i ;

L˛

 
i

!
D ��i!

2
i i :

In particular, this gives us the local relations

� �

�

i D �i i and

˛

� �

�

i D ��i i : (4.3)

Remark 4.3. Note that we are free to change our basis of Dm.� ˝ � ! �/ by a
unitary which commutes with the operator K1. In particular, if m D 2 and �0 D �1,
then we are free to pick any other orthonormal basis of Dm.�˝ �! �/, and if �0 ¤
�1, then we can only rescale each basis vector by an element of U.1/.

With this special choice of bases, we can determine the following local relations
in Dm.

Lemma 4.4. There are scalars

A
i;j

k;`
; B

i;j

k;`
; C

i;j

k;`
;D

i;j

k;`
; OA

i;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
2 C; 0 � i; j; k; ` < m;
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such that the following local relations hold in Dm:

� � �

˛

D
�

d
C

1
p
d

1X
iD0

i

i

C
�
p
d

1X
iD0

i

i

� � �

�

` D �
!`

�

`
� ��`!

2
`

`

C

X
i;j;k

A
i;j

k;`

k

j

i

C B
i;j

k;`

k

j

i

C C
i;j

k;`

k

j

i

CD
i;j

k;`

k

j

i

� � �

˛ �

` D ��`!`
`

� �3!2`

`

C

X
i;j;k

OA
i;j

k;`

k

j

i

C yB
i;j

k;`

k

j

i

C yC
i;j

k;`

k

j

i

C yD
i;j

k;`

k

j

i

:

Proof. The proof is omitted as it is nearly identical to the proof of Lemma 3.15.

Remark 4.5. As in the self-dual case described in Remark 3.16, the above complex
scalars are precisely entries of certain F -tensors of Dm.

With these local relations, we can show that our described numerical data fully
determines the category Dm.

Proposition 4.6. There is at most one unitary fusion category Dm realising each
tuple of data �

�; �; !;A;B; C;D; OA; yB; yC ; yD
�
:

Proof. We omit the proof which is nearly identical to the proof of Proposition 3.19
replacing (3.1) with (4.1), the jellyfish relations from Lemmas 3.3 and 3.15 with
those from (4.3), (4.2), and Lemma 4.4, and using absorption relations similar to
Lemma 3.18.
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4.2. Centre analysis

As in the self-dual case, we study the centre of Dm in order to determine information
about our free variables. We restrict our attention to the case of m D 2, as this is the
most difficult case, and we need as much information about our numerical data as
possible in order to make progress on the classification. While we could repeat the
analysis for m D 1, this is unnecessary as in this case the lack of multiplicity makes
it easy to solve for our numerical data.

Our main result of this section is as follows.

Lemma 4.7. If m D 2 and �0 D �1, thenX
i

A
i;0
i;0 D

.2C i/ �
p
5

2
;

X
i

A
i;1
i;1 D

.2 � i/ �
p
5

2
;

X
i

A
i;1
i;0 D

X
i

A
i;0
i;1 D 0:

In the case of �1 D �0, knowing the above information about the free variables
A
i;j

k;l
will be the key starting point in showing non-existence of the category D2 later

on in this paper.
To show this result, we study the tube algebra of D2. As in the self-dual case, we

only study a small sub-algebra. We choose the following bases:

A1!1 D span

8<: ; ; ;

9=; ;
A1!� D span

8̂̂<̂
:̂
0

;
1

;
0

;
1

9>>=>>; ;

A˛!˛ D span

8̂̂̂<̂
ˆ̂: ; ; ;

9>>>=>>>; :
By direct computation, we obtain the following:

(1) The irreducible representations of A1!1 are

�0 1 1 2C
p
5 2C

p
5

�1 1 1 2 �
p
5 2 �

p
5

�2 1 �1 i �i
�3 1 �1 �i i
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Hence, 	.1/ contains 4 simple objects Xi with dimensions

dim.X0/ D 1; dim.X1/ D 9C 4
p
5; dim.X2/ D dim.X3/ D 5C 2

p
5:

(2) The irreducible representations of A˛!˛ are

�0 1 i a.1Ci�/C
p
2a2.1Ci�/C4i�
2

ia.1Ci�/C
p
2a2.1Ci�/C4i�
2

�1 1 �i a.1�i�/C
p
2a2.1�i�/�4i�
2

�ia.1�i�/C
p
2a2.1�i�/�4i�
2

�2 1 i a.1Ci�/�
p
2a2.1Ci�/C4i�
2

ia.1Ci�/�
p
2a2.1Ci�/C4i�
2

�3 1 �i a.1�i�/�
p
2a2.1�i�/�4i�
2

�ia.1�i�/�
p
2a2.1�i�/�4i�
2

where a WD �0 C �1 2 ¹0;˙2º. Hence, 	.˛/ contains 4 simple objects Yi
with dimensions

20C 8
p
5

2C 1
2
ja.1C i�/˙

p
2a2.1C i�/C 4i�j2

and
20C 8

p
5

2C 1
2
ja.1 � i�/˙

p
2a2.1 � i�/ � 4i�j2

:

(3) Let 1�� be the action of A1!1 on A1!�. Then

1��

� �
D

266664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

377775 ;

1��

� �
D

"
� �0

�0 �

#
;

1��

0@ 1A D "�0 �

� �0

#
;
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where � and �0 are the operators on Hom.�˝ �! �/ defined by

�

 
i

!
D

X
j

j

j

i
D

X
j;k

A
j;k
j;i k ;

�0

 
i

!
D

X
j

j

j

i
D �1;i

X
j;k

D
j;k
j;i k ;

which we can naturally identify as operators on the two spaces´
0

;
1

µ
;

8̂̂<̂
:̂

0

;
1

9>>=>>;
by local insertion. That is, the elements of A1 1 which involve �; �0 above
act on A1 � by applying �;�0 locally on the trivalent vertices in our standard
basis of A1 �.

With these computations in hand, we either pin down the scalars �0 and �1 or determ-
ine the operator �.

Proof of Lemma 4.7. Recall we have three possibilities for a 2 ¹�2; 0; 2º. If a D 0,
then we have �0 D ��1. Thus, we can restrict our attention to the case of a D ˙2.

We begin by determining the decomposition of 1�� into irreducible representa-
tions of A1!1. As X0 is the tensor unit of Z.Dm/, its restriction contains no copies
of �, and thus, 1�� contains no copies of �0. We also know that Tr.1��/ D 0, and so,
from the character table of A1!1 above, we must have that

1�� Š 2�1 ˚ k�2 ˚ .2 � k/�3

with k 2 ¹0; 1; 2º: In particular, we find that

Tr
�

1��

� ��
D 4 � 2

p
5C 2i.k � 1/ H) Tr.�/ D 2 �

p
5C i.k � 1/:
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To determine k, we study the restriction of the objects Xi and Yi . By the above
decomposition of 1�� and from counting dimensions, we have

F .X0/ D 1;
F .X1/ D 1˚ 2�˚ 2˛�;
F .X2/ D 1˚ k�˚ .2 � k/˛�;
F .X3/ D 1˚ .2 � k/�˚ k˛�:

By our assumption that a D ˙2, one of the objects Yi must be invertible. Thus, we
can label our Yi so that

F .Y0/ D ˛;

F .Y1/ D ˛ ˚ 2�˚ 2˛�;

F .Y2/ D ˛ ˚ .2 � k/�˚ k˛�;

F .Y3/ D ˛ ˚ k�˚ .2 � k/˛�:

Hence, we now know the restriction of all the objects in both 	.1/ and 	.˛/, up to
the integer k. Denote by Zi the remaining simple objects in Z.D/, i.e., those simple
objects such that

F .Zi / D pi�˚ qi˛�;

where pi ; qi are positive integers. This allows us to write

	.�/ D 2X1 C kX2 C .2 � k/X3 C 2Y1 C .2 � k/Y2 C kY3 C
X

piZi ;

	.˛�/ D 2X1 C .2 � k/X2 C kX3 C 2Y1 C kY2 C .2 � k/Y3 C
X

qiZi :

Therefore,

20 D dim Hom.	.�/;	.�// D 4k2 � 8k C 16C
X

p2i ;

20 D dim Hom.	.˛�/;	.˛�// D 4k2 � 8k C 16C
X

q2i ;

16 D dim Hom.	.�/;	.˛�// D �4k2 C 8k C 8C
X

piqi :

If k 2 ¹0; 2º, then we getX
p2i D

X
q2i D 4 and

X
piqi D 8;

which is impossible. Thus, we must have k D 1, and so, Tr.�/ D 2 �
p
5. From

1��

0@ 1

dim.D/

0@ C C .2C
p
5/ C .2C

p
5/

1A1A D 0
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and

1��

� �2
D 1��

� �
C 2 � 1��

� �
C 2 � 1��

0@ 1A ;
we find that � has the two distinct eigenvalues

.2C i/ �
p
5

2
and

.2 � i/ �
p
5

2
:

Finally, by Remark 4.3, we are free to unitarily change our basis of D2.�˝ �!

�/ by any element of U.2/. In particular, we can choose this basis so that � acts
diagonally. This gives the statement of the lemma.

4.3. Symmetries

We now use the tetrahedral symmetries to determine relations between the 128 com-
plex scalars:

A
i;j

k;`
; B

i;j

k;`
; C

i;j

k;`
; D

i;j

k;`
; OA

i;j

k;`
; yB

i;j

k;`
; yC

i;j

k;`
; and yD

i;j

k;`
:

Using the same techniques as in the self-dual case, we are able to show the following
lemma.

Lemma 4.8. The scalarsB i;j
k;`
;D

i;j

k;`
; OA

i;j

k;`
; yC

i;j

k;`
; yD

i;j

k;`
can be expressed in terms of the

scalars Ai;j
k;`

as follows:

B
i;j

k;`
D ���`!

2
`A

k;i
j;`
; D

i;j

k;`
D ���1!`A

j;k

i;`
;

OA
i;j

k;`
D ��3!2`A

j;i

k;`
; yC

i;j

k;`
D ��`!`A

i;k
j;`
; yD

i;j

k;`
D A

k;j

i;`
:

The scalars yB i;j
k;`

can be expressed in terms of the scalars C i;j
k;`

as follows:

yB
i;j

k;`
D �3C

k;j

i;`
:

The scalars Ai;j
k;`

satisfy Z=4Z symmetries generated by the relations

A
i;j

k;`
D ���i!j!

2
k!

2
`A

k;`
j;i D �i�k!i!`!

2
j !

2
kA

j;i

`;k
:

The scalars C i;j
k;`

satisfy S3 symmetries generated by the order three rotation

C
i;j

k;`
D !`C

j;k

i;`
D !2`C

k;i
j;`
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and the order two flip
C
i;j

k;`
D �j�k!

2
i !kC

k;`
i;j :

Finally, we have that if �0 D ��1, then

A
i;j

k;`
D C

i;j

k;`
if i C j C k C ` D 0 .mod 2/:

Proof. The proof of this lemma uses the exact same techniques as in the proof of
Lemma 3.21. The only real difference is that we have different Frobenius operators in
this case.

4.4. Classification

We now complete the proof of Theorem 4.1 to complete the classification in the non
self dual case. To prove this theorem, we break into three cases: (1)mD 1, (2)mD 2
and �0 D ��1, and (3) m D 2 and �0 D �1.

The casemD 1. IfmD 1, then from our previous analysis we only have to determine
the sign �0, the 3rd root of unity !0, the 8th root of unity �, and the two complex
scalars a WD A0;00;0 and c WD C 0;00;0 . Further, we have that if !0 ¤ 1, then c D 0.

By evaluating the diagrams

`0

`

k0

k

;
`0

`

k0

k

; and `

k

in two ways (see footnote 4), we obtain the following equations:

jaj2 C jcj2 D 1; 2jaj2 D 1 �
1

1C
p
2
;

�

1C
p
2
D a.�0!0 � �/:

With the first two of these equations, we can solve to find

jaj2 D 1 �
1
p
2

and jcj2 D
1
p
2
;

and thus, we have !0 D 1. The general solution to these equations is then given by

�0 D 1; a D
�

.1 � �/
.�1C

p
2/; and c D ei�2

�1
4 ;

where � is any phase.
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Lemma 4.9. There are exactly two unitary fusion categories, up to monoidal equi-
valence, which categorify S.1/.

Proof. By unitarily renormalising the basis element

0 7! z � 0 ; z 2 U.1/;

we change c to z�2c. We can thus renormalise so that c D 2
�1
4 . Hence, we have two

solutions for our free variables, depending on the choice of � D e˙i�
1
4 . By Propos-

ition 4.6, there are at most 2 unitary fusion categories with these fusion rules. These
two unitary fusion categories are realised by the even parts of the two subfactors
� 0 constructed in [34], which are monoidally non-equivalent and complex conjugate
to each other. Indeed, they each admit a Z=2Z-equivariantisation, which produces
monoidally non-equivalent 2Z=4Z1 near-group fusion categories which are complex
conjugate [35, Example 2.2] and [25, Example 9.5].

The case m D 2 and �0 D ��1 D 1. If m D 2 and �0 D ��1 D 1, then we have
to determine the 3rd roots of unity !i , the 8th root of unity �, and the free complex
variables Ai;j

k;l
and C i;j

k;l
. We can represent these free complex variables in the same

matrix notation as in (3.3) in the self-dual section. After applying the symmetries of
Lemma 4.8, we obtain

A D

266664
a0 0 0 0

0 a1 ��!20 xa1 0

0 �!21 xa1 a1 0

0 0 0 a2

377775 ; C D

266664
c0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 c1

377775 :
Due to the large number of variables which are zero, it is fairly easy to derive a
contradiction in this case.

Lemma 4.10. There is no unitary fusion category that categorifies S.2/ with �0 D
��1 D 1.

Proof. By evaluating

`0

`

k0

k
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in two ways (see footnote 4), we obtain the equation

�`�`0!
2
`!`0

X
i;j

A
k;i
j;`
A
k0;i
j;`0
C !`!

2
`0

X
i;j

A
j;k

i;`
A
j;k0

i;`0
� .2 �

p
5/ı`;kı`0;k0 D ı`;`0ık;k0 :

Taking k D k0 D 0 and ` D `0 D 1 gives ja1j2 D 1
2

, and taking k D k0 D ` D l 0 D 0
gives 2ja0j2 C 2ja1j2 D 3�

p
5. These two equations imply 2ja0j2 < 0, a contradic-

tion.

The casem D 2 and �0 D �1. Finally, we deal with the last case where m D 2 and
�0 D �1. Let us again represent our free variables Ai;j

k;l
and C i;j

k;l
in matrix form as in

(3.3). After applying the symmetries of Lemma 4.8, we obtain the following:

A D

266664
a0 a1 !0!

2
1a1 a2

���0!
2
1 xa1 a3 ���0!

2
0 xa3 a4

���0!
2
0 xa1 ���0!

2
1 xa3 a3 !20!1a4

���0!0!1 xa2 ���0!
2
0 xa4 ���0!

2
1 xa4 a5

377775 ;

C D

266664
c0 c1 !0c1 c2

c1 !21c2 !20!
2
1c2 !21c3

!20c1 !1c2 !21c2 c3

!0!
2
1c2 !1c3 c3 c4

377775 :
Recall from Lemma 4.7 that in this case we haveX
i

A
i;0
i;0 D

.2C i/ �
p
5

2
;

X
i

A
i;1
i;1 D

.2 � i/ �
p
5

2
;

X
i

A
i;1
i;0 D

X
i

A
i;0
i;1 D 0;

which implies that

a0 C a3 D
.2C i/ �

p
5

2
; a3 C a5 D

.2 � i/ �
p
5

2
; a1 D �a4 D �!

2
0!1a4:

With these linear equations in hand, it is straightforward to show non-existence in
this case.

Theorem 4.11. There is no unitary fusion category that categorifies S.2/ with �0 D
�1.

Proof. Evaluating the diagram

`

k
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in two ways (see footnote 4) givesX
i

A
i;k
i;`
C �3�`!`

X
i

A
k;i
i;`
� ı`;k.2 �

p
5/ D 0:

In terms of our free variables, this gives us the following:

2 �
p
5 D a0 C a3 C 2�

3�0!0a0 C 2 xa3

D i � 2�3�0!0
�
2��0!

2
0 xa3 C 2a3 C .�2 � i/C

p
5
�
;

2 �
p
5 D a5 C a3 C 2�

3�0!1a5 C 2 xa3

D �i � 2�3�0!1
�
2��0!

2
1 xa3 C 2a3 C .�2C i/C

p
5
�
:

This system of equations of the complex variable a3 does not hold for any values of
our free variables �0 2 ¹�1; 1º, � 2 ¹e

i�
4 ; e

�i�
4 º, and !0; !1 2 ¹1; e

2i�
3 ; e

4i�
3 º.

A. A multiplicity bound for Z=2Z-quadratic categories
(by Ryan Johnson, Siu-Hung Ng, David Penneys, Jolie Roat,
Matthew Titsworth, and Henry Tucker)

In this appendix, we prove Theorem 2.4. That is, given a pseudounitary Z=2Z quad-
ratic fusion category with simple objects 1; ˛; �; ˛� with � self-dual and fusion rules
determined by

˛2 Š 1 and �2 Š 1˚m�˚ n˛�; (Q3)

.m; n/ must be one of .0; 0/, .0; 1/, .1; 0/, .1; 1/, .2; 2/.

A.1. Basic number theoretic constraints

Given a Z=2Z-quadratic category C with fusion rules (Q3), the fusion matrices are
given in the ordering 1; �; ˛�; ˛ by

L� D

0BBB@
0 1 0 0

1 m n 0

0 n m 1

0 0 1 0

1CCCA ; L˛� D

0BBB@
0 0 1 0

0 n m 1

1 m n 0

0 1 0 0

1CCCA ;

L˛ D

0BBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1CCCA :
Setting d WD dim.�/, we have dim.˛/ D 1 and d2 D 1C .mC n/d so that

d D
1

2

�
mC nC

p
4C .mC n/2

�
: (A.1)
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Then

dim.C/ D 2C 2d2 D 2C
.mC n/2 C 2.mC n/

p
4C .mC n/2 C 4C .mC n/2

2

D 4C 2.mC n/d:

SinceK0.C/ is abelian of dimension 4, its irreducible representations are all 1-dimen-
sional. Hence, by [49, Remark 2.11], the element

R WD I C L2� C L
2
˛� C L

2
˛ D

0BBB@
4 2m 2n 0

2m 2n2 C 2m2 C 4 4mn 2n

2 n 4mn 2n2 C 2m2 C 4 2m

0 2 n 2m 4

1CCCA
is central inK0.C/, and the roots of its characteristic polynomial are called the formal
codegrees [48] of C :

f1 D 4C .mC n/
2
C .mC n/

p
4C .mC n/2;

f2 D 4C .mC n/
2
� .mC n/

p
4C .mC n/2;

f3 D 4C .m � n/
2
C .m � n/

p
4C .m � n/2;

f4 D 4C .m � n/
2
� .m � n/

p
4C .m � n/2:

A.2. Computing the induction and forgetful functor

We now assume that C is pseudounitary, and we analyse the centreZ.C/, the forgetful
functor F W Z.C/! C , and the induction functor 	 W C ! Z.C/. Recall that

F .	.c// Š
M

x2Irr.C/

x ˝ c ˝ x� 8 c 2 C (A.2)

and that F is biadjoint to 	. We use the notation .a; b/ WD dim.C.a ! b// and
.A;B/ WD dim.Z.C/.A! B//.

Lemma A.1 ([49, Theorem 2.13]). There are distinct simple objects 1Z.C/, X2, X3,
X4 2 Irr.Z.C// such that

	.1C / D 1Z.C/ ˚X2 ˚X3 ˚X4 and dim.Xk/ D
f1

fk
:

Setting

r WD

s
4C .mC n/2

4C .m � n/2
;
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it is straightforward to calculate that

dim.X2/ D
f1

f2
D

f 21
f1f2

D 1C .mC n/d D
dim.C/
2

� 1;

dim.X3/ D
f1

f3
D
f1f4

f3f4
D 1C

1

2
.mC n/d �

r

2
.m � n/d;

dim.X4/ D
f1

f4
D
f1f3

f3f4
D 1C

1

2
.mC n/d C

r

2
.m � n/d:

Remark A.2. Since dim.X2/; dim.X3/; dim.X4/ 2 Z.d/, it must be the case that
either m D n or r 2 Q.d/. If m D 0 or n D 0, then r D 1. One may check that if
0¤m¤ n¤ 0 and r 2Q.d/, thenmC n� 11. We will show below in Theorem A.12
that mC n � 5.

Proposition A.3. The centre Z.C/ has 8 distinct simple objects 1Z.C/, X2, X3, X4,
Y1, Y2, Y3, Y4 such that

	.1C / D 1Z.C/ ˚X2 ˚X3 ˚X4 and 	.˛/ D Y1 ˚ Y2 ˚ Y3 ˚ Y4:

Denote the rest of the simple objects of Z.C/ by ¹Zsºs2S where S is some finite set.
The matrix F of the forgetful functor F W Z.C/ ! C can then be represented as
follows, where zero entries are omitted:

F D

1Z.C/ X2 X3 X4 Y1 Y2 Y3 Y4 Zs

1C 1 1 1 1

˛ 1 1 1 1

� x2 x3 x4 y1 y2 y3 y4 zs

˛� x02 x03 x04 y01 y02 y03 y04 z0s

and the induction matrix is given by F T . Moreover,

4X
jD2

xj D 2m and
4X

jD2

x0j D 2n; (A.3)

x2 C x
0
2 D mC n; (A.4)

x3 C x
0
3 D

1

2
.mC n/ �

r

2
.m � n/; (A.5)

x4 C x
0
4 D

1

2
.mC n/C

r

2
.m � n/; (A.6)

4X
jD1

yj D 2n and
4X

jD1

y0j D 2m: (A.7)
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Proof. First, 1Z.C/ decomposes as desired by Lemma A.1. Next, observe that, by
equation (A.2),

.	.˛/;	.˛// D 4;

.F 	.1C /; ˛/ D 0:

Since the first Frobenius–Schur indicator �1 satisfies TrZ.C/.�	.˛// D 0 [43, Remark
4.6] (see also [49, Theorem 2.4]), 	.˛/ decomposes as 4 distinct simples which are
distinct from 1Z.C/; X2; X3; X4. Equations (A.3) and (A.7) follow from calculating
F 	.1C / and F 	.˛/. Equations (A.4), (A.5), and (A.6) now follow from the formulas
for dim.Xk/ for k D 2; 3; 4.

We now compute the dimensions of all the hom spaces amongst 	.�/ and 	.˛�/

in two ways. The first way is by taking adjoints and using (A.2). The second way
is by using the induction matrix F T computed in Proposition A.3. This gives us the
following:

.	.�/;	.�// D 4C 2m2 C 2n2 D

4X
jD2

x2j C

4X
jD1

y2j C
X
s

z2s ; (A.8)

.	.�/;	.˛�// D 4mn D

4X
jD2

xjx
0
j C

4X
jD1

yjy
0
j C

X
s

zsz
0
s; (A.9)

.	.˛�/;	.˛�// D 4C 2m2 C 2n2 D

4X
jD2

.x0j /
2
C

4X
jD1

.y0j /
2
C

X
s

.z0s/
2: (A.10)

Lemma A.4. The non-negative integers xj ; x0j ; yj ; y
0
j ; zs; z

0
s satisfy

8C
5

2
.mC n/2 �

r2

2
.m � n/2 D

4X
jD1

.yj C y
0
j /
2
C

X
s

.zs C z
0
s/
2; (A.11)

8C 4.m � n/2 D

4X
jD2

.xj � x
0
j /
2
C

4X
jD1

.yj � y
0
j /
C
X
s

.zs � z
0
s/
2:

(A.12)

Proof. To get the first equation, sum equations (A.8) and (A.10) and twice equation
(A.9). Then, use equations (A.4), (A.5), and (A.6) and simplify. The second is similar.

Proposition A.5. We have the following upper bound:X
s

.zs C z
0
s/
2
� 8C

3

2
.mC n/2: (A.13)
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Proof. By equation (A.11), the desired inequality is implied by

4X
jD1

.yj C y
0
j /
2
�
1

4

0@ 4X
jD1

yj C y
0
j

1A2 D .mC n/2 � .mC n/2 � r2
2
.m � n/2;

which is true. The second equality above holds by equation (A.7), and the first ine-
quality above follows from the fact that for any real numbers w; x; y; z, we have

4.w2 C x2 C y2 C z2/ � .w C x C y C z/2

D .w � x/2 C .w � y/2 C .w � z/2 C .x � y/2 C .x � z/2 C .y � z/2 � 0:

The proof is complete.

Proposition A.6. Denote the twists of Y1; : : : ; Y4 by �1; : : : ; �4. We have �21 D �
2
2 D

�23 D �
2
4 D ˙1. Setting � D �1, without loss of generality, we have � 2 ¹1; iº.

Proof. We calculate the following Frobenius–Schur indicators [43] of ˛:

0 D TrZ.C/.�	.˛// D

4X
jD1

�j dim.Yj /; (A.14)

˙ dim.C/ D TrZ.C/.�2	.Z// D
4X

jD1

�2j dim.Yj /: (A.15)

Since dim.	.˛// D dim.C/ D
P4
jD1 dim.Yk/, equation (A.15) implies that �21 D

�22 D �
2
3 D �

2
4 D˙1. By equation (A.14), the �j ’s split up into two nonempty groups

of opposite sign, so without loss of generality, �1 2 ¹1; iº.

Definition A.7. For j D 2; : : : ; 4, we let "j 2 ¹�1;C1º such that "j � D �j where
� D �1 is the twist of Y1. We also set 
 WD 1

2
.mC n/C r

2
and N
 WD 1

2
.mC n/ � r

2
.

Notice that 
 C N
 D mC n and that 
2 C N
2 D 1
2
.mC n/2 C r2

2
.m � n/2.

Proposition A.8. We have the following equalities:

�

X
s

�s.zs C z
0
s/
2d D

3

2
.mC n/2d C

r2

2
.m � n/2d C 2.mC n/

C �

4X
jD1

"j .yj C y
0
j /.1C .yj C y

0
j /d/; (A.16)

�

X
s

�2s .zs C z
0
s/
2d D �C

3

2
.mC n/2d C

r2

2
.m � n/2d C 2.mC n/

C �2
4X

jD1

.yj C y
0
j /.1C .yj C y

0
j /d/; (A.17)
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where � WD ˙.TrZ.C/.�2	.�// C TrZ.C/.�2	.˛�/// 2 ¹0;˙2 dim.C/ D ˙.8 C 4.m C
n/d/º.

Proof. To get (A.16), we add the following two equations for the first Frobenius–
Schur indicators [43] of 	.�/ and 	.˛�/, and we use equations (A.4), (A.5), and
(A.6) in conjunction with Definition A.7:

0 D TrZ.C/.�	.�// D x2.1C .mC n/d/C x3.1C 
d/C x4.1C N
d/

C �

4X
jD1

"jyj .1C .yj C y
0
j /d/C

X
s

�szs.zs C z
0
s/d;

0 D TrZ.C/.�	.g�// D x
0
2.1C .mC n/d/C x

0
3.1C 
d/C x

0
4.1C N
d/

C �

4X
jD1

"jyj .1C .yj C y
0
j /d/C

X
s

�sz
0
s.zs C z

0
s/d:

Obtaining equation (A.17) is similar using the second Frobenius–Schur indicators
[43] of � and ˛�:

˙ dim.C/ D TrZ.C/.�2	.�// D x2.1C .mC n/d/C x3.1C 
d/C x4.1C N
d/

C �2
4X

jD1

yj .1C .yj C y
0
j /d/C

X
s

�2s zs.zs C z
0
s/d;

˙ dim.C/ D TrZ.C/.�2	.˛�// D x
0
2.1C .mC n/d/C x

0
3.1C 
d/C x

0
4.1C N
d/

C �2
4X

jD1

y0j .1C .yj C y
0
j /d/C

X
s

�2s z
0
s.zs C z

0
s/d:

Adding the above equations, applying (A.4), (A.5), (A.6), and Definition A.7, and
rearranging give the result.

Theorem A.9 ([30, Proposition 5.6 and Theorem 5.7]). Suppose that u; v 2 Z and
t 2 N is square free. We have the following:

(1) It requires at least juj C 2jvj roots of unity to write uC v
p
2 as a sum of roots

of unity.

(2) It requires at least jvj'.2t/ roots of unity to write uC v
p
t as a sum of roots

of unity.

Corollary A.10. Suppose that u 2 Q, v 2 Z, and t 2 N is square free. We have the
following:

(1) It requires at least juj C 2jvj roots of unity to write uC v
p
2 as a sum of roots

of unity.
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(2) It requires at least jvj'.2t/ roots of unity to write uC v
p
t as a sum of roots

of unity.

Proof. Suppose that
PN
iD1 �i D uC v

p
2. Write uD p=q in lowest terms with q > 0

so that

q

NX
sD1

�s D p C qv
p
2:

By Theorem A.9(1), qN � jpj C 2qjvj, so N � juj C 2jvj.
Now, suppose that

PN
iD1 �i D uC v

p
t . Again, write u D p=q in lowest terms

with q > 0 so that q
PN
sD1 �s D pC qv

p
t . By Theorem A.9(2), qN � qjvj'.2t/, so

N � jvj'.2t/.

Lemma A.11. For all t 2 N with t ¤ 1; 2; 3; 6, '.2t/ �
q
16t
5

.

Proof. By [28], for all t 2 N, '.2t/ � 2. t
3
/2=3. It is straightforward to show that for

t > 42, 2
�
t
3

�2=3
�
p
16t=5. One verifies directly that for t D 4; 5 and 7 � t � 42,

'.2t/ �
p
16t=5. The result follows.

Theorem A.12. If there is a pseudounitary fusion category C with fusion rules (Q3),
then .mC n/ � 5.

Proof. We consider the two cases for � 2 ¹1; iº afforded by Proposition A.6.
(1) Suppose that � D i . We add equation (A.16) to its complex conjugate, divide

by d , and simplify to obtain

�

X
s

.�s C x�s/.zs C z
0
s/
2
D .mC n/2 C r2.m � n/2 C 2.mC n/

p
4C .mC n/2:

(A.18)

Case 1. Suppose that .mC n/2 C 4 D 2v20 for some integer v0 > 0. Then, by Corol-
lary A.10 (1) with v D 2.mC n/v0, it requires at least

.mC n/2 C r2.m � n/2 C 4.mC n/

r
4C .mC n/2

2„ ƒ‚ …
Dv0„ ƒ‚ …

D2v

�

�
1C

4
p
2

�
.mC n/2

roots of unity to write the right-hand side of equation (A.18). Together with inequality
(A.13), we have the following:

16C 3.mC n/2 � 2
X
s

.zs C z
0
s/
2
�

�
1C

4
p
2

�
.mC n/2;

which implies mC n � 4.
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Case 2. If 4 C .m C n/2 ¤ 2v2, then we can write 4 C .m C n/2 D v2t , where
v; t are integers with v > 0 and t > 2 is square free. Then, by Corollary A.10(2),
it requires at least 2.mC n/v'.2t/ roots of unity to write the right-hand side of equa-
tion (A.18). Since 4C .mC n/2 � ˙1 mod 3, we know 4C .mC n/2 … ¹1; 2; 3; 6º.
By Lemma A.11,

v2'.2t/2 �
16v2t

5
” v'.2t/ � 4

r
4C .mC n/2

5
:

Now, by inequality (A.13), we have the following:

16C 3.mC n/2 � 2
X
s

.zs C z
0
s/
2
� 2.mC n/v'.2t/

� 8.mC n/

r
4C .mC n/2

5
;

which implies that mC n � 4.
(2) Suppose that � D 1. Then, dividing equation (A.17) by d and simplifying, we

get

�

X
s

�2s .zs C z
0
s/
2
D
�C 4.mC n/

d
C
3

2
.mC n/2

C
r2

2
.m � n/2 C

4X
jD1

.yj C y
0
j /
2: (A.19)

There are now 2 cases depending on the value of �.

Case 1. Suppose that � D 0. Then, equation (A.19) becomes

�

X
s

�2s .zs C z
0
s/
2
D 2.aC b/

p
4C .mC n/2 �

1

2
.mC n/2

C
r2

2
.m � n/2 C

4X
jD1

.yj C y
0
j /
2: (A.20)

Case 2. Suppose that � D ˙2 dim.C/ D ˙.8C 4.mC n/d/. Then, equation (A.19)
becomes

�

X
s

�2s .zs C z
0
s/
2
D 2.mC n˙ 2/

p
4C .mC n/2 � 2.mC n˙ 2/.aC b/

˙ 4.mC n/C
3

2
.mC n/2 C

r2

2
.m � n/2 C

4X
jD1

.yj C y
0
j /
2:

(A.21)
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In either of the above cases, arguing as in (1) where � D i , we see that it takes at
least

min

´
8.mC n � 2/

r
4C .mC n/2

5
; 4.mC n � 2/

r
4C .mC n/2

2

µ
�

4
p
2
.mC n/.mC n � 2/

roots of unity to write the right-hand sides of equations (A.20) and (A.21). Now, by
inequality (A.13), we see that

8C
3

2
.mC n/2 �

X
s

.zs C z
0
s/
2
�

4
p
2
.mC n/.mC n � 2/;

which implies mC n � 5.
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