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Generalizing Pauli spin matrices using cubic lattices

Morrison Turnansky

Abstract. In quantum mechanics, the connection between the operator algebraic realization and the
logical models of measurement of state observables has long been an open question. In the approach
that is presented here, we introduce a new application of the cubic lattice. We claim that the cubic
lattice may be faithfully realized as a subset of the self-adjoint space of a von Neumann algebra.
Furthermore, we obtain a unitary representation of the symmetry group of the cubic lattice. In so
doing, we re-derive the classic quantum gates and gain a description of how they govern a system
of qubits of arbitrary cardinality.

1. Introduction

The cubic lattice [6] has long been thought of as an analogue of the standard Boolean
lattice when adapted to the indeterminate setting of quantum logic. With this in mind,
we see a substantial amount of literature that has been produced outlining the proper-
ties of a potential logic whose states are the cubic lattice in the finite case [7]. On the
other hand, [8] introduces an axiomatic description of the cubic lattice without cardinality
restrictions. We aim to combine these results. In so doing, we will obtain observables of
an infinite quantum system and re-derive a universal set of quantum gates in the sense
of the Solovay–Kitaev theorem. The key insight is that the reflection symmetries under
consideration here can be represented as a subgroup of the unitary operator, which will be
utilized to create a novel operator-based realization of a cubic lattice.

As none of the referenced approaches introduce an analytic structure, it is a natural
starting point as we consider the infinite case. Therefore, we embed the cubic lattice into
a specifically constructed Hilbert lattice.

Main result 1 (Theorem 2.1.11). Let H be a Hilbert space constructed as a tensor prod-
uct of 2-dimensional spaces over an index set I . For the given Hilbert lattice HL of H ,
there exists a cubic lattice CL such that CL � HL and the atoms of CL are projections
onto subspaces H forming an orthonormal basis of H .

As the Hilbert lattice is much larger than our cubic lattice, we consider the minimal
von Neumann algebra containing CL as well.
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Main result 2 (Theorem 3.2.8). The atoms of W �.¹siºi2I / are the atoms of CL.

We proceed to describe the algebra in our embedding of the cubic lattice, and in so
doing, we generalize the standard result that the Pauli matrices span M2.C/.

Main result 3 (Theorem 3.2.11). B.H/ D W �.¹UsiU �ºi2I ; ¹siºi2I /.

As a consequence, we generalize the Pauli matrices to infinite systems of qubits in
our choice of matrix units when considered as a representation of M2.B/ as opposed to
M2.C/, where B Š I2 ˝ B.HI�i / for an indexing set I ,

U�i D

�
0 1

1 0

�
: si D

�
1 0

0 �1

�
; isiU�i D

�
0 i

�i 0

�
:

1.1. Background and definitions

The standard approach for describing the spin states of n qubits is to consider a tensor
product of the form

Nn
iD1 C2, creating a vector space of dimension 2n. In this setting,

each pure state is represented by an orthonormal basis vector.

Definition 1.1.1. Let H be a Hilbert space. We define the lattice of the closed linear
subspaces of H to be the Hilbert lattice, henceforth referred to as HL. In this context,
u _ v D span¹u; vº, and u ^ v D span¹uº \ span¹vº.

In some literature, the Hilbert lattice is referred to as a “standard lattice.” The term is
used because this is the standard construction of lattice of projection operators of a Hilbert
space; we refer the reader to [13] for an in-depth discussion.

The major issue with the above approach is that the geometry of the state space is
not preserved because its dimension is too large. There are many unitary transformations
that violate physical meaning, so we need a more restrictive symmetry group. With this in
mind, we now move to the cubic lattice.

Definition 1.1.2 ([8]). A cubic lattice is a latticeC with 0 and 1 that satisfies the following
axioms.

(1) For x 2 L, there is an order-preserving map �x W .x/! .x/, where .x/ denotes
the principal ideal generated by .x/.

(2) If 0 < a; b < x, then a _�x.b/ < x if and only if a ^ b D 0.

(3) L is complete.

(4) L is atomistic.

(5) L is coatomistic.

In the finite case, the cubic lattice can be thought of as the lattice of the faces of
an n-cube. For an arbitrary cardinal, the axiomatic description above relies on antipodal
symmetry. We now tie together the geometric notion of the faces of the n-cube to the
lattice of signed sets.
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Definition 1.1.3. Let S D ¹1; 2; : : : ; nº. A signed set on S is a pair x D .AC; A�/ of
subsets of S such that AC \A� D ;. The collection of signed sets, denoted by LC.S/, is
a poset with order relation� defined by reverse inclusion x D .AC;A�/� y D .BC;B�/
if BC � AC and B� � A�. The pair .AC; A�/ uniquely determines the face F if AC \
A� D ;.

Now that we have considered a poset of the faces of a cube defined as a signed set, we
can consider the lattice of signed sets. For some intuition from the finite case, the vertices
of the cube are the atoms of the lattice, and its respective signed set .AC; A�/ partitions
the indexing set I . In contrast, the whole cube is represented by .;; ;/. The ordering of
the signed set can also be thought of as the inclusion of respective sub-faces of the cube.

Definition 1.1.4. If F , G are faces of I n such that F; G ¤ ;, with F D .AC; A�/ and
G D .BC; B�/, then G � F if and only if AC � BC and A� � B�. Let F .I n/ be the
set of all faces of I n ordered by the above notion, so that F .I n/ forms a complete lattice,
where _ is the union of faces, and ^ is the intersection of faces. With the addition of a
0 element, LC.S/ becomes a lattice denoted by L.S/, where, for x; y 2 L.S/, one has
x _ y D .AC \ BC; A� \ B�/ 2 L.S/ and x ^ y D .AC [ BC; A� [ B�/ 2 L.S/ if
BC \ A� D ; D B� \ AC, or x ^ y D 0 2 L.S/ otherwise.

In addition to ^ and _, a cubic lattice has an additional operation.

Definition 1.1.5. Every cubic lattice L.S/ admits a partially-defined operation

�WL.S/ � L.S/! L.S/

defined by �.x; 0/ D 0, and if 0 < x D .AC; A�/, 0 < y D .BC; B�/, y � x, then
�.x; y/ D .AC [ .B� � A�/; A� [ .BC � AC//.

Example 1.1.6. The face lattice of the 2-cube is given by

.;;;/

.;; ¹2º/ .;; ¹1º/ .¹1º;;/ .¹2º;;/

.;; ¹1; 2º/ .¹1º; ¹2º/ .¹2º; ¹1º/ .¹1; 2º;;/

0
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The signed sets of the 2-cube are given by

.;; ¹1; 2º/ .¹1º; ¹2º/

.¹2º; ¹1º/ .¹1; 2º;;/

.;;;/.;; ¹1º/ .¹1º;;/

.;; ¹2º/

.¹2º;;/

We have given a very terse description of cubic algebras, and we will now move
towards creating a faithful realization of the cubic algebra as an operator algebra. A large
amount of technology must be developed, as we do not yet even have a linear space of
operators with which to begin.

2. Embeddings of the cubic lattice and octahedral lattice

Now that we have introduced the basic structures, we can build the necessary embedding
to demonstrate that cubic lattices have a realization as a von Neumann algebra. In addi-
tion, we discuss the algebraic structure of the Hilbert lattice and compare it to the poset
structure of the cubic lattice. Lastly, we compare the dual spaces with respect to both space
categories. We show that there is a reasonable, direct relationship between the dual of the
poset and the dual of the analytic structure.

2.1. Cubic lattice as a subset of a Hilbert lattice

We adapt the following definitions and proposition from [10] to our notation.

Proposition 2.1.1 ([10]). The Hilbert lattice is an atomic, (completely) atomistic, com-
plete, orthomodular lattice.

For the following theorem, we will be constructing a Hilbert space from an infinite
tensor product. We do so in an established but non-standard way. We outline the necessary
definitions for expository purposes and use the results from [14]. Unless otherwise stated,
when we refer to a Hilbert space formed by infinite tensor products, we mean the following
construction, not the standard construction.

For the following, I is an index set of not necessarily countable cardinality, H˛ is a
finite-dimensional Hilbert space for all ˛ 2 I , and the norm on f˛ 2 H˛ is the norm of
the Hilbert space.

Definition 2.1.2 ([14]).
Q
˛2I z˛ , z˛ 2 C, ˛ 2 I , is convergent, and a is its respective

value, if there exists, for every ı > 0, a finite set I0 D I0.ı/� I , such that, for every finite
set J D ¹˛1; : : : ; ˛nº (mutually distinct ˛i ) with I0 � J � I ,

jz˛1 � � � � � z˛n � aj � ı:
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Definition 2.1.3.
Q
˛2I z˛ is quasi-convergent if

Q
˛2I jz˛j is convergent. It value is

• the value of
Q
˛2I z˛ if it is convergent,

• 0 otherwise.

Now that we have a looser notion of convergence for infinite products, we adapt these
definitions to functions in a normed space.

Definition 2.1.4. A sequence f˛ , ˛ 2 I , is a C-sequence if f˛ 2 H˛ for all ˛ 2 I , andQ
˛2I kf˛k converges.

As we have an inner product for each H˛ , we can consider the infinite product of the
respective inner products.

Lemma 2.1.5 ([14]). If f˛ , ˛ 2 I , and g˛ , ˛ 2 I , are two C-sequences, then
Q
˛hf˛; g˛i

is quasi-convergent.

Definition 2.1.6. Let ˆ.f˛I ˛ 2 I / be the set of functionals on the product
Q
˛2I H˛

which is conjugate linear in each f˛ 2 I separately over C-sequences. The set of all such
ˆ for any C-sequence will be denoted by

QJ
˛2I H˛ . We note that

QJ
˛2I H˛ is a

linear space, but it is not an inner product space.

Although each functional f˛ is conjugate linear for its respective H˛ , we do not have
an inner product on the entire space. We can form a conjugate linear inner product space
by considering a fixed C-sequence.

Definition 2.1.7. Given a C-sequence f 0˛ , ˛ 2 I , we form the functional ˆ.f˛I ˛/ DQ
˛2I .f

0
˛ ; f˛/, where f˛ , ˛ 2 I , runs over all C-sequences. Denote such a functional byQN

˛2I f
0
˛ .

We now turn the inner product space into a linear space.

Definition 2.1.8. Consider the set of all finite linear aggregates of the above elements:

ˆ D

pX
vD1

YO
˛2I

f 0˛;v;

where pD 0;1; : : :, p and f 0˛;v , ˛ 2 I , is a C-sequence for each vD 1;2; : : : ;p. Denote the
set of theseˆ by

Q0N
˛2I H˛ . ForˆD

Pp
vD1

QN
˛2I f

0
˛;v ,‰D

Pq
�D1

QN
˛2I g

0
˛;� 2Q0N

˛2I H˛ , we define the inner product by

hˆ;‰i D

pX
vD1

qX
�D1

Y
˛2I

hf 0˛;v; g
0
˛;�i:

The Hilbert space of [14] has an inner product defined by a specific decomposition.
For completeness, we highlight that the inner product is well defined.

Lemma 2.1.9 ([14]). Letˆ;‰ 2
Q0N

˛2I H˛ . The value of hˆ;‰i is independent of the
choice of their respective decompositions.
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Lastly, [14] creates a Hilbert space by defining the completion with respect to our
notion of convergence.

Definition 2.1.10. Consider the functions ˆ 2
QN

˛2I H˛ for which there exists a
sequence

ˆ1; ˆ2; : : : 2
Y0O

˛2I

H˛

such that

(1) ˆ.f˛I˛ 2 I / D limr!1ˆr .f˛I˛ 2 I / for all C-sequences f˛ , ˛ 2 I ,

(2) limr;s!1 kˆr �ˆsk D 0

The set they form is the complete direct product ofH˛ , ˛2I, to be denoted by
QN

˛2IH˛ .
Note that

Q0N
˛2I H˛ �

QN
˛2I H˛ �

QJ
˛2I H˛ .

For our application, the convergence criterion of Definition 2.1.2 is acceptable. We
will only be concerned with forming the tensors of elementary basis elements of the
respective H˛ , so all of our elements are functionals derived from C-sequences as in Def-
inition 2.1.7. We can then consider their span in the natural way.

Lastly, we want to highlight that the constructed Hilbert space is separable only if each
H˛ is finite dimensional and jI j is finite. Therefore, the Hilbert spaces we are considering
will in general be non-separable.

Theorem 2.1.11. Let H be a Hilbert space constructed as a tensor product of 2-dimen-
sional spaces over an index set I . For the given Hilbert lattice HL of H , there exists a
cubic lattice CL such that CL � HL, and the atoms of CL are projections onto subspaces
of H forming an orthonormal basis of H .

Proof. We begin with the standard construction of a basis over a tensor product of index I .
Let eCi , e�i represent the 2 basis vectors for i 2 I .

Now, each elementary tensor is a C-sequence, since keik D 1 for all i 2 I ; so we
have a linear functional of the form in H in Definition 2.1.7, and this linear functional
can be represented by its respective projection operators. As these are projections onto
1-dimensional subspaces, they are atoms in HL, and in the cone B.H/C.

For each atomic elementary tensor described above, we use the notation vD¹AC;A�º,
where AC D ¹i 2 I W vi D eCi º and A� D ¹i 2 I W vi D e�i º. By the construction of v,
we have that AC \ A� D ; and AC [ A� D I . Now we observe that all such v form the
atoms of a signed set over the indexing set I .

We define CLD L.SI /, the lattice of signed sets generated by the closure of the above
atoms under the operations of meet and join from the definition of cubic lattices. Recall,
by Definition 1.1.5, that �WL.S/ � L.S/! L.S/ can be defined on any signed set.

As we have a description of the atoms of the cubic lattice in MC, we need to show
that the atoms are closed under _. Consider a; b 2 CL\HL, where a D ¹AC; A�º and
b D ¹BC; B�º. Then, a _CL b D ¹A

C \ BC; A� \ B�º. We now have that a _CL b is
the projection PV onto the subspace V D

N
i2I Vi , where Vi D eCi for i 2 AC \ BC,
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Vi D e
�
i for i 2 A� \ B�, and Vi D span¹eCi ; e

�
i º otherwise, so that a _CL b 2 HL and

PV 2MC. Therefore, CL � HL. In addition, as any element of CL is a join of its atoms
by atomisticity, and 0 2 HL trivially, the result follows.

The atoms of CL form an orthonormal system in H . For any pair of distinct atoms
a, b 2 CL, there exists i 2 I such that ai ¤ bi , so hai ; bi iH˛ D 0, which implies that
ha;biH D 0. Furthermore, these vectors span

Q0N
˛2I H˛ , and therefore are dense inH .

Remark 2.1.12. The Hilbert lattice is not a cubic lattice. Suppose it were. Then, there
exists a signed set realization of HL, L.S/, see [8]. Let r.�/ denote the rank of a subspace.
Consider the join of two linearly independent atoms a D ¹AC; A�º and b D ¹BC; B�º
such that j¹AC � BCºj > 1, so r.a _C b/ D j¹.AC \ BC/ [ .A� \ B�/ºj > 2. Then,
2 D r.a _H b/ < r..AC \ BC/ [ .A� \ B�// D r.a _C b/.

We now discuss relations of the distinct lattice structures of the cubic lattice and
Hilbert lattice.

Definition 2.1.13. We write CL � B.H/ and say that H is constructed as in Theo-
rem 2.1.11 to mean the set of orthogonal projections onto their respective closed subspaces
of CL are in B.H/. We will use the notation a 2 CL and pa 2 B.H/.

It is worth discussing why we chose to construct a non-separable Hilbert space. The
standard approach to model an n-qubit system is to embed these qubits into a 2n-dimen-
sional space. In order to keep our later results consistent with this property, we are forced
for an jI j-qubit system to embed into an 2jI j-dimensional space, which again is countable
if and only if jI j is finite.

We now explore how some of the operations of the cubic lattice and Hilbert lattice
relate.

Corollary 2.1.14. The action of ? on HL on the coatoms of CL is a symmetry that coin-
cides element-wise with the unitary symmetry associated with �.

Proof. The result follows as, for all c 2 CL, p?c D 1 � pc D p�.c/ D U�pcU�.

Definition 2.1.15. Let V D
N
i2I Vi for some index set I over vector spaces ¹Viºi2I .

A generalized simple tensor of V is a subspace of V of the form
N
i2I Ui , where Ui is a

subspace of Vi .

Corollary 2.1.16. The set CL � B.H/ is exactly the set of the operators represented by
generalized simple tensors in the orthonormal basis.

Lastly, although the join operation differs on the cubic lattice and the Hilbert lattice,
the meet operation is the same.
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Theorem 2.1.17. For a proper principal lattice filter of the cubic lattice, F � CL � HL,
^H WF � F ! HL D ^C WF � F ! F . Equivalently, the join of an ideal of OL agrees
with the meet of the Hilbert lattice.

Proof. Let a; b 2 F . By definition, we can write a and b as the joins of atoms that are
members of the orthonormal basis constructed as in Theorem 2.1.11, so we can write
a ^H b in the same orthonormal basis as well. Therefore, we have the same relevant set
of atoms for both HL and CL, and we reduce to this case implicitly for the remainder of
the proof.

If ˛ is an atom of CL � HL such that ˛ � a and ˛ � b, then ˛ � a ^C b and ˛ �
a ^H b. In addition, these are the only atoms in the commutative Boolean sub-lattice of
HL that are less than or equal to a ^C b or a ^H b. By atomisticity of the cubic lattice
and the Boolean sub-lattice of the Hilbert lattice, a ^C b D

W
C ¹˛ W ˛ � a and ˛ � bº

and a ^H b D
W
H ¹˛ W ˛ � a and ˛ � bº.

As the ordering of CL is inherited from HL, ˛ _H ˇ D inf¹c 2 HL W c � ˛; c � ˇº �
inf¹c 2 CL W c � ˛; c � ˇº. Therefore, a ^H b � a ^C b. Now, by reversing the above
argument, ˛ ^H ˇ D sup¹c 2 HL W c � ˛; c � ˇº � sup¹c 2 CL W c � ˛; c � ˇº, and
a ^H b � a ^C b.

2.2. The lattice dual as an algebra anti-isomorphism

In order to expand our discussion of CL and HL as sets, we would benefit from compact-
ness. Therefore, we consider the pre-dual space M� and the dual space M� of M.

Definition 2.2.1 ([1, Definition 3.24]). Let �; ! 2 MC� , where M is a von Neuemann
algebra. We say that � is absolutely continuous with respect to !, written as � � !, if
�.q/ D 0 for all projections q 2M such that !.q/ D 0.

Theorem 2.2.2 ([1, Theorem 3.27]). If M is a von Neumann algebra and ! 2MC� , then
the norm closure of the face generated by ! 2 MC� consists of all � 2 MC� such that
� � !.

Proposition 2.2.3. For a base norm space X with generating hyperplane K, there is an
order isomorphism from the non-zero faces of X to the faces of K.

This is a standard fact, where the morphism is defined by a face F in X induces a face
F \K in K. One can also see this as a map from 0 ¤ x 2 X to x=kxk, assuming X is a
normed space and observing the induced facial structure.

Proposition 2.2.4 ([1]). The self-adjoint part MC� of the pre-dual of a von Neumann
algebra M is a base norm space whose distinguished base is the normal state space K�
of M.

Proposition 2.2.5. If F is a face in MC� , then there is an order isomorphism to faces in
the normal state space K�.
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Proof. A direct result of Proposition 2.2.4 and Proposition 2.2.3.

We use a direct application of [1] with slight abbreviation to avoid introducing notation
that we will not use. For the full statement see the reference.

Proposition 2.2.6 ([1, Theorem 3.35]). Let M be a von Neumann algebra with normal
state spaceK�, and denote by F the set of all norm closed faces ofK�, by P the set of all
projections in M, and by J the set of all � -weakly closed left ideals in M, each equipped
with the natural ordering. Then there is an order-preserving bijection ˆW p ! F from
P to F , and an order reversing bijection ‰W p ! J from P to J, and hence also an
order reversing bijection‚D ‰ ıˆ�1 from F to J. The mapsˆ,‰, and‚ and the final
inverse are explicitly given by the equations

(i) F D ¹� 2 K�j�.p/ D 1º,

(ii) J D ¹a 2Mjap D 0º,

(iii) J D ¹a 2Mj�.a�a/ D 0 for all � 2 F º, where

F D ¹� 2 K�j�.a
�a/ D 0 for all a 2 J º:

We now want to show how our geometrically inspired � can be used somewhat syn-
onymously with ? even across the dual space. We first have to embed the lattice pre-dual,
the octahedron, into the pre-dual of our von Neumann algebra B.H/, where H is con-
structed as in Theorem 2.1.11. Note that the lattice dual is reflexive, so the dual and
pre-dual are equivalent in this context. We first introduce some simplifying notation.

Definition 2.2.7. In the higher-dimensional embedding, we lose theC1,�1 directionality
to gain orthogonality. Therefore, each i 2 SC and j 2 S� corresponds to a mutually
linearly-independent linear functional for a total of 2jS j linear functionals. As an example,
let j 2 AC, and fi 2 ¹eCi ; e

�
i º, and pN

i2S fi
for all i 2 S be the projection onto

N
i2S fi ;

then

"j .p
N
i2S fi

/ D

´
1 if fj D eCj ;

0 if fj D e�j ;

and extend linearly.

Definition 2.2.8. Define �WCL! F by �..AC; A�// as the norm closed convex hull of
the linear functionals ¹"i W i 2 ACº [ ¹"j W j 2 A�º.

As we will show, the above � will be the analytic equivalent of our � defined as a
lattice anti-isomorphism, and it will agree on the corresponding lattices, so the reuse of
notation is intentional.

Definition 2.2.9. We define a unitary operator denotedU� by linearly extending its action
on the basis ofH , and letting U� act by inner automorphism on orthogonal projections of
subspaces of HL.
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As will be relevant later, �.a; b/ is linearly extendable in this representation of CL if
and only if a D 1. We now embed the octahedron into the pre-dual.

Lemma 2.2.10. Let CL � HL constructed as in Theorem 2.1.11 with the correspond-
ing projections in B.H/. Then the restriction of the anti-isomorphism ‚�1W J ! F of
Proposition 2.2.6 to CL is equal to � ı U�WCL! F .

Proof. Let J be the left ideal generated by a projection operator p.AC;A�/ onto a subspace
of .AC;A�/ 2 CL � HL. Note that U�p.AC;A�/U� D p�.AC;A�/. For simplicity, we will
assign .BC; B�/ D �.AC; A�/ D .A�; AC/.

We claim that the face �.U�pU�/ in the normal state space

FU�.p/ D ¹� 2 K� W � � �.U�pU�/º
k�k

is equal to‚�1.J /. Firstly, for any state ! 2 �.U�pU�/, we have !.p/ D 0, as supp.!/
is orthogonal to p. Therefore, FU�.p/ � ‚

�1.p/.
Suppose that FU�.p/ � ‚

�1.p/ and that there exists a state 
 2 ‚�1.J / such that

 is not absolutely continuous with respect to FU�.p/ . In particular, 
 is not absolutely
continuous with respect to a subset of FU�.p/ , namely the extreme points of FU�.p/ , con-
sisting of ¹"i W i 2 BCº [ ¹"j W j 2 B�º. So, there exists some projection a 2 M such
that 0 ¤ a � .

T
i2BC Ker."i // \ .

T
j2B� Ker."j // and 
.a/ ¤ 0. By construction, any

projection in .
T
i2BC Ker."i //\ .

T
j2B� Ker."j // is less than or equal to p, so 
.p/¤ 0,

which is a contradiction.

Just as the atoms of the cubic lattice corresponded to atoms of the Hilbert lattice, the
coatoms of the octahedral lattice, which are the image of the atoms of CL under the dual
map, correspond to coatoms of the lattice of faces of the pre-dual.

Theorem 2.2.11. For the normal state space K� of B.H/, where H is constructed as
in Theorem 2.1.11, there exists an OL such that the coatoms of OL are contained in the
coatoms of K�.

Proof. By Theorem 2.1.11, the atoms of the cubic lattice form an orthonormal basis ofH
and the map �WCL! OL as defined Lemma 2.2.10 is an order reversing map. As � is
the restriction of the map in MC� whose facial structure is equivalent to K�, we have our
result.

Example 2.2.12. The above results do not hold for the coatoms of CL. For a 2-cube, we
see that the coatoms are rank-2 projection operators onto a given half space while the
coatoms of the respective Hilbert lattice must be rank-3 operators.
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3. The necessity of the cubic lattice

Throughout this document, we have created a sufficient structure to characterize the alge-
braic relations of an jI j-qubit system when considered in an analytic space. However, we
now raise the question: what other structures suffice? Is there perhaps an entire set of such
objects and what is the underlying characterizing feature? We now demonstrate that the
symmetries required for an jI j-qubit system require a cubic lattice structure. Furthermore,
we show that these algebraic relations are in fact measurable in the sense of [15]. We also
show which von Neumann algebras contain a cubic lattice of a given cardinality up to
�-isomorphism.

We will think of the commutant of U� as being, in some sense, generated by the auto-
morphism group of the lattice of signed sets. We will discuss this more in the following
section.

3.1. The symmetry group of the cubic lattice and quantum relations

In the finite case, the automorphism (symmetry) group of the cubic lattice is the Coxeter
group Bn, otherwise known as the hyperoctahedral group On.

Definition 3.1.1. Let Per.C / be the group of permutations of coatoms of CL, Per�.C / be
the centralizer of � in Per.C /, and L.S/ be the lattice of signed sets over S .

Theorem 3.1.2 ([12]). For a cubic lattice of cardinality @, L.S/, one has Aut.L.S// Š
Per�.C / Š Z2 o S@, where o denotes the unrestricted wreath product.

In [12], their choice of embedding space is a Banach space of dimension equal to
the indexing set S , as opposed to our exponentially larger Hilbert embedding. We now
generalize these arguments to von Neumann algebras over the Hilbert space constructed
as in Theorem 2.1.11.

Proposition 3.1.3. The C �-algebra generated by U� is a von Neumann algebra.

Proof. Since U� is a self-adjoint unitary operator, we have that C �.U�/ is a finite-
dimensional algebra, and so equal to its WOT closure.

Lemma 3.1.4. Let the prime sign 0 denote the commutant. ThenW �.U�/DZ.W �.U�/0/.

Proof. As W �.U�/ is an abelian unital W � algebra, W �.U�/ � Z.W �.U�/0/. Since
W �.U�/ is also a von Neumann algebra, we have that Z.W �.U�/0/ � W �.U�/00 D
W �.U�/, where the last equality follows from the double commutant theorem.

We now have a large amount of insight into the structure W �.U�/. There are three
views to consider it: firstly, as a finite-dimensional abelian von Neumann algebra,W �.U�/
is isomorphic to an l1.¹1;2; : : : ; nº/ for n 2N; on the other hand, we know thatW �.U�/
is a unital commutative Banach algebra, so W �.U�/ is also isomorphic to C.K/; and,
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lastly, W �.U�/ is isomorphic to p.U�/, which, as � is an involution, is a two-dimen-
sional C vector space. Of course, this all ultimately follows from the general principle
that continuous maps over a finite space are a vacuous concept and devolve to maps from
a finite set to the complex numbers. We describe this in general in the following statement.

Proposition 3.1.5. LetA2B.H/ be a normal operator such thatAnD I for some n2N.
Then, C �.A/ is a von Neumann algebra and equals the center of its commutant.

Before further discussing W �.U�/0, we introduce some theory about the automor-
phism groups of the Hilbert lattice and the cubic lattice. To begin, the embedding of L.S/
in H.L/ constructed as in Theorem 2.1.11 is minimal in a fairly strict sense.

Theorem 3.1.6. Let f WL.S/! HL, where the atoms of L.S/ are contained in the atoms
of HL, and f is an injective order morphism. Then, there exists a unique injective order
morphism  W zH.L/! HL, where zH.L/ is the embedding j of Theorem 2.1.11 such that
 ı j D f .

Proof. First, we show existence of such an f . We only need to use that the Hilbert lattice
is atomic and complete by Proposition 2.1.1. Therefore, if we have two Hilbert lattices, we
have an injective order morphism if we have an injective mapping of orthonormal bases
to the Hilbert spaces of the respective Hilbert lattices. Then, we have  D f ı j�1. Now
we see that the uniqueness follows as j is a bijection between the orthonormal basis of
zH.L/ and the atoms of L.S/, so if there exists another map � satisfying our criteria, then
� ı j D f implies � D f ı j�1 D  .

In order to study a representation of the automorphisms of the cubic lattice, we first
look at representing automorphisms of the Hilbert lattice.

Definition 3.1.7. A conjugate linear operator is a linear operator except for the fact that
scalar multiplication is treated as conjugate scalar multiplication.

Definition 3.1.8 ([1]). Let H be a Hilbert space and consider ˆWB.H/! B.H/. ˆ is
said to be implemented by a (conjugate) unitary if there is a (conjugate) unitary map
U WH ! H such that ˆa D UaU � for all a 2 B.H/.

Lemma 3.1.9. Let g 2 Aut.H.L//. There exists a unitary or conjugate linear unitary
operator Ug WH ! H such that g is implemented by Ug .

Proof. If g 2 Aut.H.L//, then g is a unital order automorphism, so, by [1, Proposi-
tion 4.19], g is a Jordan automorphism. If g is a Jordan automorphism, then g is either a
�-isomorphism or �-anti-isomorphism by [1, Proposition 5.69]. If g is a �-isomorphism,
then g is implemented by a unitary, and if g is a �-anti-isomorphism, then g is imple-
mented by a conjugate unitary by [1, Theorem 4.27].

Definition 3.1.10 ([1]). Let A 2M be invertible, then AdAWM!M is defined by

AdA.�/ D A.�/A�1:

Equivalently, one can view AdA as the inner automorphism induced by A on M.
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Definition 3.1.11. We say that the actions of two unitary operators commute in a von Neu-
mann algebra M if their actions by inner automorphism commute.

Theorem 3.1.12. Let g 2 Aut.H.L//. Then Adg 2 Aut.L.S// if and only if the action
of g commutes with the action of U� on W �.L.S//, where H is constructed as in Theo-
rem 2.1.11.

Proof. By Lemma 3.1.9, we know that g can be implemented by a unitary or conjugate
unitary operator U . Without loss of generality, we assume that U is a unitary operator, as
this affects the associative multiplication consistent with the Jordan algebra of the Hilbert
lattice, but it does not affect the action as an order automorphism.

Assume that the action U commutes with action of U� on L.S/. It is sufficient to
show that Adg 2 Per�.C /. Both c and �.c/ are coatoms in L.S/; therefore,

�.g.pc// D U�UgpcU
�
g U� D UgU�pcU�U

�
g : D g.�.pc//

We have that g maps coatoms to coatoms in some lattice isomorphic to our original L.S/;
in particular, it is an order isomorphism, so Adg 2 Aut.L.S//.

Now, for the converse, if the inner automorphisms do not commute onL.S/, then there
exists c 2 C such that�.g.pc//¤ g.�.pc//. As g 2 Aut.L.S//, then g.c/? D�.g.c//
by Theorem 2.1.14. Therefore, g.�.pc// ¤ g.pc/?, but, by linearity,

g.�.pc//C g.pc/ D g.�.pc/C pc/ D g.I / D I;

which leads to a contradiction.

One can observe that there are many more unitary transformations, and, therefore,
automorphims of the Hilbert lattice; therefore, there are many automorphisms of the cubic
lattice. Now that we know that the elements of Aut.H.L// are either unitary or conjugate
unitary transformations, we deduce exactly which unitary operators are automorphisms of
the cubic lattice.

We see that we have a choice of equivalence class when we represent Aut.L.S// by its
action on L.S/, as there are automorphisms acting as the identity on L.S/ that to do not
act as the identity on HL. Namely, the abelian von Neumann algebra W �.¹pcºc2C / – i.e.,
the symmetries associated L.S/ – is an example.

Due to this ambiguity, we choose to define a group representation of Aut.L.S// up
to group isomorphism acting on H , rather than inner automorphisms acting on HL. From
another perspective, we have, for eachU 2Aut.L.S//, the actionUh1 7! h2 on the lattice
of orthogonal projections HL, and we are instead considering the action Uh1 7! h2 where
h1; h2 2 H . One can see that any action in Aut.L.S// can be induced by the action on H
and vice versa, but we have removed the ambiguity of the representation. We formalize
this below.

Lemma 3.1.13. There exists a unitary representation �WAut.L.S//! B.H/ such that
Ug 2 W

�.U�/
0 for all g 2 Aut.L.S//.



M. Turnansky 836

Proof. When considered as an automorphism group acting on the orthonormal basis con-
structed as in Theorem 2.1.11, we have a group representation of Aut.L.S/// contained
in the permutation group over H . Therefore, we conclude that the group representation is
a unitary representation.

Now we apply Aut.L.S//Š Per�.C /, the permutations of the coatoms that commute
with �, to see that � � Z.Aut.L.S//. As the commutativity of the group implies the
commutativity of its representation, we conclude.

We want to decompose W.U�/0 into automorphisms of the cubic lattice and projec-
tions onto the cubic lattice. We first prove some facts about the maximality of an abelian
algebra characterized by its projections.

Proposition 3.1.14 ([4]). Every complete Boolean algebra, B, corresponds to a unique
Stonean completion A whose set of projections is equal to B.

Proposition 3.1.15. If A � B.H/ is an atomic abelian von Neumann algebra whose
lattice of projections form an atomic complete Boolean algebra, which is maximal in the
Hilbert lattice of H , then A is a maximal abelian algebra.

Proof. From Proposition 3.1.14, we know that the Boolean lattice of projections corre-
spond to abelian subalgebras of a von Neumann algebra. Let A be the atoms of A, and
p 2 A0 �A be a projection. Furthermore, we can assume that p is orthogonal to every
a 2 A, otherwise let p D p � .

W
a2A p ^ a/. Then p commutes the atoms a 2 A, so

a � a ^ p �D ap D 0, as a is an atom. The Hilbert lattice is atomic by Proposition 2.1.1,
so let b � p be an atom and, by the above, a ^ b � a ^ p D 0. Therefore, the lattice con-
taining B and b is an atomic complete Boolean lattice strictly containing B, contradicting
the maximality. Therefore, A and A0 contain the same projections and must be equal. The
result follows as an abelian von Neumann algebra equal to its commutant is maximal.

Lemma 3.1.16. Let CL � HL be constructed as in Theorem 2.1.11 and U 2 W �.�/0 be
unitary. There exists a unitary V 2 �.Aut.L.S/// such that AdU D AdV WCL! CL and
U D VS for S 2 W �.¹pcºc2C / \W �.U�/0.

Proof. If U 2 W �.�/0, then AdU 2 Aut.L.S// by Theorem 3.1.12. Let V D �.AdU / �
W �.U�/

0. Then AdV � D Ad�1V , so AdUV � jCL D AdI jCL. As the action of the inner auto-
morphism stabilizes CL, UV � 2W �.¹pcºc2C /0, andW �.¹pcºc2C /0 DW �.¹pcºc2C / by
Proposition 3.1.15.

Therefore, there exists S 2W �.¹pcºc2C / such thatU D VS . Furthermore, S DUV �,
so S 2 W �.U�/0 as well.

The above representation when considered as an action of inner automorphism on
B.H/ can be seen to be identical to our previous notion when we fix S D I .

Theorem 3.1.17. W �.U�/0 D W �.�.Aut.L.S///;W �.¹pcº; U�/0/.
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Proof. We use the above lemmas to show that both von Neumann algebras have the same
set of unitaries for an appropriate representation of Aut.L.S//. In particular, any unitary in
W �.U�/

0 is a product of the two algebras W �.�.Aut.L.S//// and W �.¹pcº; U�/0. Now
we recall that von Neumann algebras are generated by their unitaries (see [11, Proposi-
tion I.4.9]), so the result follows.

Corollary 3.1.18. W �.U�/ D Z.W �.�.Aut.L.S/////.

Proof. The statement follows immediately from the resultZ.Aut.L.S///D¹1;�º in [12],
the definition of �, and the spectral theorem.

We have extended the purely group theoretic ideas of [12] to the more general von Neu-
mann algebra setting. Now that we have a legitimate and well-understood von Neumann
algebraW �.�/, and some insight into its commutator, we can finally discuss the quantum
relations that � induces. We demonstrate that the relations specified by the cubic lattice
are natural and measurable in the sense of [15]. We first define a standard relation.

Definition 3.1.19. Let X be a set. A binary relation on X is a set of ordered pairs .a; b/
where a; b 2 X . In some literature, the notation aRb is used to indicate that the pair .a; b/
is in the relation R on X . This relation is often denoted as .X;R/.

The obvious issue with the classic notion of a relation is that, when one considers a
non-atomic measure, these finite relations become vacuous. In [15], they generalize this
notion to a measurable relation.

Definition 3.1.20. A measure space .X; �/ is finitely decomposable if X can be parti-
tioned into a (possibly uncountable) family of finite measure subspaces X� such that a set
S � X is measurable if and only if its intersection with each X� is measurable, in which
case �.S/ D

P
� �.S \X�/.

As pointed out in [15], a measure space .X;�/ is finitely decomposable exactly when
L1.X; �/ is an abelian von Neumann algebra. A full explanation can be seen in [3].

Definition 3.1.21 ([15]). Let .X; �/ be a finitely decomposable measure space. A mea-
surable relation on X is a family R of ordered pairs of non-zero projections in L1.X;�/
such that .

W
p�;

W
q�/ 2 R if and only, for any pair of families of non-zero projections

¹p�º and ¹q�º, there are some p� and q� such that .p�; q�/ 2 R.
Equivalently, we can impose the two conditions

p1 � p2; q1 � q2; .p1; q1/ 2 R H) .p2; q2/ 2 R

and
.
W
p�;

W
q�/ 2 R H) some .p�; q�/ 2 R:

Of course, we are dealing with a more general, not necessarily abelian structure.
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Definition 3.1.22 ([15]). A quantum relation on a von Neumann algebra M � B.H/ is a
W �-bimodule over its commutant M0, i.e., it is a weak� closed subspace V � B.H/
satisfying M0VM0 � V .

Now we argue from the reverse perspective. If, a priori, we argued that a quantum
logic must respect the symmetry group of a possibly infinite-dimensional cube, the infi-
nite hyperoctahedral group Aut.L.S//, then we could consider the von Neumann algebra
generated by Aut.L.S//.

Proposition 3.1.23. Let B be the basis of atoms on L.S/ constructed as in Theorem
2.1.11. Then, W �.U�/ acts transitively in B.

Proof. If u; v 2 B, then we consider the composition of Z2-actions on each disagreeing
index, which is contained in W �.U�/ by construction.

Geometrically, in the finite-dimensional case, we can observe that the Coxeter group
Bn is the group of rigid motions of the cube and must be able to permute any two vertices.

Corollary 3.1.24. The quantum relations associated withW �.U�/ are weak� closed sub-
spaces V satisfying W �.U�/V W �.U�/ � V .

The operator systems discussed above – i.e., the ideals of CL – have well-defined
quantum relations. Furthermore, by presupposing the lattice, we have re-derived both �
and the invariant subspaces of the cube.

From an experimental setting, this invariant subspace is a natural requirement, as one
can rotate the axis for the detection of a spin 1=2 particle. However, we still need cubic
symmetry, as the experiment takes place in Euclidean space. Therefore, our notion �
can be viewed as a necessary condition for the relations in the experiment. In addition,
these symmetries can be verified by the single relation �, as opposed to the (infinite)
hyperoctahedral group.

Furthermore, our original lattice-based definitions of the cube are now seen to be mea-
surable in a much more general sense. As the principal ideals of a cubic lattice are again
cubic lattices, we can further infer that these principal ideals form von Neumann subalge-
bras and therefore operator systems.

Definition 3.1.25. An operator system is a unital �-closed subspace contained in a unital
C �-algebra.

To be precise, we present the following theorem.

Theorem 3.1.26. Let pa 2 CL � HL constructed as in Theorem 2.1.11 and M D B.H/.
Then paMpa forms a von Neumann subalgebra and Œa�C forms a Boolean lattice.

Proof. The fact that paMpa �M is a standard result. We refer to [8] for the construction
of the complement c.�/ D a _C ��.�; a/ making Œa�C a Boolean algebra.
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Therefore, an element in a cubic lattice can be seen as a dividing line between a
Boolean algebra and a von Neumann algebra. This reflects our notion that the projection
operators of a cubic lattice detect the minimum entangled state containing the respec-
tive atoms. Beyond that level of detection, elements become disentangled and therefore
Boolean.

Corollary 3.1.27. Let .p/ be a principal ideal in CL. Then C �.�p/ is a von Neumann
algebra pDp.

Proof. This follows from the fact that the principal ideals of cubic lattice are themselves
cubic lattices.

3.2. Operator algebras containing a cubic lattice

We can see that the above results can be generalized in a straightforward manner.

Definition 3.2.1. Let C be the coatoms of CL. Then, for each c 2 C , we get a symmetry
in the canonical form of pc � p�c . We denote the set of these symmetries by ¹siºi2I .

Importantly, the i -th coordinate in the tensor product is equal to the matrix sD
�
1 0
0 �1

�
.

Lemma 3.2.2. With our previous choice of representation, �WAut.L.S//! B.H/, the
mutual commutant of U� and si is equal to

W �.W �.�.Z2 o SI�i //;W
�.¹pcºc2C / \W

�.U�/
0/I

again, by o we mean the unrestricted wreath product.

Proof. By Lemma 3.1.16, we already have an explicit definition of the unitaries that com-
mute with U�, so we only need to consider the subset that also commute si .

We consider the elements of Per�.C / that fix pci and p�ci . These elements are the
permutations fixing the i -th coordinate that commute with U�, so we have again the infi-
nite hyperoctahedral group, but on one less coordinate, or Z2 o SJ , where jJ j D jI j � 1
or elements of W �.¹pcºc2C / \W �.U�/0.

Now the result follows by taking the WOT closure of the algebra generated by its
unitary operators, which fully defines the von Neumann algebra again by [11, Proposi-
tion I.4.9].

Theorem 3.2.3. Let H be constructed as in Theorem 2.1.11. Then, B.H/ Š M2.B/,
where B Š I2 ˝ B.HI�i /.

Proof. Let U�i be the tensor product whose i -th index is equal to i -th index of U� and
I2 elsewhere. We claim that the following form a system of matrix units of B.H/:

e11 D
I C si

2
; e12 D

.I C si /U�i
2

;

e21 D
U�i .I C si /

2
; e22 D

I � si

2
:
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We can directly compute that

e11 C e22 D I; e12 D e
�
21; eij ekl D ıjkeil :

Therefore, B.H/ Š M2.B/, where B commutes with all of the matrix units, see [2,
Lemma 4.27].

Now we show thot N D W �.¹eij ºi;j2¹1;2º/ D W �.U�i ; si /. Firstly, U� 2 N ,

U�i D
U�i C siU�i � siU�i C U�i

2
D
U�i C siU�i C U�i si C U�i

2

D
.I C si /U�i

2
C
U�i .I C si /

2
D e12 C e21:

Secondly, s 2 N ,

si D
2si � I C I

2
D
I C si

2
�
I � si

2
D e11 � e22:

Therefore, W �.U�; si / � N . For the reverse containment, the generators of N are in
the algebra generated by U� and si , so they are in the WOT closure of the algebra.

Now we apply M2.C/i ˝ II�i D W �.U�i ; si /, so that N 0 D I2 ˝ B.HI�i /, where
HI�i D

N
j2.I�i/ C2 is constructed as in Theorem 2.1.11.

Example 3.2.4. We see that, in our choice of matrix units, we again obtain that

U�i D

�
0 1

1 0

�
; si D

�
1 0

0 �1

�
; isiU�i D

�
0 i

�i 0

�
:

This is considered as a representation of M2.B/, as opposed to M2.C/. Of course, if
we reduce to the single qubit case, then we have that B Š C and only one choice of index
for si , so our result is consistent.

We relate the above construction to a more familiar general object.

Definition 3.2.5 ([1]). A Cartesian triple is a set of operators r , s, t in a von Neumann
algebra such that

(1) r ı s D s ı t D t ı r D 0,

(2) Adr Ads Adt D I .

Corollary 3.2.6. For any si 2 S , the set U�, si , and iU�si form a Cartesian triple in
B.H/.

Proof. Given our representation, the result follows from standard facts about Pauli matri-
ces.

We can consider another von Neumann subalgebra of B(H). Namely, W �.¹siºi2I /.



Generalizing Pauli spin matrices using cubic lattices 841

Lemma 3.2.7. Given our representation of�, the set of coatoms C of CL is a generating
set of projections of W �.¹siºi2I /.

Proof. We have that C D
®
1˙si
2

¯
i2I

generates ¹siºi2I and vice versa. Therefore,W �.C /
generates the unitaries of W �.¹siºi2I /, and therefore generates all W �.¹siºi2I /.

Theorem 3.2.8. The atoms of W �.¹siºi2I / are the atoms of CL.

Proof. We have shown that the coatoms of CL are in W �.¹siºi2I /, by Lemma 3.2.7. By
the coatomicity of CL, and by Lemma 2.1.17, we have that the atoms of CL are contained
in W �.¹siºi2I /.

Now, for the reverse direction, we consider the complete lattice of projections L gen-
erated by the canonical projections of ¹siºi2I . Here, we mean “complete” in the sense
of lattice theory, not necessarily complete with respect to the norm; and generated in the
sense of closure of meet and joins. As the canonical projections of ¹siºi2I are exactly
the coatoms of CL, we have that the atoms of L are exactly the set of atoms of CL by
Lemma 2.1.17. Additionally, L is a complete lattice generated by an orthonormal basis
and therefore Boolean.

In our specific application of Proposition 3.1.14, the atoms of L form a maximal
set of mutually orthogonal projections, and the subalgebra of bounded operators of A,
C �.L/, is abelian, so we have that C �.¹siºi2I / D C �.L/ is a von Neumann algebra
([4, Remark 10.8]), whose atoms are the atoms of the cubic lattice.

Therefore, we now have a minimal von Neumann algebra containing CL D L.S/ for
a given jS j. Furthermore, we have shown thatW �.¹siºi2I / � B.H/, whereH is minimal
as in Theorem 3.1.6.

Example 3.2.9. When reducing the one qubit case, we see that W �.U�; s/ contains the
Pauli matrices, which are a W � algebra over C generating all of M2.C/, which is a well-
known result, as required. Furthermore, we have a unitary matrix T 2M2.C/,

T D
1
p
2

�
1 1

1 �1

�
;

which is a unitary similarity sending s to U�. We recognize this as the normalized Hada-
mard matrix.

We are now in a position to generalize the result that the Pauli spin matrices span
M2.C/.

Definition 3.2.10. We define U D
N
i2I T .

Theorem 3.2.11. B.H/ D W �.¹UsiU �ºi2I ; ¹siºi2I /.

Proof. We only need to show that W �.¹UsiU �ºi2I ; ¹siºi2I /0 D W �.¹UsiU
�ºi2I /

0 \

W �.¹siºi2I /
0 D Z.B.H// D CI .
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Suppose that V is a unitary operator commuting with U�, then, by Lemma 3.1.16,
AdV 2 Aut.L.S//, when considering its action by inner automorphism on L.S/. As V
commutes with each coatom of L.S/, V acts trivially on the coatoms of L.S/, so by the
coatomisticity of L(S), V acts trivially on L.S/. Then V 2 W �.¹siºi2I /. By symmetry,
V 2 W �.¹UsiU

�ºi2I /.
Consider canonical projections pi of UsiU � and qi 2 si for some fixed index i 2 I .

Then pi ^ qi D limn!1.piqipi /
n D limn!1.pi=2/

n D 0. By construction, any atom
a 2 ¹UsiU

�º is bounded by a canonical projection of UsiU �. So, we assume, without loss
of generality, that a � p, and, by symmetry, we assume b � q. Then, a ^ b � p ^ q D 0.
Therefore, the atomistic Boolean lattices of projections associated with ¹UsiU �ºi2I and
¹siºi2I , respectively, have distinct sets of atoms. By atomisticity, W �.¹siºi2I / and
W �.¹UsiU

�ºi2I / are abelian von Neumann algebras whose only common projections
are 0 and I , so their intersection is CI , by Proposition 3.1.14.

As we have demonstrated, the Hilbert lattice into which we originally embedded CL
is not only minimal, but the von Neumann algebra as a whole is generated by two copies
of CL with orthogonal atoms.

Corollary 3.2.12. Let L.C/ be the meet semi-lattice generated by C , set of the coatoms
of the cubic lattice adjoin 1. Then, the meets and joins of L.S/ are exactly CL � B.H/.

We can see that our generation of B.H/ is a generalization of the single qubit case to
arbitrary cardinals.

We have now shown that B.H/ is generated directly by � and CL. Additionally,
B.H/ is a minimal structure containing both and is therefore a necessary structure if one
considers an operator algebraic structure of the cubic lattice under the conditions detailed
at the conclusion of [9, Section 4.1].

3.3. Phase rotations

So far, we have re-derived the Pauli and Hadamard gates, referred to as the X , Z, and H
gates in the literature, and their respective roles in the underlying von Neumann algebra.
As shown, this von Neumann algebra is over a Hilbert space constructed in the standard
manner and generalized to arbitrary cardinals. The question now becomes: what types of
observables can we obtain as functions of our already constructed observables? We will
show that continuous functional calculus can be used to construct universal quantum gates
in the sense of the Solovay–Kitaev theorem; see [5].

Definition 3.3.1. Let U�, s be represented in M2.C/, then

Rx.�/ D e
iU��=2 D

�
cos
�
�
2

�
�i sin

�
�
2

�
�i sin

�
�
2

�
cos
�
�
2

� �;
Ry.�/ D e

iU�s�=2 D

�
cos
�
�
2

�
� sin

�
�
2

�
sin
�
�
2

�
cos
�
�
2

� �;
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Rz.�/ D e
is�=2

D

�
e�i�=2 0

0 ei�=2

�
:

We will discuss group theoretic properties that can be shown directly from a computa-
tion in the case of M2.C/, but we highlight a more general, standard technique to extend
these results.

Proposition 3.3.2. Let A be a normal operator in a C �-algebra, A. Then, for any f 2
C.�.A// and unitary U 2 A, Uf .A/U � D f .UAU �/.

Proof. Let �.1/ D I , �.z/ D A be the standard continuous functional calculus on A. Let

 D U�U �, and let �.1/ D I , �.z/ D UAU �. As a transformation by unitary similarity
does not change the spectrum of A, our mappings, 
 and � , both have the same domain
C.�.A//. We have 
.1/ D U�.1/U � D UIU � D I D �.1/, and 
.z/ D U�.z/U � D

UAU � D �.z/, and the result follows for any continuous function by the uniqueness of
the continuous functional calculus.

Lemma 3.3.3. Let U be a unitary operator and A be a normal operator in a C �-algebra
such that UA D �AU . Then for any t 2 C, UetAU � D e�tA.

Proof. We apply Proposition 3.3.2 to see that UetAU � D etUAU
�

D e�tA.

Now we can use the above lemmas to immediately deduce that the action of unitary
similarity of any member of a Cartesian triple acts as the inversion of the rotation of any
other member of the same Cartesian triple. Explicitly, exe�x D 1 when considered as
standard continuous functions over C, and we have an algebra homomorphism for the
respective operator-valued functions. Furthermore, the action of unitary similarity of any
normal element on its own exponent function is trivial.

Theorem 3.3.4. LetG D hU�, e2��isi i. ThenG ŠD2n for some n 2N, if � is a rational
or D1 if � is an irrational.

Proof. From the above discussion, we recognize that U� embeds into the automorphism
group generated by e2��isi as an inversion. Therefore, we take the semidirect product.
With the presentation hU�; e2��isi W U�e2��isiU� D e�2��isi i, we see that the isomor-
phism type of the group follows from the order of e2��isi , which is finite if � is rational
and infinite otherwise. Thus, the result follows.

Corollary 3.3.5. Let G D hU�; ei
P
i2I 2��i si i. Then, G Š D2n for some n 2 N if � D 1

for all but finitely i 2 I and �i 2 Q for finite i , or G Š D1 otherwise.

Proof. We need only apply the previous theorem to each si and use the fact that continu-
ous functions of commuting operators commute by functional calculus. If there are only
finitely many rational � not equal to one, then we can consider the least common multiple
(lcm) of their respective orders to obtain a finite n satisfying the claim.
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We now compare the above representation to the universal representation.

Corollary 3.3.6. Let A D C �.D2n/, 3 � n 2 N, in the representation � WG ! B.H/,
where H is constructed as in Theorem 2.1.11, and let B be the reduced C �-algebra of
D2n with left regular representation �WG ! B.l2.G//. Then, A is a nontrivial quotient
of B.

Proof. We start with n � 4 and assume that �i D 1 for all but exactly one k 2 I . Without
loss of generality, we assume k D 1. As D2n is a group extension of discrete groups,
D2n is amenable. Therefore, the reduced C �-algebra and the universal C �-algebra are
isomorphic. So we only need to show that k�.a/k < k�.a/k for some a 2 A.

Let us consider the group ring CŒG� and restrict to elements over the cyclic subgroup
Zn Š hri in each representation. Then �.

Pn�1
jD0 cj r

j / ¤ 0 for any choice of cj 2 C, as
the rj are linearly independent. However, �.r/ D R ˝ .

N
i2¹I�1º I2/, for an appropri-

ate rotation matrix R 2 M2.C/, and, as a vector space, C �.R/ has dimension at most 3
because U� … C �.R/ as U� does not commute with R and C �.R/ is an abelian algebra.
Therefore, �.

Pn�1
jD0 cj r

j / D 0 for some choice of cj 2 C.
Now, let n D 3. We can directly compute that �.a/ D I C R C R2 D 0, so �.a/ D

0 < k�.a/k, again using linear independence.
We have shown the result for a single coordinate of the tensor product, and if we

extend to the multi-coordinate tensor case, then, for some element a 2 A, �.ai / < �.ai /,
so the same must be true for the product of the norms across the indexing set.

Remark 3.3.7. We want to highlight that this behavior is quite different when consider-
ing the relation of anti-commutativity of the product of si . U� and

Q
j2J si anti-commute

exactly when J is odd, and the relationship is non-obvious when J is infinite. This is
because �1 factors through the tensor product, and we get a term .�1/n as a leading coef-
ficient. However, as described above, this does not occur when we consider exponentiation
of the respective product.

As a summation of our results, we have demonstrated that many of the “classical”
quantum gates are a direct consequence of our construction of the cubic lattice as an ortho-
modular lattice of orthogonal projections. Thanks to our construction, we have another
natural choice of representation in a more geometric view, as a cube in dimension jI j as
opposed to the larger 2jI j, which may have interesting applications on its own. In addi-
tion, we have shown a number of group theoretic properties of their respective algebras,
and that the remaining gates can be naturally constructed as functions of the already con-
structed gates, both in a direct sense via the exponential map and in a more general sense
as observables constructed from a continuous or Borel function over the spectrum of a
Cartesian triple using the spectral mapping theorems. From a physical perspective, we
have given a mathematically formal description of the lattice of observables for a system
of spin �1=2 of arbitrary cardinality. Furthermore, the gates I , �,

p
s, U , or more stan-
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dardly I , X ,
p
Z, and H , combined with classical circuits, generate a set of universal

quantum gates.
Lastly, we want to conclude with a forward-looking note on the applications to real

quantum computational systems. As a direct result of our work, any algorithm whose pos-
sible states are in a subset of a cubic lattice is immediately representable on a quantum
system, thereby bringing a new set of algorithms into the quantum space. Furthermore, it
is well known that the Pauli group is fundamental to most standard quantum error codes
that are of a similar nature to the famous Shor code. In the finite case, U� is a member of
the Pauli group’s typical representation in the context of quantum error correction. There
is strong reason to believe this interplay has deep results pertaining to quantum algorithms
living in a vector space stabilized by elements of the Pauli group. A full, rigorous explo-
ration and explicit exemplification of such an algorithm would be a worthy area for future
study.
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