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Smooth Calabi–Yau structures and the noncommutative
Legendre transform

Maxim Kontsevich, Alex Takeda, and Yiannis Vlassopoulos

Abstract. We elucidate the relation between smooth Calabi–Yau structures and pre-Calabi–Yau
structures. We show that, from a smooth Calabi–Yau structure on an A1-category A, one can
produce a pre-Calabi–Yau structure on A; as defined in our previous work, this is a shifted non-
commutative version of an integrable polyvector field. We explain how this relation is an analog of
the Legendre transform, and how it defines a one-to-one mapping, in a certain homological sense.
For concreteness, we apply this formalism to chains on based loop spaces of (possibly non-simply
connected) Poincaré duality spaces and fully calculate the case of the circle.

1. Introduction

This paper is a continuation of our previous work [27]. There, we described a type of alge-
braic structure that we called a pre-Calabi–Yau structure on an A1-algebra/category A;
this is a generalization of both proper and smooth Calabi–Yau structures. In that paper, we
described how, using the formalism of ribbon quivers (that is, ribbon graphs with acyclic
orientation), one can use the pre-CY structure maps to describe the action of certain PROP
on the morphism spaces of A, and on its Hochschild chains C�.A/. The relevant dg PROP
has spaces of operations given by chains on moduli spaces of open-closed surfaces with
framed boundaries, with at least one input and one output.

We can motivate this result by using the language of the cobordism hypothesis: a pre-
CY structure on A should give a partially defined fully extended 2d oriented TQFT with
values in (an1-categorical version) of 2-category of algebras and bimodules, assigning
A to the point and HH�.A/ to the framed circle. This theory will be partially defined
in the sense that it does not assign a value to every cobordism, but rather only to those
cobordisms that can be generated by handles of index one only; such a cobordism has at
least one input and one output.

If instead one admits cobordisms generated by handles of indices one and two, one
can cap the outputs of the cobordism and obtain all cobordisms with at least one input.
That type of TQFT is known to be described by proper Calabi–Yau structures; see Lurie’s
description [29] of Costello’s results in [11, 12]. In other words, requiring the finiteness
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condition of A being proper (that is, H�.A/ being finite rank) allows one to evaluate caps
in the TQFT, which get sent to the traceHH�.A/! k defined by the proper CY structure.

There is another finiteness condition that is dual to properness, which is homological
smoothness: A is homologically smooth if the diagonal bimodule A� is a perfect object
in the category of .A; A/-bimodules. In the work cited above, Lurie mentions in passing
that, from abstract reasons, there should be a dual story to Costello’s description of this
TQFT: smooth Calabi–Yau structures on A should give a dual type of partially defined
TQFT, which now has a cup; this gets sent to a cotrace k! HH�.A/. These TQFTs are
also, in practice, described by algebra structures over certain PROPs, given by chains on
spaces of surfaces with non-empty incoming/outgoing boundary. The homotopy theory
of these objects has been studied in detail elsewhere; see [13] for a recent description of
these PROPs and their relation to Deligne–Mumford compactifications.

As a corollary to these statements about cobordisms and TQFTs, it should be the
case that a smooth Calabi–Yau structure defines a pre-CY structure. The main purpose
of this work is to make this result as explicit as possible: we demonstrate that there is
an algorithmic procedure, using the formalism of ribbon quivers we defined previously,
which starts from a smooth Calabi–Yau structure on an A1-category A and produces the
structure maps of a pre-CY structure on the same A. The point of having such an explicit
description is that many categories/algebras of interest in topology and geometry have
such smooth CY structures [5,6,18,24,35]. Using the description in this paper allows one
to apply the results of [27] to these categories and compute the TQFT operations that the
resulting pre-CY structure gives.

Let us recall the definitions of these objects. A smooth CY structure of dimension d
on A is a negative cyclic chain ! 2 CC�

d
.A/ which satisfies a nondegeneracy condition:

its image inHHd .A/ induces a quasi-isomorphism AŠŒd �! A between the inverse dual-
izing bimodule AŠ and a shift of the diagonal bimodule A�. A variant of this definition
first appeared in the work of Ginzburg [20], without requiring the lift to negative cyclic
homology; often these are referred to as “Ginzburg CY structures” or “weak smooth CY
structures” in the literature. Requiring the negative cyclic lift was first proposed, by the
first and third named authors of this article, back in 2013, motivated exactly by this TQFT
perspective: in order to “close up inputs” with a cup, the cotrace k!HH�.A/ associated
to that cup should factor through the (homotopy) fixed points of the S1-action.

For more recent precise definitions of smooth CY structures in the dg and A1-case,
see [7, 8, 17]. We will need an even more explicit description; we explain a chain-level
version of the smooth CY nondegeneracy condition in Section 2. On the other side, the
definition of pre-CY structure is already given “at cochain level”: a pre-CY structure of
dimension d on an A1-category .A; �/ is the choice of an element

m D �Cm.2/ Cm.3/ C � � � 2 C
�
Œd�.A/

extending the A1-structure maps and satisfying a Maurer–Cartan equation Œm; m� D 0.
We refer the reader to [27, Sec. 3] for the definition of the space C �

Œd�
.A/; let us just

mention its noncommutative geometry interpretation. If the space of Hochschild chains
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C �.A/ is seen as the space of vector fields on some noncommutative space associated to
A, then the space C �

Œd�
.A/ is the space of polyvector fields (up to some shifts depending on

d ), carrying an analog of the Schouten–Nijenhuis bracket. A pre-CY structure can be seen
as a non-strict version of a Poisson structure; the “bivector field” m.2/ does not satisfy the
involutivity condition Œm.2/; m.2/� D 0 on the nose, but up to a correction given by m.3/,
which itself is satisfies an involutivity condition up to a higher correction, and so on.

These relations between CY, resp., pre-CY structures on one side, and derived sym-
plectic, resp., Poisson structures on the other, have been described for the case of dg
categories in [37], using obstruction theory techniques, and in [31], the duality between
smooth CY and pre-CY structures is described, using techniques of derived noncommuta-
tive geometry. Our goal in this paper is to give a more explicit perspective on this relation,
based on the diagrammatic calculus of [27]; in Section 3, we describe maps

.CC�d .A//nondeg � .Md�pre�CY/nondeg (1.1)

going between smooth CY structures of dimension d and pre-CY structures of the same
dimension, whose “bivector field” m.2/ is nondegenerate. It turns out that these maps are
noncommutative analogs of the Legendre transform and the inverse Legendre transform
(between, e.g., functions on the total space of a real vector bundle and of its dual). In order
to make this analogy more understandable, we start with the case of an odd vector bundle.

The noncommutative case is described in terms of certain combinations of ribbon
quivers; we evaluate these by inserting the correct structure maps into the vertices and
following the prescriptions in [27, Sec. 6]. By solving an iterative lifting problem, it is
possible to construct linear combinations of ribbon quivers �.2/; �.3/; : : :, which evaluated
on some smooth CY structure � give the pre-CY structure maps.

In general, this procedure is very complicated to implement in practice. However, for
some simple cases, it is possible to use it and calculate pre-CY structures, even by hand.
We do this for the case of a particularly simple dg category, the path category A of the
triangle. This is equivalent to the dg algebra kŒx˙1� of chains on the based loop space of
the circle. We discuss these path dg categories for general simplicial sets in Section 2.2.2;
an orientation on the geometric realization of such a simplicial set gives a smooth CY
structure on A. We then specialize to the circle, showing how to understand the chain-
level nondegeneracy condition in the case of A. Later, in Section 4.1.1, we carry out the
computation and calculate the full corresponding pre-CY structure in that case.

Finally, we discuss in what sense the maps equation (1.1) are inverses. The usual Leg-
endre transform defines a one-to-one correspondence between fiberwise convex functions
on E and on E_; this is also true for the maps in the noncommutative case, but in a more
subtle sense. The most natural statement to be made is that these maps lift to weak homo-
topy equivalences of simplicial sets; on the left-hand side of equation (1.1), we have then
a simplicial set corresponding (under the Dold–Kan equivalence) to the nondegenerate
locus of a truncated negative cyclic complex, and on the right-hand side, the simplicial set
of solutions to the Maurer–Cartan equation as described by [19, 23].
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Notation and conventions

Throughout this paper, we fix a field k of characteristic zero and will denote simply by˝,
Hom the tensor product/hom (of vector spaces, complexes, modules, etc.) over k.

In this paper, we will assume that everything is Z-graded, but all of the results also fol-
low for Z=2Z-grading. Given an A1 category A, and an element a 2 A of homogeneous
degree, we denote by deg.a/ its degree in A and by Na its degree in AŒ1�. As for the degrees
in other complexes, we will often switch between homological degree and cohomological
degree; we made an effort to explicitly specify which degree we mean when there is room
for confusion, and as is conventional, denote by upper indices cohomological degree and
lower indices homological degree, which are related by .�/i D .�/�i .

We will always assume that our A1-algebras/categories are strictly unital. For ease
of notation, by C �.A;M/ and C�.A;M/ we will always denote the reduced Hochschild
(co)chain complexes. That is, if A is an A1-algebra, we have

C �.A;M/ D
Y
n�0

Hom. xAŒ1�˝n;M/; C�.A;M/ D
Y
n�0

M ˝ xAŒ1�˝n;

where xA D A=k:1A. These complexes can be obtained by taking the quotient of the usual
complexes by the elements that have 1A 2 AŒ1� somewhere. Analogously, for a category,
we take the quotient by the strict units; see [36]. We will denote by b the chain differential
and by d the cochain differential.

Finally, we denote by A� and AŠ the diagonal bimodule of A and the inverse dualizing
bimodule, respectively; for the definition of the bimodule structure maps for these objects,
together with all the signs, see [17]. Our conventions agree with the signs there, with the
single difference that we write the arguments in the structure maps �.� � � / in the opposite
order.

2. Smooth Calabi–Yau structures

An A1-category is (homologically) smooth if its diagonal bimodule A� is a compact
object; equivalently, if that object is quasi-isomorphic to a retract of a finite complex of
“Yoneda bimodules” (see [17]). For example, if A is a dg algebra such that A� has a
finite resolution by direct sums of the free bimodule A˝A, then A is smooth. When A is
smooth, there is a quasi-isomorphism of complexes

C�.A/ ' HomA�A.AŠ; A�/

between Hochschild chains and morphisms of A-bimodules from the inverse dualizing
bimodule to the diagonal bimodule. Recall also that C�.A/ carries the action of the homol-
ogy of a circle, and the homotopy fixed points of this action are calculated by the negative
cyclic complex CC�� .A/ D .C�.A/ŒŒu��; b C uB/, where B is the Connes differential,
of homological degree C1. The following definition is a refinement of the notion of a
Ginzburg CY algebra [20].
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Definition 1. A smooth Calabi–Yau structure of dimension d on A is a negative cyclic
chain � D �0 C �1uC �2u2 C � � � 2 CC�d .A/ whose image

�0 2 Cd .A/ Š HomA�A.AŠ; A�Œ�d�/

is a quasi-isomorphism.

Requiring this lift to negative cyclic homology was suggested by two of us some years
ago. This notion has since appeared in many places; for a dg discussion see [7, 8] and for
an A1 discussion see [17, 18].

2.1. Chain-level nondegeneracy

We now use the graphical calculus described in [27] in order to formulate the nondegen-
eracy condition of smooth Calabi–Yau structures. Given � D �0 C �1uC �2u2 C � � � 2
CC�

d
.A/ a negative cyclic d -chain, let us express the nondegeneracy condition on �0 at

the chain level: under the quasi-isomorphism C�.A/ ' HomA�A.AŠ; A�/, it must map to
a quasi-isomorphism of A-bimodules; that is, it must have a quasi-inverse

˛ D “.�0/�1” 2 HomA�A.A�; AŠ/ ' C �.2/.A/;

where C �
.2/
.A/ is the complex of higher Hochschild cochains (with two outputs) with the

quasi-isomorphism we explained in [27, Sec. 4.2]. In terms of morphisms of bimodules,
there is evidently a composition map

HomA�A.A�; AŠ/˝ HomA�A.AŠ; A�/! HomA�A.A�; A�/;

which, using these quasi-isomorphisms, can be represented by a map of complexes

C �.2/.A/˝ C�.A/! C �.A/;

for which we give the following explicit representative.

Lemma 2.1. The composition map can be represented by the map of complexes .˛;�0/ 7!
�0 ı ˛ 2 C

�.A/ given by the ribbon quiver

˛

�0

That is, we produce a map C �
.2/
.A/˝ C�.A/! C �.A/ given by plugging in ˛ into

the 2-valent vertex at the top, �0 into the source at the center and evaluate this diagram
using the prescription in [27, Sec. 6.1.4]. The fact that this represents the desired map
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follows from using the explicit descriptions of the quasi-isomorphisms, together with the
calculations in [17, Sec. 2].

Since we assume that A is strictly unital, there is a distinguished element 1 2 C 0.A/,
the unit cochain, which only has a nonzero component of length zero, giving the unit
element.1 Moreover, under the quasi-isomorphism C �.A/ ' HomA�A.A�; A�/, the unit
cochain maps to the identity.

Proposition 2.2. Let .A; �/ be a smooth A1-category. The elements �0 2 Cd .A/ and
˛ 2 C d

.2/
.A/ represent inverse classes if and only if they are closed under the relevant

differentials, and there is an element ˇ 2 C�1.A/ such that

Œ�; ˇ� D

˛

�0
�

1

where Œ�;�� is the Gerstenhaber bracket on Hochschild cochains. In other words, � D
�0 C �1u

1 C � � � represents a smooth Calabi–Yau structure if and only if there are ˛ and
ˇ such that the first term �0 satisfies the equation above.

One of those directions obviously follows from the lemma above; this is exactly the
condition Œ�0 ı ˛� D Œid� in HomA-A.A; A/, so the equation says that ˛ represents a right
inverse to �0. We will now argue that it is also a left inverse, once we assume that A is
smooth. Before that, let us present an analogy using a finite-dimensional vector space V
and its linear dual V _: let f W V ! V _ and g W V _ ! V be linear maps such that

g ı f D idV :

Then, obviously both f and g have full rank and are bijective, and so, f ı g D idV _ .
At the risk of boring the reader, let us give another proof for this easy fact: since V

is finite dimensional, the canonical map V ! .V _/_ is an isomorphism, so dualize the
composition g ı f and use the identification�

V
f
�! V _

g
�! V

�
7!
�
V _

f _

 �� V
g_

 �� V _
�

to conclude that the composition f _ ı g_ is the identity on V _. Note now that if we pick
any symmetric bilinear form on V , we can identify the maps f; g with matrices; the maps
f _; g_ are then the transposes of those matrices. Now, in finite dimensions, every matrix

1In the category case, that is, when A has multiple objects, recall that the regions around our diagrams
get labeled with objects, so the cochain 1 just returns the identity morphism 1X 2 EndA.X/when the region
around the vertex is labeled by any object X .
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is conjugate to its transpose. So, g also has a left inverse which is constrained to be f by
the equation f ı g ı f D f .

We now explain the analog of this reasoning for our smooth category A, first by iden-
tifying the role of the transposed map.

Lemma 2.3. Let A be a smooth category, and ˛ 2 C �
.2/
.A/ Š HomA-A.A

Š; A/. Let ˛Š 2
HomA-A.A

Š; .AŠ/Š/ be the morphism obtained by taking bimodule duality. Upon identify-
ing .AŠ/Š Š A, the class of ˛Š is represented by the Z=2 rotation of the vertex of ˛.

Proof. This follows from some diagrammatic calculus as we developed in [27]. Recall that
for any A1-category A we have a quasi-isomorphism A� ˝A-A A�

�
�! A�; we regard an

element of the former as a set of AŒ1�-arrows, traveling down a strip with an A� arrow on
each side:

A� A�

T .AŒ1�/

More precisely, an element of A�˝A-A A�
�
�! A� is something we can input into the top

of this diagram.
Analogously, we represent an element of AŠ as a strip where the inner arrows travel up

the strip:
A� A�

T .AŒ1�/

Again, more precisely, an element of AŠ is something we can input into the top of this
diagram. This can be seen from the explicit representative for the left dual AŠ given in [17,
Def. 2.40]. More generally, for any perfect .A;A/-bimoduleM , its left dual is represented
by the strip

A� M A�

T .AŒ1�/ T .AŒ1�/

with an M arrow going up in the middle.
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Under these identifications, given an element ˛ 2 C �
.2/
.A/, the map AŠ ! A� it gives

by dualizing is represented by the diagram

A� A�

˛

where as usual the white arrow marks the first output of ˛.
The map induced on the left duals ˛Š W .AŠ/Š ! AŠ is then given by reversing this

diagram and inserting it in the place of the M arrow. But since A is smooth, AŠ is perfect
and the map A! .AŠ/Š is a quasi-isomorphism. So, we can simplify the diagram obtained
and conclude that the diagram

A� A�

˛

is also a representative for ˛Š; comparing it to the previous diagram, we have the desired
statement.

We are now ready to prove Proposition 2.2.

Proof. It remains to prove that if ˛ and �0 satisfy the given equation, then

Œ˛� ı Œ�0� D ŒidAŠ �:

We use the analogy with the discussion about finite-dimensional vector spaces above: we
already know that the composition

A�
˛
�! AŠ

�0
�! A�

is quasi-isomorphic to the identity on A�, so taking left duals we know that the composi-
tion

AŠ
˛Š

 � .AŠ/Š
.�0/

Š

 ��� AŠ

is quasi-isomorphic to the identity on AŠ. Thus, Œ˛Š� has a right inverse. Consider now the
element of C �

.2/
.A/ given by the diagram

�0

˛

˛
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Using the diagrammatic calculus for ribbon quivers, when ˛ and �0 are closed, this ele-
ment is cohomologous to the element given by

˛

�0

˛

and therefore, by the assumption that ˛ and �0 satisfy the equation in the statement of the
proposition, this element is also cohomologous to ˛ , which we showed above
represents the left dual map ˛Š. A similar calculation shows that it is also cohomologous to
˛, that is, ˛ . Therefore, Œ˛� also has a right inverse, which is then constrained
to be the same class as Œ�0�.

2.2. Examples

So far, we have explained that, given a smooth CY structure � on an A1-category A, one
can in principle find a chain-level representative, that is, a solution ˛ to the equation in
Proposition 2.2, which we will later use to construct the desired pre-CY structure on A.
In general, finding an explicit solution for ˛ may be difficult, since it involves solving an
inverse function problem for a morphism between bimodules. However, in some specific
cases of interest, it is possible to solve this problem explicitly.

2.2.1. Chains on the based loop space of orientable manifolds. Consider a pointed
path-connected topological space .X; x/; concatenation of loops gives a morphism

�xX ��xX ! �xX

inducing a product on the complex of chains C�.�xX; k/, making it into a dg algebra.
It has been long understood that structures on this algebra are intimately related to oper-
ations of string topology. In the 80s, the work of Goodwillie [21] and Burghelea and
Fiedorowicz [9] gave an equivalence

H�.LX;k/ Š HH�.C�.�xX/;k/

between the homology of the free loop space and the Hochschild homology of the dg
algebra A D C�.�xX;k/. This equivalence relates certain BV algebra structures on each
side, constructed algebraically on the Hochschild complex and topologically on loop space
homology.

Much has been written about this relation between Hochschild theory of A and loop
space operations, but here we would like to focus on the effect of Poincaré duality. Let X
be an n-dimensional (k-)Poincaré duality space with a choice of fundamental chain, that
is, endowed with a n-chain cX 2 Hn.X;k/ such that the cap product cX\ W H�.X;k/!
Hn��.X;k/ is an isomorphism.
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By now, it is a well-known fact that in that case A D C�.�xX; k/ is a smooth CY
algebra of dimension n. At the level of weak CY structures (that is, without the lift to
negative cyclic homology), this is explicitly proven in [1] following an argument of [16],
and the lift to negative cyclic complex is discussed in a draft [10] of Cohen–Ganatra. We
summarize these results.

Proposition 2.4. There is a map � WC�.X;k/!CC�� .A/ such that if cX 2Cd .X;k/ such
that ŒcX � 2 Hd .X;k/ is the fundamental class of X , then the image �.cX / is a smooth CY
structure of dimension d on A D C�.�xX;k/.

The map � (or rather, its composition with the canonical map CC�� .A/! C�.A/ to
Hochschild chains) should be seen as an algebraic incarnation of the mapX ,! LX given
by inclusion of X as constant loops.

We would like to have a chain-level inverse for the image of cX , that is, a appropriate
value for the ˛ vertex in the statement of Proposition 2.2; by the result above, it is always
possible to find one, but doing so algorithmically for a general Poincaré duality space
turns out to be quite involved. We will leave the full description for future work, but at
least we can present the general lines and a simple example.

2.2.2. Path dg category. We start by replacing the algebra A by an equivalent dg cate-
gory, with a more local, combinatorial description. Letƒ be a simplicial complex endowed
with a total ordering on its set ƒ0 of vertices; this defines a corresponding simplicial set.
We will denote an n-simplex � in ƒ with vertices v0; : : : ; vn (in order) by the notation
.v0 � � � vn/� , or more simply .v0 � � � vn/ when there is no ambiguity.

Definition 2. The path dg category Pƒ of the simplicial complex ƒ has as object set ƒ0
and as morphism space between vertices s and t , the graded k-vector space spanned by
symbols of the form

.v10v
1
1 � � � v

1
n1
/�1 � .v

2
0 � � � v

2
n2
/�2 � � � � � .v

j
1v
j
0 /
�1
�i
� � � .vN0 � � � v

N
nN
/�N ;

where vknj D v
kC1
0 , v10 D s, and vNnN D t , modulo the relation generated by

x � .u0u1/� � .u0u1/
�1
� � y D x � y;

where x and y are any sequences as above. A generator of the form above is placed in
degree

P
k.1 � nk/. If u D v, we also add the identity morphism eu.

That is, generators are composable sequences whose elements are either simplices of
ƒ (of any nonzero dimension), or formal inverses of 1-simplices. We place n-simplices in
degree n � 1 and endow this vector space with the differential given by

d.v0 � � � vn/ D

n�1X
iD1

.�1/i ..v0 � � � yvi � � � vn/ � .v0 � � � vi / � .vi � � � vn//

and by the Leibniz rule with respect to �.
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These compositions of simplices are sometimes referred to as “necklaces” in the lit-
erature (not to be confused with the “necklace bracket” we defined in [27]), as one can
imagine the simplices as beads in an unfastened necklace. It was suggested by one of us
in [25] that these categories of necklaces (after formally inverting 1-simplices as we did
above) give models for based loop spaces. This relation was studied in [14,15,22,32,34];
in particular, [33] describes in detail the localization at 1-simplices to give a functor yC
from simplicial sets into some category of “necklical sets”, making this assignment func-
torial.

Our dg category Pƒ is just the image on objects of this functor, composed with taking
C�.�; k/. We will not need the full simplicial description developed in the references
above, so we summarize.

Proposition 2.5. If .X; x/ is a pointed connected topological space such that X is homo-
topy equivalent to the geometric realization of ƒ, the dg category Pƒ is equivalent to
the dg algebra C�.�xX/, seen as a dg category with a single object, in the sense that
there is a zig-zag of essentially surjective dg functors, all inducing quasi-isomorphisms
on morphism complexes.

Concretely, each morphism x ! y of degree �n describes an n-dimensional cube
in the space of paths between x and y; for example, the morphism given by .v0v1/ �
.v1v2v3/, which has boundary �.v0v1/ � .v1v3/C .v0v1/ � .v1v2/ � .v2v3/, describes
the family of paths over the 1-cube (that is, the interval) which sweeps from the path v0!
v1 ! v3 to the path v0 ! v1 ! v2 ! v3, deforming it across the 2-simplex .v1v2v3/.
The comparison result with the algebra C�.�xX/ above relies on the fact that this cubical
complex computes the homology of the based loop space.

2.2.3. Inclusion of constant loops. One can use this model to describe the map �, which
corresponds to the inclusion of constant loops into the free loop space. An explicit repre-
sentative for a map

C�.X/! CC�� .C�.�xX//

from simplicial chains on X is described in [2, App. B], following constructions in the
classical work of Adams [3]. We can rephrase this in terms of the dg category Pƒ.

Proposition 2.6. There is a chain map � W C�.ƒ/! CC�� .Pƒ/, whose composition with
the canonical map

CC�� .Pƒ/! C�.Pƒ/

agrees with the map induced by the inclusion of constant loops, under the identification

HH�.Pƒ/ Š H�.Ljƒj/:

Proof. One can construct this map locally on each simplex, and inductively in dimension.
We start by sending each 0-simplex .v/ 7! ev (that is, the length 1 zero chain in CC�� .Pƒ/
consisting solely of the identity morphism ev 2 Pƒ.v; v/).
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Suppose now that we have the map for all simplices of dimension up to n � 1, and
moreover, that for each such simplex � , the image lies in the subcomplex CC�� .Px� / �
CC�� .Pƒ/ on its closure x� . Let � be some n-simplex; in order to extend the map to � , it
is sufficient to find some degree n element x of CC�� .Px� / such that

.b C uB/x D �.@�/:

But by assumption, .bC uB/�.@�/D 0, so Œ�.@�/� is a class inHC�n�1.Px� / which is zero
for n � 1 since x� is contractible.

The argument above, however, does not give us a way to explicitly construct a rep-
resentative for �.�/, which may involve quite complicated expressions for higher dimen-
sions. For a 1-simplex .v0v1/, we can choose its corresponding Hochschild chain to be
.v0v1/Œ.v0v1/

�1�, which for simplicity of notation we denote by 01Œ10�. This lifts to the
negative cyclic chain

01Œ10� � 01Œ10j01j10�uC 01Œ10j01j10j01j10�u2 � � � :

To a 2-simplex .v0v1v2/ we need to then assign a Hochschild 2-chain whose boundary is
01Œ10�C 12Œ21� � 02Œ20�; one possible choice is

01 � 12Œ21j10� � 01 � 12Œ20j02 � 21 � 10�C 01 � 12 � 20Œ012 � 21 � 10�

� 012 � 20 � 012 � 21 � 10:

As for the chain we associated to the 1-simplex, the Hochschild chain above has some lift
to a negative cyclic chain, whose expression is not particularly enlightening, and so on.

Now, given a simplicial triangulation ƒ of a Poincaré duality space X , we can look at
the image �D �.cX / of its fundamental chain and find the inverse ˛ of its uD 0 component
�0, that is, the element ˛ in C �

.2/
.Pƒ/ which satisfies the equation in the statement of

Proposition 2.2.

2.2.4. The circle. Let us illustrate how to do this for the simplest nontrivial case, that
is, for the circle. We pick a triangulation that exhibits it as the boundary of the 2-simplex
.v0v1v2/. The fundamental chain .v0v1/C .v1v2/� .v0v2/maps to the Hochschild chain

�0 D 01Œ10�C 12Œ20� � 02Œ20�;

again using our shorthand notation.
We are looking for an inverse ˛ to �0. Recall that this is a vertex that receives any

number of AŒ1� arrows above and below and outputs two arrows in A; if A were an A1-
algebra, this would be the space Hom.T .AŒ1�/˝ T .AŒ1�/; A˝ A/; as our chosen A has
multiple objects, one replaces the A factors by morphism spaces and sum over objects.

We proceed inductively on the length of the inputs. Since A is concentrated in non-
negative degrees and we want ˛ of (cohomological) degree +1, its component ˛0;0 with
zero entries on both sides is necessarily zero.
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The first nontrivial degree to be specified is the component ˛0;1, that is, with zero
inputs on top and one input on the bottom. Note that since A is a category, and not an
algebra, the regions in a diagram are labeled by objects, which we will denote by writing
0, 1, and 2 for each of the objects of A (vertices of the triangle).

Recall that our convention is to use the reduced Hochschild complex; therefore, the
element ˛ evaluates to zero whenever one of the inputs is an identity morphism. Now,
every non-identity morphism in A is either “counter-clockwise” (for example, the mor-
phisms .01/, .01 � 12/, .20/, etc.) or “clockwise” (for example, .10/, .12 � 20 � 01/, etc.)

Let P W i ! j be one of these morphisms, that is, a path from some vertex i to a
vertex j . We define

˛

k

P

ij D

´
1
2
.ıjkek ˝ P � ıikP ˝ ek/ if P counter-clockwise;

�
1
2
.ıjkek ˝ P � ıikP ˝ ek/ if P clockwise;

where ı��� is the usual delta function on the set of pairs of vertices.

Proposition 2.7. The prescription above extends uniquely to a closed element ˛2C 1
.2/
.A/,

symmetric under the Z=2 action, which moreover satisfies the equation

˛

�0
D

1

Proof. For the element ˛ to be closed, it needs to satisfy compatibility equations such as

d

0BBBB@ ˛

`

P1P2

ijk

1CCCCA D ˛

`

P1 � P2

ik
�

˛

`

P1P2

ijk
�

˛

`

P1P2

ijk

together with a similar equation with one input on the top and one input on the bottom.
Since A is concentrated in degree zero, any element of ˛ with two or more inputs

vanishes, so the left-hand side of these equations is always zero; we must check that the
right-hand side is zero, which we can explicitly calculate.

Now, it remains to check that this element is an inverse to the Hochschild chain

�0 D 01Œ10�C 12Œ20� � 02Œ20�:
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Let us calculate the Hochschild cochain given by the diagram

˛

�0

Since A is a dg category, all the higher structure maps ��3A are zero, so the only nontrivial
terms occur when the AŒ1�-arrow coming from �0 lands in ˛. We calculate the values of
this cochain on zero inputs; for example, when we label the region around the diagram
with the object 0, we have

˛

.10/

.01/

0

C

˛

.21/

.12/

0

�

˛

.20/

.02/

0

which evaluates to 1
2
e0 � .10/ � .01/C 0C

1
2
.02/ � .20/ � e0 D e0, and similarly for the

diagrams with the outside region labeled with 1 or 2. Moreover, this diagram evaluates to
zero on any input of length � 1; it is therefore exactly the unit cochain in C 0.A/.

We note that the guess for the element ˛ above can be derived from a smaller set
of data by using the closedness condition: we can just specify that ˛ gives some sort of
“local” pairing, by setting

˛

0

.10/

10 D
1

2
e0 ˝ .10/;

˛

0

.02/

02 D �
1

2
.02/˝ e0;

˛

0

.21/

21 D 0

and analogously for 1, 2 above, that is, assigning zero when the simplex above and the
simplex below do not intersect, and some appropriately signed local pair of paths when
they do. In this sense, our expression for the element ˛ is “localized” to a neighborhood
of the diagonal in the product space S1 � S1.

This smooth Calabi–Yau structure on chains on �S1 is well known in the literature;
for a recent explicit description of this structure from another angle, see the recent works
[5, 6]. Under the equivalence between our dg category A and the dg algebra kŒx˙1�, the
element above �0 maps to the Hochschild chain cohomologous to x�1Œx�, corresponding
to the noncommutative form x�1ddRx in the description of [5, Sec. 3].
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3. Noncommutative Legendre transform

We recall from [26,27] that, in the language of noncommutative geometry, an A1-algebra
.A;�/ can be thought of as a noncommutative pointed dg manifold XA with an integrable
vector field Q�; the space C �

Œd�
.A/, where pre-CY structures of dimension d , live is then

the space of shifted polyvector fields on XA, with the necklace bracket playing the role of
Schouten–Nijenhuis bracket.

A pre-CY structure m then satisfies the (quadratic) Maurer–Cartan equation

Œm;m� D 0:

We denote by Mpre�CY the space of such solutions; at a given point m, this space has
tangent complex given by

TmMpre�CY D .C
�
Œd�.A/; Œm;��nec/;

that is, polyvector fields with differential given by necklace bracket with m.
As mentioned in the introduction, we will eventually construct a map that takes a

smooth CY structure, represented by some negative cyclic chain � 2 CC�� .A/, and pro-
duces a point of Mpre�CY; in the process, we will construct another map in the inverse
direction, and in Section 4.2, we argue that this map is “one-to-one”, in a certain homo-
topical sense.

In this section, we will explain why such a relation should be seen as a noncommu-
tative analog of the Legendre transform, and then, we will build this transform using the
formalism of ribbon quivers developed in [27]. But first, let us take a digression through
the theory of usual Legendre transforms.

3.1. Commutative and odd Legendre transform

3.1.1. Legendre transform on vector bundles. Recall that the classical Legendre trans-
form can also be defined (fiberwise) on a vector bundle. LetM be a manifold andE!M

an N -dimensional vector bundle, with a real-valued smooth function L W E ! R, fiber-
wise convex. For simplicity, we assume thatL is bounded below by some positive-definite
quadratic function. We describe the Legendre transform in two steps: we first take the
fiberwise derivative

FL W E ! E_;

defined in dual coordinates by

FL.x1; : : : ; xN ; v1; : : : ; vN / D .x1; : : : ; xN ; @L=@v1; : : : ; @L=@vN /

which gives a diffeomorphism, given our assumptions on L. We then construct the energy
function associated to L given by

eL D
X
i

vi
@L

@vi
� L;
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and then, we can define the Legendre transform H W E_ ! R by

H D L.L/ WD eL ı .FL/
�1

which, using the pairing between E and E_, can also be expressed on each fiber by the
classical Legendre transform

Hx.p/ D crit:valuev.vp � Lx.v//:

This function has the property that FH is the inverse diffeomorphism to FL, and L.H/D

L. Moreover, we have the following fact.

Proposition 3.1. The pullback under the fiberwise derivative corresponding toH is minus
the variational derivative of the Legendre transform at L, that is,

.FH/� D �
ıL.f /

ıf

ˇ̌̌̌
fDL

:

Proof. Note that .FH/� is a ring isomorphism on functions O.E/! O.E_/. We vary
L! LC ıL and calculate the variation H ! H C ıH by expanding the relation

H C ıH D e.LC ıL/ ı F.H C ıH/

to first order.

3.1.2. Odd Legendre transform. We now discuss an analog of the classical Legendre
transform that goes now between odd tangent and cotangent bundles. A description of this
odd Legendre transform appears in the early work [4], and its idea appears as a motivation
for the discussion in [30], relating shifted symplectic structures to nondegenerate shifted
Poisson structures.

Let us denote by …TM the odd cotangent bundle of M , and its dual …T �M its odd
tangent bundle. In precise terms, we will consider maps between the spaces of (formal)
functions on those bundles, namely, the space of polyvector fields

O.…T �M/ D ^�TM D O.M/Œ˛i �;

where the anticommuting variables ˛i represent the vector fields @=@xi , and the space of
differential forms

O.…TM/ D ^��1O.M/Œˇi �;

where the anticommuting variables ˇi represent the one-forms dxi . We make the conven-
tion that the degree of ˛i isC1 and of ˇi is �1.

We will write a p-vector field in coordinates as

P D
1

pŠ
P i1;:::;ip˛i1 � � �˛ip ;
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using the summation convention for repeated indices. We can also regard this as an ele-
ment of the tensor algebra of TM by using the antisymmetric embedding:

P D
1

pŠ
P j1;:::;jpı

i1;:::;ip
j1;:::;jp

˛i1 � � �˛ip ;

using the Kronecker symbol giving the sign of the permutation. This allows us to calculate
derivatives: we have that the derivative @=@˛i acts as

@

@˛in
˛i1 � � �˛ip D p.�1/

n˛i1 � � � y̨in˛ip ;

where the hat denotes omission.
Let 
 2 O.…T �M/ be a polyvector field without degree one term, which we write in

coordinates as


.x/ D


ij
2 .x/

2Š
˛i j̨ C



ijk
3 .x/

3Š
˛i j̨˛k C � � � ;

where 
p.x/ is some p-tensor depending on x. Let us assume that the degree two term

2 is given by a positive definite matrix. In terms of functions on the odd space …T �M ,

 should be seen as a convex function with a fiberwise critical point at the “locus ˛ D
0”. The odd fiberwise derivative should then send a neighborhood of this locus to the
neighborhood of the “locus ˇ D 0”, and the odd Legendre transform should produce a
formal series in the variables ˇi , that is, a differential form.

Let us calculate the odd Legendre transform F
 : first, we write

ˇi D
@


@˛i
D 


ij
2 j̨ C



ijk
3

2Š
j̨˛k C � � �

and then invert this equation, expressing each ˛i in terms of the ˇ variables, as a function
fi .
;ˇ/, depending on the matrices 
p for all p. This is possible if and only if the matrix 
2
is invertible: denoting ¹Mij º for its inverse we can calculate fi by an iterative procedure.
To second order this gives

˛i D fi .
; ˇ/ DMijˇ
j
CMijMkaMlb



jkl
3

2Š
ˇaˇb C � � � :

In other words, the functions fi are the data of the inverse induced map on functions
..F 
�/�1/. We now calculate that the energy function associated to 
 is given by

e
 D ˛i
@


@˛i
� 
 D



ij
2

2Š
˛i j̨ C 2 �



ijk
3

3Š
˛i j̨˛k C � � � C .p � 1/ �



ij ���
p

pŠ
˛i j̨ � � � C � � � I

that is, we just multiply each degree p term by p � 1. The odd Legendre transform � D

L.
/ is then calculated by substituting, in the expression above, ˛i 7! fi .
; ˇ/.

Proposition 3.2. The polyvector field 
 satisfies Œ
; 
� D 0, where Œ; � is the Schouten–
Nijenhuis bracket, if and only if d� D 0.
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Proof. We calculate

d� D ˇi
@�

@xi
D ˇi

@

@xi

�
fj .
; ˇ/ˇi � 
. j̨ 7! f j .
; ˇ//

�
D ˇi

@fj

@xi
ˇj � ˇi

@


@xi
� ˇi

@


@˛i

@fi

@x
D �ˇi

@


@xi
:

Along the locus ˛ D f .
; ˇ/, this is equal to

�
@


@˛

@


@xi
D �Œ
; 
�;

proving the proposition.

Performing the opposite operations, we see that odd Legendre transform gives a bijec-
tion between closed forms and polyvector fields satisfying the Maurer–Cartan-type equa-
tion Œ
; 
� D 0. Let us now consider a slightly more general situation, where 
 may have
a small nonvanishing first order term, that is,


 D 
 i1˛i C


ij
2 .x/

2Š
˛i j̨ C



ijk
3 .x/

3Š
˛i j̨˛k C � � � :

In this case, the locus ˛ D 0 is not critical, so we should not expect it to be sent to a neigh-
borhood of ˇD 0 by the odd Legendre transform. Instead, it will be sent to a neighborhood
of the “point” of …TX with fiber coordinates given by @
=@˛i j˛iD0 D 


i
1.

More precisely, given a form � in terms of the ˇi , we shift the coordinates to ži D
ˇi � 
 i1; the shifted form will then satisfy Proposition 3.2 with respect to the differential
Qd in the variables ži . We calculate this in terms of the original variables, expanding to

linear order in 
1

Qdz� D ži
@z�0

@xi
C ž

i
@z�1j

@xi
žj C � � �

D ˇi
@

@xi
.�0 C �1j ˇ

j
C � � � / � 
 ii

@

@xi
.�0 C �1j ˇ

j
C � � � /

� ˇi
@

@xi
.�1j 


j
i C � � � /CO..
1/

2/

D .d � Lie
1/�CO..
1/
2/:

Therefore, we have the following result.

Corollary 3.3. If the polyvector field 
 satisfies the equation Œ
; 
� D 0, then its odd
Legendre transform � satisfies .d � Lie
1/� D 0 up to higher corrections in 
1.

Note that comparing the result above with the noncommutative analogies in [26]
motivates the statement of the correspondence we mentioned in the introduction (equa-
tion (1.1)).
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3.1.3. Inverting the Legendre transform. Before we move on to the noncommutative
world, let us discuss one last thing about the odd Legendre transform. For simplicity, we
return to the case where 
1 D 0. Given only the degree two matrix 
 ij2 of 
 , and the
expression for the Legendre transform � D L.
/ (of all of 
 ), how can one compute

3; 
4; : : : without explicitly writing down the inverse Legendre transform?

This question may seem silly since in this case we could just directly write down the
inverse Legendre transform. But in the noncommutative case we will not have an explicit
inverse; instead we will use a version of the implicit function theorem. That is, we know
by definition that the pair .
; �/ solves the equation

e
 D .F 
/.�/:

By calculating the expressions for the “energy function” of 
 and the fiberwise derivative,
we have



ij
2

2Š
˛i j̨C2



ijk
3

3Š
˛i j̨˛kC� � � D �

2
i1i2

�


i1j1
2 j̨1 C



i1j1k1
3

2Š
j̨1˛k1 C � � �

�
�

�


i2j2
2 j̨2C



i2j2k2
3

2Š
j̨2˛k2C� � �

�
C�3i1i2i3.� � � / � � � :

When the matrix 
2 is nondegenerate, the quadratic term in ˛ gives exactly the matrix
equation �2 D .
2/�1, as expected. In third order, the equation is2

�2
ab

2Š
.
ai2 


bjk
3 C 


aij
3 
bk2 /C �3abc


ai
2 


bj
2 


ck
2 D 2


ijk
3 ;

which, using the solution for �2 and the skew-symmetry of 
3, gives our desired solution



ijk
3 D �3abc


ai
2 


bj
2 


ck
2 :

3.1.4. Roadmap to the noncommutative version. Above, we explained that the odd
Legendre transform relates polyvector fields


 D 
1 C 
2 C � � �

that are solutions of the Maurer–Cartan equation Œ
; 
� D 0 to differential forms that are
closed under d � Lie
1 . On one of the sides related by this noncommutative Legendre
transform, we have an A1-algebra .A; �/; in other words, a noncommutative pointed
dg manifold XA with an integrable vector field Q�; the space C �

Œd�
.A/, where pre-CY

structures of dimension d live, is interpreted as the space of shifted polyvector fields on
XA, with the necklace bracket playing the role of Schouten–Nijenhuis bracket.

2Note that to get the right numerical factors, it is easier to first embed the exterior algebra into the
tensor algebra, antisymmetrically.
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On the other side, we have the space of noncommutative forms on XA; this is the
negative cyclic homology complex CC�� .A/ with differential b� C uB . For a discussion
of this relation in our context, see, e.g., [27, Sec. 3.3].

The noncommutative Legendre transform then relates these two sides. Let us sketch a
roadmap for what follows. We start with a pre-CY structure m, a solution of the Maurer–
Cartan equation Œm;m� D 0. From this, we will proceed in a completely parallel fashion
to what we described for the odd Legendre transform. We first define the noncommutative
fiberwise derivative, which is a map of complexes

Fm W .CC�� .A/; b� C uB/! .C �Œd�.A/; Œm;��nec/:

In analogy with the (super)commutative case, we prove that if m.2/ is nondegenerate,
the map above is a quasi-isomorphism; we then write the “energy function” em corre-
sponding to m and define the Legendre transform of m to be .Fm/�1.em/, which defines
a nondegenerate element in the negative cyclic complex.

In order to compute the inverse Legendre transform, going from a nondegenerate
cyclic homology class to a pre-CY structure, we use the same “implicit function theo-
rem” strategy of Section 3.1.3 to produce a map

ˆ W .CC�d .A//nondeg ! C �Œd�.A/;

which lands inside of the space Mpre�CY of solutions to that equation, that is, pre-CY
structures.

Just like the ordinary Legendre transform, the map ˆ is also “one-to-one”, but in
a more sophisticated sense; note that one of the sides has a natural “linear” notion of
equivalence (b� C uB-cohomology) but the other one does not. We will later explain in
Section 4.2 what is the correct notion of equivalence.

3.2. Tube quivers

Our constructions of the maps Pm and ˆ are described using a specific type of ribbon
quivers, which we now explain. We refer to [27] for the general definition of ribbon quivers
and for the formalism that calculates their action on Hochschild chains.

Definition 3. For any integer ` � 1, the space T.`/ of tube quivers with ` outgoing edges
is the vector space spanned by ribbon quivers corresponding to genus zero surfaces with
two boundary components: one boundary component with a closed input (source in V�)
and another boundary component with ` open outputs (sinks in Vopen-out).

For each integer d , a d -orientation on a ribbon graph can be specified by a total order-
ing of all its edges and vertices, with permutations assigning a ˙ weight depending on
the parity of d . We will fix this ordering to be of the following form: if the �-source is
denoted by s (with incident edge e) and the open outputs are labeled o1; : : : ; o`, going
clockwise starting from the right, we will always put this orientation in the form

˙.o1 o2 � � � o` � � � e s/:
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Recall also that each ribbon quiver E� has a homological degree which depends on d , given
by the formula

degd .�/ D
X

v¤s;o1;:::;on

..2 � d/ out.v/C d C in.v/ � 4/:

Example. Here are some examples of ribbon quivers appearing in T.2/ and T.3/, respec-
tively:

� D � � 0 D �

v

w

When d D 0, the quivers of degree zero only have the input �, the outputs, and vertices
either with two inputs and one output, or with zero inputs and one output. Also, the degree
of some quiver is equal to how many edges were contracted to obtain it from any degree
zero quiver; for example, for the examples above deg0.�/ D 0 and deg0.�

0/ D 2, since
two vertices have degree one (marked v and w). For any d , these degrees get shifted to
degd .�/ D �2d and degd .�

0/ D �3d C 2.

Thus, picking an integer d , we can define the space Td
.`/

of d -oriented tube quivers,
which as a vector space is equal to T.`/ but has a grading depending on d . We consider
then inserting a Hochschild chain into the �-vertex and also any numbers of incoming
AŒ1� arrows in between the ` outgoing legs. Now, given any element

m D m.1/ Cm.2/ C � � � 2 C
�
Œd�.A/;

evaluating this oriented ribbon quiver we then get ` outgoing A factors. This evaluation
gives a linear morphism of graded vector spaces

E W Td.`/ ˝ CC
�
� .A/! C �.`/.A/:

For general m, E has no reason to commute with any differentials whatsoever. We now
analyze some natural differentials on the space Td

.`/
.

3.3. Differentials on tube quivers

3.3.1. The chain boundary differential. We first have the differential @ defined by sum-
ming over vertex separations. This is the boundary operator on chains, and has homo-
logical degree of �1, as usual. The evaluation of a ribbon quiver is compatible with this
differential; that is,

E W .Td.`/; @/˝ .C�.A/; b/! .C �.`/.A/; Œ�;��nec/
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is a map of cochain complexes (where we regard everything with cohomological grading),
and so, descends to a map in cohomology.

Proposition 3.4. When d D 0, the complex .Td
.`/
; @/ calculates the homology of the circle:

H�.T
dD0
.`/ ; @/ D H�.S

1/;

that is, k in homological degrees zero and one. The same holds for other values of d , but
with a shift:

H�C`d .T
d
.`/; @/ D H�.S

1/:

Proof. The first statement is a special case of [27, Thm. 60]. The ribbon quivers which
appear in T.`/ give a cell decomposition of the space

“M0;2” � S1 � .R>0/2`�1 D S1 � .R>0/2`�1:

Here, “M0;2” denotes just the point since the genus zero curve with two punctures has no
moduli. As explained in the proof of that theorem, .TdD0; @/ is the complex of chains on
a cell complex that is dual to the cell decomposition above.

The ribbon quivers with d -degree zero correspond to top-dimensional cells. To see
that the identification above is correct, we note that for such a quiver we can independently
choose ` positive number to be the lengths of the outgoing legs, and `� 1 positive numbers
to be the lengths of distances between the vertices that are not s; o1; : : : ; o`; the last length
is fixed by the others. To that we add a circle worth of directions where the edge coming
out of the �-vertex s can land.

The latter statement is a variation on the d D 0 case; conceptually, for different d , the
result is twisted by powers of a line bundle L on this moduli space which is trivial up to a
shift of `.

3.3.2. The rotation differential. We now introduce another differential, corresponding
to rotation around the S1-factor. For that, let us first consider the following decomposition
of vector spaces:

T.`/ D .T.`//
edge
˚ .T.`//

vertex;

where we decompose by what is at the end of the edge e (the edge incident to the �-
vertex). The subspace .T.`//edge is spanned by ribbon quivers where e ends on a trivalent
vertex with two incoming and one outgoing edge and the subspace .T.`//vertex is spanned
by the other ribbon quivers.

The names come from thinking of each tube ribbon graph without the source vertex;
each is a circle with trees attached to the outside. To the interior of the circle we add the
source � ; this arrow can either land on some edge, giving a tube quiver in .T.`//edge,
or on an already-existing vertex, giving a tube quiver in .T.`//vertex.

We now define a map R W .Td
.`/
/edge ! .Td

.`/
/vertex of homological degree C1 by the

following prescription. Let E� be some tube quiver in .T.`//edge; its edge e lands at a vertex
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v of either of the two forms:

Type .1/

v

�
s

e

a

b Type .2/
v

�
s

e

b

a

Let us pick a d -orientation on E� by some ordering of the form

.b v � � � o1 o2 � � � o` � � � a � � � e s/;

that is, putting the letters bv in the beginning.
We now consider all the ribbon quivers E�v0 we get by sending the edge e to land in

all the other vertices of the circle v0 that are not v. The result does not have the vertex v
anymore, and the edge where it previously was is now denoted by a.

Definition 4. The rotation differential R is defined on the subspace .Td
.`/
/edge by

R.E�; .b v � � � o1 o2 � � � o` � � � a � � � e s//

D

X
v¤v0 in circle

�
E�v0 ; .�1/

`C#.o1 o2 � � � o` � � � a � � � e s/
�
;

where in the exponent of the sign, #D 0 if the vertex v is of type (1) above, or #D 1 if it is
of type (2) above. We extend by zero from the subspace .Td

.`/
/edge to a mapR W Td

.`/
! Td

.`/
,

of homological degree +1.

In other words, under the direct sum decomposition, R is given by a strictly triangular
matrix

�
0 0
R 0

�
; it is evident that R2 D 0. We check that the assignment of the orientation

above is coherent with respect to the change of ordering, and does define a map from
oriented ribbon quivers.

Example. Let us compute the differential for the tube quiver with orientation .�;O/ given
by0BBBBBBBB@

�
s o1o2

v4

v2

v5

v1v3

e

e4 e1

e6

e7
e5

e3 e2

; .o1 o2 v1 v2 v3 v4 v5 e1 e2 e3 e4 e5 e6 e7 e s/

1CCCCCCCCA
:

To calculate the signs inR.�;O/, we first bring the pair e7 v5 to the beginning of the string,
getting a sign .�1/6�.d�1/C6�d D C1 from the permutation. (Recall that swapping two
edges gives .�1/d�1 and two vertices, .�1/d .) For the orientation of the terms inR.�;O/:
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we just take this sign into consideration and delete the pair e7 v5, getting

R.�;O/ D �
s o1o2

v4

v2

v1
v3

ee4 e1

e6e5

e3 e2

C �
s

o1o2

v4

v2

v1v3

e

e4 e1

e6e5

e3 e2

C �
s

o1o2

v4

v2

v1
v3 e

e4 e1

e6e5

e3 e2

C �
s o1o2

v4

v2

v1v3

e
e4 e1

e6e5

e3 e2

;

all with orientationC.o1 o2 v1 v2 v3 v4 e1 e2 e3 e4 e5 e6 e7 e s/.

A direct calculation using the sign conventions for @ and R shows that they graded-
commute with each other, that is,

@RCR@ D 0:

Therefore, .Td
.`/
; @; R/ has the structure of a mixed complex, or equivalently, a complex

with a chain-level action of the circle.

3.4. Cyclicity and negative cyclic homology

Let us describe how the tube quivers with differentials @ andR interact with the Hochschild
and Connes differential on Hochschild chains. We write just � for some oriented tube
quiver .�;O/ and will only specify the orientation when actually necessary.

3.4.1. Cyclic complex of tube quivers. Let u be a variable of homological degree �2.

Definition 5. For a fixed `; d , the cyclic complex of tube quivers is the kŒu�-module

CTd.`/ WD Td.`/ ˝k kŒu; u�1�=kŒu�;

together with the differential @ � uR.

That is, an element of homological degree n in CTd.`/ is given by an expression

E� D E�0 C E�1u�1 C E�2u�2 C � � � ;

where E� i is an element of Td
.`/

of homological degree n � 2i .
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Proposition 3.5. Up to a shift, the complex CTd.`/ calculates the homology of the point.
That is,

H`d .CT
d
.`/; @ � uR/ D k

and Hi .CTd.`/; @/ D 0 for i ¤ `d .

Proof. Let us show the case d D 0; as in Proposition 3.4, the general case follows from
that one by twisting with a line bundle that is trivial up to an overall shift. When d D 0,
CTd.`/ is a nonnegatively graded mixed complex. So, the Connes long exact sequence in
low degrees splits as

0!H2.CT
d
.`/;@�uR/!H0.CT

d
.`/;@�uR/!H1.T

dD0
.`/ ;@/!H1.CT

d
.`/;@�uR/! 0

and
0! H0.T

dD0
.`/ ; @/! H0.CT

d
.`/; @ � uR/! 0:

Thus, H0.CTd.`/; @ � uR/ D k, and since H1.Td.`/; @/ D k, it is enough to calculate that

H1.CT
d
.`/; @ � uR/ D 0:

This follows from the fact that the nontrivial class in H1.Td.`/; @/ can be represented by a
chain in the image of R.

3.4.2. Action on negative cyclic homology. Recall that the negative cyclic homology of
.A; �/ can be computed by the complex

CC�� .A/ D .C�.A/ŒŒu��; b C uB/;

where b is the Hochschild differential of homological degree �1 (depends on �) and B
is the Connes differential of homological degree C1 (does not depend on �). Suppose
now that we are given a pre-CY structure m. We extend the evaluation map E to a map of
kŒu�-modules

Eju�1D0 W CT
d
.`/ ˝ CC

�
� .A/! C �.`/.A/;

by taking the part of degree zero in u, that is, by adding all the evaluations E� i .�i /. For
ease of notation, let us also denote this map by E.

Proposition 3.6. The map Eju�1D0 is compatible with the differentials and descends to a
map in co/homology

H�.CT
d
.`/; @ � uR/˝HC

�
� .A/! H�.`/.A/:

Proof. It is enough to prove that, for any E� 2 Td
.`/

and � 2 C�.A/, we have

Œ�;E.E�; �/�nec D E..@ � uR/E�; �/C .�1/
deg.E�/E.E�; .b C uB/�/:
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But we already know that

Œ�;E.E�; �/�nec D E.@E�; �/C .�1/
deg.E�/E.E�; b�/;

so it remains to prove that E.R E�; �/ D .�1/deg.E�/E.E�; B�/. This follows from the fact
that the unit of A satisfies

�2.1A; a/ D .�1/
NaC1�2.a; 1A/ D a

for all a, so inputting the result of B into a ribbon quiver in .Td
.`/
/edge has the same result

as redistributing that arrow around the other vertices of the cycle. We check that the signs
in the differentials give the correct relation.

3.4.3. Rotation invariant tube quivers. For any d , we have the dimension d -action
of Z` on the higher Hochschild cochains C �

.`/
.A/, as defined in [27, Sec. 3.1]: in this

definition, the rotation of an angle 2�=` of the vertex comes with the Koszul sign together
with an extra sign .d � 1/.`� 1/. The invariants under this action, when properly shifted,
define what we called the dimension d higher cyclic cochains:

C �.`;d/.A/ WD .C
�
.`/.A//

.Z`;d/Œ.d � 2/.` � 1/�:

We now define this action analogously on the other side.

Definition 6. The dimension d -action of Z=` on the complex Td
.`/

is given by rotating the
quiver by an angle ofC2�=`, together with cyclically permuting the output vertices in the
orientation, sending

.o1 o2 � � � o` � � � e s/ 7! .o` o1 o2 � � � o`�1 � � � e s/:

This action extends kŒu�-linearly to CT d
.`/

, and we denote

CT.`;d/ WD .CT
d
.`//

.Z=`;d/Œ.d � 2/.` � 1/�

for its shifted invariants. We also put all of these complexes for ` � 2 together into a
complex

CTŒd� WD
Y
`�2

CT.`;d/:

Note that since vertices enter in the orientation with weight .d � 1/, the sign of this per-
mutation in the orientations is .�1/.d�1/.`�1/, already accounting for the extra sign of the
dimension d action. We also calculate that this action commutes with the differentials @
and R, so the map Eju�1D0 restricts to CT.`;d/ and gives a map of graded vector spaces

CTŒd� ˝ CC
�
� .A/! C �Œd�.A/:

Recall that, given a pre-CY structure m on A, the necklace bracket Œm;��nec defines a
differential on C �

Œd�
.A/; by definition, this differential is a sum

Œm;��nec D d� C Œm.2/;��nec C Œm.3/;��nec C � � � ;



Smooth Calabi–Yau structures and the noncommutative Legendre transform 905

where d� is just the differential on (usual) Hochschild cochains. Each term Œm.k/;��nec

maps C �
.`;d/

.A/! C �
.`Ck�1;d/

.A/Œ1�.
We mimic this differential on the tube quiver side, defining differentials

@k W CT.`;d/ ! CT.`Ck�1;d/

by taking the necklace bracket of the tube quiver with a vertex of k outgoing legs. After
checking all the signs and degrees, we conclude with the following proposition.

Proposition 3.7. The map Eju�1D0 is compatible with the differential .@ � uR C @2 C
@3 C � � � / on CTŒd� and gives a map in co/homology

H�.CTŒd�; @ � uRC @2 C @3 C � � � /˝HC
�
� .A/! C �Œd�.A/:

3.5. Defining the Legendre transform

3.5.1. The fiberwise derivative. From the proposition above, given any closed class in
CTŒd�, any negative cyclic homology class, and a pre-CY structurem, we produce another
element n of C �

Œd�
.A/ satisfying the equation Œm; n�nec D 0.

This will play the role of the fiberwise derivative in the usual Legendre transform.
Recall from Proposition 3.1 that the fiberwise derivative can be understood as the varia-
tional derivative of the Legendre transform; thus, in the noncommutative case, it is natural
that it would land in the tangent complex .C �

Œd�
.A/; Œm;��nec/, which calculates the tangent

space of Mpre�CY at the point m.

Proposition 3.8. Any @-closed element of cohomological degree 2d in CTd.2/, invariant
under the .Z2; d / action, extends to a .@� uRC @2 C @3 C � � � /-closed element of coho-
mological degree d C 2 in CTŒd�.

Proof. We prove this by induction in the number ` of outgoing legs. Let us say that we
have an extension

�.2/ C �.3/ C � � � C �.`/;

where �.`/ 2 CT.`;d/. Unraveling the definitions and degree shifts, it means we have

�.2/ D �
0
.2/;

�.3/ D �
0
.3/ C �

1
.3/u

�1;

� � �

�.`/ D �
0
.`/ C �

1
.`/u
�1
C � � � C �`�2.`/ u

�`C2;

where � i
.k/

is of homological degree �dk C 2k � 4C 2i in Td
.k/

; the terms above are the
only ones that can be nonzero for degree reasons. Suppose that we have

.@ � uRC @2 C � � � /.�.2/ C �.3/ C � � � C �.`// D 0;
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up to terms with ` outgoing legs. The next equation to be solved, with exactly ` C 1
outgoing legs, is to find

�.`C1/ D �
0
.`C1/ C �

1
.`C1/u

�1
C � � � C �`�1.`C1/u

�`C1;

solving
.@ � uR/�.`C1/ D @2�.`/ C � � � C @`�.2/:

From the fact that .@ � uR/2, and using the induction hypothesis, we find that .@ � uR/
applied to the right-hand side gives zero. But since this equation is in homological degree
�d.` C 1/ C 2` � 2 > �d.` C 1/, due to Proposition 3.5, it must have a solution for
�.`C1/; using symmetrization under the .Z`C1; d / action, we get the desired �.`C1/.

Therefore, all we need to do is to specify a @-closed element �0
.2/

of Td
.2/

which is
Z=2-invariant if d is odd and anti-invariant if d is even.

Definition 7. We define the following element of homological degree �2d in Td
.2/

:

�.2/ D
1

2

0BBBBBBBB@
�
s

o1o2

v4

v2

v

v1v3

e

e4 e1

e6

b
e5

e3 e2

C �
s o1o2

v4

v2
v

v1v3

e
e4 e1

e6

b

e5

e3
e2

1CCCCCCCCA
both quivers with orientation .o1 o2 v1 v2 v3 v4 v e1 e2 e3 e4 e5 e6 b e s/.

Note that �.2/ is of top cohomological degree C2d , so @�.2/ D 0. To know that it
defines an element of CTŒd� (of cohomological degree C2d � .d � 2/.2 � 1/ D d C 2),
we must check that the generator of Z=2 acts on it with a sign .�1/.d�1/.2�1/ D .�1/d�1;
to see that, we calculate the sign of the permutation of the sequence

.v1 v2 v3 v4 v e1 e2 e3 e4 e5 e6 b e s/

induced by the 180-degree rotation; note that the labels o1 and o2 stay put because we still
want to read the outputs of these quivers starting from the right.

Definition 8. We define � D �.2/C�.3/C � � � to be the element of cohomological degree
d C 2 of CTŒd� given by some fixed extension of �.2/.

Note that � is only defined up to some .@ � uRC @2 C @3 C � � � /-exact term.

Lemma 3.9. For any ` > 2, the class of �`�2
.`/

in H�`d .Td` ; @/ is nonzero.

Proof. Note that, for degree reasons, the term �`�2
.`/

is the lowest homological degree term
that appears in �.`/. For ` D 2, it is the only one; and the claim follows from the fact that
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we can use the @-differential to move the edge e around the circle, giving the following
expression for �.2/ up to a @-exact term:0BBBBBBBB@

�
s

o1o2

v4

v2

v

v1v3

e

e4 e1

e6

b
e5

e3 e2

; .o1 o2 v1 v2 v3 v4 v e1 e2 e3 e4 e5 e6 b e s/

1CCCCCCCCA
:

In other words, �.2/ is the class of ˙ one point in the moduli space. For any ` � 3, from
expanding out the equation .@� uRC @2 C � � � /� , we see that �`�2

.`/
is defined by solving

the equation

@�`�3.`/ �R�
`�2
.`/ D �@2�

`�3
.`�1/;

so to prove the statement, it is sufficient to show that the class

Œ@2�
`�3
.`�1/� 2 H�`dC1.T

d
.`/; @/

is nonzero. The easiest way to show this is to explicitly write down a Z=2-valued cocycle
on Td

.`/
that evaluates to 1 when paired with @2�`�3.`�1/

.
The correct (cohomological) degree for this cocycle ˛ is �`d C 1; and we need to

specify how it acts on any tube quiver of the same (homological) degree; these are exactly
the quivers of degree one higher than the minimum, that is, with exactly one contracted
edge.

For any tube quiver X , take the closest vertex in the circle to the first output o1. If this
vertex is directly connected to the source vertex s, we set ˛.X/D 1; otherwise, ˛.X/D 0.
By thinking of all the possible kinds of edge that can be contracted from a minimum
homological degree quiver, we calculate that ˛ is a cocycle. Evaluating ˛ on @2�`�3.`�1/

gives one (there is exactly one tube quiver there where the source and the first output “are
aligned”).3

Definition 9. The fiberwise derivative at the pre-CY structure m is the map

Fm D E.�;�/ju�1D0 W CC
�
� .A/! C �Œd�.A/Œd C 2�:

By the closedness of � under the differential @� uRC
P
i @i , we get that the fiberwise

derivative is a map of complexes. For simplicity from now on we denote by �.�/ the
evaluation E.�; �/ju�1D0.

3In fact, if we wanted to, we could have worked with a Z-valued cocycle instead, and by being careful
with the orientations, prove that not only Œ�`�2

.`/
� ¤ 0, but also that it is a generator of H�`d .Td.`/; @/ D Z.
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Proposition 3.10. If m.2/ is nondegenerate, that is, maps to a quasi-isomorphism of
bimodules under C �

.2/
.A/ Š HomA�A.A�; AŠ/, then Fm is a quasi-isomorphism.

This proposition should be seen a noncommutative version of the implicit function
theorem; the element m.2/ is the analog of the Jacobian matrix.

Proof. As in the proof of the theorem above, for degree reasons, the term of � with `
outgoing legs is of the form

�.`/ D �
0
.`/ C �

1
.`/u
�1
C � � � C �`�2.`/ u

�`C2;

so for some negative cyclic class � D �0 C �1uC �2u2 C � � � , we have

�.`/.�/ D

iD`�2X
iD0

� i.`/.�i /I

that is, as we increase `, each new term of Fm.�/ depends only on one new term �`�2. It
suffices then to show that the map

�`�2.`/ .�/ W .C�.A/; b�/! .C �.`/.A/; Œ�;��nec/

is a quasi-isomorphism. But recall from Section 2.1 when A is smooth and m.2/ is non-
degenerate (that is, gives a quasi-isomorphism AŠ ' A�), we have the following quasi-
isomorphisms:

.C�.A/; b�/ ' HomA�A.AŠ; A�/ ' HomA�A.A�; A�/;

.C �.`/.A/; Œ�;��nec/ ' HomA�A..AŠ/˝A.k�1/; A�/ ' HomA�A.A�; A�/:

That is, up to quasi-isomorphisms, all these invariants are just Hochschild cohomology.
We see that all tube quivers of degree �`d give cohomologous maps

.C�.A/; b�/! .C �.`/.A/; Œ�;��nec/ W

they all involve applying the quasi-isomorphism coming from m.2/ ` times in a sequence,
which is the same operation given by the composition of the quasi-isomorphisms above.
So, the map �`�2

.`/
.�/ is cohomologous to a scalar multiple of this composition.

3.5.2. The energy function and the Legendre transform. In our discussion of the odd
Legendre transform between polyvector fields and forms, we calculated that the correct
analog of sending a Lagrangian function L to its energy function

eL D vi@L=@vi � L

was given by sending a polyvector field


 D 
2 C 
3 C � � �
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to the polyvector field
e
 D 
2 C 2
3 C 3
4 C � � � :

We make the same definition in the noncommutative case.

Definition 10. The energy function associated to an element m D � C
P
`�2 m.`/ 2

C �
Œd�
.A/ is the element

em D
X
`�2

.` � 1/m.`/ 2 C
�
Œd�.A/:

We calculate that Œm; em�nec D 0; that is, this element em gives a closed element under
the differential on C �

Œd�
.A/. We then define the Legendre transform.

Definition 11. The noncommutative Legendre transform is the map

L W .Md -preCY.A//nondeg ! HC�d .A/

m 7! Œ.Fm/�1.em/�;

where .Md -preCY.A//nondeg � C
d
Œd�
.A/ is the set of d -dimensional pre-CY structures

m D �Cm.2/ Cm.3/ C � � � 2 C
2
Œd�.A/

such that m.2/ is nondegenerate.

Note that the map L is not linear, and strictly speaking, as a map of sets, depends on
our choice of quasi-inverse .Fm/�1. Nevertheless, in some sense, also like the ordinary
Legendre transform on convex functions, it is “one-to-one”; in the next section, we explain
what this means.

4. The nondegenerate locus

We now focus on the case where A is smooth and continue the study of the nondegener-
ate locus .Md -preCY.A//nondeg of the space of pre-CY structures on A. The main result of
this section is that the noncommutative Legendre transform L we defined above is invert-
ible and gives an equivalence between nondegenerate pre-CY structures and smooth CY
structures. However, this equivalence does not hold in a strict sense; its correct form is
as a weak homotopy equivalence of simplicial sets; see later in Section 4.2. Under the
assumption that the Hochschild cohomology of A is concentrated in non-negative degree,
this equivalence can be more simply phrased in terms of a groupoid of solutions to the
Maurer–Cartan equation, which we describe in Section 4.2.4.

4.1. Inverting the noncommutative Legendre transform

We now characterize the image of the noncommutative Legendre transform L.
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Proposition 4.1. Every element of CC�
d
.A/ in the image of L is a smooth CY structure

on A.

Proof. Let �D �0C �1u1C � � � DL.m/ be the image under the Legendre transform of a
nondegenerate pre-CY structurem. The relation between �0 2 Cd .A/ andm.2/ 2 C d.2/.A/
is given by

m.2/ D
1

2

0BBBB@ �0 C �0

1CCCCA ;
up to a Œ�;��nec-exact term, where as usual we evaluate by inserting m.1/ D � and m.2/
into the � vertices, accordingly, with some sign that we omit. By using the @-differentials,
we find that

m.2/ D
�0

C .Œ�;��nec-exact term/:

We now use the canonical coevaluation map coev Wk!A�˝A-A A
1 on both sides, getting

an equality in C �.A; AŠ/. Because m.2/ is nondegenerate, this implies the equality in
C �.A/:

1

D

�0
C .Œ�;��-exact term/;

which is exactly the chain-level description of the nondegeneracy condition on �0.

So, in other words, a nondegenerate pre-CY structure on a smooth A1-category gives
a smooth CY structure on it. We would like to invert this map; recall that in Section 3.1.2
we described the (odd) commutative version of this inverse and showed how to calculate
the inverse odd Legendre transform by describing it implicitly by the equation it solves.

We now describe the noncommutative analog of this procedure, using the same tube
quivers

�.`/ D �
0
.`/ C �

1
.`/ C � � � C �

`�2
.`/

that we defined in Definition 8. Suppose that we have a smooth CY structure of dimension
d given by an element

� D �0 C �1uC �2u
2
C � � � 2 CC�� .A/:



Smooth Calabi–Yau structures and the noncommutative Legendre transform 911

As in the proof of Proposition 4.1 above, from our chain-level description of nondegener-
acy, we know that we can find ˛ 2 C d

.2/
.A/, ˇ.2/ 2 C d�1.2/

.A/ such that

˛ D
1

2

0BBBB@ �0 C �0

1CCCCAC Œ�; ˇ.2/�nec;

(4.1)
where the vertices get assigned ˛.

From this, we will construct a pre-CY structure m with m.1/ D � and m.2/ D ˛; each
higher termm.`/ for ` > 3 can be calculated iteratively in the previous terms. To illustrate
this, let us first discuss the case of m.3/. By definition, this element must solve

Œ�;m.3/�nec D m.2/ ım.2/;

which is an equation in C 2d�1.A/. We multiply by two to express everything in terms of
brackets

2Œ�;m.3/�nec D Œm.2/; m.2/�nec;

and then substitute the second m.2/ D ˛ factor using equation (4.1), to get

2Œ�;m.3/�nec D˙
1

2
�0 ˙ � � �

˙
1

2
�0 ˙ � � �

In other words, m.3/ satisfies the equation

Œ�;m3�nec D
1

2

�
Œm.2/; Œ�; ˇ�nec�nec C .@2�.2//.�/

�
;

where, as in Proposition 3.7, @2 is the differential on that increases the number of outgoing
legs by one, given by taking the necklace bracket of a tube quiver with the valence 2 vertex.

Using the graded Jacobi relation, the equation satisfied bym.2/, and the equation defin-
ing �.3/, we then have that m.3/ satisfies

Œ�;m.3/�nec D
1

2

�
Œ�; Œm.2/; ˇ�nec�nec C Œ�; �

0
.3/.�0/C �

1
.3/.�1/�nec

�
: (4.2)
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This equation is slightly misleading; it looks like it we could write

m.3/ D
1

2

�
Œm.2/; ˇ�nec C �

0
.3/.�0/C �

1
.3/.�1/

�
and computem.3/ directly fromm.1/D�,m.2/D ˛ and �, but this is not true. By counting
degrees, we see that the homological degree of �0

.3/
in C �

.`/
.A/ is �`d C 2; so among the

tube quivers of that degree, there could be some that have a single vertex with 3 outgoing
arrows, such as, for example, the vertex p of the following quiver:

� p

So, in order to evaluate the right-hand side, we would need to already know the value
of m.3/. Nevertheless, we prove that one can solve equation (4.2) up to cohomology; this
is also true for each higher term m.`/. More precisely, we have the following proposition.

Proposition 4.2. For each ` � 2, the component of the Maurer–Cartan equation

2Œ�;m.`/�nec D

`�1X
iD2

Œm.i/; m.`�iC1/�nec

has a solution given by

m.`/ D
1

` � 1

�
Œ�; ˇ.`/�nec C � � � C Œm.`�1/; ˇ.2/�nec C �

0
.`/.�0/C � � � C �

`�2
.`/ .�1/

�
for some element

ˇ.2/ C ˇ.3/ C � � � C ˇ.`�1/ 2 C
1
Œd�.A/;

where ˇ.i/ 2 C 1.i;d/.A/ depends on all previous ˇ.j / and m.j / with j < i .

This proposition ultimately follows from a combinatorial fact about tube quivers of
a specific degree, which we now explain. Note that �0

.`/
is the only “problematic” term;

all the other � i
.`/

only have vertices with ` � 1 or less outgoing legs, so by induction, we
know how to evaluate them.

Recall that the space CT.`;d/, where �0
.`/

lives, is defined as the cyclically graded-

symmetric elements of Td
.`/

in homological degree �d`C 2` � 4. We define T
d;<`
.`/

to be
the subcomplex of Td

.`/
spanned by the tube quivers that do not have any vertex with `

outgoing legs. We now look at the quotient complex Td
.`/
=T

d;<`
.`/

.
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In homological degree �d` C 2` � 4, every element of degree Td
.`/
=T

d;<`
.`/

can be
represented by a linear combination of tube quivers with a single vertex with ` outgoing
legs; all other non-output vertices are “generic”, that is, either have two inputs and one
output, or are sources with two outputs.

Lemma 4.3. Any two elements in Td
.`/
=T

d;<`
.`/

are homologous, up to a sign. In other
words, given any two tube quivers �; � 0 as above, there is some linear combination of
tube quivers � 00 such that

@� 00 D � ˙ � 0 C .term in T
d;<`
.`/

/:

Proof. Let Q be any such tube quiver as above, that is, with exactly one vertex p with `
outgoing legs and all other vertices “generic”, for instance, the tube quiver

� p

for `D 5, where v is the only non-generic vertex, of homological degree d � 5� d � 2�
5C 4 D 4d � 6.

We pick any edge e W v1 ! v2 (not connecting to the outputs) of Q and contract it to
a vertex w, giving some other tube quiver P . Calculating the differential gives

@P D ˙Q˙Q0 ˙ .term in T
d;<`
.`/

/;

where Q0 is obtained from P by expanding w in another direction. We deduce this from
checking separately the three possibilities: v1 D p, v2 D p, or e not incident to p. But we
can go from any of these tube quivers Q in Td

.`/
=T

d;<`
.`/

to any other one by a sequence of
edge contractions and expansions. So, we can find a sequence of P s going from � to � 0

whose sum � 00 solves the desired equation.

Proof. (of Proposition 4.2) We prove this by induction. The case ` D 2 is just the chain-
level description of nondegeneracy, so it follows by the assumption that �0 is nondegen-
erate. For any fixed `, we write the component of the Maurer–Cartan equation

2Œ�;m.`/�nec D

`�1X
iD2

Œm.i/; m.`�iC1/�nec;

and using the result for m.j / with j < `, we get that m.`/ satisfies the equation

.` � 1/Œ�;m.`/� D Œ�; Œm.2/; ˇ.`�1/�nec C � � � C Œm.`�1/; ˇ.2/�nec�

C Œ�; �0.`/.�0/C � � � C �
`�2
.`/ .�1/�:
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But by Lemma 4.3, we can rewrite

�0.`/ D ‚C @�
0
C z�0.`/;

where z�0
.`/
2 T

d;<`
.`/

, and ‚ is the specific “problematic quiver” of the form

‚ D

�0

p

with one vertex p with ` outgoing arrows (for example, in the drawing above, ` D 6). We
now rearrange the equation as

Œ�; .` � 1/m.`/ �‚.�0/� D Œ�; Œm.2/; ˇ.`�1/�nec C � � � C Œm.`�1/; ˇ.2/�nec�

C Œ�; z�0.`/.�0/C � � � C �
`�2
.`/ .�1/�;

where now the right-hand side does have any vertices with ` or more outgoing legs, so we
can evaluate it using the m.j / that we already know.

As for the left-hand side, by the nondegeneracy condition, we know that the “bubble”
to the right of ‚ evaluates to a cochain that is cohomologous to the unit cochain 1 2
C 0.A/. Thus, if we replace ‚.�0/ by m.`/ in the equation above and solve for m.`/, we
can find an element that solves

.` � 1/m.`/ D Œm.2/; ˇ.`�1/�nec C � � � C Œm.`�1/; ˇ.2/�nec C �
0
.`/.�0/C � � � C �

`�2
.`/ .�1/;

up to Œ�;��nec-exact terms, so we can just pick ˇ.`/ to be a primitive of these exact terms.

Repackaging the statement of Proposition 4.2, by picking an appropriate element ˇ DP
i�2 ˇ.i/ 2 C

1
Œd�
.A/, we get a map to pre-CY structures

Definition 12. The mapˆ W .CC�
d
.A//nondeg! .Md -preCY.A//nondeg �C

2
Œd�
.A/ is defined

by sending � 7! m D �Cm.2/ C � � � , where the m.i/ are defined using the tube quivers
�.i/ and an appropriately chosen element ˇ.

By definition, the image m satisfies the equations

m ım D 0 and em D �.m; �/C Œm; ˇ�nec;

with the “energy function” em D
P
`�2.` � 1/m.`/. In other words, ˆ maps smooth CY

structures of dimension d to pre-CY structures of dimension d with nondegenerate m.2/.
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4.1.1. Example: The circle, continued. In order to illustrate the statement of Proposi-
tion 4.2 in action, we return to the simple example discussed in Section 2.2.4, that is, the dg
category A corresponding to the circle (more precisely, to its realization as the boundary
of the 2-simplex).

Recall that the negative cyclic chain representing the smooth CY structure is given by
the following element of C�.A/ŒŒu��:

�D 01Œ10�C 12Œ21�� 02Œ20�C .�01Œ10j01j10�� 12Œ21j12j21�C 02Œ20j02j20�/uC � � � :

The element ˛ 2 C �
.2/
.A/ inverse to the u0 component �0 is given by the formula

˛

k

P

ij D

´
1
2
.ıjkek ˝ P � ıikP ˝ ek/ if P counter-clockwise;

�
1
2
.ıjkek ˝ P � ıikP ˝ ek/ if P clockwise:

Together with its Z=2-rotation, this specifies all the nontrivial values of ˛. By the previous
results of this section, the element ˛ is the first component m.2/ of a pre-CY structure.
Each higher component m.k/ has cohomological degree dk � d � 2k C 4 D 3 � k since
d D 1. Since A is concentrated in degree zero, we have C 3�k

.k/
.A/ D 0 for k � 4, so the

terms m.�4/ are all zero. Moreover, the only component of m.3/ that could be nontrivial
is the term m

0;0;0
.3/

with zero inputs.
By Proposition 4.2, we can find linear combinations of tube quivers �0

.3/
; �1
.3/

, both
with three outputs, such that a solution for the equation Œ�; m.3/� D Œm.2/; m.2/� is given
by

m.3/ D
1

2
.�0.3/.�0/C �

1
.3/.�1//:

Let us start from the second term. We know that the terms in �1
.3/

are of maximum
(cohomological) degree among the tube quivers with three outgoing legs; all of those
are cohomologous and we can pick any of those representatives, so �1

.3/
.�1/ is given by

the diagram

�1 ˛

˛

˛

where we input �1 D 01Œ10j01j10�C12Œ21j12j21��02Œ20j02j20�. Since ˛ is only nonzero
when there is exactly one arrow as input, the only nonzero terms we get upon evaluating
the diagram are when sending one arrow to each ˛.
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We evaluate this diagram separately for each choice of labeling of the three regions
around the circle with the objects 0; 1; 2; we see that if the three labels are the same, we
get cancelling contributions, and that the only nonzero terms happen when exactly two
labels are the same: we have

�1
.3/
.�1/

i

j

i D

´
�
1
8
.ij /˝ ei ˝ j i if .ij / counter-clockwise;

1
8
.ij /˝ ei ˝ j i if .ij / clockwise:

The first term �0
.3/
.�0/ is more difficult to compute, since the combination of tube

quivers �0
.3/

has a complicated expression. However, in this case, we can calculate it
without expressing this entire combination. Recall from Section 3.3.2 that we have a
decomposition

T.`/ D .T.`//
edge
˚ .T.`//

vertex

between tubes whose central arrow lands onto an edge or a vertex of the circle. For any
choice of dimension d (which puts a grading on this space, and defines the signs of the
differentials), the differential @ preserves .T.`//edge and decomposes as @ D @edge C @vertex

on .T.`//vertex, where @v preserves this space.
In our case, d D 1 and the homological degrees of .T1

.3/
/ lie in �3, �2, �1, 0, 1, 2 and

this decomposition becomes

.T1.3//�3 D .T
1
.3//

edge
�3 ;

.T1.3//�2 D .T
1
.3//

edge
�2 ˝ .T

1
.3//

vertex
�2 ;

� � �

.T1.3//2 D .T
1
.3//

vertex
2 :

The element �0
.2/
2 .T1

.3/
/�1 decomposes under the direct sum above as .�0

.2/
/edge C

.�0
.2/
/vertex. We observe that inputting the choice of ˛ above into the 2-valent vertices of

any diagram in .T1
.3/
/

edge
�1 gives zero. Thus, the value we want is determined by .�0

.2/
/vertex.

The equation satisfied by �.2/ says that @�0
.2/
D�R.�1

.2/
/; together with the long exact

sequence in cohomology associated to the short exact sequence .T1
.3/
/edge ! .T1

.3/
/ !

.T1
.3/
/vertex, these facts imply that we can pick any solution X to the equation

@vertex.X/ D R.�1.2//

and the term �0
.3/
.�0/ will be equal to X.�0/.
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We now provide such a solution, given by X D R.Y /, where Y is the following linear
combination: 4

1

6

0BBBBBBBBBB@
� C � C � C � � �

1CCCCCCCCCCA
;

where the ellipses indicate that we sum over the other two cyclic permutations of these
diagrams. Evaluating X.�0/ with the given value of ˛, and labels i; i; j ¤ i on the three
regions gives us 18 nonzero terms, all equal; taking into account the 1=6 factor gives´

�
3
8
.ij /˝ ei ˝ j i if .ij / counter-clockwise;

3
8
.ij /˝ ei ˝ j i if .ij / clockwise;

with all other cases zero.
Thus, we get that the element m.3/ D 1

2
.�0
.3/
.�0/C �

1
.3/
.�1// we wanted to calculate

is given by

m.3/

i

j

i D

´
�
1
4
.ij /˝ ei ˝ j i if .ij / counter-clockwise;

1
4
.ij /˝ ei ˝ j i if .ij / clockwise:

One can check that this element satisfies Œ�;m.3/�C ˛ ı ˛ D 0 and Œ˛;m.3/�D 0. In other
words, we have a fully explicit description of the pre-CY structure on this dg category.

Corollary 4.4. Taking m2 D ˛ and m.3/ as above, and m.�4/ D 0, defines a pre-CY
structure of dimension 1 on A.

4.2. The simplicial lift

It is clear that the map ˆ we constructed above should be some sort of inverse to the non-
commutative Legendre transform L of Definition 11. But this is not true strictly; for one,

4We omit the orientations in the expression for Y , but they must be chosen coherently.
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the definitions of both L and ˆ involve making choices. Also, the two sides related by
these maps look different: the locus of nondegenerate elements in negative cyclic homol-
ogy is a conical locus inside of a linear space, while the set of Maurer–Cartan solutions is
the solution set of a quadratic equation.

However, looking at the iterative way in which we constructed these maps, we see
that in each step we had to solve an equation relating linearly one new component �.k�2/
of the negative cyclic chain � to one new component m.k/ of the pre-CY structure m.
Moreover, this relation came from a quasi-isomorphism between these linear spaces of
choices; the space .Md -preCY.A//nondeg should have the structure of an iterated fibration of
linear spaces, with the fiber at each step related by a quasi-isomorphism to a graded piece
of CC ��.A/.

It turns out that this can be made precise by using the theory of simplicial sets of
solutions to Maurer–Cartan equations, as developed in [19, 23], among others. We will
show that the map ˆ we constructed in the previous section admits a simplicial lift to a
weak equivalence of simplicial sets.

4.2.1. The simplicial Maurer–Cartan set. Let .g�; ı/ be a nilpotent dg Lie algebra
over k. One can look at its naive set of solutions to the Maurer–Cartan equation

MC.g�/ D ¹y 2 g1 j ıy C Œy; y�=2 D 0º;

which in principle has only the structure of a set. Following the exposition in [19], we
recall how to upgrade this to a simplicial set. For any n � 0, denote by

��.�n/ D kŒt0; : : : ; tn�=ht0 C � � � C tn � 1; dt0 C � � � dtni

the graded commutative dg algebra of polynomial differential forms on the n-simplex.
Here, the ti are in degree zero and the dti are in degree one; the differential is d.ti /dti
and d.dti / D 0. The following proposition/definition is due to Hinich [23].

Proposition 4.5. There is a simplicial set MC�.g�/ whose n-simplices are given by

MCn.g�/ D MC.g� ˝��.�n//;

that is, by the solution set of the Maurer–Cartan equation .ıC d/y C Œy; y�=2D 0 on the
dg Lie algebra of g-forms on the simplex.

Remark. In the literature of this topic, the name “Maurer–Cartan” is applied to two dif-
ferent formulations of the equation; in order to avoid confusion, let us be clear about their
relation. On any dg Lie algebra .g�; d /, one can look at the equation dx C Œx; x�=2 D 0,
and on any graded Lie algebra h�, one can look at the equation Œy; y� D 0, as we did
earlier in this paper.

Both are often called the Maurer–Cartan equation; the relation is that if g� � h� as
graded Lie algebras and there is an element � 2 h1 such that Œ�; �� D 0 and dx D Œ�; x�
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for all x 2 g�, then the two equations are equivalent if we look for a solution of the form
y D �C x. In our case, we have

g� D
Y
`�2

C �.`;d/.A/; h� D C �Œd�.A/ D
Y
`�1

C �.`;d/.A/

with � given by our fixed A1-structure; the solution x is then the sum of all them.`/ with
` � 2 and y is the full pre-CY structure m, also including m.1/ D �.

The set of zero simplices is exactly our naive set MC.g�/. We would like to apply
this to the dg Lie algebra g� D

Q
`�2 C

�
.`;d/

.A/. This does not make sense exactly since
this algebra is not nilpotent. Nevertheless, note that we can truncate it at any finite ` and
obtain a nilpotent algebra, and that the Maurer–Cartan solutions we want are a limit over
solutions on these truncated algebras.

Let us be more precise. Suppose that we have a graded Lie algebra a�, endowed with
a descending filtration

a� D F 0a� � F 1a� � F 2a� � � � �

with the property that, for x 2 F ia�, y 2 F ja�, we have Œx; y� 2 F iCja�. We then
consider the completions under the filtration F

g� D lim
 �

i�1

F 1a�=F ia�; h� WD ba� D lim
 �

i�0

a�=F ia�:

Note that each truncated piece F 1a�=F ia� is a nilpotent graded Lie algebra, and we have
a natural injection g� � h�.

If we have an element � 2 h1 such that Œ�; �� D 0 and Œ�;�� preserves the filtra-
tion, this defines a differential on each F 1a�=F ia�, and each map F 1a�=F iC1a� !
F 1a�=F ia� is a surjection of nilpotent dg algebras. By [23], this induces a Kan fibration

MC�.F 1a�=F iC1a�/! MC�.F 1a�=F ia�/

between the Maurer–Cartan simplicial sets.

Definition 13. The Maurer–Cartan simplicial set of the dg Lie algebra g� is the limit of
simplicial sets

MC�.g�/ WD lim
 �

i�0

MC�.F 1a�=F iC1a�/:

The case we are interested is when

a� D
M
`�1

C �.`;d/.A/Œ1�;

endowed with the descending filtration

F ia� D
M
`�iC1

C �.`;d/.A/Œ1�:
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Then, we have that the graded Lie algebra h� is exactly C �
Œd�
.A/Œ1�, which is the dg Lie

algebra where pre-CY structures of dimension d live. The condition on the element �
is exactly the condition for an A1-structure on A; taking g� to be the dg Lie algebra
where the rest of the pre-CY structure lives, with differential Œ�;��, we get an identifica-
tion between the set of zero simplices MC0.g�/ and the naive set of d -pre-CY structures
Md -preCY.A/ of the previous section.

4.2.2. The Deligne groupoid. We now recall another type of structure on the solutions
to the Maurer–Cartan equation, the “Deligne groupoid”. Let us describe it in the graded
Lie algebra picture. If n� is a nilpotent graded Lie algebra, there is an exponential action
of its degree zero part

ead.�/
W n0 � n� ! n�

given by

ead.x/.y/ D y C Œx; y�C
1

2Š
Œx; Œx; y��C

1

3Š
Œx; Œx; Œx; y���C � � � :

This exponential action extends to an action of the group-like elements of the (completed)
universal enveloping algebra yU.n0/. Note now that ead.x/ preserves the solution set of the
(graded) Maurer–Cartan equation

MC.n�/ D ¹y 2 n1 j Œy; y� D 0º

since the adjoint action preserves the equation; therefore, we can regard MC.n�/==n0 as
a groupoid.

Again, we must be a little careful because we want to apply this formalism to the
graded Lie algebra C �

Œd�
.A/Œ1�, which is not nilpotent. Considering again the case of the

dg algebra
g� D lim

 �

i�1

F 1a�=F ia�

with differential Œ�;��, sitting inside of the graded algebra

h� D lim
 �

i�1

a�=F ia�;

we see that the exponential action of g0 is well defined on each truncated piece F a�=F ia�

and therefore can be lifted to an action on the graded Lie algebra h�, preserving the
Maurer–Cartan equation. Therefore, we also have a groupoid MC.h�/==g0.

We choose this notation (with both h� and g�) to remind us that the action of g� also
involves the element � 2 h�, producing higher-order terms Œx; ��, 1

2
Œx; Œx; ���, etc., but

does not change � itself. So, we can look for solutions of the Maurer–Cartan equation
on h� of the form �C x, where x 2 F 2h�; this is a subgroupoid MC.h�; �/==g0. From
comparing this groupoid to the simplicial set we defined before, in the case where the
algebra in question is supported in non-negative degrees, we have the following fact [19].
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Proposition 4.6. If g� vanishes in negative degrees, there is a natural bijection of sets

�0.MC�.g�// Š �0.MC.h�; �/==g0/

between the connected components of the Maurer–Cartan simplicial set and the set of
orbits of the Deligne groupoid.

4.2.3. The simplicial equivalence. Let us return to the Maurer–Cartan simplicial set and
focus on the case of interest g� D

Q
`�2 C

�
.`;d/

.A/ for smooth A. We now prove the main
result of this section, lifting the map ˆ W CC�

d
.A/! .Md -preCY.A//nondeg to a weak sim-

plicial equivalence.
The target for this lift is evidently the nondegenerate locus in the Maurer–Cartan sim-

plicial set corresponding to the dg Lie algebra above:

M�
d -preCY.A/ WD MC�

�Y
`�2

C �.`;d/.A/
�
:

The source is given by replacing the negative cyclic chain complex by its corresponding
simplicial set under the Dold–Kan correspondence. Recall the Kan functor

K� W Ch�0.Ab/! sAb;

which gives an equivalence between chain complexes of abelian groups supported in non-
negative degrees and simplicial abelian groups. We can further forget the abelian group
structure and get a simplicial set.

The functor K� assigns to the chain complex .V; ı/ the n-simplices

Kn.V / D Z
0.C �.�n/˝ V; d C ı/;

where .C �.�n/; d/ is the normalized simplicial cochain complex on the n-simplex. One
possible representation for this complex is in terms of linear differential forms

!i0;:::;ik D kŠ
X
0�j�k

.�1/j tij dti0 � � �
bdtij � � � dtik

for any 1 � k � n.
We now consider the chain complex ��0.CC��Cd .A//, i.e., the object of Ch�0.Ab/

given by shifting the negative cyclic complex down by d and truncating it to lie in non-
negative degrees. A degree zero cycle in this complex is represented by a negative cyclic
chain of degree d

� D �0 C �1uC �2u
2
C � � �

that is closed under bC uB , where �i 2 CdC2i .A/. Let us fix a choice of a nondegenerate
“first component” �0 D � and its inverse ˛ 2 C d

.2/
.A/, representing inverse morphisms of

bimodules in HomA�A.AŠ; AŒd �/ and HomA�A.AŒd �; AŠ/, respectively.
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We now consider simplicial subsets on each side by requiring the “first components”
to be constant simplices at �0 D � and m.2/ D ˛. Let us describe this more precisely.
On the source sideK�.��0.CC��Cd .A///, we decompose each n-simplex � as a sum over
powers of u and over the basis of forms ¹!i0;:::;ik º

�.t/ D

1X
pD0

�p;k;¹i0;:::;ikºu
p
˝ !i0;:::;ik :

Given any such n-simplex, we can require that its p D 0 component (that is, its “value” at
u D 0) be constant along the simplicial coordinates ti and equal to �. That is, we require
�0;k;¹i0;:::;ikº D 0 for all k > 0 and �0;0;¹º D �. This condition defines a simplicial subset
of K�.��0.CC��Cd .A///, which we denote by K�.��0.CC��Cd .A///�0D� .

On the other side, we can do the same thing and fix the “first component” m.2/ to be
constant and equal to our chosen quasi-inverse ˛. Each n-simplex of M�

d -preCY.A/ is a
solution to the Maurer–Cartan equation on the dg Lie algebra

Q
`�2C

�
.`;d/

.A/˝��.�n/.
Here, ��.�n/ is spanned by polynomial differential forms on the simplicial coordinates
t0; : : : ; tn; we take the ` D 2 part of the solution and demand that it be degree zero and
constant as a form, equal to ˛. This again defines a simplicial subset which we denote by
M�
d -preCY.A/m.2/D˛ .
We are now ready to state the main result of this section. Recall the map of sets ˆ

that we defined in Definition 12 takes a nondegenerate negative cyclic chain �D �0C � � �
whose first term �0 D � has a quasi-inverse ˛ and gives a pre-CY structure

m D �Cm.2/ C � � �

with m.2/ D ˛.

Theorem 4.7. The map ˆ lifts to a weak equivalence of simplicial sets

ˆ� W K�.��0.CC
�
�Cd .A///�0D�

'
�!M�

d -preCY.A/m.2/D˛:

Taking connected components and putting the resulting bijections together for pair of
inverse classes Œ�� and Œ˛�, we get a bijection of sets

HC�d .A/nondeg ' �0.M
�
d -preCY.A/nondeg/

between (classes of) smooth CY structures and connected components of the space of
nondegenerate pre-CY structures, both of dimension d .

Proof. Note that on the left-hand side we have the normalized cochains on the simplex,
while on the right-hand side we have differential forms; using the representatives above
!i0;:::;ik , we embed the former into the latter.

Given that embedding, to construct the simplicial liftˆ�, we simply extend the evalu-
ation map of ribbon quivers linearly over ��.�n/ and use the same formulas we used for
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defining ˆ. For example, given m.2/, in the proof of Proposition 4.2, we showed that we
can find a solution for m.3/ of the form

m.3/ D z�
0
.3/.�0/C �

1
.3/.�1/C Œ�; ˇ.3/�C Œm.2/; ˇ.2/�;

where the ribbon quivers in z�0 and �1
.3/

only have vertices with 1 and 2 outgoing arrows.
Given an n-simplex on the left-hand side given by a linear form �.t/, we can input

this instead of � and get a form m.3/.t/; by the same argument as we used to prove
Proposition 4.2, but now extended linearly over differential forms, this form will satisfy
the equation

Œ�C d;m.3/.t/� D Œm.2/; m.2/�;

which is the new component of the Maurer–Cartan equation on the truncated piece�
C �Œd�.A/Œ1�=

Y
i>`

C �.`;d/.A/
�
˝��.�n/:

We continue this iteratively for ` D 3; 4; : : :; and in each step, we get some polynomial
differential formsm.`/.t/ solving a new component of that equation, withm.2/ fixed to be
constant with value ˛.

It follows from the compatibility of evaluation with all the differentials involved that
at each new step this defines a map of simplicial sets. Recall that, from the definition ofˆ,
at the step ` this map depends only on � up to the term with u-exponent `� 2. These maps
intertwine the maps induced by truncation, so we get a map between towers of simplicial
sets

� � � // K�.��0.CC
�
�Cd

.A/u2D0//�0D�
//

��

K�.��0.CC
�
�Cd

.A/uD0//j�0D�

��

� � � // MC�

�Q
`�2 C

�
.`;d/

.A/Œ1�Q
`�4 C

�
.`;d/

.A/Œ1�

�
m.2/D˛

// MC�

�Q
`�2 C

�
.`;d/

.A/Œ1�Q
`�3 C

�
.`;d/

.A/Œ1�

�
m.2/D˛

and the desired map ˆ� is the map induced between the limits of these towers.
We now prove that the map ˆ� so defined is a weak equivalence of simplicial sets.

Each horizontal map is a Kan fibration, so it is enough to prove that each vertical map is
a weak equivalence. We do this by induction; the last column is actually just the identity
map of the point (seen as a the totally degenerate n-simplices); this is because we fixed by
hand the �0 and m.2/ components to be exactly � and ˛.

For the induction step, we focus on a single square

K�.��0.CC
�
�Cd

.A/uiD0//�0D�
//

��

K�.��0.CC
�
�Cd

.A/ui�1D0//j�0D�

��

MC�

� Q
`�2 C

�
.`;d/

.A/Œ1�Q
`�iC2 C

�
.`;d/

.A/Œ1�

�
m.2/D˛

// MC�

� Q
`�2 C

�
.`;d/

.A/Œ1�Q
`�iC1 C

�
.`;d/

.A/Œ1�

�
m.2/D˛
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If the right column is a weak equivalence, by [28], it is enough to show that the left vertical
map induces weak equivalences for each pair of fibers of the horizontal maps over points
(i.e., 0-simplices).

In down-to-earth terms, we have an “actual” solution of the Maurer–Cartan equation
on C �

Œd�
.A/Œ1� up to the term m.i/, corresponding to a truncated negative cyclic chain

� D �0 C �1uC � � � C �i�2u
i�2. We then look at the map ˆ� applied to a differential

form
� D �0 C �1uC � � � C �i�2u

i�2
C �i�1.t/u

i�1;

where �i�1.t/ is linear on the ti coordinates on the n-simplex. The only dependence on
this form is in the evaluation of the last ribbon quiver in �.iC1/, that is, the term

� i�1.iC1/.�i�1.t//;

so we are reduced to proving that the operation � i�1
.iC1/

.�/, seen as a map

C�.A/˝ C
�.�n/! C �.iC1/.A/˝�

�.�n/;

defines a weak equivalence between closed forms and forms satisfying the .i C 1/th com-
ponent of the Maurer–Cartan equation. This follows from the proof of Proposition 3.10
together with the fact that the inclusion of normalized simplicial cochains into differential
forms is a homotopy retract (a simplicial version of the de Rham theorem).

4.2.4. Special case: The groupoid. Theorem 4.7 holds for any smooth A1 algebra or
category A, without any assumptions on degrees. Now, recall that if a dg Lie algebra
g vanishes in negative degrees, its set of Maurer–Cartan solutions admits an equivalent,
simpler, description than the full simplicial set, given by the Deligne groupoid MC.g/=g0.
The following result can be seen as a slight refinement of Theorem 4.7 in the case where
A has vanishing Hochschild cohomology in negative degrees.

Theorem 4.8. Assume that HH i .A/ D 0 for all i < 0. Then, there is a bijection

HC�� .A/nondeg ' �0.MC.g/nondeg=g
0/;

where gD
Q
`�2C

�
.`;d/

.A/, between nondegenerate negative cyclic homology classes and
orbits in the groupoid of nondegenerate pre-CY structures.

This is almost a direct corollary of Theorem 4.7 and Proposition 4.6; the only reason
why it does not follow directly is because we are not assuming that g vanishes at chain
level in negative degrees. Nevertheless, we can prove this fact explicitly by an iterative
calculation that we now sketch.

Proof. We first note that even though the dg Lie algebra g is not nilpotent, the action of
g is still well defined; each element x 2 g is a sum of vertices with at least two outgoing
arrows, so Œx;�� increases the number of outgoing arrows. So, the sum defining exp.x/y
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is finite at each truncated level
Q
i>2 C

�
i;d
.A/Œ1�=

Q
i>` C

�
i;d
.A/, and the action lifts to the

limit.
Recall that we have maps

ˆ W CC�d .A/nondeg � .Md -preCY.A//nondeg W L:

One of the directions is easier: let us pick � 2 CC�
d
.A/nondeg and take m D ˆ.�/; by

definition, this satisfies
em D �.m; �/C Œm; p�;

where em is the “energy function” associated tom, � is the sum of tube quivers we defined
previously, and p 2

Q
i>2 C

1
i;d
.A/. Defining now �0 D L.m/, by definition, we have

em D �.m; �
0/C Œm; q�;

for some other element q 2
Q
i>2 C

1
i;d
.A/. Therefore, �.m; �0 � �/ D Œm; q � p�, and

since �.m;�/ is a quasi-isomorphism in cohomology, we have Œ�0� D Œ��.
The remaining direction is harder and has to be done iteratively in `. We now start

with a pre-CY structurem, take �DL.m/ and nDˆ.�/; reusing the symbols p, q, these
satisfy equations

em D �.m; �/C Œm; p�; en D �.n; �/C Œn; q�:

We have to prove that there is

x D x.2/ C x.3/ C � � � 2
Y
`>2

C 1`;d .A/

such that n D m C Œx; m� C 1
2
Œx; Œx; m�� C � � � . At level ` D 2, this is simply n.2/ D

m.2/ C Œx.2/; ��.
Let us then write s.2/ D m.2/ � n.2/. Subtracting the equations satisfied by n.2/, m.2/,

we get

�s.2/ D �.n; �/ � �.m; �/C Œ�; q.2/ � p.2/�

D �
1

2

0BBBBBBB@ �0

s.2/

n.2/

C �0

s.2/

n.2/

1CCCCCCCA

�
1

2

0BBBBBBB@ �0

m.2/

s.2/

C �0

m.2/

s.2/

1CCCCCCCA
C Œ�; q.2/ � p.2/�:
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But since �.2/; �0 are closed under the relevant differentials, and both m.2/ and n.2/ are
representatives of the inverse of �0, each of the terms in the parentheses above evaluates
to something cohomologous to s.2/. In other words, there is r.2/ 2 C d�1.2/

.A/ such that

Œ�; r.2/� D 2s.2/ �
1

2

0BBBBBBB@ �0

s.2/

n.2/

C �0

s.2/

n.2/

1CCCCCCCA

C
1

2

0BBBBBBB@ �0

m.2/

s.2/

C �0

m.2/

s.2/

1CCCCCCCA :

Using this fact, we find that s.2/ D Œ�; r.2/ C q.2/ C p.2/�, so there is a solution s.2/ D
Œx.2/; ��.

In order to solve the equation in the next order ` D 3, we also have to show that this
solution for x.2/ can be of a particular form. Substituting for s.2/ in the equation, and again
using the closedness of �.2/, �0, we have

Œ�; x.2/� D
1

2

266666664�; �0

m.2/

x.2/

C �0

m.2/

x.2/

C �0

x.2/

n.2/

C �0

x.2/

n.2/

377777775
C Œ�; q.2/ � p.2/�:

Note that Œ�; x.2/� is a closed element of degree d � 1 in C �
.2/
.A/. Now, since the element

m.2/ was nondegenerate, we have a quasi-isomorphism of bimodules A Š AŠŒd �, so we
have a quasi-isomorphism of complexes

C �.2/.A/ ' HomA-A.A;A
Š/ ' HomA-A.A;AŒ�d�/ ' C

��d .A/;
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so since we assumed HH�1.A/ D 0, we can find x.2/ solving the equation

x.2/ D
1

2

0BBBBBBB@ �0

m.2/

x.2/

C �0

m.2/

x.2/

C �0

x.2/

n.2/

C �0

x.2/

n.2/

1CCCCCCCACq.2/ � p.2/;

up to Œ�;��-exact terms. For the next step ` D 3, we write

n.3/ D m.3/ C Œx.2/; m.2/�C
1

2
Œx.2/; Œx.2/; ��� � s.3/

and write the analogous equation, substituting in the above solution for x.2/, solving for
x.3/ in s.3/ D Œ�; x.3/�. Proceeding like that for each ` gives a solution

x D x.2/ C x.3/ C � � �

for the “gauge transformation” taking m to n.
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