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Hopf-cyclic coefficients in the braided setting

Ilya Shapiro

Abstract. Considering the monoidal category C obtained as modules over a Hopf algebra H in a
rigid braided category B, we prove decomposition results for the Hochschild and cyclic homology
categories HH.C/ and HC.C/ of C . This is accomplished by defining a notion of a (stable) anti-
Yetter–Drinfeld module with coefficients in a (stable) braided module over B. When the stable
braided module is HH.B/, we recover HH.C/ and HC.C/. The decomposition of HC.C/ now
follows from that of HH.B/.

1. Introduction

Cyclic (co)homology for associative algebras was introduced independently by B. Tsygan
and A. Connes in the 1980s. The original ideas have since been significantly extended
and branched out into many fields. Our investigations in this paper focus on the equiv-
ariant flavor that began with Connes–Moscovici [6] and was generalized into Hopf-cyclic
cohomology by Hajac–Khalkhali–Rangipour–Sommerhäuser [9,10] and Jara–Ştefan [11].
Roughly speaking, the original theory defines cohomology groups for an associative alge-
bra which play the role of the de Rham cohomology in the noncommutative setting. The
equivariant version considers an algebra with a compatible action of a Hopf algebra. It
turns out that analogous to D-modules in the de Rham cohomology, one has coefficients
in the Hopf setting; it is an interesting fact that unlike the de Rham setting, Hopf-cyclic
cohomology requires coefficients; i.e., there is no canonical trivial coefficient. These coef-
ficients are known as stable anti-Yetter–Drinfeld modules, due to their similarity to the
usual Yetter–Drinfeld modules, with an important distinction being that stability is an
extra condition exclusive to the former.

This paper concerns itself with the case of a Hopf algebra H in a rigid braided cate-
gory B, braiding being required for the notion of a Hopf algebra to exist. The question of
what should be the Hopf-cyclic coefficients, i.e., (stable) anti-Yetter–Drinfeld modules in
this setting, has first been examined in [14]. The work therein was recently refined and clar-
ified in [2]; the latter should also be compared to [1]. The approach consists of imitating
the classical definition, i.e., that of modules and comodules over H with a compatibility
condition between the two structures, plus stability. These investigations can be considered
as the anti-center counterpart to those in [18] that concern the center; see Corollary 4.44.
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Our approach is from a different perspective, motivated by the example in Section 5.
Namely, a usual Hopf algebra T is simplified when replaced by a Hopf algebra H in
a braided B. If one wants to understand the usual (stable) anti-Yetter–Drinfeld modules
for T , could one do so in terms of H? To answer this question, let C D HB-mod be the
category ofH -modules; it is monoidal; see Section 2.1. The classical definition of (stable)
anti-Yetter–Drinfeld modules has been generalized, and in particular, it is now possible to
talk about them for a general monoidal category C . Denote anti-Yetter–Drinfeld modules
and their stable variants by HH.C/ and HC.C/, respectively; see Section 2.2. We now
need to describe HC.C/ as modules and comodules over H . Surprisingly, the answer
to our question is different from the existing literature, and in particular, it strictly sub-
sumes [2].

Namely, in Definition 4.23, we describe (stable) anti-Yetter–Drinfeld modules with
coefficients in a (stable) braided module M over B; see Definition 3.2. Theorems 4.24
and 4.42 then complete the description of HC.C/ in terms of modules and comodules
over H in the stable braided module HH.B/. Note that HH.B/ itself consists of anti-
Yetter–Drinfeld modules for B. As a stable braided module, HH.B/, in certain cases
such as in Section 3.4, admits a decomposition which in turn decomposes HC.C/; see
Corollary 4.45. If B is balanced, as is the case considered in [2], then HH.B/ admits
a summand, as a stable braided module, isomorphic to B itself. We can then summarize
[2,14] by stating that the definitions given there recover a part of the summand ofHC.C/
that corresponds only to B in the full HH.B/; see Lemma 4.26. Note that such a piece
need not exist; in fact it exists if and only if B is balanced; see Lemma 3.18. The choice
of the twist in the balancing affects the category of stable anti-Yetter–Drinfeld modules
that one gets.

The notion of a braided module is equivalent to a module over HH.B/ where the
latter is given the “cylinder stacking” product from factorization homology [3]. This point
of view is surveyed in [15] and will be ignored in this paper as we are mainly focused on
the module/comodule description of HC.C/ and the explicit calculations of Section 5.

1.1. Conventions

We fix an algebraically closed ground field k, of characteristic 0; Vec denotes the cate-
gory of finite-dimensional k-vector spaces. Our monoidal categories are linear over k. All
algebras A in monoidal categories C are assumed to be unital associative; we say that
A 2 Alg.C/. We let AC -mod stand for left A-modules in C which is a right C -module
category. Furthermore, if M is a C -module category, then AM-mod denotes the category
of A-modules in M. Finally, if A is a monad on a category C0, then AC0 -mod denotes the
category of A-modules in C0.

1.2. Organization of the paper

After the preliminaries of Section 2, we introduce stable braided modules over a braided
category in Section 3. They are an essential ingredient for defining the diagram over the
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Connes’ cyclic category ƒ that yields the notion of (stable) anti-Yetter–Drinfeld modules
in the braided setting. Braided modules are in fact our third attempt at the right concept,
with the first being centered around the notion of a twist in a braided category (2.1), the
second being the L of Definition 3.11. The main examples of stable braided modules are
HH.B/ and B& (& is an anti-twist on B), with the decomposition of Section 3.4:

HH.B/ D
M
&

B&

relating the two in a special case.
Section 4 justifies the preceding definitions by demonstrating that

Cn D H
˝� .nC1/

M
-mod

is indeed a diagram of categories over ƒ. This yields the monadic description of the limit
which in turn forces the following definition, which is an abridged version of Defini-
tion 4.23.

Definition 1.1. Suppose that M is a braided B-module. Let aYDHM denote the category
of M 2M such that

M 2 HM-mod and M 2 �HM-mod:

And the two actions are compatible as follows:

M∗HH

+

M

EH,M

∗H

=

H M

M

Here, EH;M is the braided module structure of M. Section 4.5 explains how to go
from an M above to a cohomology theory for algebras in HB-mod. This section is useful
to us here because it helps prove the main result of the paper (a version of Theorem 4.42).

Theorem 1.2. Let H 2 B be a Hopf algebra, and let C D HB-mod. Then,

aYDHHH.B/ ' HH.C/

and the isomorphism identifies &H on LHS with & on RHS.

This describes HC.C/ as modules/comodules in HH.B/ over H . See also Corol-
lary 4.44 that analogously describes aYDHB&

. Note that, after the fact, one could use
Definition 1.1 specifically for M D HH.B/, and then prove Theorem 1.2 directly. This
avoids any discussion of diagrams of categories, limits, and monads. The trade-off is
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that the proofs would increase significantly in difficulty and the motivation behind the
definition would be shrouded in mystery. Namely, it would sever the connection to the
conceptual framework that produced these notions naturally and connects them to each
other and the wider mathematical setting.

Section 5 applies the machinery developed in this text to the Taft algebra Tp.�/. The
monoidal category is

C D Tp.�/-mod D HB-mod

for an appropriateH in an appropriate B. The category of the classical stable anti-Yetter–
Drinfeld modules for Tp.�/ thus exhibits a decomposition into packets; these are explicitly
identified via calculations.

Finally, the appendix contains some material that is likely to be general knowledge
and is mostly included to fix notation.

2. Some preliminaries

Here, we collect some background material that facilitates the reading of this text. We
aim to give references, but avoid precise definitions; rather we hope to impart a working
understanding of the concepts sufficient for following the arguments in the paper.

2.1. Rigid braided categories and Hopf algebras

Roughly speaking, a monoidal category C [12] is a category equipped with a bifunctor
˝ W C � C ! C written as .X; Y / 7! X ˝ Y and an associativity constraint

˛X;Y;Z W X ˝ .Y ˝Z/ ' .X ˝ Y /˝Z

that satisfies a coherence (pentagon) axiom. There is also a monoidal unit 1 2 C with nat-
ural requirements. The main point of the pentagon axiom is to ensure the following. Take
a finite number of objects in C and use the ˝ iteratively to construct a single object. This
object depends on the particular choice of bracketing, but any two choices are isomorphic
using successive applications of the associator ˛. Now the isomorphism could in principle
depend on the particular sequence of the applications of the associator, but it does not. A
left or right C -module category M is defined similarly; i.e., replace one of the C ’s by an
M in the definitions. This and other concepts can be found in [7].

A monoidal category is rigid if any object X has a right �X and a left dual X�. Note
that in general,X��©X ; we useX# to denote the former. We have evaluation and coeval-
uation maps: X� ˝ X ! 1, X ˝ �X ! 1, 1! X ˝ X�, and 1! �X ˝ X such that
the functor pairs .� ˝ X;� ˝ X�/ and .X ˝ �; �X ˝ �/ are adjoint pairs; this is best
understood in terms of straightening strings (see below for graphical calculus). A category
is pivotal if it is equipped with a pivot: a monoidal isomorphism � 2 Nat˝.Id; .�/#/; i.e.,
�X W X ! X# with

�XY D �X ˝ �Y :
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Recall that a monoidal category B is braided [12] if there is a braiding isomorphism

�X;Y W X ˝ Y ' Y ˝X:

The braiding is to satisfy certain coherence conditions that ensure that braid diagrams can
be used to perform calculations; thus, this structure gives rise to braid group actions on
powers X˝n. The braided category B is symmetric if

�2X;Y D �Y;X�X;Y D IdX˝Y I

the braid action then factors through the symmetric group. On the opposite side of the
spectrum, we say that B is non-degenerate if �2X;Y D IdX˝Y , for all Y , implies thatX D 1.

A braided category is balanced if it is equipped with a twist � 2 Nat.Id; Id/; i.e., an
isomorphism �X W X ! X such that

�XY D �
2
X;Y �X ˝ �Y : (2.1)

Thus, a balanced category, though it is not necessarily symmetric, is so up to a “boundary”.
A balanced category is a ribbon category if ��X� D �X for all X .

A bialgebra A in B [20] is an algebra and a coalgebra in a compatible manner; to
express the compatibility, we need the braiding � . More precisely, .A; m; u; �; "/ is a
bialgebra if .m; u/ is an algebra structure, .�; "/ a coalgebra structure, and

�m D .m˝m/.IdA ˝ �A;A ˝ IdA/.�˝�/;

�u D u˝ u, "m D "˝ ", and "u D Id1. Namely, recall (or see Definition 6.2) that we
can form the algebra A˝� A and we require that � W A! A˝� A and " W A! 1 are
algebra maps.

In particular, given V;W 2 AB-mod, we can form V ˝� W 2 .A˝� A/B-mod, and
then use �� W .A˝� A/B-mod! AB-mod to define a monoidal structure on AB-mod:

V ~W WD ��.V ˝� W /: (2.2)

A Hopf algebra H in B is a bialgebra with the additional property that it has an
(invertible, for us) antipode S W H ! H that satisfies

m.S ˝ IdH /� D u" D m.IdH ˝ S/�:

It follows that S is both anti-multiplicative and anti-comultiplicative; in particular,

Sm D m.S ˝ S/�H;H ; �S D �H;H .S ˝ S/�:

Such an S is unique if it exists and S ensures the existence of duals for H -modules.
In this paper, we will consider a Hopf algebra H in a rigid braided category B. It is

immediate by the above that
C D HB-mod;

the category of modules overH in B, is a rigid monoidal category. That is our main object
of interest.
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2.2. Categories HH.C /, HC.C /, and Hopf cyclic coefficients

Let C be a monoidal category. Denote the product by

�� W C � C ! C (2.3)

and the unit by
"� W Vec! C : (2.4)

Categorifying the construction of a simplicial or cyclic object [19] associated with an
algebra, we have a diagram, see Section 6.3, over Connes’ cyclic category ƒ, with

Cn D C�.nC1/:

It is constructed from three key structures: (2.3), (2.4), and � W C�2 ! C�2, which flips
the two copies. We then have

HH.C/ D lim
�!
�op

C� and HC.C/ D lim
�!
ƒop

C�

where � is the simplex category.
The Hochschild homology category HH.C/ has a much simpler description that is

essentially a copy of the classical center construction Z.C/. Namely, HH.C/ consists of
M 2 C equipped with the structure of isomorphisms:

��M;X WM ˝X !
#X ˝M

satisfying ��M;XY D �
�
M;Y �

�
M;X . Note that, unlike Z.C/, there is also a & 2 Aut.IdHH.C//:

&M D .IdM ˝ evM #;M�/�
��1
M;M .IdM ˝ coevM;M�/I

also see (3.2). The cyclic homology category HC.C/ is the full subcategory of HH.C/
consisting of objects M with &M D IdM ; we say that HC.C/ D HH.C/& .

In [21], we provide a description of HH.C/, which is applicable to our case here, in
terms of a monad on C . Namely,

A.M/ D �����M;

where �� is the right adjoint to the product (2.3). It is shown that the limit can be iden-
tified with AC -mod. The category HC.C/ is obtained using the action of z 2 Z.A/ that
produces & . The monadic approach is central to this paper.

Let H be a usual Hopf algebra, i.e., in vector spaces. Let C D H -mod, so that

Cn D H
˝.nC1/-mod

and the three structures are literally�� (where� WH!H˝2 is the coproduct), "� (where
" WH!k is the counit), and �D�� (where �.x˝y/Dy˝x for x;y2H ). Having defined
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the diagram overƒ, we obtain thatHH.C/ is exactly the usual anti-Yetter–Drinfeld mod-
ules. The path from the limit to the module/comodule description lies through the monad
A which in this case is isomorphic to Homk.H;�/.

The main difficulty, as far as the limit description is concerned, in passing from H in
Vec to H in a rigid braided B is the absence of � . Keep in mind that HH.HB-mod/ is
still perfectly well defined according to the above discussion. The natural thing to try is
�H;H W H

˝2 ! H˝2 but that is not an algebra map in B (unless B is symmetric) so that
in general Cn DH

˝.nC1/

B
-mod is not even a diagram over�. This problem is rectified by

replacing B with a stable braided module M; see Definition 3.2.

2.3. Graphical calculus: string diagrams

Most of the computations in this paper are done using string diagrams. These depict the
compositions of various structures available in rigid braided categories and drastically
simplify their manipulations. Our string diagrams are read top to bottom. The following
is a compact summary of the notation:

A B

τA,B
A B

τ−1
A,B

A A

mA

f : A→ B

A M
ρM

C

∆C

f

A

B B

B

A A A C C M

A

A∗A

∗A

coev∗A,A A⊗ ∗A→ 1

A∗

A∗A

A

1→ A⊗ A∗ evA∗,A

A

u : 1→ A

ε : C → 1
C

S =

In the above, �A;B is the braided structure with ��1A;B D .�B;A/
�1. Thus, a string cross-

ing over another is “doing all the work”. This is important to keep in mind when dealing
with multiple crossing structures where the type of crossing will be marked accordingly;
see Definition 3.11 and Proposition 4.33.

If A is an algebra, then mA denotes its multiplication, while if C is a coalgebra, then
�C is its comultiplication. If M is an A-module, then �M is the module structure. The
arcs above denote the evaluation and the co-evaluation maps of the rigid structure. The
boxed f marks a morphism in the category, with the circled plus denoting the antipode S
of a Hopf algebra. Finally, we have the unit and counit maps.

3. (Stable) braided modules
Let B be a rigid braided category. LetA;B be algebras in B. Recall (or see Definition 6.2)
that we can construct, using the braiding, new algebras: A˝�

�1
B and B ˝� A. Note that

�A;B W A˝
��1 B ! B ˝� A
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is an isomorphism of algebras. This is not going to work for the cyclic shift because the
two algebras use different � ’s. We need something more sophisticated.

The following notion is essentially identical to the one in [4], with differences that
make our definition more suitable to our case. It allows us to define a diagram over the
simplex category �, and thus, the Hochschild homology category.

Definition 3.1. A B-module category M is braided if it is equipped with the data of a
natural isomorphism EX;M of the action functor (B �M!M) satisfying

(C1) EY;XM D ��1X;YEY;M �
�1
Y;X ,

(C2) EYX;M D EY;XMEX;M .

We need the following enhancement of the definition above, in order to obtain a dia-
gram over Connes’ cyclic category ƒ, and thus, cyclic homology.

Definition 3.2. A braided B-module M is stable if it is equipped with the data of a natural
isomorphism & W IdM ! IdM satisfying

EX;M D &XM&
�1
M :

Note that given a braided structure, a stable structure compatible with it is not unique.
On the other hand, & determines E and any E that comes from a & satisfies (C2) automat-
ically.

Remark 3.3. Unless B is symmetric, B need not be a braided module over itself. When
it is, there will be usually more than one natural braided structure and even more stable
structures. On the other hand, if B is symmetric, then any B-module M can be endowed
with a stable braided structure &M D IdM for M 2M.

Definition 3.4. A B-equivariant functorF WM!M0 between braided modules is braided
if the following diagram commutes:

F.X �M/ //

F.EX;M /

��

X � F.M/

EX;F .M/

��
F.X �M/ // X � F.M/;

where the horizontal arrows are part of the equivariant structure. If M;M0 are stable, then
F is stable if

F.&M / D &F.M/:

Note that stable implies braided.

3.1. First example: HH.B/

Let C be a rigid category. Then, the center of C is a rigid braided category Z.C/ and it has
a natural stable braided module HH.C/ (the anti-center, i.e., the Hochschild homology



Hopf-cyclic coefficients in the braided setting 979

of C ). Namely, for Z 2 Z.C/ and M 2 HH.C/, we have Z �M 2 HH.C/ as follows
(X 2 C ):

X

X#

Z ·M

Z ·M

=

X

X#

Z

Z

M

M

X (3.1)

The stable and induced braided structures are

M#

ςM = M∗

Z

Z

M

M

M

M

M

EZ,M = (3.2)

and the verification of the conditions is immediate. Namely,we check thatEZ;M&MD&ZM,
the map &M is invertible with its inverse being its reflection in the vertical axis, and while
(C2) is automatic, (C1) is immediate by inspection. To summarize, consider the following.

Lemma 3.5. Let C be a rigid category. Then, HH.C/ is a stable braided Z.C/-module
via (3.1) and (3.2).

Remark 3.6. If F W B ! B 0 is a braided functor between braided categories and M0

is a (stable) braided B 0-module, then F �M0 is a (stable) braided B-module, via F , i.e.,
X �M D F.X/ �M .

Corollary 3.7. Let B be a rigid braided category. Then, HH.B/ is a stable braided
B-module via the embedding B ! Z.B/ given by � , the braiding of B.

Remark 3.8. LetH 2B be a Hopf algebra. Endow an X 2B with the trivialH -module
structure via ", the counit of H . Let V 2 C D HB-mod. Then, while ��1X;V is H -linear,
�X;V is not.

Note that by the above remark we have a braided embedding

xB ! Z.C/;

where xB denotes the braided structure with ��1 replacing � . Thus, the central structure
of X , viewed as an object in C via ", is given by ��1X;�.

Corollary 3.9. Let H 2 B be a Hopf algebra, and let C D HB-mod. Then, HH.C/ is a
stable braided xB-module.

3.2. More (stable) braided modules: LB-mod

So far the only stable braided module that B is guaranteed to have is HH.B/. In this
section, we define a notion of an algebra L in HH.B/ so that LB-mod is a (stable)
braided B-module. The justification for calling L an algebra in HH.B/ is that HH.B/
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does indeed possess a monoidal structure with respect to which L is indeed an algebra.
We do not pursue this here.

Remark 3.10. In this section, we need to start distinguishing crossings, something that
was not necessary in Section 3.1 as the central or anti-central structure was the only struc-
ture an object processed there. Here, an object in HH.B/ can be crossed over another
object in B in two ways, as an object in B or as an object in HH.B/. We distinguish
them as indicated.

Definition 3.11. Let L be an algebra in B, and we say that L is an algebra in HH.B/ if
L 2HH.B/; in particular, L is equipped with the structure �ıX;L (the hollow dot indicates
that it is not the L 2 B � Z.B/ structure):

X L

L X#

τ◦X,L =

(3.3)

for X 2 B, which satisfies

X L

L X#

L X L

L

LX L

L

L

==

X#X#

(3.4)

We say that L is stable if it is so as an object of HH.B/; i.e., see (3.2); we have &L D Id.

Definition 3.12. LetU WLB-mod!HH.B/ be given byU.M/DM with the structure:

X M

M X#

X M

M

L

:=

X#

(3.5)

When considered as a module over itself, L recovers its original HH.B/ structure.
The following lemma is immediate.

Lemma 3.13. LetL 2HH.B/ be an algebra. LetM 2LB-mod. Then, with the structure
from Definition 3.12, we have

X M

M X#

L X M

M

LX M

M

L

==

X#X#

(3.6)
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The following corollary is immediate using both of the equalities in Lemma 3.13.

Corollary 3.14. With L;M as above, we have

&M�L;M D �L;M&L ˝ &M :

Definition 3.15. Define a B-module structure on LB-mod as follows: for X 2 B and
M 2 LB-mod, we set X �M D X ˝M with

�L;XM D �L;M �
�1
L;X :

The following lemma is immediate.

Lemma 3.16. The functor U W LB-mod! HH.B/ is B-equivariant.

Theorem 3.17. Let L 2 HH.B/ be an algebra. Then,

• LB-mod is naturally a braided B-module.

• If L is stable, then so is LB-mod.

• U is a (stable) braided functor.

Proof. For X 2 B, M 2 LB-mod, consider

X

X M

M

EX,M = (3.7)

Then, by Lemma 3.13 and Definition 3.15, we have that EX;M is a map of L-modules.
Observe that (C1) follows from Lemma 3.16, and this lemma also reduces (C2) to the case
of HH.B/. Namely, to prove EY;XMEX;M D EYX;M , we need only to observe that

X

X M

MY

Y

=

X MY

X MY

(3.8)

which proves that HH.B/ is a braided B-module, a fact that previously followed from
the existence of a stable structure.

If L is stable, then by Corollary 3.14, the map &M is L-linear, and we again have

EX;M&M D &XM ;

proving the second statement.
The last statement is immediate; the definitions were made to make it so.
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3.3. Categorified modular pairs in involution: B&

We now specialize to the case when L D 1, but with a necessarily non-trivial HH.B/
structure. The latter is equivalent to a pivotal structure, i.e., a monoidal natural isomor-
phism

�X W X ! X#

for all X 2 B. More precisely, we have

�ıX;1 D �X ;

where �ı denotes the HH.B/ structure of 1. It is not hard to see that L D 1 is a stable
algebra in HH.B/.

Observe that in this case, LB-mod D B as left B-modules. Thus, if M 2 B, then it
acquires HH.B/ structure:

X M

M X#

X M

M

=

X#

ρ

, ςM =

M

M

τ◦X,M = (3.9)

Note that � D &�1 is a twist on B; i.e.,

�XY D �Y;X�X;Y �X�Y

so that B is balanced. The structures �; & , and � are equivalent. Explicitly, the braided
structure on B is

EX;M D �
�2
X;M&X :

Lemma 3.18. Consider B as a module over itself under left multiplication. Then, braided
structures on this module are in bijective correspondence with anti-twists; i.e.,&2Aut.IdB/

satisfying
&XY D �

�2&X&Y :

Proof. Given & , letE&X;M D �
�2
X;M&X ; then, it is a stable braided structure by the preceding

discussion. Conversely, given EX;M , let &EX D EX;1. Then,

&EXY D EXY;1 D EX;Y1EY;1 D EX;Y &
E
Y D �

�1
Y;XEX;1�

�1
X;Y &

E
Y D �

�2
X;Y &

E
X &

E
Y ;

so that &E is an anti-twist. Furthermore,

&E
&

X D E
&
X;1 D �

�2
X;1&X D &X

and
E
&E

X;M D �
�2
X;M&

E
X D �

�2
X;MEX;1 D �

�1
M;XEX;1�

�1
X;M D EX;M :



Hopf-cyclic coefficients in the braided setting 983

Remark 3.19. Lemma 3.18 shows that any braided module structure on B is automat-
ically stable in a canonical way: &X D EX;1. Note, however, that here stable structures
form a torsor over AutB.1/ and so are not unique.

Definition 3.20. If & is an anti-twist on B, let B& denote the corresponding stable braided
module.

Remark 3.21. With the assistance of Theorem 3.17, we have thatM
&2anti-twists

B& ! HH.B/

is a fully faithful stable braided embedding.

Definition 3.22. Let
G D .B�;˝/

be the abelian group of isomorphism classes of invertible objects in B. Let

yG D
�
Aut˝.IdB/; ı

�
be the abelian group of monoidal natural automorphisms of IdB . If y 2 B�, i.e., y is an
invertible object of B, then let �y 2 Aut˝.IdB/ be given by

X

φ
y
X :=

X

y y−1

(3.10)

Thus, � W B� ! Aut˝.IdB/ is a group homomorphism.

Lemma 3.23. If F WB& !B& 0 is a braided equivalence, then F.M/DM ˝ y for some
y 2 B� and

& 0 D �y&:

Furthermore, F is stable if
& 0y D Idy :

Proof. Any equivariant equivalence F is of the form F.M/ D My for some y 2 B�.
F braided needs EX;M D E 0X;My , so ��2X;M&X D �

�2
X;My&

0
X , so

��1M;X&X�
�1
X;M D �

�1
M;X�

�2
X;Y &

0
X�
�1
X;M ;

so &X D ��2X;Y &
0
X , so & 0D �y& . In addition, for the stability of F , we must have & 0My D &M .

Thus,

&M D &
0
My D �

y
My&My D �

y
M�

y
y �
�2
M;y&M&y D &M .�

y
M �
�2
M;y/.�

y
y &y/ D &M&

0
y ; (3.11)

so & 0y D Idy .
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Note that Lemma 3.23 classifies braided structures on B together with their equiva-
lences. It also accounts for their stable equivalences if the canonical stable structures are
considered. If we set

C D AutB.1/;

then C is canonically isomorphic, as an abelian group, to AutB.y/ for every y 2 B�.

Remark 3.24. The set of stable structures on B& is canonically isomorphic to C . Fur-
thermore, if � ˝ y W B& ! B& 0 is a braided equivalence, then by (3.11), the new stable
structure on B& that it inherited from B& 0 is

&new
D && 0y ; & 0y 2 C:

The set of anti-twists of B is a yG-torsor. Let G denote the action groupoid of G on
anti-twists via �. Define � W G ! C by �.y; &/ D �yy &y ; then � is a homomorphism. The
following is immediate.

Corollary 3.25. Thegroupoid of braided structures on B is isomorphic to G. The groupoid
of canonically stable braided structures is isomorphic to ker.�/.

3.4. HH.B/ decomposes into B&’s

Here, we examine in detail a case when the fully faithful embedding of Remark 3.21 is
an equivalence; we will use this in Section 5 for explicit computations. Let G be a finite
abelian group. One may consider VecG , the monoidal category ofG-graded vector spaces.
More precisely, with Vx 2 Vec,

V 2 VecG is given by V D ˚x2GVx and .V ˝W /x D ˚y2GVy ˝Wy�1x :

Let � WG �G! k� be a bi-character ofG. Then, B D .VecG ; �/ is a ribbon category
with the braiding:

Vx ˝Wy ! Wy ˝ Vx

v ˝ w 7! �.x; y/w ˝ v

and the ribbon element �.v/ D �.x; x/v for v 2 Vx . Define

!.x; y/ D �.x; y/�.y; x/

and let & D ��1 be the canonical anti-twist, so that

&.x/ D �.x; x�1/:

Note that any anti-twist can be obtained from & via &� with � 2 yG.

Lemma 3.26. Set B� D B&�, the stable braided B-module B with stable braided struc-
ture given by the anti-twist &�. Then,

HH.B/ D
M
�2 yG

B�

as stable braided B-modules.
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Proof. In light of Remark 3.21, it suffices to point out that as abelian categories we have
HH.VecG/ D HH.B/ D Z.B/ D Vec

G� yG
.

An immediate corollary of Lemma 3.23 is the following.

Lemma 3.27. As braided modules, B�'B�, if and only if there exists a y2G such that

�.x/ D �.x/!.x; y/ 8x 2 G:

They are isomorphic as stable braided modules if in addition

�.y/ D &.y/:

Corollary 3.28. Consider the bicharacter ! as a homomorphism ! W G ! yG.

• If ! is trivial, thus, B is symmetric, and then B� ' B� as braided modules if and
only if � D �.

• If ! is an isomorphism so that B is non-degenerate, then B� ' B� as braided mod-
ules for all �;� 2 yG. However, as stable braided modules,

B� ' B� ” &
�
!�1.�/

�
D &

�
!�1.�/

�
:

• Recall that B is equipped with a canonical anti-twist &.x/ D �.x; x�1/. If ! is an
isomorphism, then �

HH.B/; &
�
D

M
y2G

�
B& ; &

�1.y/&
�

as stable braided modules, where .B& ; &
�1.y/&/ denotes the braided module B& but

with the canonical stable structure modified by the scalar &�1.y/.

Proof. The first two items are consequences of Lemma 3.27. The last follows from Re-
mark 3.24.

Remark 3.29. Note that the groupoid G of Corollary 3.25 admits an involution .y; &/ 7!
.y�1; &�/ where &�X D

�&X� ; in the above, .&�/� D &��1. Observe that if B� ' B��1 as
braided modules, then since &.x/D &.x�1/, B� 'B��1 as stable braided modules. Thus,
if ! is an isomorphism, and � ¤ ��1, we have a pair of stably isomorphic components in
HH.B/.

3.5. HH.B/ does not decompose into B&’s

Consider a non-abelian finite group G. Let B D Rep.G/ be the symmetric braided cate-
gory of finite-dimensionalG-representations, with the trivial braiding. For g 2G, consider
the B-module category Mg D Rep.CG.g//, where CG.g/ denotes the centralizer of g
in G. For M 2Mg , define

&M D gjM :

Then, & is a stable braided structure on Mg. Let I denote the set of conjugacy classes ofG,
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let gi be a representative of the i th class, and then it is immediate that

HH.B/ D
M
i2I

Mgi

as stable braided modules. Thus, the embedding of Remark 3.21 recovers only the part of
HH.B/ that corresponds to singleton conjugacy classes, i.e., elements g 2 Z.G/.

4. Stable modules and cyclic homology

In this section, we demonstrate the relevance for us of the above notions of stability and
braiding of module categories over B.

Lemma 4.1. Let M be a braided B-module, B 2 B an algebra, and M 2 BM-mod. Let
�B;M W B �M !M denote the B-module structure on M . Then,

y�B;M D �B;MEB;M

is also a B-module structure on M , denoted by BM . Furthermore, if M is stable, then

&M WM !
BM

is an isomorphism in BM-mod.

Proof. That y�B;M is an action is immediate from (C2). On the other hand,

y�B;M&M D �B;MEB;M&M D �B;M&BM D &M�B;M :

Note that we also have MB obtained by modifying the action; thus, �B;ME�1B;M , so
that BMB DM and M 7! BM is an automorphism of BM-mod.

Lemma 4.2. LetM 2A˝� BM-mod, then BM with the sameA-action, and theB-action
modified to y� is in B ˝� AM-mod.

Proof. In light of (6.4), this follows from

�A;M y�B;M �
�1
B;A D �A;M�B;MEB;M �

�1
B;A D �B;M�A;M �

�1
A;BEB;M �

�1
B;A

D �B;M�A;MEB;AM D �B;MEB;M�A;M D y�B;M�A;M :

The following definition is why we need braided B-modules. It is essentially equiva-
lent to the concept.

Definition 4.3. Let M be a braided B-module and let A;B be algebras in B. We define
an isomorphism of categories:

�M
A;B W A˝

� BM-mod! B ˝� AM-mod

by �M
A;B.M/ D BM .
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Remark 4.4. Let f W A! A0 and g W B! B 0 be algebra maps. Then, the functors �M
A;B ı

.f � ˝ g�/ and .g� ˝ f �/ ı �M
A0;B 0 from A0 ˝� B 0

M
-mod to B ˝� AM-mod are equal.

Lemma 4.5. Let M 2 A˝� B ˝� CM-mod. Then, in B ˝� C ˝� AM-mod, we have

B.CM/ D B˝�CM; i.e., �M
C˝�A;B�

M
A˝�B;C D �

M
A;B˝�C :

We say that �M
�;� is associative in the second component.

Proof. The A-action is unaffected, for the rest:

y�BC;M D �B;M�C;MEBC;M D �B;M�C;MEB;CMEC;M

D �B;MEB;M�C;MEC;M D y�B;M y�C;M :

Corollary 4.6. If M is a stable braided B-module, then

& W Id! �M
B;A�

M
A;B

is a natural isomorphism in A˝� BM-mod.

Proof. By Lemma 4.5, we have

�M
B;A�

M
A;B D �

M
1;A˝�B

and Lemma 4.1 completes the proof.

4.1. Definitions of HHM.C / and HCM.C / via limits

Assume that M is a braided B-module. For n � 0, define the categories of modules

Cn D H
˝�nC1
M

-mod:

We will abuse notation and writeHnC1 for the algebraH˝
�nC1DH0˝

� � � � ˝�Hn in B.

Definition 4.7. Define functors:

�n D �
M
Hn;H W Cn ! Cn; (4.1)

di D .IdiH ˝�˝ Idn�1�iH /� W Cn ! Cn�1; 0 � i � n � 1; (4.2)

dn D d0�n; (4.3)

si D .IdiC1H ˝ "˝ Idn�iH /� W Cn ! CnC1; �1 � i � n: (4.4)

Lemma 4.8. The functors satisfy the following relations (the equalities are those of func-
tors; they are not isomorphisms):

di�n D �n�1di�1; 1 � i � n � 1; (4.5)

d0�
2
n D �n�1dn�1: (4.6)
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Equations (4.5) and (4.6) together with (4.3) imply that (4.5) is valid for 1 � i � n:

si�n D �nC1si�1; 0 � i � n; (4.7)

s�1 D �nC1sn; (4.8)

while (4.7) and (4.8) imply that
s0�n D �

2
nC1sn: (4.9)

Proof. The identity (4.5) follows from Remark 4.4 by considering

f D Idi�1 ˝�˝ Idn�1�i W Hn�1
! Hn and g D Id W H ! H:

Indeed, di�n D .g ˝ f /��M
Hn;H and �n�1di�1 D �M

Hn�1;H
.f ˝ g/�. Similarly, (4.7) fol-

lows from the same remark with

f D Idi ˝ "˝ Idn�i W HnC1
! Hn and g D Id W H ! H:

And (4.8) follows, again by Remark 4.4, from

s�1 D ."˝ IdnC1/� D ."˝ IdnC1/��M
HnC1;1

D �M
HnC1;H

.IdnC1 ˝ "/� D �nC1sn:

Finally, (4.6) is obtained by following Lemma 4.5 with Remark 4.4; i.e.,

d0�
2
n D .�˝ Idn�1/�.�M

Hn;H /
2
D .�˝ Idn�1/��M

Hn�1;H2

D �M
Hn�1;H

.Idn�1 ˝�/� D �n�1dn�1:

Remark 4.9. Note that in the above, �nC1n ¤ Id, but �nC1n D �M
1;HnC1 and so (we need

that M is stable here), by Lemma 4.1,

& W Id ' �nC1n : (4.10)

Furthermore, observe that as endofunctors of C0 we have disj D Id except for

d1s�1 D �0 D �
M
1;H (4.11)

since d1s�1 D d0�21 s0 D d0s0�0 D �0.

Proposition 4.10. Let M be a stable braided B-module. The categories Cn together with
the functors of Definition 4.7 and the isomorphism (4.10) form a cyclic object in cate-
gories. If stability is not assumed, then we only get a simplicial object.

Proof. Given the content of Lemma 4.8, it suffices to demonstrate only the simplicial
relations on the functors. More precisely, we need

didj D dj�1di ; i < j;

sisj D sj si�1; i > j;
(4.12)

disj D

8̂̂<̂
:̂
sj�1di ; i < j;

Id; i D j or i D j C 1;

sjdi�1; i > j C 1;

(4.13)
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and most of these are immediate since they are obtained by applying .�/� to algebra maps
that classically satisfy these relations. The non-obvious ones are only those that involve dn.
For (4.12), we have (using the definition and applying the classic relations followed by
Lemma 4.8)

didn D did0�n D d0diC1�n D d0�n�1di D dn�1di :

For (4.13), we get dnsn�1D d0�nsn�1D d0s�1D Id and dnsj D d0�nsj D d0sjC1�n�1D
sjd0�n�1 D sjdn�1. Remark 4.9 finishes the proof.

Definition 4.11. LetH be a Hopf algebra in B, and set C DHB-mod. Let M be a braided
B-module. Let

HHM.C/ D lim
�!
�op

C�

and if M is stable braided, let

HCM.C/ D lim
�!
ƒop

C�:

4.2. Dualizing the diagrams over ƒ

To compute the limits in Definition 4.11, we will use the right adjoints of the functors of
Definition 4.7. Let us change notation and use di ; si ; �n for arrows inƒ. Rename what we
called by such names in Section 4.1, which will now be denoted by d�i ; s

�
i ; �
�
n . Their right

adjoints, which we will describe below, will now be denoted by di�; si�; �n�.
It is immediate that in order to understand the right adjoints, it suffices to describe

��; "�, and �n�. Let us start with �� which is the right adjoint of ��, and in this case,
both functors are literally what the notation suggests them to be; namely, we have the
coproduct � W H ! H ˝� H , and the functors are obtained from it as in Section 6.2.
More precisely, by (6.5), with A D H , B D H ˝� H , C D 1, and M D H ˝� H with
the leftH -action via� and the rightH ˝� H -action via right multiplication inH ˝� H ,
we have that since ��.�/ DM �B �,

��.�/ D � GH H ˝� H: (4.14)

In order to simplify (4.14), we need the following lemma.

Lemma 4.12. Let H be a Hopf algebra in B. Then, the maps

H

H

H

H

+

H

H

H

H

(4.15)

are inverses of each other and identify the two .H;H ˝� H/-bimodules, where

(a) the left action of H on H ˝H is via � W H ! H ˝� H and multiplication in
H ˝� H , while on H ˝H it is via multiplication on the first H -factor only.
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(b) the right action of H ˝� H on H ˝H is via multiplication in H ˝� H , while
on H ˝H it is given via the diagram:

H H H H

+ (4.16)

Note that the maps in (4.15) are still H -linear if V 2 HB-mod replaces the second H .

Proof. For (a), we have
H HHH HH

+

=

and for (b), we have
H H H H

+

H H H H

+

=

Remark 4.13. Note that (4.16) is a generalization of x ˝ y � a˝ b D xa1 ˝ S.a2/yb.

Corollary 4.14. Let M 2 HM-mod. Then, ��M ' �H �M with the H ˝� H -module
structure as follows:

H M∗H

H

H

+

M∗H

which generalizes a˝ b � �˝m D �.S.a2/ � b/˝ a1m.

Proof. We use Lemma 4.12 to identifyH ˝H withH ˝H as .H;H ˝� H/-bimodules.
This is followed by Lemma 6.4 with ADH , X DH , and B DH ˝� H . Note that L;L0

are trivial here.

Proposition 4.15. The functor di� W Cn�1 ! Cn for 0 � i � n � 1 is as follows: for
M 2 H i ˝� H ˝� Hn�1�i

M
-mod,

di�.M/ D �H �M

with theH i˝�H˝�H˝�Hn�1�i -module structure given by Lemma 6.4 withLDH i,BD
H˝�H , and L0DHn�1�i . The action of H˝�H on �H �M is given by Corollary 4.14.
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Remark 4.16. Explicitly, for M 2 H ˝� HM-mod, we have M ! ���
�M given by

M

M∗H

1
(4.17)

where 1 signifies the use of the second H -action on M . Note that 0 is the first action
and corresponds to Id ! d1�d

�
1 . The map (4.17) generalizes M ! Hom.H; M/ with

m 7! �m.h/D .1˝ h/ �m. On the other hand, forM 2HM-mod, we have����M !M

given by �1˝ IdM W �H �M !M as usual.

On to the "�, again by (6.5), we have, for M 2 HM-mod, that

"�.M/ DM GH 1 DWM invH
2M;

where the left H -action on 1 is via ". More precisely, M invH is the equalizer of the two
maps M ! M G H D �H �M , namely, �" ˝ IdM and the adjoint of the action map
H �M !M . Recall (4.1) that ��n D �

M
Hn;H and so we will use its inverse for �n�.

The above demonstrates that the diagram of categories Cn associated with a Hopf
algebraH in a rigid braided B and a stable braided module category M involves functors
that possess right adjoints. Considering the adjoints, we obtain a dual diagram whose
inverse limit computes the direct limit of the original. The inverse limit of the dual diagram
is easy to describe; note that the simplex category � is a subcategory of ƒ and we will
begin with describing the inverse limit over it.

Suppose that Mn 2 Cn is an object in the inverse limit, then let M WD M0 2 C0, and
without loss of generality, we may assume that Mn D dn�dn�1� � � � d1�M . As part of the
structure, see Section 6.3, we have an isomorphism gd0 W d0�M0!M1 in C1. Let  D gd0
so that

 W d0�M ! d1�M (4.18)

is the only structure needed to define an object in the inverse limit. It is necessary and
sufficient that it satisfy two conditions: the unit condition in C0:

s0�./ D IdM ; (4.19)

and the associativity condition in C2:

d2�./d0�./ D d1�./: (4.20)

To obtain the inverse limit over ƒ itself, we need one more condition (see (4.11)) in C0:

s�1�./ D .&M /
�1: (4.21)

Note that the last condition can not be formulated unless M is stable; the source of the
maps is M and the target is .�M

1;H /
�1.M/ D �0�M DM

H .
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4.3. The monad

Following [21], we can describe the inverse limit in terms of a monad on C0. More pre-
cisely, the data of (4.18) is encoded via adjunction into an action:

a W A.M/ WD d�1 d0�M D �
��M
H;H��M !M: (4.22)

Remark 4.17. We recall that for a braided B-module M with C D HB-mod, and A as
above, we have

HHM.C/ D AC0 -mod;

and if M is stable, then HCM.C/ is the full subcategory of AC0 -mod consisting of M
with the trivial z 2 Z.A/ action. The unit and z in A are described in (4.24) and (4.25),
respectively.

We begin by describing A explicitly as an endofunctor of C0 D HM-mod.

Lemma 4.18. LetM 2HM-mod. Then, the action ofH on A.M/'�H �M is as follows:

M∗HH

+

M

EH,M

∗H

(4.23)

which generalizes a � �˝m D �.S.a3/ � a1/˝ a2m.

Proof. Starting with Corollary 4.14 that describes��M as anH ˝� H -module, we apply
�M
H;H . Using the naturality ofE�;� in the second component and property (C1), we obtain,

essentially, the result after simplifying. Following up with �� finishes the proof.

On to the monadic versions of (4.19) and (4.21), namely, consider the natural maps

u W Id D ���M
H;H s

�
0 s0��� ! A (4.24)

and
& 0 W �M

1;H D �
�
0 D �

��M
H;H s

�
�1s�1��� ! AI

let
z D & 0 ı & W Id! A: (4.25)

Then, (4.19) is equivalent to
.a ı u/M D IdM

and (4.21) is equivalent to
.a ı z/M D IdM :

In our particular case, we have the following lemma.
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Lemma 4.19. Let M 2 HM-mod. Then,

uM D
�"˝ IdM WM ! A.M/ ' �H �M

and
M

M∗H

zM = ςM

(4.26)

where the former is exactly as usual; i.e., M ! Hom.H;M/ with m 7! ".�/m, and the
latter generalizes m 7! .�/m.

Lemma 4.20. The multiplicationm WA2!A is as follows: letM 2HM-mod, and then
m W �H � �H �M ! �H �M is given by

M

M∗H

∗H∗H

(4.27)

Proof. Recall that the product on A is obtained via adjunction from

d0�d
�
1 d0�  d�2 d0�d0� ' d

�
2 d1�d0� ! d1�d

�
1 d0� (4.28)

if the first arrow is invertible. In our case, the map d�2 d0� ! d0�d
�
1 is equality, and thus,

so is our first arrow. The associativity isomorphism becomes non-trivial under our identi-
fications that produced A.M/ D �H �M . More precisely, we have

=

M

M

d0∗d0∗M

d1∗d0∗M

∗H∗H

∗H ∗H

The last arrow is complicated:

M

M∗H

∗H∗H

∗H

H

EH,∗HM

+

but as we do not need (4.28) but rather its adjoint that yields d�1 d0�d
�
1 d0� ! d�1 d0�,

we need to apply �" to the left-most �H in the above. This results in the complicated
diagram turning into identity on the �H �M , with �" on the left-most �H . This turns the
associativity diagram into what we claimed.
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Lemma 4.21. Let M 2 HM-mod. Then, A.M/ is a free A-module and the action of
z 2 A on A.M/ is given by

∗H

∗H

z =

M

M

ςM

(4.29)

which generalizes Hom.H;M/! Hom.H;M/ with �.�/ 7! .�/2�..�/1/.

Proof. Combine Lemmas 4.18, 4.19, 4.20, and simplify.

4.4. The module/comodule description of HHM.C / and HCM.C /

We can now describe AC0 -mod more in line with the usual definition of anti-Yetter–
Drinfeld modules.

Definition 4.22. Let H be a Hopf algebra in B and M a stable braided B-module.

• Define the algebra structure on �H by u D �" W 1! �H and m W �H ˝ �H ! �H

given by (4.27).

• For M 2 HM-mod and M 2 �HM-mod, define

&HM D ��H;M ı �H;M ı coev�H;H ı &M : (4.30)

Note that if the stable structure & is rescaled, then &H is similarly rescaled.

Definition 4.23. Suppose that M is a braided B-module. Let aYDHM denote the category
of M 2M such that

M 2 HM-mod and M 2 �HM-mod

with morphisms compatible with both structures. The two actions are compatible as fol-
lows:

M∗HH

+

M

EH,M

∗H

=

H M

M

(4.31)

If M is stable, let saYDHM denote the full subcategory of aYDHM with M such that

&HM D IdM :

Thus, saYDHM D .aYDHM/
&HM .

The following is immediate from the interpretation of the limits in Definition 4.11 as
modules over a monad A and the subsequent description of A in the above.
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Theorem 4.24. Let H 2 B be a Hopf algebra and M a braided B-module. Then,

HHM.HB-mod/ ' aYDHM;

and if M is stable, then
HCM.HB-mod/ ' saYDHM:

Let us compare our Definition 4.23 to the special case found in [2]. More precisely, we
recall the definition of a � -twisted pair in involution. Note that we dropped the modular
part (ı.�/ D 1), as it is not general enough.

Definition 4.25. Let � be a twist on B, ı a character of H , and � a group-like in H . The
pair .ı; �/ is a � -twisted pair in involution if

θ

δ δ

σ σ

+

+

H

H

H

H

++=

We will now consider “1-dimensional” elements in HHB&
.HB-mod/ and their stable

versions. Namely, let x 2 B� have the additional structure of an anti-Yetter–Drinfeld
module with coefficients in B& , i.e., x 2 HHB&

.HB-mod/. Recall &� from Remark 3.29
and �x from (3.10).

Lemma 4.26. A “1-dimensional” x 2HHB&
.HB-mod/ corresponds to a triple .x; ı; �/

such that x 2 B�, ı is a character of H , � is a group-like in H , and .ı; �/ is a � -twisted
pair in involution, where

� D .&��x/�1:

This element is stable if
ı.�/ D &�1x :

Proof. We obtain ı from the H -action and � from �H -action. Stability translates to

ı.�/&x D 1:

Using (4.31), we get, after simplifying,

θ

δ

δ

σ
σ

+

H

H

H

H

=
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Applying

δ

σ
+

H

H

· · ·

+

++

to both sides yields the result.

Remark 4.27. The original definition of a � -twisted modular pair in involution thus cov-
ers the case of x D 1. If we drop the stability condition, it does cover an arbitrary case
as well since x 2 B& corresponds to 1 2 B

&�x
�1 . Unless &x D 1, the original definition

misses the stable “1-dimensional” elements based on x 2 B�.

4.5. Cohomology of algebras from M 2 HCM.HB-mod/ and K 2 M&

The main use of coefficients is that they yield cohomology theories for algebras. Let A be
an algebra in HB-mod. In general, M 2 HCM.HB-mod/ will not yield a cohomology
of A; it does if, for example, M D HH.B/. To obtain cohomology in all cases, we also
require a K 2 M& . While we do not focus on cohomology theories for algebras in this
paper, the considerations presented here give us Proposition 4.33, which is one half of the
main result.

Lemma 4.28. Let A; B 2 Alg.B/, M a braided B-module. Let V 2 AB-mod, W 2
BB-mod, and K 2M. Then, we have a canonical isomorphism in B ˝� AM-mod:

�KW;V WD EW;K�
�1
W;V W .W ˝

� V / �K ! �M
A;B

�
.V ˝� W / �K

�
:

Furthermore, if M is stable and K 2M& , then �KV;1 D &V �K .

Proof. It is clear that both sides are B ˝� A-modules in M so it suffices to compare the
A and B actions. For A-action, we have

W V K

=

V W K

A
W V K

V W K

A

EW,K
EW,K

For B-action, we need to check that

W V K

=

V W K

B
W V K

V W K

B

EW,K

EW,K
EB,VWK
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but the LHS is

�B;W �B;VEB;VWKEW;K�
�1
W;V D �B;W �B;V �

�1
V;BEB;WK�

�1
B;VEW;K�

�1
W;V

D �B;WEB;WKEW;K�
�1
B;V �

�1
W;V

D �B;WEBW;K�
�1
BW;V D EW;K�

�1
W;V �B;W

which is the RHS. For the last statement, �KV;1 D EV;K D &VK&
�1
K D &VK .

Let M 2 C1; i.e., M 2 .H0 ˝� H1/M-mod, and we have a natural isomorphism

�A
M W A

�
����1 .M/

�
! A

�
��.M/

�
(4.32)

in AC0 -mod that arises automatically by adjunctions; i.e., we follow the Id through the
sequence of isomorphisms below:

HomA

�
A.d�0M/;A.d�0M/

�
' HomC0

�
d�0M;A.d

�
0M/

�
'HomC1

�
M;d0�A.d

�
0M/

�
! HomC1

�
M;d1�A.d

�
0M/

�
'HomC0

�
d�1M;A.d

�
0M/

�
' HomA

�
A.d�1M/;A.d�0M/

�
:

Explicitly,
M

M∗H

∗H

1

σAM =
(4.33)

where 1 indicates the use of the second H -action.

Definition 4.29. Define for V;W 2 HB-mod and K 2M an isomorphism in AC0 -mod:

�KV;W WD�
A
W˝�V �K ıA��.�KV;W / W A

�
��.V ˝�W / �K

�
!A

�
��.W ˝�V / �K

�
: (4.34)

Lemma 4.30. If K 2M is stable, then the isomorphism �K equips the functor

AK
WD A.� �K/ W HB-mod! AC0 -mod

with a z-trace structure.

Proof. Namely, for V;W; T 2 HB-mod, we need (recall (2.2)):

�KV~W;T D �
K
W;T~V �

K
V;W~T

as isomorphisms from AK.V ~W ~ T / to AK.T ~ V ~W /. Note that the RHS is

∗H

∗H V W T K

EV,K

EW,K

KT V W

=

∗H T V

V W T K∗H

EV,K

EW,K

W K
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while the LHS is

∗H T V

V W T K∗H

W K

EVW,K

so that it suffices to show that EW;K��1W;VEV;K�
�1
V;W D EW;KEV;WK D EVW;K .

It remains to show that

�KV;1 W A
K.V /! AK.V / D the action of z 2 A

which follows from Lemmas 4.21 and 4.28. Note that it is only the last statement that
requires the stability of K.

Proposition 4.31. Let K 2M& and M 2 HCM.C/. Let

FMK .�/ D HomC0.� �K;M/ W HB-mod! Vec:

Then, FMK is a symmetric contratrace with �V;W as follows:

V W K

M

f 7→
ιV,W

W V K

V W K

M

f

EW,K

∗H

(4.35)

Thus, FMK .A˝.�C1// is a cocyclic object in Vec. If M 2 HHM.C/, then FMK is a contra-
trace, and FMK .A˝.�C1// is a paracocyclic object, with �nC1n induced by &HM .

Proof. We obtain the structure �V;W via the chain of isomorphisms:

HomC0.W ~ V �K;M/ D HomAC0
-mod

�
A.W ~ V �K/;M

�
�ı�KV;W
' HomAC0

-mod
�
A.V ~W �K/;M

�
D HomC0.V ~W �K;M/:

The (symmetric) contratrace property of � follows immediately from Lemma 4.30.

Corollary 4.32. Let K 2M& and suppose that the functor � �K W B !M above has a
right adjoint K F �. Then,

K F � W HHM.C/! HH.C/ (4.36)

and the functor is compatible with &H on LHS and & on RHS, so that, in particular,
K F � W HCM.C/! HC.C/.
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Proof. The existence of the right adjoint automatically implies that we have an adjoint pair:
� �K WHB-mod�HM-mod WK F�which ensures that FMK of Proposition 4.31 is repre-
sentable. The corollary now follows by [16]. See the discussion below for a summary.

The correspondence between representable contratraces and objects inHH.C/ can be
summarized as follows. Given

�V;W W HomH .V ˝W;M/! HomH .W ˝ V;M/;

let f D IdM ˝ evW �;W WM ˝W �˝W !M . Then, we obtain �MW �;W .f / WW ˝M ˝

W � !M from which the anti-center structure on M is obtained by adjunction:

��M;W � WM ˝W
�
!
�W ˝M: (4.37)

On the other hand, given ��, for f 2 HomH .V ˝W;M/, define

�V;W .f / D evW;�W ı ��M;W � ı f ı coevW;W � :

Consider a particular case of Corollary 4.32, namely, M D HH.B/ and K D Tr.1/;
note that K 2M& by [21]. Recall that we have an adjoint pair of functors

Tr W B ! HH.B/ W U;

whereU forgets the anti-center structure and Tr is its left adjoint. We would like an explicit
description of (4.36). This serves as one half of the result in the next section.

Proposition 4.33. Let H 2 B be a Hopf algebra and C D HB-mod. We have a functor

ˆ W HHHH.B/.C/! HH.C/

that sends an M 2 aYDH
HH.B/

to M 2 HH.C/ with the anti-center structure given by
M

M

∗H

W ∗

∗W

τ•M,W ∗ =

M

M

W ∗

∗W

:= (4.38)

This functor identifies &H on LHS with & on RHS.

Proof. Observe that forM 2HH.B/, the natural map TrU.M/DM ˝ Tr.1/!M can
be interpreted as a right action of Tr.1/. ForX 2B, we haveX ! U Tr.X/D X ˝ Tr.1/
given by the unit map 1! Tr.1/. With this, (4.35) becomes

ιV,W (f ) =

W V Tr(1)

V W

M

f

EW,Tr(1)

∗H

= V W

f

M

W V

which, according to (4.37), becomes (4.38).
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4.6. The localization theorem

As usual, assume thatH 2B is a Hopf algebra and C DHB-mod. The goal of this section
is to prove that the functor ˆ in Proposition 4.33 is an isomorphism of categories by
constructing its inverse. The following definition extracts the aYDH

HH.B/
-structure from

the HH.C/-structure.

Definition 4.34. Let M 2 HH.C/ denote the structure by ��. Then,

• M is an H -module in B, with action denoted by �H;M .

• Let ��H;M be given by
M

M

∗H

∗H

Note that the unit 1! H is not H -linear, so the above is non-trivial.

• M 2 HH.B/ since B fully embeds into C ; i.e., X 2 B can be given H -structure by
�H;X D "˝ IdX . The resulting HH.B/ structure is denoted by �ı; thus,

�ı D ��jB :

For V 2 C , we again denote by V an object in B obtained by forgetting the H -
structure. Note that ��M;V � ¤ �

ı

M;V �
in general; see Lemma 4.39; we will suppress the

underline when using �ı.

Lemma 4.35. With the algebra structure on �H given by Definition 4.22, the ��H;M
above defines an action.

Proof. Unitality is obvious since " WH ! 1 isH -linear. Similarly, though less obviously,
associativity follows from the H -linearity of � W H ! H ˝H .

Remark 4.36. LetA2B be an algebra, and suppose thatM 2HH.B/ andM 2AB-mod.
Then, M 2 AHH.B/-mod if and only if we have

M

M

A

∗X

X∗

=

M

M

A

∗X

X∗

(4.39)

Lemma 4.37. We have M 2 �HHH.B/-mod.

Proof. By Remark 3.8, we have, for V 2 C and X 2 B,

M

M∗X

X∗

=

V ∗

∗V

M

M∗X

X∗V ∗

∗V
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Thus,
M

M

∗H

∗H

∗X

X∗ M

M

∗H

∗H
∗X

X∗

=

and we are done by Remark 4.36.

Lemma 4.38. We have M 2 HHH.B/-mod.

Proof. Let X 2 B and consider it in C with the trivial H -action. Then, since �ıM;X� D
��M;X� is H -linear, we obtain (4.39) with A D H .

Lemma 4.39. With M as above and V 2 C , we have

M

M∗V

HV ∗

τ•M,V ∗ =

∗H

Proof. Since " is H -linear, we have

=

M

M

V ∗

∗V

M

M

V ∗

∗V

∗H

H∗

On the other hand, by Lemma 4.12,

M

M∗V

H∗V ∗

=

∗H

M

M

V ∗

∗V ∗H

H∗

+

Now apply � ı "� and �u ı � to obtain the result.

Proposition 4.40. LetM 2HH.C/ and let the �ı and �H -action be as in Definition 4.34.
We can recover the HH.C/ structure from �ı and �H -action:

M

M

∗H

V ∗

∗V

τ•M,V ∗ = (4.40)

Proof. This follows immediately from Lemmas 4.37 and 4.39.
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Theorem 4.41. LetM2HH.C/ and let the �ı,H, and �H-actions be as in Definition 4.34.
We have the following compatibility between H and �H -actions:

M∗HH

+

M

∗H

=

H M

M

Proof. By assumption, ��M;V � is H -linear, so that evV;�V ��M;V � W V ˝M ˝ V
� ! M

is H -linear, so �H;M evV;�V ��M;V � D evV;�V ��M;V ��H;VMV � W H ˝ V ˝M ˝ V
� !M .

Replace V by H and pre-compose with u W 1! H to obtain

�H;M evH;�H ��M;H� IdH ˝ u˝ IdMH� D evH;�H ��M;H��H;HMH� IdH ˝ u˝ IdMH�

as maps from H ˝M ˝H� to M . Finally, pre-compose with

��H;M˛ WD ��H;M evH;�H �H�;�H coevH;H� W �H ˝M !M ˝H�

to obtain that

�H;M evH;�H ��M;H�u��H;M˛ D evH;�H ��M;H��H;HMH�u��H;M˛

as maps from H ˝ �H ˝M to M . By Proposition 4.40, this results in

M∗HH

+

M

∗H

=

H M

M

and the latter eventually simplifies to the result.

Theorem 4.42. Let H 2 B be a Hopf algebra, and let C D HB-mod. Then,

HHHH.B/.C/ ' HH.C/

and the isomorphism identifies &H on LHS with & on RHS.

Proof. The & -compatible functor ˆ W HHHH.B/.C/ ! HH.C/ was given in Proposi-
tion 4.33. On the other hand, we can define ‚ W HH.C/ ! HHHH.B/.C/ by using
Definition 4.34. Namely, we have Lemma 4.37, Lemma 4.38, and Theorem 4.41 which
prove that for M 2 HH.C/, we have

‚.M/ 2 aYDHHH.B/ D HHHH.B/.C/:



Hopf-cyclic coefficients in the braided setting 1003

By Proposition 4.40, we have ˆ‚ D Id, and for ‚ˆ D Id, note that if M 2 aYDH
HH.B/

,
then (4.40) evaluated on X 2 B recovers the originalHH.B/ structure. Furthermore, the
H -structure is the same, and for the �H -structure, observe that

M

M

∗H
= ρ∗H,M

∗H

Definition 4.43. Let � 2 NatIso˝.IdB ; .�/
#/ be a pivot. Define HH�.C/ to be the full

subcategory of M 2 HH.C/ such that for X 2 B � HB-mod we have ��X;M D �X�
�1
X;M .

The following is immediate from Theorem 4.42.

Corollary 4.44. Let & and � be related as in (3.9). Then,

HHB&
.C/ ' HH�.C/

compatibly with &H on the LHS and the restriction of & on HH.C/ to HH�.C/ on the
RHS.

We now apply the theorem to the case considered in Section 3.4. Namely,

B D .VecG ; �/

withH 2B a Hopf algebra and C DHB-mod. We assume that ! W G! yG is an isomor-
phism. Recall that �.x/ D �.x; x/ D &�1.x/; let

I D �.G/ � k� and ni D #
®
xj�.x/ D i

¯
:

Corollary 4.45. Let X D HHB&
.C/. Then,

HC.C/ D
M
i2I

X i&
H � Vecni :

Proof. By Corollary 3.28, all the summands ofHH.B/ are identical as braided modules,
with only the stable structure differing by a specified scalar multiple. Thus, by Theo-
rem 4.42, all the summands of HH.C/ are identical, with only the &H ’s differing by a
scalar multiple.

5. An application: Taft Hopf algebras

Let � be a primitive pth root of unity in k, where p is a prime. The Taft Hopf algebra [23]
Tp.�/ is generated as a k-algebra by g and x with the relations

gp D 1; xp D 0; (5.1)

gx D �xg: (5.2)
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Thus, it is p2 dimensional over k. Furthermore, the coalgebra structure is

�.g/ D g ˝ g; �.x/ D x ˝ 1C g ˝ x (5.3)

with ".g/ D 1, ".x/ D 0, and thus S.g/ D g�1, while S.x/ D �g�1x. Note that

S2.x/ D ��1x ¤ x;

making T2.�1/ the smallest Hopf algebra with S2 ¤ Id. The Taft algebra T2.�1/ is some-
what different from the other Tp.�/ and has its own name: Sweedler’s Hopf algebra.

5.1. Taft algebra as a Hopf algebra in a braided monoidal category

It is interesting to observe, especially in the case of T2.�1/, that Taft Hopf algebras, or
rather their monoidal categories of modules, can be better understood via related, simpler,
Hopf algebras in braided monoidal categories [20]. This process is called transmutation,
while the reverse process is called bosonization.

Consider an abelian group G D Z=p of integers modulo p, with a bicharacter

�.i; j / D � ij :

Let B D .VecZ=p; �/ denote the resulting, by Section 3.4, braided category. Note that
this braiding is not symmetric unless p D 2, in which case the braided monoidal category
we get is just sVec, the category of super vector spaces with the usual sign conventions
braiding. What is true for higher p is that the braided category .VecZ=p; �/ is a ribbon
category with the ribbon element

�.v/ D � i
2

v; for v 2 Vi :

Definition 5.1. For p prime, and � 2 Z=p, consider the anti-twist on B given by

&�.v/ D �
�i2��iv; for v 2 Vi :

Denote by B� the resulting stable braided B-module. Recall from Section 3.4 that

HH.B/ D
M
�2Z=p

B�

as stable braided B-modules.

The following lemma is immediate; the Hopf algebra is called the one-dimensional
anyonic enveloping algebra or anyonic line.

Lemma 5.2. Let H D kŒx�=xp with x of degree 1 be a Hopf algebra in .VecZ=p; �/,
where �.x/ D x ˝ 1C 1˝ x, S.x/ D �x, and ".x/ D 0. Then, as monoidal categories,

HVecZ=p -mod D Tp.�/Vec-modI

i.e., modules over H in VecZ=p are the same as modules over Tp.�/.
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Proof. Both are Z=p-graded vector spaces, with the grading on the right given by the
eigenspaces, E�i , of g. The action of x gives a degree 1 operator with xp D 0. The
monoidal structure agrees as well and explains our slightly unusual convention for�.x/D
x ˝ 1C g ˝ x and not �.x/ D 1˝ x C x ˝ g as is found in the majority of the litera-
ture.

If p D 2, then T2.�1/-modules are the same, according to the above observation, as
sheaves on .k0j1;C/ (with convolution), the odd analogue of the additive group .k;C/.
As the group is abelian, the category is actually itself braided. This observation does not
generalize to higher primes. In fact, according to [5], Tp.�/ are not quasi-triangular for
p > 2.

Remark 5.3. It is often mentioned that T2.�1/ is the smallest non-trivial Hopf algebra,
i.e., not obtained from a finite group G. We see above that if one allows supergroups, then
it is trivial still.

5.2. Some calculations

In this section, we let H D kŒx�=xp as in Lemma 5.2. It is a Hopf algebra in the braided
category B D .VecZ=p; �/. Recall that, for � a root of unity and n 2 Z�0, one writes

.n/� D 1C � � � C �
n�1 and .n/� Š D .n/� � � � .1/� :

Let ie D �.xi / 2 �H , so that the degree of ie is �i and they form a basis of �H . Note
that under the algebra structure on �H obtained from Lemma 4.20, we have

ie � j e D ��ij
.i C j /� Š

.i/� Š.j /� Š
iCj e

using the observation that �.xn/ D .1˝ x C x ˝ 1/n D
P
iCjDn

.iCj /� Š

.i/� Š.j /� Š
xi ˝ xj .

Lemma 5.4. Let z be of degree �1. Then,

�H ' kŒz�=zp:

Proof. It is immediate that zi 7! ��
.i�1/i
2 .i/� Š

ie is an algebra isomorphism.

We can now describe aYDHB�
and &H .

Proposition 5.5. Let B D .VecZ=p; �/ and H D kŒx�=xp . Then, HHB�
.HB-mod/ con-

sists of M 2 B equipped with two operators: x of degree 1, and z of degree �1 such that
xp D 0, zp D 0, and for m 2Mi , we have

.xz � �zx/m D .��2iC1�� � 1/m: (5.4)

Furthermore, the action of &H is given by

m 7! ��i
2��i

 
p�1X
jD0

�
.j�1/j
2

.j /� Š
zjxj

!
m: (5.5)
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Proof. This is obtained by unpacking (4.31), (4.30), and using Lemma 5.4. Note that

z D �x 2 �H:

Definition 5.6. Proposition 5.5 can be used to define an algebra Da
�.Tp.�// generated by

x; z; g that satisfy
xp D zp D gp � 1 D 0

and
gxg�1 D �x; gzg�1 D ��1z; xz � �zx D �1��g�2 � 1:

Thus,
HHB�

.HB-mod/ D Da
�

�
Tp.�/

�
-mod:

Remark 5.7. Recall that if p D 2, then B D sVec has two anti-twists: the &0 above, and
&1 which is trivial; the category is symmetric. We note that (5.4) and (5.5) yield (y D�z):

xy C yx D 2; &Hm D .�1/i .1 � yx/m

for the &0 structure, while we would get

xz C zx D 0; &Hm D .1C zx/m

for the trivial one. Thus, from [22], we see that

HCB0
.HB-mod/ D Vec;

while
HCB1

.HB-mod/ D
�
kŒx; z�=.zx/

�
sVec-mod;

where kŒx; z� is a free super-commutative algebra on two odd generators (this was the
interesting part of HH.HB-mod/S

1
in [22]). We obtain the decomposition:

saYDT2.�1/ D HC
�
T2.�1/-mod

�
D Vec˚

�
kŒx; z�=.zx/

�
sVec-mod:

5.3. The case of p > 2

In this case, there is a pth root of unity q such that q2 D ��1. If we let p D 2mC 1, then

q D �m:

Let us write, for n 2 Z�0,

Œn�q D
qn � q�n

q � q�1
and Œn�qŠ D Œn�qŒn � 1�q � � � Œ1�q :

Note that
.n/� Š D q

�n.n�1/=2Œn�qŠ:
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Proposition 5.8. Let p > 2. We have an identification of categories:

HHB�
.HB-mod/ D uq.sl2/-mod: (5.6)

In particular, the choice of � is not yet relevant, as expected since ! D �2ij is non-
degenerate.

Proof. ForM 2 B, let g act onMi by � i . It is clear that with this convention, we have an
identification of categories B D kŒg�=.gp � 1/-mod. Let

E D q1��x; F D zg; K D q��1g�1:

Then,
Ep D F p D Kp � 1 D 0

and
KEK�1 D q2E; KFK�1 D q�2F; ŒE; F � D K �K�1:

Remark 5.9. Note our use (to be consistent with [13]) of the ŒE;F �DK �K�1 conven-
tion, instead of the ŒE; F � D K�K�1

q�q�1
convention.

Recall (from [13] for example) that uq.sl2/ is a ribbon Hopf algebra with the ribbon
element

v0 D KuKu0

where

uK D

Pp�1
iD0 q

mi2KiPp�1
iD0 q

mi2
; u0 D

p�1X
jD0

q
.jC3/j
2

Œj �qŠ
KjF jEj :

Proposition 5.10. Under the identification of (5.6), we have

&H� D q
m.�2�1/v0;

where v0 is the ribbon element of uq.sl2/. In particular, &H� depends only on the square
of �, as expected by Remark 3.29.

Proof. Consider the action of &H on Mi . Then, starting with (5.5), we have

&H� D �
�i2��i

 
p�1X
jD0

�
.j�1/j
2

.j /� Š
zjxj

!

D ��i
2��i

 
p�1X
jD0

q�
.j�1/j
2

Œj �qŠ
zjxj

!

D ��i
2��i

 
p�1X
jD0

q
.jC3/j
2

Œj �qŠ
KjF jEj

!
D ��i

2��iu0:
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We now focus on ��i
2��i ; expanding it as a linear combination of characters and com-

pleting the square twice we obtain

��i
2��i

D
K�q.1��/�

p

p�1X
k;sD0

��s
2Cskq.1��/kKk

D
q.1��

2/=2K

p

 
p�1X
sD0

q2s
2

! 
p�1X
kD0

q�k
2=2Kk

!
:

Using the properties of Gauss sums, see [17], we get

D q.1��
2/=2K

 
p�1X
kD0

qmk
2

Kk

!
=

 
p�1X
sD0

qms
2

!
D qm.�

2�1/KuK :

Theorem 5.11. Let p be a prime, H , as in Lemma 5.2, Then,

HCB0
.HB-mod/ ' Vec:

Proof. The case of p D 2 is addressed in Remark 5.7. For p odd, we recall from [13] that
the center Z of uq.sl2/ decomposes

Z ' k �

m�1Y
jD0

kŒxj ; yj �=.x
2
j ; y

2
j ; xjyj /; (5.7)

and using the notation of the original: Pm D 1 2 k and Pj D 1 2 kŒxj ; yj �=.x2j ; y
2
j ; xjyj /,

while NCj D xj and N�j D yj . We have an expression for the ribbon element:

v0 D q
mPm C

m�1X
jD0

q2j.jC1/.Pj C j̨N
C

j C ǰN
�
j /;

where j̨ and ǰ are some known constants that we do not need here. Let

uq.sl2/ D U �

m�1Y
jD0

Uj

be the decomposition induced by (5.7), and set xUj D Uj =.xj ; yj /. Note that

1 � &H0 D 1 � q
�mv0

acts by 0 on U and by 1 � q�mC2j.jC1/ D 1 � q2.j�m/
2

on xUj . Since 1 � q2.j�m/
2
¤ 0,

1 � &H0 acts invertibly on Uj ; thus, as in [22], we have that HCB0
.HB-mod/ D Vec.

Using [8], we see that the only part of the representation theory of uq.sl2/ that is
supported at the Spec.k/ part of the center consists of copies of the unique projective
irreducible representation of uq.sl2/, which is the unique irreducible of dimension p.
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Theorem 5.11 dealt with the case of &0. There remain cases &� for � D 1; : : : ; p � 1.
Recall thatHCB�

.HB-mod/ depends only on the square of � and so we may assume that
� is odd (as �� is then even). Furthermore, let

2j C 1 D �; (5.8)

such that j is unique among 0; : : : ; m � 1.

Proposition 5.12. Let p be an odd prime, H , as in Lemma 5.2, and � as in (5.8). Then,

HHB�
.HB-mod/ D Uj =.� j̨N

C

j � ǰN
�
j /-mod:

Proof. The proof is analogous to that of Theorem 5.11; i.e., we use Proposition 5.10 to
compute that 1 � &H� acts invertibly on all but Uj where the action is not 0 as in Theo-
rem 5.11 but is � j̨N

C

j � ǰN
�
j which is square zero.

6. Appendix

The reader is invited to peruse this section if needed. It is referred to in the body of the
paper on occasion.

6.1. Monoidal functors and algebras

If F is a (strongly) monoidal functor between two monoidal categories C and D , then the
extra data consisting of (iso)morphisms:

fA;B W F.A/˝ F.B/! F.A˝ B/; (6.1)

for all A; B 2 C , is the monoidal part of the structure. For our purposes, all monoidal
functors are assumed to be strongly monoidal.

Lemma 6.1. Let F W C !D be a monoidal functor and A an algebra and C a coalgebra
in C . Then, F.A/ and F.C/ are also an algebra and a coalgebra, respectively, in D .
If ˛ W A! B is an algebra map, then so is F.˛/ (similarly for coalgebras). If M is an
A-module, then F.M/ is an F.A/-module (similarly for coalgebras).

Proof. The proof is straightforward. We mention that the multiplication mF.A/ on F.A/
is F.mA/ ı fA;A.

Now suppose that C and D are both braided and let � denote the braiding in both.
Furthermore, we use � to denote the monoidal functor

� W C�2 ! C (6.2)

such that �.A� B/ D A˝ B and the monoidal structure isomorphism

�.A� B/˝ �.C �D/! �
�
.A� B/˝ .C �D/

�
is

IdA ˝ �B;C ˝ IdD W A˝ B ˝ C ˝D ! A˝ C ˝ B ˝D:
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Definition 6.2. Let A;B be algebras in C braided. Then,

A˝� B D �.A� B/

is an algebra in C by Lemma 6.1. Explicitly,

mA˝�B D .mA ˝mB/.IdA ˝ �B;A ˝ IdB/;

or using strings:

A B A B

Furthermore, if f W A! A0 and g W B ! B 0 are algebra maps, then so is

f ˝ g W A˝� B ! A0 ˝� B 0:

Note that ifM;N areA andB-modules, respectively, then we have anA˝� B-module
M ˝� N with

�M˝�N D .�M ˝ �N /.IdA ˝ �B;M ˝ IdN /:

Similarly, ifM;N are right A and B-modules, respectively, then we have a right A˝� B-
module M ˝� N with

�M˝�N D .�M ˝ �N /.IdA ˝ �N;A ˝ IdN /:

Remark 6.3. Considering the reverse braiding ��1, let A˝�
�1
B D ��1.A� B/, which

is also an algebra in C .

Let Mbe aC -module category. The following characterization of modules overA˝�B,
i.e.,M 2A˝� BM-mod, will be useful. Observe thatM is anA˝� B-module if and only
if it is an A-module (�A W A �M !M ) and a B-module (�B W B �M !M ) such that the
two actions satisfy the compatibility condition:

�A ı .IdA ˝ �B/ D �B ı .IdB ˝ �A/ ı .��1A;B ˝ IdM / (6.3)

best understood as an equality of string diagrams:

=

A B M A B M

(6.4)

so that the A-string crosses under the B-string.
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6.2. Some adjunctions

Let C be a closed monoidal category; namely, we have right adjoints to the functors
�˝M and M ˝ � (for all M 2 C ) which we denote by M F � and � GM , respec-
tively. If A is an algebra in C , then BmdCA, the category of A-bimodules in C , is also a
closed category. The product is � ˝A �; i.e., for S; T 2 BmdCA, we have that S ˝A T
is the coequalizer of the two maps from S ˝ A ˝ T to S ˝ T . We denote the right
adjoints of � ˝A S and S ˝A � by S FA � and � GA S , respectively. They can be con-
structed as equalizers; namely, S FA T is the equalizer of S F T ! .S ˝ A/ F T and
S F T ! S F .A F T / where the targets are identified. Note that this construction uses up
the right actions on S and T .

More generally, letA;B;C2Alg.C/, let BmdC.A;B/ denote the category of leftA and
right B-modules in C , and write HomA.�;�/B to denote the morphisms in BmdC .A;B/.
Suppose thatM 2 BmdC .A;B/, S 2 BmdC .B;C /, and T 2 BmdC .A;C /. Then, we have
an adjunction

HomA.M ˝B S; T /C ' HomB.S; T GAM/C : (6.5)

We also have
HomA.M ˝B S; T /C ' HomA.M; S FC T /B ;

but it is not what we need.
More generally, let M be a C -module category. But now suppose that C is rigid; then,

the right adjoint of X � � is �X � �. Again let A;B 2 Alg.C/ and M 2 BmdC .A;B/. For
S 2 BM-mod and T 2 AM-mod, we have

HomA.M �B S; T / ' HomB.S; �M �A T /; (6.6)

where the coequalizer and equalizer are as above.
The following is immediate.

Lemma 6.4. Let A; B 2 Alg.B/, with B a rigid braided category and M a B-module
category. With X 2 B, let A ˝ X be an .A; B/-bimodule with �A;A˝X D mA ˝ IdX .
Let L;L0 2 Alg.C/ so that L˝� .A˝ X/˝� L0 is a .L˝� A˝� L0; L˝� B ˝� L0/-
bimodule. Then, for N 2 L˝� A˝� L0

M
-mod, we have

N GL˝�A˝�L0 L˝
� .A˝X/˝� L0 ' N GA A˝X '

�X �N

and the L˝� B ˝� L0-module structure is as follows:

∗X

NL ∗X

N

B L′

(6.7)
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where

∗X

N∗X

N

B

=

N

N

∗XB

∗X

A
(6.8)

6.3. Inverse limits and Hochschild and cyclic homology categories

Let D be a small category and suppose we have a diagram of categories over D. Namely,
for every object x 2D, we get a category Cx , and for every arrow ˛ W x! y inD, we get
a functor ˛� W Cx ! Cy . Furthermore, this data is complemented with associative isomor-
phisms fˇ;˛ W ˇ�˛� ! .ˇ˛/�. One may then consider the limit (inverse limit) category
of this diagram. Explicitly, the objects in the limit consist of the following data: objects
Mx 2Cx for every x2D and isomorphisms g˛ W ˛�.Mx/!My for every ˛ W x!y inD.
These must satisfy the compatibility:

gˇ˛fˇ;˛ D gˇˇ�.g˛/:

For us the important D’s are the simplex category � yielding the Hochschild homol-
ogy and Connes’ cyclic category ƒ yielding the cyclic homology (see [19]). More details
are available in [15].

Funding. This research was supported in part by an NSERC Discovery Grant.
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