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Torsors in super-symmetry

Akira Masuoka, Takuya Oe, and Yuta Takahashi

Abstract. Torsors under affine groups are generalized in the super context by super-torsors under
affine super-groups. We investigate those super-torsors by using Hopf-algebra language and tech-
niques. It is shown in an explicit way that, under suitable assumptions, every super-torsor arises from
an ordinary torsor. Especially, the objects with affinity restriction, or namely, the affine super-torsors
and the affine ordinary torsors are proved to be precisely in one-to-one correspondence. The results
play substantial roles in ongoing construction of super-symmetric Picard–Vessiot theory.

1. Introduction – basic notations and main theorems

Throughout this paper, we work over a fixed field k whose characteristic char k differs
from 2, that is, in notation, char k ¤ 2.

This section, which is slightly long for an introduction, is devoted mainly to clarifying
the notion of super-torsors and to formulating our two main theorems on super-torsors.

1.1. Very basic algebraic super-geometry

Such basics are here presented mostly by using the functor-of-points approach.
Recall that a k-functor is a set-valued functor defined on the category Algk of com-

mutative algebras (over k). A representable k-functor is called an affine scheme, and it is
called an affine group if it is group-valued. In addition, the category of k-functors includes
faisceaux (or sheaves), faisceaux dur (or dur sheaves), schemes and affine schemes, as sub-
categories. These notions as well as relevant basic notions and constructions are directly
generalized to the super context, in which everything is based on the tensor category
SModk of vector spaces graded by the group Z2 of order 2, equipped with the so-called
super-symmetry; see Section 2.1.

The generalized notions are called with “super” attached, in principle. For exam-
ple, a k-super-functor is a set-valued functor X defined on the category SAlgk of the
super-commutative super-algebras (over k). It is important that, given such an X, there
is associated the k-functor Xev which is obtained from X, restricting it to Algk ; ordinary
algebras are regarded as purely even super-algebras, or namely, super-algebras consisting
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of even elements, only. We remark that the k-functor denoted here by Xev is alternatively
denoted by Xres in [17], in which the symbol Xev is used to denote the k-super-functor
R 7! X.R0/.

The category of k-super-functors includes the following full subcategories:

.faisceaux/ � .faisceaux dur/ � .super-schemes/: � .affine super-schemes/

The definition of affine super-schemes, as well as that of affine super-groups, will be
obvious. A faisceaux dur (resp., faisceaux) is a k-super-functor which preserves finite
direct products and every equalizer diagram

R! S � S ˝R S

that naturally arises from an fpqc (resp., fppf ) morphism R ! S in SAlgk . Here, fpqc
(resp., fppf) represents “faithfully flat” (resp., “faithfully flat and finitely presented”); see
Section 2.5. A super-scheme is a k-super-functor X which is local (or roughly speaking, X
behaves like a sheaf with respect to Zariski coverings ¹R! Rfi º, where fi 2 R0 (finitely
many) with

P
i fiR0 D R0), and which is covered by some open sub-functors that are

isomorphic to affine super-schemes. By convention, every super-scheme X is supposed to
be non-trivial in the sense that X.R/ ¤ ; for some 0 ¤ R 2 SAlgk .

If a k-super-functor X is contained in one of the categories noted above, then the associ-
ated k-functor Xev is in the corresponding one defined in the ordinary (non-super) context.
If G is an affine super-group, then Gev is an affine group.

There is an alternative definition (see [1, Section 3.3], [8, Chapter 4, Section 1] or [17,
Section 4], and rely on Leites [7] for historical background) of an (affine) super-scheme,
which defines it as a super-ringed space satisfying some conditions that are naturally
inferred from the ordinary setup. We will use in part (in fact, essentially only in Sec-
tion 7) the word in this alternative, geometrical meaning. This is justified since we have a
natural equivalence (see [17, Theorem 5.14]) between the two categories of (affine) super-
schemes thus defined in the two distinct ways. The equivalence in one direction assigns to
every super-scheme Z, in the geometrical sense, the k-super-functorR 7! Mor.SpecR;Z/
represented by it.

1.2. The first main theorem

Suppose that an affine super-group G acts on a super-scheme X. Here and in what follows,
actions are supposed to be on the right. We say that the action is free, or G acts freely on X,
if the morphism of k-super-functors

X � G! X � X; .x; g/ 7! .x; xg/ (1.1)

is a monomorphism of super-schemes. Given a (free) G-action on X, there is a naturally-
induced (free) action by the affine group Gev associated with G on the scheme Xev associated
with X.

Suppose that an affine super-group G acts freely on a super-scheme X.
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Definition 1.1. A morphism X ! Y of super-schemes is called a super G-torsor (in the
fpqc topology) if it constitutes the co-equalizer diagram of the faisceaux dur

X � G� X! Y; (1.2)

where the paired arrows denote the action and the projection. Alternatively, we say that X
is a super G-torsor over Y.

A morphism of super G-torsors over Y is a G-equivariant morphism of super-schemes
over Y; such morphism is necessarily an isomorphism, as will be seen in the paragraph
following Proposition 1.7.

Remark 1.2. Demazure and Gabriel [2, Chapitre III, Section 4, Définition 1.3, p. 361]
define the notion of torsors in the category of faisceaux, where the relevant objects are
faisceaux and faisceaux en groupes. Our definition above, reduced to the ordinary situa-
tion, becomes equivalent to their definition, when the relevant objects are supposed to be
schemes and affine algebraic groups; this fact is easily seen from [2, Chapitre III, Sec-
tion 4, Corollaire 1.7, p. 362] and Corollary 1.8 below.

An affine super-group G is uniquely represented by a Hopf super-algebra. If the Hopf
super-algebra is finitely generated, G is called an affine algebraic super-group.

Example 1.3. Let G be an affine algebraic super-group, and let H be a closed super-
subgroup of G. Then H acts freely on G by right-multiplication. It is proved in [17, The-
orem 0.1] (and re-proved by [16, Theorem 4.12]) that we have a Noetherian (in fact,
algebraic) super-scheme G=H which fits into the co-equalizer diagram G � H� G! G=H
of faisceaux (dur); therefore, G=H may be presented alternatively by GQ=H (and by GQQ=H),
by using the notation which will be introduced in the Section 1.3. One concludes that
G! G=H is a super H-torsor.

The first main theorem is the following: it shows, under some assumptions that include
affinity, a remarkable one-to-one correspondence between super-torsors and ordinary tor-
sors.

Theorem 1.4. Let G be a smooth affine algebraic super-group, and let Y be a Noetherian
smooth affine super-scheme. If X ! Y is a super G-torsor, then the induced morphism
Xev ! Yev of schemes is a Gev-torsor. Moreover, the assignment X 7! Xev gives rise to a
bijection from

• the set of all isomorphism classes of super G-torsors over Y

onto

• the set of all isomorphism classes of Gev-torsors over Yev.

Remark 1.5. For those super G-torsors X! Y and Gev-torsors Z! Yev which constitute the
two sets above, X and Z are necessarily affine, Noetherian, and smooth. The first two prop-
erties follow from Proposition 1.7 (2) below. The remaining smoothness will be proved by
Proposition 5.1.
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Since in Theorem 1.4, everything thus turns out to be affine, the theorem is re-for-
mulated in terms of (Hopf) super-algebras, which represent the relevant functors. A super
G-torsor X! Y with X, Y affine is translated into an H -Galois extension A=B (see Def-
inition 3.1), where H is the Hopf super-algebra representing G, and A and B are the
super-algebras representing X and Y, respectively. Theorem 1.4 will be obtained as an
immediate consequence of Theorem 3.12, which explicitly describes such a Hopf–Galois
extension in the super situation, in terms of the naturally associated extension in the ordi-
nary situation; see also Corollary 3.14.

Remark 1.6. (1) It will be seen in Remark 3.15 that the bijection shown in Theorem 1.4
does not result from a category-equivalence from the category of super G-torsors over Y to
the category of Gev-torsors over Yev; these categories are in fact groupoids, as is seen from
the paragraph following Definition 1.1.

(2) A super-scheme X, regarded as a super-ringed space, is said to be split (see [16,
Section 2.6], for example) if the structure sheaf OX is isomorphic to the exterior algebra
^OXev

.M/ on some locally free OXev -module sheaf M, where OXev denotes the structure
sheaf of the scheme associated with X; see the first paragraph of Section 7. Every affine
algebraic super-group G is split (see (2.6)–(2.7) below), while G=H such as in Example 1.3
can be non-split; see [16, Remark 4.20 (2)]. In view of the cited example, it would be
hopeless to generalize Theorem 1.4, removing the affinity assumption.

1.3. The second main theorem

Suppose that an affine super-group G acts freely on a super-scheme X. We have the k-super-
functor which assigns to each R 2 SAlgk the set X.R/=G.R/ of G.R/-orbits; it has the
property

X.R/=G.R/ � X.S/=G.S/ whenever R � S; (1.3)

since the action is supposed to be free. We can construct in a simple manner (see [17,
Remark 3.8], for example) the faisceau dur XQQ=G which includes the k-super-functor above
as a sub-functor, and which is associated with that k-super-functor in the following sense:
every morphism from the k-super-functor to any faisceau dur extends uniquely to a mor-
phism from XQQ=G. Clearly, this XQQ=G is characterized by the co-equalizer diagram of the
faisceaux dur X � G� X! XQQ=G which is analogous to (1.2). An important consequence
is the following.

Proposition 1.7. Let G be an affine super-group.

(1) A super G-torsor refers precisely to the natural morphism X! XQQ=G, where G acts
freely on a super-scheme X and the associated faisceau dur XQQ=G is a super-scheme.
(Here, strictly speaking, one identifies a super G-torsor X! Y with X! XQQ=G such
as above, through a unique isomorphism Y

'
! XQQ=G compatible with the morphisms

from X.)
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(2) Suppose that X ! Y is a super G-torsor. Then it is an affine and faithfully-flat
morphism of super-schemes. Moreover,

X � G! X �Y X; .x; g/ 7! .x; xg/ (1.4)

is an isomorphism of super-schemes. If G is an affine algebraic super-group, then
X! Y is a morphism of finite presentation.

This is proved essentially by the same argument as [6, Part I, Section 5.7, (1)], which,
in fact, uses property (1.3). The faithful flatness shown in Proposition 1.7 (2) implies that
a morphism of super G-torsors over some Y is necessarily an isomorphism.

Note that the last assertion of Proposition 1.7 (2) above follows from the algebraicity
assumption for G, by using (1.4), base-change, and faithfully-flat descent. As this assertion
suggests, it would be more natural to consider the faisceau XQ=G which is associated, now
in an obvious sense, with the k-super-functor R 7! X.R/=G.R/, rather than the faisceau
dur XQQ=G above, when we assume that G is algebraic. In general (without the algebraicity
assumption), one sees from the constructions that

.XQ=G/.R/ � .XQQ=G/.R/

for every R 2 SAlgk .
From the above-mentioned assertion one sees the following.

Corollary 1.8. Suppose that an affine algebraic super-group G acts freely on a super-
scheme X. Then the faisceau XQ=G is a super-scheme if and only if the faisceau dur XQQ=G is.
If these equivalent conditions are satisfied, we have

XQ=G D XQQ=G;

and X! XQ=G .D XQQ=G/ is a super G-torsor.

The second main theorem is the following: it shows, under some assumptions, that
include (i) G is algebraic and (ii) the G-action is free, that XQ=G is a super-scheme provided
Xev Q=Gev is a scheme. Due to (i), we thus work with faisceaux, not with faisceaux dur.

Theorem 1.9. Suppose that an affine algebraic super-group G acts freely on a locally
Noetherian super-scheme X. Assume the following:

(a) G and X are both smooth;

(b) the faisceau Xev Q=Gev associated with the induced (necessarily, free) action by the
affine algebraic group Gev on the locally Noetherian scheme Xev is a scheme; it
then necessarily holds that Xev Q=Gev is locally Noetherian and smooth, and Xev !

Xev Q=Gev is a Gev-torsor.

Then the faisceau XQ=G is a locally Noetherian, smooth super-scheme such that

Xev Q=Gev D .XQ=G/ev: (1.5)

In particular, X! XQ=G is a super G-torsor.
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By (1.5), we mean that the canonical morphism Xev! .XQ=G/ev induces an isomorphism
such as noted. By convention, we thus present canonical isomorphisms by D, the equal
sign.

To prove the theorem above, the essential case is when X is affine. In this situation, the
theorem is re-formulated, again in terms of Hopf–Galois extensions, by Theorem 3.16.

Remark 1.10. One might think that the result [16, Theorem 4.12] referred to in Exam-
ple 1.3 follows from the above Theorem 1.9 as the special case where H and G of the
former are taken as G and X, respectively, of the latter, since the faisceau Gev Q=Hev is known
to be a scheme (see [6, Part I, Section 5.6, (8)]), and thus assumption (b) above is satisfied.
But this is true only when assumption (a) (for H and G) as well is satisfied, which is always
the case if char k D 0; see Remark 3.13 (1).

1.4. Organization of the paper and additional remarks

As mentioned above, the two main theorems, Theorems 1.4 and 1.9, largely depend on
Theorems 3.12 and 3.16, which are formulated in Section 3 in terms of Hopf–Galois
extensions, the algebraic counterpart of super-torsors. Those Hopf-algebraic theorems are
proved by spending the whole of Section 5 and of Section 6, respectively. Theorem 1.9
is proved in the final Section 7, while Theorem 1.4 is an immediate consequence of
Theorem 3.12, as was already mentioned. Theorem 3.12 is accompanied with an anal-
ogous result, Proposition 3.11, which is used to prove Theorem 3.16; Section 4 is devoted
to proving the proposition. Section 2 is devoted to preliminaries for the following Sec-
tions 3–6.

Sections 2–6 will be found to have a purely Hopf-algebraic flavor. There we use the
Hopf-algebraic techniques developed so far to investigate algebraic super-groups, as well
as several results already obtained by these techniques; see [9, 10, 14–18]. In addition,
some important results proved by Schauenburg and Schneider [19] for Hopf–Galois exten-
sions in the ordinary but non-commutative setting are applied; see Sections 3.1 and 5.1. A
notable result of the application is the equivariant smoothness, Proposition 5.1, proved in
the latter Section 5.1.

Remark 1.11. The two main theorems of ours both play substantial roles in the preprint
[12] (continuing to [13]) by the first-named author. It generalizes Picard–Vessiot theory,
which is the Galois theory of linear differential equations, to the super context.

2. Preliminaries

2.1. Super-linear algebra

We let˝ denote the tensor product˝k over our base field k; recall chark ¤ 2 by assump-
tion. A vector space V D V0 ˚ V1 graded by the group Z2 D ¹0; 1º is alternatively called
a super-vector space; it is said to be purely even (resp., purely odd) if V D V0 (resp., if
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V D V1). The super-vector spaces form a symmetric tensor category,

SModk D .SModk ;˝; k/;

with respect to the so-called super-symmetry

c D cV;W WV ˝W
'
! W ˝ V; c.v ˝ w/ D .�1/jvjjwjw ˝ v;

where V; W 2 SModk , and v.2 V /, and w.2 W / are homogeneous elements of degrees
jvj and jwj. A super-algebra is by definition an algebra in SModk . Similarly, the notions
of super-coalgebra, Hopf super-algebra, and Lie super-algebra are defined in an obvious
manner.

2.2. Super-(co)algebras

Given a super-algebra R, we let

SModR (resp., RSMod)

denote the category of right (resp., left) R-modules in SModk ; an object in the category
is called a right (resp., left) R-super-module. As is shown in [9, Lemma 5.1 (2)], such a
super-module is projective in the category if and only if it is projective regarded as an
ordinary R-module.

Given a super-coalgebra C , we let

SModC (resp., CSMod)

denote the category of right (resp., left) C -comodules in SModk ; an object in the category
is called a right (resp., left) C -super-comodule. It follows by the dual argument of prov-
ing [9, Lemma 5.1 (2)] referred to above that such a super-comodule is injective in the
category if and only if it is injective, regarded as an ordinary C -comodule. Suppose that
V D .V; �/ is an object in SModC and W D .W; �/ is in CSMod. The co-tensor product
V�CW is defined by the equalizer diagram

V�CW ! V ˝W � V ˝ C ˝W (2.1)

in SModk , where the paired arrows indicate � ˝ idW and idV ˝�. This gives rise to the
functor V�C WCSMod! SModk , which is seen to be left exact. It is known that the functor
V�C is exact if and only if V is injective. An analogous result for the functor�CW holds.

For V D .V; �/ as above, we define

V coC
´ ¹v 2 V j �.v/ D v ˝ 1º: (2.2)

This is a super-subvector space of V , whose elements are called C -co-invariants in V .
Analogously, for .W; �/ as above, we define

coCW ´ ¹w 2 W j �.w/ D 1˝ wº: (2.3)
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In what follows we assume that all super-algebrasR are super-commutative, or namely,
baD .�1/jajjbjab for all homogeneous elements a; b; the assumption is equivalent to say-
ing thatR includes the even componentR0 as a central subalgebra, and we have baD�ab
for all a; b 2 R1. The two categories of super-modules are then naturally identified so that

RSMod D SModR:

2.3. Hopf super-algebras

Accordingly, all Hopf super-algebras H are assumed to be super-commutative, unless
otherwise stated. The category

SModH D .SModH ;˝; k/

of right H -super-comodules then forms a symmetric tensor category with respect to the
super-symmetry. We will mostly deal with these right H -super-comodules rather than the
analogous left ones.

In general, given a super-algebra R, we let

IR ´ .R1/; xR´ R=IR (2.4)

denote the super-ideal of R generated by the odd component R1, and the quotient super-
algebra ofR by IR, respectively; the latter is in fact the largest purely-even quotient super-
algebra of R.

Let H be a Hopf super-algebra. Then xH is seen to be an ordinary Hopf algebra. Let
HC be the augmentation super-ideal of H , or namely, the kernel Ker."WH ! k/ of the
co-unit of H . Let

W ´ .HC=.HC/2/1 (2.5)

denote the odd component of the super-vector space HC=.HC/2. The exterior algebra
^.W / D

L
n�0 ^

n.W / on W is regarded as a super-algebra whose even (resp., odd)
component is the direct sum of those^n.W /with n even (resp., odd). SinceH is naturally
an algebra in SModH , it turns to be an algebra in SMod xH along the quotient map H ! xH .
The tensor-product decomposition theorem [9, Theorem 4.5] tells us that there is a co-
unit-preserving isomorphism

H ' ^.W /˝ xH (2.6)

of algebras in SMod xH , where the co-unit of the right-hand side is the co-unit of xH tensored
with the natural projection ^.W / ! ^0.W / D k. As an exception from what we said
above about the side, we will mainly use the opposite-sided version

H ' xH ˝^.W / (2.7)

of (2.6).
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Remark 2.1. (1) As a typical example of affine algebraic super-groups, recall GLmjn; for
a super-vector space V with m D dim V0, n D dim V1, the super-group assigns to every
super-algebra R, the group of all automorphisms of the R-super-module R ˝ V . The
Hopf super-algebra representing GLmjn is presented, for example, in [11, Example 4.1].
[11, Example 4.2] explicitly gives a relevant isomorphism such as (2.7); see footnote 5
added to the arXiv version, in particular.

(2) We emphasize that the isomorphisms (2.6) and (2.7) preserve the xH -co-actions, in
particular, and they hold without assuming that H (or xH ) is finitely generated or smooth.
They were first proved by [14, Proposition 2.4] under that assumption that char k D 0

(whence xH is smooth), and H is finitely generated; we remark that the cited proposition
refers to a result by H. Boseck as a weaker version, but his proof was wrong.

2.4. Smooth super-algebras

A super-algebra R is said to be Noetherian if the super-ideals of R satisfy the ACC, or,
equivalently, if the even component R0 is a Noetherian algebra, and the odd component
R1, regarded as an R0-module, is finitely generated; see [16, Section 2.4] for other equiv-
alent conditions.

A super-algebra R is said to be smooth (over k) if, given a super-algebra surjection
A ! B with nilpotent kernel, every super-algebra map R ! B factors through A by
some super-algebra map R! A. It is known that if chark D 0, every Hopf super-algebra
is smooth; see Remark 3.13 (1) below.

The following is part of [18, Theorem A.2].

Proposition 2.2. For a Noetherian super-algebra R, the following conditions (a) and (b)
are equivalent:

(a) R is smooth as a super-algebra;

(b) (i) xR is smooth as an algebra,

(ii) IR=I
2
R, which is seen to be a purely odd xR-super-module, is finitely gener-

ated projective as an xR-module, and

(iii) there is an isomorphism ^ xR.IR=I
2
R/ ' R of super-algebras.

In (iii) above,^ xR.IR=I
2
R/ denotes the exterior xR-algebra on IR=I 2R, which is regarded

as a super-algebra just as the^.W / before. One can replace xR and IR=I 2R, more generally,
with a purely even super-algebra and a purely odd super-module over it, respectively.

Remark 2.3. (1) For a super-algebra R, one sees as in [18, p. 360] that

IR=I
2
R D R1=R

3
1;

which is a purely odd xR-super-module. This is finitely generated, ifR is Noetherian; recall
that R1 is then finitely generated as an R0-module.
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(2) Suppose that a Noetherian super-algebraR satisfies the equivalent conditions in the
preceding proposition. By (b) (i), there is a section of the natural projection R0 ! xR .D
R0=R

2
1/, through which we regard R as a super-algebra over xR. The natural projection

IR ! IR=I
2
R is seen to be a surjection in SMod xR, which has a section by (b) (ii). The

proof of [18, Theorem A.2] shows that the xR-super-algebra map

^ xR.IR=I
2
R/! R; (2.8)

which uniquely extends the last section, is an isomorphism such as in (b) (iii).

2.5. Faithful flatness and finite presentation

A mapR! S of super-algebras is said to be (faithfully) flat if the functor S˝RWRSMod!
SModk is (faithfully) exact. This is equivalent to saying that S is (faithfully) flat, regarded
as an ordinary rightR-module; see [10, Lemma 5.1 (1)]. Each of the equivalent conditions
is equivalent to the one with the side switched.

Given a map R ! S of super-algebras, S is said to be finitely presented over R if
S is presented so as RŒx1; : : : ; xmI y1; : : : ; yn�=I , where x1; : : : ; xm are finitely many
even variables, y1; : : : ; yn are finitely many odd variables, and I is a super-ideal which is
generated by finitely many homogeneous elements.

Suppose that X is an affine super-scheme. We let O.X/ denote the super-algebra repre-
senting X; it is non-zero since X is non-trivial by convention; see Section 1.1. Note that
the algebra O.Xev/ which represents the associated affine scheme Xev equals O.X/ .D
O.X/=.O.X/1//. We say that X has a property (P) (e.g., Noetherian, smooth) if O.X/ has
the property (P).

3. Shifting to the Hopf-algebra world

3.1. Hopf–Galois extensions

Let G be an affine super-group, and setH´O.G/, the Hopf super-algebra representing G.
A left G-super-module may be understood to be a right H -super-comodule.

Let X is an affine super-scheme, and set A´ O.X/.¤ 0/. Suppose that G acts on X
from the right, and the action X � G! X is represented by

�WA! A˝H:

Thus, A D .A; �/ is an algebra in SModH . Let

B ´ AcoH .D ¹a 2 A j �.a/ D a˝ 1º/I

see (2.2). This is a super-subalgebra of A, and is often alternatively presented as B D AG ,
the G-invariants in A.
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Recall that the G-action on X is said to be free if the morphism (1.1) of k-super-functors
is a monomorphism of super-schemes, or equivalently, if the natural maps

X.R/ � G.R/! X.R/ � X.R/; .x; g/ 7! .x; xg/

are injective for all R 2 SAlgk . This is the case if the super-algebra map

˛WA˝ A! A˝H; ˛.a˝ b/ D a�.b/; (3.1)

which represents (1.1), is surjective. Notice that this super-algebra map induces

ˇWA˝B A! A˝H; ˇ.a˝B b/ D a�.b/: (3.2)

Definition 3.1. We say thatA=B is (an)H -Galois (extension), orA is anH -Galois exten-
sion over B , if B ,! A is faithfully flat, and the map ˇ above is bijective.

Remark 3.2. The definition above is generalized to the situation where H and A are not
necessarily super-commutative. But it seems reasonable to assume then that the antipode
of H is bijective, in which case, the condition that A is faithfully flat over B on the left is
equivalent to the condition that it is so on the right, as is seen from [19, Theorem 4.10];
see also [17, Lemma 10.1] and Remark 3.10 below.

Recall that A is an algebra in SModH . We let

SModHA D .SModH /A (3.3)

denote the category of right A-modules in SModH . Its objects may be called .H;A/-Hopf
super-modules in view of [3, p. 244]. One sees A 2 SModHA . More generally, N ˝B A 2
SModHA , if N 2 SModB . In fact, we have the functor

‰W SModB ! SModHA ; ‰.N / D N ˝B A: (3.4)

This is left adjoint to the functorˆWSModHA ! SModB which assigns to eachM in SModHA ,
the H -co-invariants M coH in M ; see (2.2).

We reproduce the following from [17]. See also [23, Section 4] and [15, Remark 2.8].

Theorem 3.3 ([17, Theorem 7.1]). Retain the situation as above.

(1) The following condition are equivalent:

(i) the G-action on X is free, and the faisceau dur XQQ=G is an affine super-scheme;

(ii) the map ˛ is surjective, and A is injective in SModH ;

(iii) A=B is an H -Galois extension;

(iv) the functor ‰ in (3.4) is an equivalence.

If these equivalent conditions are satisfied, then the affine super-scheme XQQ=G is
represented by B , or, in notation, O.XQQ=G/ D B .
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(2) Suppose that G is algebraic and X is Noetherian (or, in other words, H is finitely
generated and A is Noetherian). If the equivalent conditions above are satisfied,
then XQQ=G (or B) is Noetherian, and it coincides with the faisceau XQ=G.

To prove part of this theorem, the same argument as the one we used before to see
Proposition 1.7 has been used. Notice from Corollary 1.8 that the conclusion XQQ=G D XQ=G
in part (2) holds only assuming that G is algebraic. Part (1) of the theorem, combined with
Proposition 1.7 (2), shows the following.

Corollary 3.4. Let G and H be as above. Let Y be an affine super-scheme, and set B ´
O.Y/. Every super G-torsor X over Y is necessarily an affine super-scheme, and O.X/ natu-
rally turns into an H -Galois extension over B . Moreover, every H -Galois extension over
B arises uniquely from a super G-torsor over Y in this way.

The following is well known at least in the ordinary situation, and is easily proved
by using faithfully flatness of Hopf–Galois extension; see also the paragraph following
Proposition 1.7.

Lemma 3.5. Let H be a Hopf super-algebra, and let B be a non-zero super-algebra.
GivenH -Galois extensionsA=B andA0=B , everyB-algebra morphismA!A0 in SModH

is necessarily an isomorphism.

We say that A=B and A0=B are isomorphic to each other, if there exists a morphism,
necessarily an isomorphism, such as above.

The next Proposition 3.6 shows an interesting property ofH -Galois extensions, which
will be used to prove Lemmas 4.1 and 5.6. In fact, it directly generalizes an important
result by Schauenburg and Schneider [19], which was proved in the non-super situation,
to our super situation.

To prove the theorem above reproduced from [17, Section 10], there was used the
so-called “bosonization technique,” in order to reduce (the main part of) the theorem to
a known result which was proved in the non-super, but non-commutative situation. The
same technique is used, as will be seen soon, to prove the next proposition. We continue
to assume the super-commutativity. But the proof works for proving the result without the
assumption; see Remark 3.2.

Let A=B be an H -Galois extension. Since B is an algebra in SModH on which H
co-acts trivially, the category

BSModH .D B.SModH //

of left B-modules in SModH consists precisely of those left B-super-modules M which
are at the same time right H -super-comodules such that the B-action B ˝M ! M and
the H -co-action M !M ˝H commute in an obvious sense.

Proposition 3.6. Let A=B be as above. Then the product map

B ˝ A! A; b ˝ a 7! ba (3.5)
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is clearly a surjective morphism in BSModH , and in fact, it splits as such a morphism.
Hence, A is projective in BSMod, in particular.

Proof. The bosonization of H is the (ordinary) Hopf algebra

yH D H >ÉÍZ2

of smash product (resp., smash co-product) by Z2 as an algebra (resp., as a coalge-
bra). This Hopf algebra may not be commutative, but has a bijective antipode; see [17,
Lemma 10.1]. In this proof, we present Z2 as a multiplicative group with generator � .
One sees from [17, Proposition 10.3] that the semi-direct product of A by Z2

yA D A Ì Z2

naturally turns into an yH -comodule algebra, and moreover, into an yH -Galois extension
overB DB � ¹1º (in the non-super situation), which is faithfully flat overB on both sides.
It follows by [19, Theorem 5.6] that the product map B ˝ yA! yA has a left B-linear and
right yH -co-linear section,

sW yA! B ˝ yA:

We suppose yA D A ˝ kZ2, and define maps r WB ˝ A ˝ kZ2 ! B ˝ A and t WA !
A˝ kZ2 by

r.b ˝ a˝ � i / D b ˝ a; i D 0; 1;

t.a/ D a˝ e;

where e D 1
2
.1C �/, a primitive idempotent in kZ2. Then the composite r ı s ı t WA!

B ˝A is seen to be a left B-linear and rightH -co-linear section of the product map (3.5),
which may not preserve the parity. The section as well as the product map is naturally
regarded as a map of left B ˝H�-modules, where H� is the dual algebra of H . Since
B ˝H� � .B ˝H�/ÌZ2 is a separable extension of rings by the assumption chark¤ 2,
one sees that the product map has a .B ˝ H�/ Ì Z2-linear section, which is indeed a
desired section; cf. the proof of [9, Lemma 5.1 (2)].

3.2. Inflation of Hopf–Galois extensions

Günther [5] proves in the non-super situation an interesting result on the inflation of Hopf–
Galois extensions, which is directly generalized to the super situation; see Remark 3.10
below. We are going to present the result in a restricted form as will be needed in the
sequel.

Continue to suppose that G is an affine super-group represented by H . Recall that the
affine group Gev is represented by the quotient Hopf algebra xH D H=.H1/ of H . Let

�WH ! H ˝H; �.h/ D h.1/ ˝ h.2/
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denote the co-product on H . Then H turns into an algebra in xHSMod with respect to
x�WH ! xH ˝H , x�.h/ D Nh.1/ ˝ h.2/, where h 7! Nh presents the quotient map. Let

R D co xHH .D ¹h 2 H j x�.h/ D N1˝ hº/ (3.6)

denote the super-subalgebra of left xH -co-invariants (see (2.3)), which is seen to satisfy
�.R/ � R˝H , whence it is an algebra in SModH . From (2.7), we see

R ' ^.W /: (3.7)

Suppose that D D .D; �/ is an algebra in SMod xH , which may not be purely even. The
co-tensor product (see (2.1))

D� xHH D
°X

i

di ˝ hi 2 D ˝H
ˇ̌̌ X

i

�.di /˝ hi D
X
i

di ˝ x�.hi /
±

is naturally an algebra in SModH such that

Dco xH
D .D� xHH/

coH : (3.8)

This canonical isomorphism (3.8) is a restriction ofD!D˝H; d 7! d ˝ 1, and it has,
indeed, an inverse,

P
i di ˝ hi 7!

P
i di".hi /, given by the co-unit " of H .

Lemma 3.7. Set B ´ Dco xH . If D=B is xH -Galois, then .D� xHH/=B is H -Galois.

Proof. One sees from (3.8) that B D .D� xHH/coH . Notice from (2.7) and (3.7) that we
have an isomorphism xH ˝ R ' H of R-algebras in xHSMod, which, with D� xH applied,
induces an isomorphism

D ˝R ' D� xHH (3.9)

of super-algebras over B ˝ R. We conclude that B ,! D� xHH , b 7! b ˝ 1 is faithfully
flat.

We claim that the inclusion D� xHH ,! D ˝H is faithfully flat. To prove this, let
 W xH ! H be the restriction of an isomorphism xH ˝ R ' H such as above, to xH .D
xH ˝ k/. Then this  is an algebra morphism in xHSMod. Moreover, the isomorphism is

given explicitly by a˝ x.2 xH ˝R/ 7!  .a/x, and the induced one (3.9) is given by

d ˝ x.2 D ˝R/ 7! d.0/ ˝  .d.1//x;

where d 7! d.0/ ˝ d.1/ presents the xH -co-action onD. Compose (3.9) with the inclusion
in question. The resulting map is seen to be the composite of the inclusion D ˝ R ,!

D ˝H with the super-algebra map

D ˝H ! D ˝H; d ˝ h 7! d.0/ ˝  .d.1//h;

which is indeed an isomorphism with inverse d ˝ h 7! d.0/ ˝  .�.d.1///h, where �

denotes the antipode of xH . The faithful flatness of the last inclusion proves the claim.
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It remains to prove that the beta map for D� xHH is bijective. It suffices to show
that the map turns to be so after the base extension along D� xHH ,! D ˝H , which is
faithfully flat as was just proven. To the beta map for D, apply first .D ˝H/˝D , and
then� xHH . The resulting bijection

.D ˝H/˝B .D� xHH/
'
! .D ˝H/˝H

is given explicitly by

.d ˝ h/˝B

�X
i

di ˝ hi

�
7!

X
i

.�1/jdi jjhjddi ˝ h˝ hi :

This, composed with the bijection

D ˝H ˝H
'
! D ˝H ˝H; d ˝ h˝ h0 7! d ˝ hh0.1/ ˝ h

0
.2/;

coincides with the base extension which we wish to prove to be bijective; it is thus bijec-
tive, indeed.

Definition 3.8. An H -Galois extension A over an arbitrary non-zero super-algebra B is
said to arise from an xH -Galois extension D=B if it is isomorphic to the algebra D� xHH
in SModH over B . This D� xHH is called the inflation of D along H ! xH .

For the R in (3.6), let
RC D R \ Ker."H /

denote the augmentation super-ideal, where "H is the co-unit of H .

Proposition 3.9. Let B be a non-zero super-algebra.

(1) An H -Galois extension A over B arises from some xH -Galois extension if and
only if there exists an algebra morphism R! A in SModH .

(2) Suppose that A D .A; �/ is an H -Galois extension over B , and f WR! A is an
algebra morphism in SModH . Then the quotient super-algebra of A

Df ´ A=.f .RC// (3.10)

divided by the super-ideal .f .RC// generated by the image f .RC/ of RC is a
quotient algebra in SMod xH , and is in fact an xH -Galois extension over B . More-
over,

�WA! Df� xHH; �.a/ D Na.0/ ˝ a.1/ (3.11)

is an isomorphism of B-algebras in SModH , whence A=B arises from Df =B .
Here, �.a/ D a.0/ ˝ a.1/, and A! Df ; a 7! Na denotes the quotient map.

Proof. If A D D� xHH is the inflation of D, then the map

f WR! A D D� xHH; f .x/ D 1˝ x

is an algebra morphism in SModH . This proves “only if” of part (1).
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Suppose that A=B is H -Galois, and f WR ! A is an algebra morphism in SModH .
Then A, regarded as an object in SModR through f , turns into an object in SModHR .D

.SModH /R/. [9, Proposition 1.1] proves a category equivalence,

SMod xH
�
! SModHR ; N 7! N� xHH;

and that � is an isomorphism. It remains to prove that Df is xH -Galois over B . Now,
B!Df� xHH .D A/ is faithfully flat. Notice from (2.7) thatN� xHH DN˚d with d D
dim.^.W //, whence the functor � xHH is faithfully exact. Then it follows that B ! Df
is faithfully flat. Apply Df˝A to the beta map for A. Then there results an isomorphism
in SModHR , which is seen to correspond, through the category equivalence above, to the
beta map for Df ; it is, therefore, bijective.

Remark 3.10. One can generalize to our super situation the result [5, Theorem 4] by
Günther proved in the non-super situation, by modifying his proof. But the last proposition
is formulated and proved under the restricted, super-commutativity assumption; it allows
us to ignore the Miyashita–Ulbrich actions used in [5, p. 4391].

3.3. Main theorems re-formulated in the Hopf-algebra language

In this section, we letH be a Hopf super-algebra which is assumed to be finitely generated
unless otherwise stated. We let G denote the affine super-group represented by H ; it will
be discussed only when H is assumed to be finitely generated, and will be, therefore, an
affine algebraic super-group. Notice that the Hopf algebra xH is finitely generated under
the assumption.

Proposition 3.11. Let g D Lie.G/ be the Lie super-algebra of G, and assume that odd
component g1 of g satisfies

ŒŒg1;g1�;g1� D 0: (3.12)

Suppose that B is an arbitrary non-zero super-algebra. Then every H -Galois extension
over B arises from an xH -Galois extension.

The assumption above is clearly satisfied in case Œg1; g1� D 0, in which case the
proposition will be applied to prove Lemma 6.4 contained in Step 2 of the proof of The-
orem 3.16; the theorem is a key to the proof of the second main theorem, Theorem 1.9.
The assumption is also satisfied if dim g1 D 1, since in general, a Lie super-algebra g

shall satisfy ŒŒx; x�; x�D 0 for all x 2 g1. Proposition 3.11 will be proved by spending the
whole of Section 4.

Notice that the next theorem has a stronger conclusion than Proposition 3.11 above;
see the sentence following the theorem.

Theorem 3.12. Let B ¤ 0 be a super-algebra. Assume

(i) xH is smooth as an algebra,

(ii) the natural algebra surjection B0 ! xB splits, and

(iii) the super-ideal .B1/ of B is nilpotent.
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Choose arbitrarily a section xB! B0 of the surjection B0! xB , and regard B as a super-
algebra over xB through it. Then every H -Galois extension A over B is isomorphic to

.B ˝ xB
xA/� xHH: (3.13)

Moreover, xA, which is regarded naturally as a purely even algebra in SMod xH , is a purely
even xH -Galois extension over xB .

As a result, we can say that A=B arises from B ˝ xB
xA, which is clearly an xH -Galois

extension over B .

Remark 3.13. (1) As for the assumption (i) above, it is proved by [18, Proposition A.3]
without assuming H is finitely generated that the following are equivalent:

(a) xH is smooth as an algebra;

(b) H is smooth as a super-algebra.

These equivalent conditions are necessarily satisfied if char k D 0. Indeed, it is well
known that xH (in char k D 0) is geometrically reduced; this is equivalent to saying that
xH is smooth in the restricted case where it is finitely generated. In the general case, xH is

a filtered union of finitely generated Hopf subalgebras which are smooth as was just seen,
and it is, therefore, smooth; see [22, Exercise 9.3.2, Question 4].

(2) [15, Example 3.23] shows that Theorem 3.12 does not hold without assumption (i),
even if the remaining (ii) and (iii) are satisfied.

(3) .B ˝ xB xA/� xHH in (3.13) is canonically isomorphic to B ˝ xB . xA� xHH/, as is
easily seen by using (2.7).

Theorem 3.12 will be proved by spending the whole of Section 5. The theorem has
the following corollary, which is seen to be translated into the first main theorem, Theo-
rem 1.4, in view of Corollary 3.4 and Remark 3.13 (1) just above.

Corollary 3.14. Assume that xH is smooth. Let B ¤ 0 be a Noetherian smooth algebra. If
A=B is H -Galois, then xA= xB is purely even xH -Galois. Moreover, the assignment A 7! xA

gives rise to a bijection from

• the set of all isomorphism classes of H -Galois extensions over B

onto

• the set of all isomorphism classes of purely even xH -Galois extensions over xB .

Proof. To a purely even xH -Galois extensionE= xB , one can assign anH -Galois extension,
.B ˝ xB E/� xHH , over B . This assignment gives rise to a desired inverse of A 7! xA, as is
easily seen by using (2.7) and Theorem 3.12.

Remark 3.15. We have an example of an H -Galois extension .B ˝ xB E/� xHH such
as in the above proof, with the property that it has a B-algebra endomorphism (in fact,
an automorphism by Lemma 3.5) in SModH which is not induced naturally from any
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xH -comodule xB-algebra endomorphism of E. Indeed, let H D xH D kŒt; t�1�, the Lau-
rent polynomial algebra regarded as the Hopf algebra which represents the multiplicative
group. Let B D ^.V / be the exterior algebra on a finite-dimensional vector space of
dimension > 1. Choose as E the trivial kŒt; t�1�-Galois extension kŒt; t�1� over k. Then
one has .B ˝ xB E/� xHH D ^.V /˝ kŒt; t�1�. Every endomorphism in question uniquely
arises from a super-algebra map gW kŒt; t�1�! ^.V / so that

^.V /˝ kŒt; t�1�! ^.V /˝ kŒt; t�1�; b ˝ h 7! b.g ˝ id/.�.h//:

The endomorphism that arises from the g defined by g.t˙1/ D 1 ˙ x, where 0 ¤ x 2

^2.V / such that x2 D 0, is not induced from any endomorphism of E D kŒt; t�1�, as is
easily seen. The example shows that the bijection proved in Corollary 3.14 does not result
from a category-equivalence; this is translated into the fact stated in Remark 1.6 (1).

The second main theorem, Theorem 1.9, restricted to the affinity situation, is translated
into the following.

Theorem 3.16. Suppose that A D .A; �/ is a non-zero algebra in SModH ; xA is then nat-
urally a purely even algebra in SMod xH . Let B D AcoH . Assume that

(a) the map ˛WA˝ A! A˝H in (3.1) is surjective,

(b) xA= xAco xH is xH -Galois,

(c) xH is smooth as an algebra, and

(d) A is Noetherian and smooth.

Then A=B is H -Galois, and B is Noetherian, smooth and such that

xB D xAco xH ;

whence, with the assumptions of Theorem 3.12 all satisfied, A is of the form (3.13).

Remark 3.17. Under the situation of Theorem 3.16, assume that (a) is satisfied. It is
proved by [15, Theorems 1.2 and 3.7] that A=B is H -Galois, if xH is co-Frobenius as
a coalgebra, or equivalently, if the affine algebraic group Gev, which is now represented
by xH , has an integral. When char k D 0, the assumption is satisfied if and only if Gev is
linearly reductive; see Sullivan [20] also for characterizations in the positive characteristic
case.

Theorem 3.16 will be proved in Section 6, and the result, regarded as the special,
affinity case of Theorem 1.9, will be applied to prove that theorem in Section 7.

In what follows, until the end of Section 3.3, we let H be a Hopf super-algebra which
may not be finitely generated.

The notion of smoothness for super-algebras (over k) is generalized to the notion
for super-algebras over a fixed super-algebra and, moreover, for those super-algebras on
which H -co-acts. For the latter we use the word “H -smooth,” as follows.
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Definition 3.18. Let us be given an algebra morphism R! S in SModH . We say that S
is H -smooth over R if, given a surjective R-algebra morphism A! B in SModH with
nilpotent kernel, every R-algebra morphism S ! B in SModH factors through A by some
R-algebra morphism S ! A in SModH . The condition is equivalent to saying that every
surjective R-algebra morphism in SModH that maps onto S and has nilpotent kernel nec-
essarily splits, as is seen by a familiar augment using pull-backs; see the proof of [22,
Proposition 9.3.3], for example. Here one should notice that the category of R-algebras in
SModH has pull-backs.

We will use the word H -smooth when R such as above is trivial as an H -super-
comodule (and, moreover, for applications in the sequel, when R ! S is an embedding
into S coH ).

Proposition 3.19. Let us be given an algebra morphism R! S in SModH such that R is
trivial as an H -super-comodule. If S is H -smooth over R, then it is necessarily smooth
over R.

Proof. Let T be an R-super-algebra in general. Then T ˝H is naturally an R-algebra in
SModH . By the triviality assumption for R, the R-super-algebra maps S ! T are in one-
to-one correspondence with the R-algebra morphisms S ! T ˝H in SModH , in which
an R-super-algebra map f WS ! T corresponds to

Qf ´ .f ˝ idH / ı �WS ! T ˝H; (3.14)

where �WS ! S ˝H denotes the H -co-action on S .
Given anR-super-algebra surjectionA!B with nilpotent kernel, we have a surjective

R-algebra morphism A˝H ! B ˝H in SModH with nilpotent kernel. Assume that S
isH -smooth over R. Given an R-super-algebra map f WS ! B , the R-algebra morphism
Qf WS!B ˝H in SModH factors throughA˝H by some S!A˝H that is necessarily

of the form Qg with gW S ! A an R-super-algebra map. We see that f factors through A
by g. This proves the desired smoothness.

By the proposition just proven, H is smooth (over k), if it is H -smooth over k. The
converse holds, as well, as is shown by the following.

Proposition 3.20. H (or, equivalently, xH ) is smooth if and only if it is H -smooth over k.
These equivalent conditions are necessarily satisfied if char k D 0; see Remark 3.13 (1).

Proof. By modifying in an obvious manner the proof of the result [14, Proposition 1.10,
(i) () (iii)] in the non-super situation, we see that the following are equivalent:

(a) for every trivialH -super-moduleM , the symmetric 2nd Hochschild cohomology
H 2
s .H;M/ (constructed in SModk) vanishes;

(b) every surjective algebra morphism in SModH that maps ontoH and has nilpotent
kernel necessarily splits.



A. Masuoka, T. Oe, and Y. Takahashi 950

We now have only to prove “only if.” IfH is smooth, then (a) and thus (b) are satisfied.
But (b) is equivalent to saying that H is H -smooth over k, as was remarked at the last
part of Definition 3.18.

Remark 3.21. LetH 0 be a quotient Hopf algebra ofH such thatH is injective as a left or,
equivalently, right H 0-super-comodule; recall from the second paragraph of Section 2.2
that the condition is equivalent to saying that the co-tensor product functor �H 0H or
H�H 0 is exact. In the situation of Proposition 3.19, if S is H -smooth over R, then S is
H 0-smooth over R. This improves Proposition 3.19, generalizing k .D H=Ker "/ to H 0.
But the proof is a slight modification, which replaces (3.14) with .f�H 0 idH / ı �W S !
T�H 0H .

It follows that the conditions proved by Proposition 3.20 to be equivalent to each other
are further equivalent to the condition that H is H 0-smooth for some/any quotient Hopf
super-algebra H 0 of H that satisfies the injectivity assumption.

4. Proof of Proposition 3.11

To prove the proposition (in 2 steps), let H be a finitely generated Hopf super-algebra, let
G denote affine algebraic super-group represented by H , and let g D Lie.G/ be the Lie
super-algebra of G. We assume ŒŒg1;g1�;g1� D 0 as in (3.12).

4.1. Step 1

We claim the following.

Lemma 4.1. G has a quotient affine super-group F which has the following two properties,
where we let f D Lie.F/ denote the Lie super-algebra of F.

(1) The natural Lie super-algebra map g! f , restricted to the odd components, is
identical, or, in notation, g1 D f1;

(2) The closed embedding Fev ,! F splits (necessarily uniquely).

Suppose that this lemma is proved. Let J D O.F/. Then J is a Hopf super-subalgebra
of H . By (2), this J is of the form of smash co-product

J D xJ I<^.W /: (4.1)

Here W is a purely odd object in SMod xJ ; it constitutes the Hopf algebra ^.W / in SMod xJ ,
which contains elements of W as primitives. The Hopf algebra in turn constitutes the
smash co-product above. By (1), we have W D .f1/� D .g1/�, whence

co xHH D ^.W /:

Note that the k ˚W in this co xHH is a sub-object ofH in SModH , since it is, in fact, such
of J in SModJ .
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Given an H -Galois extension A=B , the inclusion B ,! A has a retraction r WA! B

in SModB . Indeed, by applying [19, Theorem 4.9] to the yH -Galois extension yA=B in the
non-super situation which was discussed in the proof of Proposition 3.6, one sees that the
natural inclusion B ,! yA .D A ÌZ2/ splits left (or right) B-linearly. The argument using
separable extensions, which was used in the last-mentioned proof, ensures the existence
of r . Now, the composite

k ˚W ,! H D k ˝H ,! A˝H
ˇ�1

��! A˝B A
r˝B idA
�����! A

is a morphism in SModH which sends 1 in k.� k ˚W / to 1 2 A. Therefore, this uniquely
extends to an algebra morphism co xHH D ^.W /! A in SModH . Proposition 3.9 (1) then
proves Proposition 3.11 in question.

4.2. Step 2

It remains to prove Lemma 4.1 above. Let

C D H ı;
x
C D xH ı

denote the dual Hopf super-algebra of H and the dual Hopf algebra of xH ; see [10,
Section 2.4]. The Hopf super-algebraC is not necessarily super-commutative, but is super-
cocommutative. This C includes

x
C as the largest purely even Hopf super-subalgebra. The

spaces of all primitives in the Hopf (super-)algebras give the Lie (super-)algebras of the
affine (super-)groups, so that

P.C/ D Lie.G/ .D g/; P.
x
C/ D Lie.Gev/ .D g0/:

Let h ; iW
x
C � xH! k denote the canonical pairing. Then xH has the natural left

x
C -mod-

ule structure given by
c * a D a.1/hc; a.2/i;

where c 2
x
C , a 2 xH , and �.a/ D a.1/ ˝ a.2/ denotes the co-product on xH . It is shown

by [10, Lemma 27 and Theorem 29] that the set

Hom
x
C .C; xH/ (4.2)

of all left
x
C -linear maps C ! xH has a natural structure of Hopf super-algebra, such that

H 'Hom
x
C .C; xH/ naturally as Hopf super-algebras. This Hom set is essentially the same

as what is denoted by HomJ .H.J; V /; C / in [10, p. 1101], and the explicit Hopf-super-
algebra structure is given by [10, Proposition 18 (2)–(3)].

Let
V D Œg1;g1�.�

x
C/:

One sees that, under the adjoint actions,
x
C stabilizes V , and g1 annihilates V by (3.12). It

follows that the left and the right (super-)ideals of the Hopf (super-)algebra generated by
V coincide, so that

x
CV D V

x
C; CV D VC:
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Let

x

Q D
x
C=V

x
C; Q D C=VC

denote the resulting quotients. In view of [9, Theorem 3.6] one sees that Q is a super-co-
commutative (but not necessarily, super-commutative) Hopf super-algebra, which includes

x

Q as the largest purely even Hopf super-subalgebra, and the odd component of the primi-
tives P.Q/ in Q remains to be g1, or in notation,

P.Q/1 D g1: (4.3)

Moreover, Œg1;g1� D 0 in P.Q/, whence Q is of the form of smash product

Q D
x

Q Ë ^ .g1/:

Define
xH 0´ ¹a 2 xH j V * a D 0º:

Then this is naturally a left
x

Q-module, whence we have the Hom set

J ´ Hom
x

Q.Q; xH
0/ (4.4)

as a subset of the one in (4.2). Since xH is finitely generated, it is proper in the sense that the
algebra map xH ! .

x
C/� which arises from the canonical pairing is injective. Therefore,

we have
xH 0 D ¹a 2 xH j h

x
CV; ai D 0º:

Moreover, since
x
CV is a Hopf ideal of

x
C , it follows that xH 0 is a Hopf subalgebra of

xH . From the above-mentioned structure on Hom
x
C .C; xH/, we see that the J in (4.4) is

regarded as a Hopf super-subalgebra of H , such that

. xJ D/J=.J1/ D Hom
x

Q.
x

Q˝ k; xH 0/ D xH 0:

In addition, the natural embedding

xJ D Hom
x

Q.Q=Qg1; xH
0/ ,! Hom

x

Q.Q; xH
0/

is seen to be a Hopf super-algebra section of the projection J ! xJ . It follows that J rep-
resents a quotient affine super-group, say F, of G which has the property (2) of Lemma 4.1.
We see from (4.3) that it has the property (1), as well.

5. Proof of Theorem 3.12

Let H be a Hopf super-algebra, and suppose that A=B is an H -Galois extension. The
proof is divided into three steps. In Steps 2 and 3 we will assume that H is finitely gener-
ated.

We start with only assuming (i), or namely, that xH is smooth over k.
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5.1. Step 1

This is a crucial step devoted to proving the following proposition, for which, we empha-
size, H may not be finitely generated.

Proposition 5.1. A isH -smooth over B , whence it is smooth over B by Proposition 3.19.

We let A\ denote the super-algebra A on which H co-acts trivially; thus we have
.A\/coH D A\.

By Proposition 3.20, H is H -smooth. This implies the following.

Lemma 5.2. A\ ˝H is H -smooth over A\.

Define
A´ A\ ˝B A:

Note that H co-acts on the second tensor factor A. Since this is isomorphic to A\ ˝H
through the beta map in (3.2), the lemma above has the following corollary.

Corollary 5.3. A is H -smooth over A\.

Recall from (3.3) the construction of the category SModHA , which is in fact k-linear
abelian. By an analogous construction, we let

ASMod
B

H
A (5.1)

denote the k-linear abelian category of those .A; A/-bimodules M in SModH for which
the left and the right B-actions coincide (in the super sense), or explicitly,

bm D .�1/jbjjmjmb; b 2 B;m 2M:

For example, A ˝B A, equipped with the co-diagonal H -co-action, is an object of this
category. Clearly, A is as well. For simplicity, we will writeASModHA for (5.1). Notice that
the category includes SModHA as a full subcategory; it consists of all objects of ASModHA
for which the left and the right A-actions coincide.

Recall from Theorem 3.3 that we have the (k-linear) category-equivalence

ˆW SModHA ! SModB ; ˆ.M/ DM coH : (5.2)

Lemma 5.4. The direct sum

P ´ .A˝B A/Œ0�˚ .A˝B A/Œ1�

of A˝B A .D .A˝B A/Œ0�/ and its degree shift .A˝B A/Œ1� is a projective generator in

ASModHA , whence the category has enough projectives, and for every M 2 ASModHA , the
Ext group

Ext�
ASModHA

.�;M/

is defined as the right derived functor of the Hom functor Hom
ASModHA

.�;M/.
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Proof. Let M 2 ASModHA . We have the natural identifications

Hom
ASModHA

..A˝B A/Œi �;M/ D .M coH /i ; i D 0; 1

of k-vector spaces, which amount to

Hom
ASModHA

.P ;M/ DM coH : (5.3)

With M regarded as an object in SModHA through the obvious forgetful functor, the right-
hand side of (5.3) coincides withˆ.M/; here, we do not regard SModHA �ASModHA . Since
ˆ preserves surjections, it follows that P as well as the two direct summands are pro-
jective. Since the inclusion ˆ.M/ D M coH ,! M extends to a natural isomorphism
M coH ˝B A

'
!M in SModHA , one sees thatM is generated byM coH as a rightA-module,

and so as an .A;A/-bimodule. Therefore, P is a generator.

Remark 5.5. Since AD A\ ˝B A is anH -Galois extension over A\, an analogous result
of the lemma above holds, with A˝B A replaced by A ˝A\A .D A\ ˝B .A˝B A//, in
the k-linear abelian category

ASMod
A\

H
A ;

which is defined in an obvious manner.

Note that B is a subalgebra of A in SModH . Just as shown in [22, Section 9.3] in the
ordinary situation (see also the last part of Definition 3.18), A is H -smooth over B if and
only if an extension of commutative B-algebras in SModH

0!M ! P ! A! 0 (5.4)

necessarily splits for every M 2 SModHA .� ASModHA /. By an extension such as the one
above, we mean that P ! A is a surjective morphism of commutative B-algebras in
SModH with kernel M square-zero, M 2 D 0, in P . It is said to split if the last surjection
splits as a B-algebra morphism in SModH .

Lemma 5.6. Every B-algebra extension of A, such as (5.4), necessarily splits as a short
exact sequence of B-modules in SModH .

Proof. By Proposition 3.6, the product map B ˝ A! A splits as a B-module morphism
in SModH .

It follows that every object in SModHA , and thus the kernelM , in particular, are injective
in SModH . Indeed, we see that

M DM coH
˝B A

is a direct summand of M coH ˝B .B ˝ A/ D M
coH ˝ A in SModH . The desired injec-

tivity follows since A is injective in SModH by Theorem 3.3 (1).
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We thus have a section sWA! P in SModH of the surjection P ! A. Choose arbitrar-
ily a B-module section t WA! B ˝ A in SModH of the product map above. We see that
the composite

A
t
! B ˝ A

id˝s
���! B ˝ P ! P;

where the last arrow indicates the product map, is a section of the B-module morphism
P ! A in SModH .

An important consequence of the lemma above is that B-algebra extensions of A such
as above are classified by the symmetric 2nd Hochschild cohomology H 2

s .A;M/ (con-
structed in BSModH ), which is naturally embedded into

Ext2
ASModHA

.A;M/:

Let
JA=B D Ker.A˝B A! A/

be the kernel of the product map. Then one has the short exact sequence 0! JA=B !

A ˝B A ! A ! 0 in ASModHA . The derived long exact sequence, combined with the
projectivity result in Lemma 5.4, shows that the last 2nd Ext group is naturally isomorphic
to

Ext1
ASModHA

.JA=B ;M/:

Therefore, the algebra extension (5.4) splits if and only if the corresponding extension

0!M ! Q! JA=B ! 0 (5.5)

in ASModHA splits; in other words, the cohomology class of (5.4) in H 2
s .A;M/ is zero if

and only if its image in Ext1
ASModHA

.JA=B ;M/ through the injection

H 2
s .A;M/ ,! Ext2

ASModHA
.A;M/

'
! Ext1

ASModHA
.JA=B ;M/

is zero. By the flat base-extension A\˝B , we obtain the mutually equivalent, analogous
conditions, and see that they are both satisfied since A D A\ ˝B A is H -smooth over A\

by Corollary 5.3. The second analogous condition tells us that the base extension

0! A\ ˝B M ! A\ ˝B Q! A\ ˝B JA=B D JA=A\ ! 0 (5.6)

of (5.5) splits in ASMod
A\

H
A .

Now, we let A\ recover the original structure as an algebra in SModH , and suppose
that the sequence (5.6) has an additional structure which arises from the tensor factors A\

regarded as objects in

ASModH .D A.SModH //:
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To make this clearer, let Ai (resp.,Hi ), i D 1; 2, be copies of A (resp.,H ), regard Ai as an
algebra in SModHi , and suppose that A1 is the A\ equipped with the recovered structure.
One sees that

A1 ˝B A2 and A2 .D B ˝B A2/

naturally form algebras in SModH1˝H2 , which both include B as subalgebra. Therefore,
we have the k-linear abelian category

A1˝BA2
SMod
B

H1˝H2
A2

of those .A1 ˝B A2; A2/-bimodules in SModH1˝H2 for which the left and the right
B-actions coincide. The short exact sequence (5.6) is naturally regarded as such a sequence
in A1˝BA2SMod

B

H1˝H2
A2

.

Lemma 5.7. The short exact sequence (5.6) splits in A1˝BA2SMod
B

H1˝H2
A2

.

Proof. Our argument below is essentially the same as the one which proves the Maschke-
type Theorem [4, Theorem 1].

Let us consider the injection A1 ˝B M ! A1 ˝B Q in (5.6). Since the category

ASMod
A\

H
A is naturally identified with A1˝BA2SMod

B

H2
A2

, the injection has a retraction, say r ,

in A1˝BA2SMod
B

H2
A2

. The tensor product

Qr ´ r ˝ idH1 W .A1 ˝H1/˝B Q! .A1 ˝H1/˝B M:

is seen to be in A1˝BA2
SMod
B

H1˝H2
A2

, where A1 acts on the A1 ˝ H1 in these objects
through the H1-co-action on A1, and H1 co-acts on the tensor factor H1; to be precise,
the latter co-action involves the super-symmetry relevant to Q or M . One sees that Qr is a
retraction, in A1˝BA2SMod

B

H1˝H2
A2

, of the above injection tensored with idH1 .

By Theorem 3.3 (1), A1 is injective in SModH1 . It follows that there is a morphism
�WH1 ! A1 in SModH1 such that �.1/ D 1. We see that the map t W A1 ˝ H1 ! A1
defined by

t .a˝ h/ D a.0/�.�.a.1//h/;

where � denotes the antipode of H1, is a retraction of the H1-co-action A1 ! A1 ˝H1,
a 7! a.0/ ˝ a.1/ in A1SModH1 ; cf. [4, p. 100]. The tensor product

Qt ´ t ˝B idM W .A1 ˝H1/˝B M ! A1 ˝B M

is a retraction in A1˝BA2SMod
B

H1˝H2
A2

of the H1-co-action on A1 ˝B M . One sees that the
composite Qt ı Qr , further composed with the H1-co-action on A1 ˝B Q, gives a retraction
in A1˝BA2SMod

B

H1˝H2
A2

of the injection in question. This proves the lemma.

Apply to (5.6) the equivalence of categories . /co.H1/WA1
SModH1 � BSMod, which is

essentially the same as the ˆ in (5.2). This can be, in fact, replaced by

A1˝BA2
SMod
B

H1˝H2
A2

� A2
SModH2A2 .D A2

SMod
B

H2
A2
/:
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Then there results precisely the short exact sequence (5.5) in the category ASModHA on
the right-hand side, which splits since, by Lemma 5.7, (5.6) splits in the category on the
left-hand side. This implies that A is H -smooth over B , as was seen before.

5.2. Step 2

Let us be in the situation at the beginning of this Section 5. But here we assume that
H is finitely generated (and continue to assume (i)). In addition, we assume that B is
purely even, B D B0, or equivalently, B D xB , and aim to prove Theorem 3.12, that is, the
following.

Proposition 5.8. Under the assumptions above, we have

A ' xA� xHH

(or, namely, A is of the form (3.13) with B D xB), and xA=B is xH -Galois.

Lemma 5.9. We have the following:

(1) xA is smooth over B;

(2) xA is faithfully flat over B .

Proof. (1) By Proposition 5.1, A is smooth over the now purely even B . As a general
fact, this implies that xA is smooth over B . Indeed, given an algebra surjection S ! T

with nilpotent kernel, every algebra map xA! T , identified with the naturally associated
super-algebra map A! T , factors through S by some A! S or by the naturally induced
xA! S .

(2) We claim that the super-ideal IA .D .A1// of A is nilpotent. Indeed, since H
is finitely generated by assumption, A\ ˝B A.' A\ ˝H/ is finitely generated over A\.
Since B ! A\ is faithfully flat, A is finitely generated over B; this implies that the super-
ideal IA, being generated by finitely many odd elements, is nilpotent.

The claim above, combined with (1), shows that theB-super-algebra surjectionA! xA
(or in fact, A0 ! xA) splits. The faithful flatness of A over B implies that xA is faithful flat
over B .

Apply xA˝A to the isomorphism ˇ in (3.2) to obtain

xA˝B A ' xA˝H:

Then one sees that A is a twisted form of the B-algebra B ˝H in SModH , which is split
by xA; this xA is faithfully flat over B by Lemma 5.9 (2). Such twisted forms are classified
by the 1st Amitsur cohomology set

H 1. xA=B;G/ (5.7)

for the affine super-group G represented by H . This cohomology set is in fact constructed
in the super situation; the construction is analogous to the one, as given in [21, Part V], of
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the ordinary cohomology set. One sees that super-algebra maps H !
Nn
B
xA, 1 � n � 3,

uniquely factor through xH . Moreover, the complex for computing (5.7) is naturally iden-
tified with the one for computing the ordinary 1st Amitsur cohomology set

H 1. xA=B;Gev/

for the affine group Gev represented by xH . We see easily that the identification

H 1. xA=B;Gev/
'
! H 1. xA=B;G/

is realized by
D 7! D� xHH;

where D is a twisted form of B ˝ xH which is split by xA. In particular, A is (uniquely) of
the form D� xHH . To be more precise, A is isomorphic to D� xHH through an isomor-
phism such as in (3.11), which is seen by (2.7) to induce xA ' D. Being a twisted form of
B ˝ xH , xA .D D/ is xH -Galois over B . This completes the proof of Proposition 5.8.

5.3. Step 3

Under the situation at the beginning of Section 5, we assume that H is finitely generated.
In addition to (i), we assume that

(ii) the natural algebra surjection B0 ! xB splits, and

(iii) the super-ideal .B1/ of B is nilpotent,

as in Theorem 3.12. We are going to complete the proof of the theorem.
Let

F ´ A=B1A:

This is seen to be an algebra in SModH . Given a purely even xB-super-module N , one sees
that

N ˝B A D .N ˝B xB/˝B A D N ˝ xB F:

It follows that F is xB-faithfully flat, since A is B-faithfully flat.
By applying xB˝B to the isomorphism ˇ in (3.2), we obtain

F ˝ xB F ' F ˝H:

Therefore, F is H -Galois over the purely even xB . By Proposition 5.1, F is H -smooth
over xB . By (ii), the natural surjection A! F may be regarded as a xB-algebra morphism
in SModH , which splits since its kernel is nilpotent by (iii). Choose arbitrarily a section
F ! A, through which we can regard A as an F -algebra in SModH , and in particular, as
an object in SModHF .

Notice that xF D xA. Then it follows by Proposition 5.8 that

F ' xA� xHH;
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and xA= xB is xH -Galois. The category equivalence SModHF � SMod xB as in (5.2) shows

A ' B ˝ xB F ' B ˝ xB .
xA� xHH/ D .B ˝ xB xA/� xHH;

as desired; see Remark 3.13 (3) for the last canonical isomorphism.

6. Proof of Theorem 3.16

Let R be a super-algebra. Recall from (2.4) that we write IR D .R1/ and xR D R=IR.
Define

grR´
M
n�0

I nR=I
nC1
R :

Thus, we have
.grR/.0/ D xR; .grR/.1/ D IR=I 2R;

in particular. This grR is a graded super-algebra, by which we mean an N-graded algebra
which, regarded as Z2-graded by mod 2 reduction, is super-commutative. In other words,
a graded super-algebra is a commutative algebra in the tensor category

GrModk D .GrModk ;˝; k/ (6.1)

of the N-graded vector spaces over k, equipped with the super-symmetry for which objects
are regarded to be Z2-graded by mod2 reduction; for example, the exterior algebras which
have appeared so far are such algebras. We see

grR D xR:

A graded Hopf super-algebra is a commutative Hopf algebra in the symmetric category
above.

To prove Theorem 3.16 (in three steps), suppose that we are in the situation of the
theorem. Thus, H is a finitely generated Hopf super-algebra, A D .A; �/ is a non-zero
algebra in SModH , and B D AcoH .

6.1. Step 1

From the four assumptions (a)–(d) in Theorem 3.16, we here assume the following three
conditions:

(b) xA= xAco xH is xH -Galois;

(c) xH is smooth as an algebra;

(d) A is Noetherian and smooth.

Lemma 6.1. We have the following.

(1) xAco xH is Noetherian and smooth.

(2) xA is xH -smooth over k.
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Proof. (1) By (d), xA is Noetherian and smooth; for the smoothness, see the proof of
Lemma 5.9 (1).

In general, given a faithfully-flat homomorphism R! S of algebras over a field, we
have that if S is Noetherian and smooth, then R is, as well. Indeed, R is then clearly
Noetherian. To see that it is smooth or, equivalently, geometrically regular, it suffices, by
base extension and localization, to prove that R is regular, assuming that R ! S is a
flat local homomorphism of Noetherian local algebras with S being regular. The desired
regularity of R follows by using Serre’s characterization of regularity as having finite
global dimension.

Part (1) follows from this general fact applied to xAco xH ,! xA, which is faithfully flat
by (b).

(2) Everything here is purely even. We wish to prove that an extension

0!M ! T ! xA! 0

of commutative algebras in SMod xH necessarily splits. This splits as a short exact sequence
in SMod xH , since M is in SMod xH

xA
, and is, therefore, injective in SMod xH by (b); see the

second paragraph of the proof of Lemma 5.6. Therefore, the algebra map T co xH ! xAco xH

restricted to the xH -co-invariants is surjective, whence it splits by (1) above. The desired
result follows, since xA is xH -smooth over xAco xH , as is seen from Proposition 5.1 applied to
xA= xAco xH ; the last application is possible by (b) and (c).

Proposition 6.2. Aco xH is a Noetherian smooth super-algebra such that

Aco xH D xAco xH :

Proof. By (d), IA is nilpotent. By Lemma 6.1 (2), we have a section of the algebra pro-
jection A! xA in SMod xH , through which we can and we do regard A as an xA-algebra in
SMod xH . Let

PA´ IA=I
2
A .D .grA/.1//: (6.2)

Then this is an object in SMod xH
xA

, which is a finitely generated projective xA-super-module
by Proposition 2.2. The natural projection IA ! PA is now a morphism in SMod xH

xA
, and

has a section essentially by the Maschke-type Theorem [4, Theorem 1]; see the proof
of Lemma 5.7. The argument of Remark 2.3, slightly modified, shows that we have an
isomorphism

�W ^ xA.PA/
'
! A (6.3)

of xA-algebras in SMod xH . By the category equivalence SMod xH
xA
� SMod xAco xH ensured by the

assumption (b), we see that PA is of the form

PA D QA ˝ xAco xH
xA; where QA D P co xH

A :

This QA is a finitely generated projective xAco xH -module since xA is faithfully flat over
xAco xH . We thus have an isomorphism

^ xAco xH .QA/˝ xAco xH
xA ' A (6.4)
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of xA-algebras in SMod xH , which restricts to an isomorphism

^ xAco xH .QA/ ' A
co xH

of super-algebras over xAco xH . This implies the desired result by Proposition 2.2.

6.2. Step 2

In what follows we assume, in addition,

(a) the super-algebra map A˝ A! A˝H , a˝ b 7! a�.b/ is surjective.

Applying gr to everything, we write

A D grA; H D grH:

Then, H is a finitely generated graded Hopf super-algebra. Let GrModH denote the sym-
metric category of the right H -comodules in GrModk ; see (6.1). Then, A D .A; gr.�// is
an algebra in GrModH . In particular, H is a Hopf super-algebra, and A is an algebra in
SModH .

Lemma 6.3. These H and A satisfy those conditions which corresponds to (a)–(d) forH
and A; explicitly, they are the same (b), (c), and the following modified two:

(a0) the super-algebra map A˝A! A˝H , a˝ b 7! a gr.�/.b/ is surjective;

(d0) A is Noetherian and smooth.

Proof. By Proposition 2.2, (d0) follows from (d).
Since the super-algebra map in (a0) is induced from the one in (a) with gr applied, one

sees that (a) implies (a0), in view of the following general fact. Given a surjection of super-
algebras, R ! S , the induced map grR ! gr S of graded super-algebras is surjective.
Indeed, one sees that R=I 2R (with IR D .R1/ as before) has the even component .R=I 2R/0
which is canonically isomorphic to xR D R=IR, and has .R=I 2R/1 D IR=I

2
R as the odd

component. It follows that the given super-algebra surjection induces surjections

xR! xS; IR=I
2
R ! IS=I

2
S ;

which are identified with the neutral and the 1st components of the induced, graded super-
algebra map. The map is surjective since the graded super-algebras are generated by the
described components.

Thus, we may assume (a0), (b), (c), and (d0). We now claim that the conclusion of
Theorem 3.16 holds for H and A, as follows.

Lemma 6.4. A=Aco H is H -Galois, and Aco H is Noetherian, smooth and such that

Aco H D xAco xH (6.5)
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Proof. Let W ´ .HC=.HC/2/1 as in (2.5). Then H is (canonically) isomorphic to the
smash co-product xH I< ^ .W / just as in (4.1); see [16, (3.14)], for example. In other
words, we have the split short exact sequence

xH � H � ^.W /

of (graded) Hopf super-algebras, where ^.W / is supposed to contain all elements of W
as primitives. Note that A turns into an algebra in SMod^.W / along the last surjection
H � ^.W /. The assumption (a0) implies that the alpha map (see (3.1)) for this A in
SMod^.W / is surjective. Remark 3.17 (for H ), now applied to the co-Frobenius ^.W /,
shows that A=Aco.^.W // is ^.W /-Galois, whence Aco.^.W // ! A is faithfully flat, in
particular.

Applying Proposition 3.11 (forH ) to ^.W /, one can choose a morphism ^.W /!A

of algebras in SMod^.W /. With gr applied, this morphism may be supposed to be graded.
It uniquely extends to an isomorphism

Aco.^.W //
˝^.W / ' A

of Aco.^.W //-algebras in GrMod^.W /, as is seen by using the equivalence of categories

SMod^.W /
A

�
! SModAco.^.W // ; M 7!M co.^.W // (6.6)

ensured by A=Aco.^.W // being ^.W /-Galois. It follows that

Aco.^.W // D xA: (6.7)

Moreover, by (d0), Aco.^.W // is Noetherian and smooth.
Notice that Aco.^.W // is an algebra in GrMod xH such that

.Aco.^.W ///co xH
D Aco H :

Apply the equivalence of categories (6.6) to the surjection in (a0). The result is the faith-
fully-flat base extension A˝Aco.^.W // of the alpha map

Aco.^.W //
˝Aco.^.W //

! Aco.^.W //
˝ xH

for Aco.^.W // in GrMod xH . Therefore, this alpha map is surjective. By (6.7) we can apply
(the argument of proving) Proposition 6.2 to Aco.^.W //. It results that

Aco H .D .Aco.^.W ///co xH /

is Noetherian and smooth, and we have an isomorphism

^ xAco xH .NA/˝ xAco xH
xA ' Aco.^.W // (6.8)
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of xA-algebras in GrMod xH . This isomorphism is analogous to (6.4), but it is now canonical.
Here, NA denotes the xH -co-invariants in the 1st component of Aco.^.W //, or, in other
words,

NA D PA \Aco H
I

see (6.2). This NA is a finitely generated projective xAco xH -module. The isomorphism (6.8)
shows equation (6.5). It also shows that Aco.^.W // is injective in SMod xH , whence by The-
orem 3.3 (1), Aco.^.W //=Aco H is xH -Galois. Therefore, Aco H ! A is, as a composite of
two faithfully-flat homomorphisms, faithfully flat.

It remains to show that the beta map A ˝Aco H A ! A ˝ H (see (3.2)) for A in
GrModH is bijective. After applying (6.6), one has only to prove that

A˝Aco H Aco.^.W //
! A˝ xH

is bijective. But this is a base extension of the beta map

Aco.^.W //
˝Aco H Aco.^.W // '

! Aco.^.W //
˝ xH

for Aco.^.W // in GrMod xH , which is bijective since Aco.^.W //=Aco H is xH -Galois. This
completes the proof.

6.3. Step 3

We have seen that A=Aco H is an H -Galois extension which satisfies the assumptions of
Theorem 3.12. Let R´ co xHH ; this R is seen to be an algebra in GrModH . The theo-
rem tells us that A=Aco H arises (uniquely) from an xH -Galois extension over Aco H . By
Proposition 3.9, we have an algebra morphism f WR! A in SModH , which can be cho-
sen, with gr applied, so as to be in GrModH . Define Df ´ A=.f .RC//, just as in (3.10),
and let pWA! Df denote the natural projection; these are in GrMod xH . Let

�WA
'
! Df� xHH ;

be the isomorphism of algebras in GrModH , such as given by (3.11). Recall that this � is
induced from the composite

A! A˝H
p˝idH
�����! Df ˝H ;

where the first arrow indicates the H -co-action on A. Using the isomorphism � in (6.3),
define qWA! Df to be the composite

qWA
��1

��! ^ xA.PA/
gr.�/
���! A

p
! Df : (6.9)

This is an algebra morphism in SMod xH such that gr.q/ D p. Note that the composite

A! A˝H
q˝idH
����! Df ˝H;
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where the first arrow indicates the H -co-action on A, induces an algebra morphism in
SModH ,

�WA! Df� xHH;

which is indeed an isomorphism, since we see gr.�/ D �.
One sees from the isomorphism � that Df is isomorphic, as an algebra in SMod xH , to

Aco.^W /. Therefore, Df is injective in SMod xH , as is seen again from (6.8). The isomor-
phism � tells us that A is injective in SModH . By Theorem 3.3 (1), assumption (a) implies
that A=AcoH is H -Galois. Moreover, � and � induce the isomorphisms

AcoH
' .Df /

co xH
' Aco H (6.10)

of super-algebras. More precisely, the composite

A
��1

��! ^ xA.PA/
gr.�/
���! A

of the first two isomorphisms in (6.9) induces an isomorphism AcoH ' Aco H .
By Lemma 6.4, AcoH is Noetherian, smooth and such that

AcoH D xAco xH :

This completes the proof of Theorem 3.16.

Remark 6.5. By applying gr to (6.10), we obtain an isomorphism

gr.AcoH / ' .grA/co.grH/;

which is indeed canonical, arising from the inclusion AcoH ,! A with gr applied. Let
B D AcoH , as above. Then it follows from (6.8) that the isomorphism in degree 1 gives

IB=I
2
B D NA: (6.11)

7. Proof of Theorem 1.9

Suppose that we are in the situation of Theorem 1.9. We work in the geometrical setting,
in which super-schemes are regarded as super-ringed spaces; see [17, Section 4]. Let OX

denote the structure sheaf of X, in particular. As a ringed space, the associated scheme Xev

has the same underlying topological space as X, and the structure sheaf assigns the algebra
OX.Y / to every open set Y .

Lemma 7.1. Under the additional assumption that X and Xev Q=Gev are both affine, Theo-
rem 1.9 holds.

Proof. Suppose that we are in the situation of the beginning of Section 3.1. We now
assume that the Hopf super-algebraH is finitely generated and the algebra A in SModH is
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Noetherian. Note that the freeness of the G-action on X is equivalent to saying that the map
˛ in (3.1) is an epimorphism of super-algebras. Therefore, the lemma follows from Theo-
rem 3.16 if we prove that ˛ is necessarily surjective. But this follows from the following
general fact for R! S applied to ˛.

Lemma 7.2. An epimorphism R ! S of super-algebras is necessarily surjective, if the
induced algebra map xR! xS is surjective and if S is Noetherian.

Proof. The assumptions imply that S , regarded as an R-super-algebra through the map,
is generated by finitely many nilpotent homogeneous elements in IR, whence it is finitely
generated as an R-super-module. The desired surjectivity now follows by a familiar argu-
ment which uses the fact that R! S is an epimorphism if and only if, tensored ˝R idS
with the identity map of S , it turns into a bijection, S D R˝R S

'
! S ˝R S ; see the

proof of [15, Proposition 2.6], for example.

Let � W Xev ! Xev Q=Gev denote the natural morphism. Choose arbitrarily an affine open
subset U ¤ ; in Xev Q=Gev, which is necessarily Noetherian and smooth. Then, as is shown
in [6, Part I, Section 5.7, p. 83], ��1.U / is a Gev-stable, open affine subscheme of Xev such
that ��1.U /Q=Gev D U .

Recall that X and Xev have the same underlying topological space. One sees that
��1.U /, regarded as an open subset of X, is an open Noetherian super-subscheme of X,
which we denote by V . The associated scheme is the ��1.U / in Xev, which is affine, as
was seen above. Therefore, the V in X is affine by Zubkov’s theorem [24, Theorem 3.1].
Clearly, the morphism of (affine) super-schemes V � G ! V � V restricted from (1.1)
is a monomorphism; in other words, the G-action on V is free. By Lemma 7.1, we have
V Q=G D Spec.OX.V /

G/, and this is Noetherian and smooth. Moreover, the original U in
Xev Q=Gev coincides with Spec xB , where we let B ´ OX.V /

G.
Let Z denote the underlying topological space of the scheme Xev Q=Gev.

Lemma 7.3. There uniquely exists a sheaf F of super-algebras on Z, such that

.U;F jU / D Spec.OX.V /
G/

for every U with V D ��1.U /.� X/, as above.

Proof. Let U � U 0 be a non-empty affine open subsets of Xev Q=Gev. Define V ´ ��1.U /

and V 0´ ��1.U 0/ in X. The commutative diagram

V V 0

U U 0

 !�jV  ! �jV 0

 -

!

 -

!

of affine super-schemes arises from the commutative diagram

A A0

B B 0

 

!

 
-

!

 

!

 
-

!
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of super-algebras, where we have set

A D OX.V /; B D AcoH
I A0 D OX.V

0/; B 0 D A0 coH :

Choose arbitrarily a point y 2 U 0. There is a point x 2 V 0 such that �.x/ D y. Let

P.0/
2 Spec.A.

0/
0 /; p.

0/
2 Spec.B.

0/
0 /

be the primes which correspond to the point x in V .
0/ and to y in U .

0/, respectively. To be
precise, p is first chosen from Spec. xB/, and is then regarded as being in Spec.B0/ through
the canonical identification of the two sets of primes. This is also the case for p0. We have
the canonical isomorphism

AP D A
0
P0 (7.1)

between stalks of OX, and the analogous one

xBp D B 0p0 (7.2)

for the structure sheaf of Xev Q=Gev. To prove the lemma, it suffices to prove that the canonical
map

canoWBp ! B 0p0

is an isomorphism, which shows OSpecB jU 0 D OSpecB 0 . Notice that the super-algebras Bp

and B 0p0 both are Noetherian and smooth.
As is easily seen, localizations by the primes above are compatible with the relevant

constructions which will appear below; for example, we have . xB/p D .Bp/. We will use
freely such identifications.

Just as in (6.2), we write PR D IR=I 2R forRD B.
0/

p.
0/

. Let us return to the isomorphism
given in (6.8), where we wrote A D grA. Localize both sides at P, and restrict to the first
components. By using (6.11), there results

PBp ˝ xBp
xAP D A

co.^.W //
P .1/:

Here we remark that, since ^.W / co-acts trivially on the xA .D A.0// in A, A
co.^.W //
P

makes sense, and its first component has appeared on the right-hand side. The analogous
result forA0, B 0 and A0´ grA0, combined with (7.2) and the equation AP DA0P0 arising
from (7.1), gives a canonical isomorphism

PBp D PB 0
p0
: (7.3)

Choose first a section s of the super-algebra projection Bp ! xBp, and then a section
t of the projection IBp ! PBp in SMod xBp

, where the Bp-super-module IBp is regarded to
be in SMod xBp

though the first chosen s. Define s0 and t 0 to be the composites

B 0p0 D xBp
s
! Bp

cano
��! B 0p0 ; PB 0

p0
D PBp

t
! IBp

cano jIBp

�����! IB 0
p0
;
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respectively. Clearly, these are sections of B 0p0 ! B 0p0 and of IB 0
p0
! PB 0

p0
, respectively.

We have the following diagram:

^ xBp
.PBp/ Bp

^B 0p0
.PB 0

p0
/ B 0p0

 

!

 !  ! cano

 

!

Here the horizontal arrow on the top (resp., on the bottom) indicates the isomorphism
(see (2.8)) which arises from s and t (resp., from s0 and t 0), and the vertical arrow on the
left-hand side indicates the isomorphism which arises from (7.2) and (7.3). It follows that
the vertical cano on the right-hand side is an isomorphism, as desired, since the diagram
above is easily seen to be commutative.

We see that Z´ .Z;F / is a locally Noetherian, smooth super-scheme. This represents
XQ=G, and satisfies

Zev D Xev Q=Gev;

since it has locally these properties. This proves Theorem 1.9.

Funding. Akira Masuoka was supported by JSPS KAKENHI, Grant Numbers 17K05189
and 20K03552.
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