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Weakly parametric pseudodifferential calculus for twisted
C �-dynamical systems

Gihyun Lee and Matthias Lesch

Abstract. For a twisted C�-dynamical system .A ;Rn; ˛; e/ over a unital C�-algebra, we establish
a weakly parametric pseudodifferential calculus analogously to the celebrated weakly parametric
calculus due to Grubb and Seeley [Invent. Math. 121 (1995), 481–529]. If the C�-algebra A has an
˛-invariant trace, then we prove an expansion of the resolvent trace (with respect to the dual trace
on multipliers) for suitable pseudodifferential multipliers. The question whether the expansion holds
true as a Hilbert space trace expansion in concrete GNS spaces for A will be addressed in a future
publication.

1. Introduction
The purpose of this paper is to establish a weakly parametric pseudodifferential calculus
for twisted C �-dynamical systems. Let us first put this into perspective. Pseudodifferen-
tial operators were developed to be able to treat the resolvent of a differential operator
as a “virtual differential operator” of negative order and hence to a large extent on an
equal footing as differential operators. Soon it became clear from Seeley’s famous paper
on complex powers [25] that in order to obtain the full strength of the results on the
trace of the �-function (or more or less equivalently the short time asymptotic expansion
of the heat trace), it was necessary to extend the pseudodifferential calculus to a calcu-
lus with parameters, cf. e.g., [26]. It is important to understand that this means that the
resolvent parameter is essentially treated like a covariable and it should not be confused
with the naive perception of being just an auxiliary parameter in the theory. However, as it
turned out, the parametric calculus works well only for resolvents of differential operators.
This subtlety was even overlooked in the early days and observed only much later in the
paper by Duistermaat and Guillemin [9]. In order to incorporate the resolvent of a pseu-
dodifferential operator into the theory, it was therefore necessary to establish a weakly
parametric calculus which was fully worked out much later by Grubb and Seeley [12].
The weakly parametric calculus is indispensable for establishing the more subtle invari-
ants of an elliptic operator as, e.g., the noncommutative residue [13, 27, 28]. The latter
is intimately related to the log t term in the asymptotic expansion of Tr.Ae�t�/, say, as
t ! 0, it vanishes for a differential operator A.
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Pseudodifferential calculi are also of significance in the noncommutative setting [1–3].
On noncommutative tori, which form an interesting model case for a noncommutative
space, meanwhile a rich spectral geometry has been established [5–8, 10, 17, 20]. In [20],
a full heat trace asymptotics for Laplace type operators on Heisenberg modules, a class
of natural projective modules over noncommutative tori, was established and applied to
obtain many of the spectral geometry results known from the conformal geometry of com-
pact oriented surfaces. The main technical tool there was a parametric pseudodifferential
calculus (à la Shubin [26]) for twisted C �-dynamical systems. In a second step, this was
then used to obtain a heat trace asymptotic for the effective action on Heisenberg mod-
ules. The second step is nontrivial as the natural traces on the C �-dynamical system and
the Hilbert space trace on the Heisenberg module are only “asymptotically equal” (see
[20, Thm. 6.2]). It should be noted that the Heisenberg modules are the natural noncom-
mutative torus analogues of the classification of holomorphic vector bundles over elliptic
curves (see, e.g., [23]).

If one wants to push the analogy between the spectral geometry of noncommutative
tori and compact surfaces further, it is therefore natural to extend Grubb and Seeley’s
weakly parametric calculus to this situation. The current paper is an important step in this
direction. Namely, we work out the weakly parametric calculus for abstract twisted C �-
dynamical systems. The calculus here is reminiscent of the calculus on Rn (cf. [26, Ch. 4]).
What is missing, however, and which needs to be addressed in a future publication is the
above mentioned transfer to the effective action on Heisenberg modules. The obstacle
is that so far we are unable to prove the analog of [20, Thm. 6.2] about the asymptotic
comparison between the abstract trace and the concrete Hilbert space trace for a weakly
parametric operator family.

Let us now in some more detail sketch the set-up and main results of the paper. Let
.A ;Rn; ˛; e/ be a twisted C �-dynamical system; i.e., A is a unital C �-algebra and ˛
is a continuous Rn action by automorphisms. The twisting e.x; y/ D eihBx;yi is given
by a skew-symmetric real n � n matrix. A1 denotes, as usual, the subalgebra of smooth
elements with respect to the action. We now study pseudodifferential multipliers on the
Hilbert A -module H .Rn;A / WD L2.Rn/˝A . The latter is the exterior tensor product
(cf. [18, Ch. 4]) of the Hilbert space L2.Rn/ with A , and here A is regarded as a Hilbert
module over itself. More concretely, H .Rn;A / is the completion of the Schwartz space
S .Rn;A1/ with respect to the inner product,

hf; gi D

Z
Rn

f .x/�g.x/ dx; f; g 2 S .Rn;A1/:

The twisted dynamical system induces on S .Rn;A1/ an adjoint (2.2) and a convolu-
tion product (2.3) which turn it into a �-algebra. Furthermore, the convolution product
gives rise to a left regular representation of S .Rn;A1/ by bounded adjointable multi-
pliers on the Hilbert A -module H .Rn;A / D L2.Rn/˝A . Extending this left regular
representation to more general function classes now leads naturally to “pseudodifferen-
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tial multipliers”. For the usual Hörmander symbol class and ADC, this specializes to a
well-known pseudodifferential calculus on Rn (cf. [26, Ch. 4]).

In Section 2, we extend the Hörmander symbol classes to our situation. This is a
straightforward generalization of the Baaj–Julg symbol spaces [1, 2] from the untwisted
to the twisted case. Furthermore, we work out in some more detail the pseudodifferential
calculus for a twisted C �-dynamical system as indicated in [20, §3.2]. We follow also
[14, 15]. For a symbol f 2 Sm.Rn;A1/, m 2 R, the pseudodifferential multiplier Pf
associated with f is defined by

.Pf u/.x/ WD .Mf _u/.x/

D
1

.2�/n

Z
Rn

eihx;�i˛�x
�
f .� C Bx/

�
Ou.�/ d�; u 2 S .Rn;A1/: (1.1)

The rules of calculus are worked out in Section 2 below. We also put particular emphasis
on the asymptotic symbol formulas for classical operators which are a bit more involved
here due to the twisting (Theorem 2.15).

In Section 3, we prove a basic boundedness result for pseudodifferential multipliers
on H .Rn;A / (Proposition 3.6). As a tool we prove a Hilbert C �-module version of the
classical Schur’s test on boundedness for integral operators (Lemma 3.4).

In Section 4, we develop the weakly parametric pseudodifferential calculus for pseu-
dodifferential multipliers acting on the Hilbert module H .Rn;A /D L2.Rn/˝A . This
is an adaption of Grubb and Seeley’s weakly parametric calculus for ordinary pseudodif-
ferential operators [12].

Finally, Section 5 contains our main results on the trace expansions. We have the
following theorem.

Theorem 1.1 (Theorem 5.5). Let P and A be classical (i.e., 1-step polyhomogeneous)
pseudodifferential multipliers with respective orders m 2 N and ! 2 R. Suppose that P
is elliptic with parameter � 2 � . Then, for � 2 ��m and k with �kmC! < �n, we have
the asymptotic expansion,

Tr 
�
A.P � �/�k

�
�

1X
jD0

cj�
nC!�j
m �k

C

1X
lD0

�
c0l log�C c00l

�
��k�l :

Here, the coefficients cj , c0
l

and c00
l

are given by the integral (over Rn) of the trace  of
the respective symbols f .�/ �

P
j�0 fm�j .�/ and a.�/ �

P
j�0 a!�j .�/ of P and A.

We refer the reader to Definition 5.3 for the precise meaning of the notion of ellipticity
with parameter. Furthermore, Tr is the trace on pseudodifferential multipliers induced
from an ˛-invariant continuous trace  on A (cf. (2.20)). If the twisted C �-dynamical
system .A ;Rn; ˛; e/ is projectively represented on a Hilbert space H , then one obtains a
representation of the pseudodifferential multipliers as operators on H . In general, Tr .Pf /
does not coincide with the Hilbert space trace of the representation ofPf . In [20, Thm. 6.2],
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however, it was shown that for the standard parametric calculus, the two traces coincide
up to a summand of order O.��N /, N arbitrary. This suffices to deduce an asymptotic
expansion result analogous to Theorem 1.1 also for the Hilbert space realization. For the
weakly parametric calculus, the method of loc. cit. does not work (see Remark 5.6 for
more information on this point) and we have to leave this question for a future publication.

2. Pseudodifferential calculus for twisted C �-dynamical systems

In this section, we recall the main definitions and properties of pseudodifferential multi-
pliers on twisted C �-dynamical systems [20, 21]. This is a generalization of the pseudod-
ifferential calculus on C �-dynamical systems described in [1–3].

2.1. Twisted C �-dynamical systems

Let A be a unital C �-algebra and ˛ a continuous action of Rn on A by C �-algebra
automorphisms, i.e., ˛t 2Aut.A / for all t 2Rn and the map t 7! ˛t .a/ is norm-continuous
for all a 2 A . Furthermore, let

e.x; y/ WD eihBx;yi; x; y 2 Rn;

where B D .bkl / is a skew-symmetric real n � n matrix and h�; �i is the standard inner
product on Rn. Then, the quadruple .A ;Rn; ˛; e/ forms a twisted C �-dynamical system.

Throughout the paper, we let .A ; Rn; ˛; e/ be the twisted C �-dynamical system
described above. We shall denote by A1 the smooth subalgebra of A induced by the
action ˛, i.e., those a 2A such that the map Rn 3 t 7! ˛t .a/ 2A is smooth. For 
 2Nn

0 ,
we define

ı
a WD i�j
 j@


t

ˇ̌
tD0
˛t .a/; a 2 A1:

A1 is a Fréchet space with respect to the locally convex topology generated by the semi-
norms a 7! kı
ak, 
 2 Nn

0 .
Let us denote by S .Rn;A1/ the space of Schwartz class maps with values in A1.

Let f 2 S .Rn;A1/. Its Fourier transform Of W Rn ! A1 is defined by

Of .�/ D

Z
Rn

e�ihx;�if .x/ dx; � 2 Rn:

Furthermore, the inverse Fourier transform f _ W Rn ! A1 of f 2 S .Rn;A1/ is
defined by

f _.x/ D

Z
Rn

eih�;xif .�/ µ �; x 2 Rn;

where we have set µ � WD .2�/�nd� . The Fourier transform and the inverse Fourier trans-
form induce continuous linear isomorphisms on S .Rn;A1/ that are inverses of each
other. We refer to [14, Apps. B and C] for a more detailed account on the integration and
the Fourier transform of a map with values in locally convex spaces.
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We can endow the Schwartz space S .Rn;A1/ with the pre-C �-module structure
given by the inner product,

hf; gi D

Z
Rn

f .x/�g.x/ dx; f; g 2 S .Rn;A1/: (2.1)

For f 2 S .Rn;A1/, set

.af /.x/ D ˛�x.a/f .x/; a 2 A1;

.UUUyf /.x/ D e.x;�y/f .x � y/:

Then,UUUy , y 2 Rn, is a projective family of unitaries such that, for all x; y 2 Rn, we have

UUU �x D UUU�x ;

UUU xUUUy D e.x; y/UUU xCy ;

UUU xaUUU�x D ˛x.a/; a 2 A1:

Given f 2 S .Rn;A1/, we define the multiplier Mf associated with f by

Mf D

Z
Rn

f .x/UUU x dx:

Then, the space S .Rn;A1/ becomes a �-algebra with respect to the product and the
adjoint defined by Mf ıMg DMf �g and M �

f
DMf � , where

f �.x/ D ˛x
�
f .�x/�

�
; (2.2)

.f � g/.x/ D

Z
Rn

f .y/˛y
�
g.x � y/

�
e.y; x/ dy: (2.3)

Suppose that the algebra A is equipped with an ˛-invariant continuous trace  . In
this case,  induces the dual trace on S .Rn;A1/ which is given by

y .f / WD  
�
f .0/

�
D

Z
Rn

 
�
Of .�/

�
µ �; µ � WD .2�/�n d�: (2.4)

2.2. Symbols and pseudodifferential multipliers

Definition 2.1 ([1,3]). The symbol space Sm.Rn;A1/,m 2 R, consists of smooth maps
f W Rn ! A1 such that, for all ˛; ˇ 2 Nn

0 , there exists C˛ˇ > 0 such that

ı˛@ˇ
�
f .�/



 � C˛ˇ h�im�jˇ j;
for all � 2 Rn. Here, we denote h�i WD .1C j�j2/

1
2 .

We endow Sm.Rn;A1/, m 2 R, with the locally convex topology generated by the
semi-norms,

pN .f / WD sup
j˛jCjˇ j�N

sup
�2Rn

h�i�mCjˇ j


ı˛@ˇ

�
f .�/



; N 2 N0: (2.5)
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The space Sm.Rn;A1/ is a Fréchet space with respect to these semi-norms (see, e.g.,
[14, Prop. 3.3] for the proof).

Lemma 2.2 (see [14, Lem. 3.5]). Letm1;m2 2 R. Then, the product of A1 gives rise to
a continuous bilinear map from Sm1.Rn;A1/ � Sm2.Rn;A1/ to Sm1Cm2.Rn;A1/.

Definition 2.3 ([1]). Let f 2 Sm.Rn;A1/, m 2 R, and let fj 2 Sm�j .Rn;A1/, j D
0; 1; : : : : We shall write f .�/ �

P
j�0 fj .�/ when

f .�/ �
X
j<N

fj .�/ 2 Sm�N .Rn;A1/ for all N � 1: (2.6)

There is a version of Borel’s lemma for A1-valued symbols.

Lemma 2.4 (see also [11, Prop. 3.4] and [14, Lem. 3.10]). Let m 2 R and suppose that
fj .�/ 2 Sm�j .Rn;A1/, j � 0. Then, there exists a symbol f .�/ 2 Sm.Rn;A1/ such
that f .�/ �

P
j�0 fj .�/ in the sense of (2.6).

We say that a map f W Rn ! A1 is homogeneous of degree m 2 R if

f .��/ D �mf .�/ for all � � 1 and � 2 Rn n B.0; 1/:

Here, B.0; r/, r > 0, denotes the open ball of radius r centered at the origin. Note that if
f W Rn ! A1 is homogeneous of degree m 2 R, then f 2 Sm.Rn;A1/.

Definition 2.5. The space of classical (1-step polyhomogeneous) symbols, denoted by
CSm.Rn;A1/, m 2 R, consists of maps f .�/ 2 Sm.Rn;A1/ that admit an asymptotic
expansion,

f .�/ �
X
j�0

fm�j .�/;

where � is meant in the sense of (2.6) and fm�j W Rn ! A1 is a smooth homogeneous
map of degree m � j for each j � 0.

Remark 2.6. Let f .�/2CSm.Rn;A1/,m2R, be such that f .�/�
P
j�0fm�j .�/. Then,

for every j �0 and ˛; ˇ2Nn
0 , ı˛@ˇ

�
fm�j .�/ is homogeneous of degree m�jˇj�j . Fur-

thermore, it follows from the very definition of classical symbols that, for all ˛;ˇ 2Nn
0 , we

have ı˛@ˇ
�
f .�/ 2 CSm�jˇ j.Rn;A1/ and ı˛@ˇ

�
f .�/ �

P
j�0 ı

˛@
ˇ

�
fm�j .�/ in the sense

of (2.6).

Following [20, §3], it can be shown that, for f; u 2 S .Rn;A1/, we have

.Mf _u/.x/ D

Z
Rn

eihx;�i˛�x
�
f .� C Bx/

�
Ou.�/ µ �: (2.7)

Note that this integral makes sense even for f 2Sm.Rn;A1/,m2R, and u2S .Rn;A1/.
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Definition 2.7 ([20,21]). Let f 2 Sm.Rn;A1/,m2R. The pseudodifferential multiplier
Pf associated with f is defined by

Pf u WDMf _u; u 2 S .Rn;A1/: (2.8)

The space of pseudodifferential multipliers of order m is denoted by Lm� .R
n;A1/. Fur-

thermore, if f 2 CSm.Rn;A1/, we say that Pf is a classical pseudodifferential multi-
plier, and we shall denote the space of classical pseudodifferential multipliers of order m
by CLm� .R

n;A1/.

As mentioned in [20], the space of pseudodifferential multipliers forms a �-algebra.
More precisely, we have the following results.

Theorem 2.8 (Compare [20, Thm. 3.2]). Let f 2 Sm.Rn;A1/ and g 2 Sm
0

.Rn;A1/.
We set

f ]g.�/ D

Z �Z
e�ihy;�if .�C �/˛�y

�
g.� C By/

�
dy

�
µ�: (2.9)

Then, the following holds.

(1) The map .f; g/ 7! f ]g gives rise to a continuous bilinear map,

Sm.Rn;A1/ � Sm
0

.Rn;A1/ �! SmCm
0

.Rn;A1/:

(2) We have Pf Pg D Pf ]g .

(3) The symbol f ]g 2 SmCm
0

.Rn;A1/ admits the asymptotic expansion,

f ]g.�/ �
X
˛

.�i/j˛j

˛Š
.@˛� f /.�/@

˛
x jxD0

�
˛�x

�
g.� C Bx/

��
: (2.10)

Here, � is taken in the sense of (2.6).

Theorem 2.9 (Compare [20, Thm. 3.2]). Let f 2 Sm.Rn;A1/. We set

f ?.�/ D

Z �Z
eihy;�i˛y

�
f .�C �/�

�
dy

�
µ�: (2.11)

Then, the following holds.

(1) The map f 7! f ? gives rise to a continuous anti-linear map from Sm.Rn;A1/
to itself.

(2) We have P �
f
D Pf ? . Here, P �

f
is the formal adjoint of Pf with respect to the inner

product (2.1).

(3) The symbol f ? 2 Sm.Rn;A1/ admits the asymptotic expansion,

f ?.�/ �
X
˛

1

˛Š
ı˛@˛�

�
f .�/�

�
: (2.12)

Here, � is taken in the sense of (2.6).
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Remark 2.10. The integrals in (2.9) and (2.11) make sense as an A1-valued oscillatory
integral. We refer to [14, §4] for more detailed accounts on A1-valued oscillatory inte-
grals. Although the oscillatory integral is constructed only for maps with values in the
smooth noncommutative torus in [14] instead of A1-valued maps, the construction in
[14] holds verbatim in our setting.

Remark 2.11. The asymptotic expansions (2.10) and (2.12) are also mentioned in [20].
However, the continuity assertions in Theorems 2.8 and 2.9 are not explicitly stated in
[20]. These continuity results can be proved by using A1-valued oscillatory integrals
along similar lines as in [15, Prop. 7.5 and Prop. 8.2]. Note that the symbol of the adjoint
operator (2.11) and its asymptotic expansion (2.12) agree with the corresponding ones
in the untwisted case mentioned in [1]. However, the composition formula (2.9) and its
asymptotic expansion (2.10) are different from the corresponding ones in the untwisted
case mentioned in [1]. We refer to [20, Rem. 3.3] for the comparison of the asymptotic
expansions of the composition products in the twisted and untwisted cases.

Now we look for the asymptotic expansion of the composition product (2.9) of two
classical symbols. To this end, it is convenient to compute the asymptotic expansion of
the last factor @˛x jxD0.˛�x.g.� CBx/// of each summand of the expansion in (2.10). Let
f W Rn ! A1 be a smooth map. Note that we have

@xj
ˇ̌
xD0

f .� C Bx/ D

nX
kD1

Bkj @�kf .�/ DW @B;�j f .�/; j D 1; : : : ; n: (2.13)

Given a multi-index ˛ D .˛1; : : : ; ˛n/ 2 Nn
0 , let us denote @˛1

B;�1
� � � @

˛n
B;�n

by @˛
B;�

. It then
follows from (2.13) that

@˛x
ˇ̌
xD0

f .� C Bx/ D @˛B;�f .�/: (2.14)

Now let f .�/ 2 CSm.Rn;A1/, f .�/ �
P
j�0 fm�j .�/, be a classical symbol and

˛ 2 Nn
0 . By using (2.14), we see that

f B;˛.�/ WD @˛x
ˇ̌
xD0

˛�x
�
f .� C Bx/

�
D

X
ˇC
D˛

�
˛

ˇ

�
i jˇ jıˇ

�
@
x
ˇ̌
xD0

f .� C Bx/
�

D

X
ˇC
D˛

�
˛

ˇ

�
i jˇ jıˇ@




B;�
f .�/: (2.15)

We know by Remark 2.6 that each summand i jˇ jıˇ@

B;�
f .�/ belongs to CSm�j
 j.Rn;A1/

and
i jˇ jıˇ@




B;�
f .�/ �

X
j�0

i jˇ jıˇ@



B;�
fm�j .�/; (2.16)

in the sense of (2.6). Combining this with (2.15) shows that f B;˛.�/ is a classical symbol
in CSm.Rn;A1/. Furthermore, by using (2.16), we also see that fB;˛.�/�

P
j�0f

B;˛
m�j .�/
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in the sense of (2.6), where f B;˛m�j .�/, j � 0, are homogeneous symbols of degree m � j
given by

f
B;˛
m�j .�/ D

8̂<̂
:
Pj

kD0

P
ˇC
D˛
j
 jDk

�
˛
ˇ

�
i jˇ jıˇ@




B;�
fm�jCk.�/ if 0 � j < j˛j;Pj˛j

kD0

P
ˇC
D˛
j
 jDk

�
˛
ˇ

�
i jˇ jıˇ@




B;�
fm�jCk.�/ if j � j˛j:

(2.17)

In particular, we have
f B;˛m .�/ D i j˛jı˛fm.�/:

Summarizing the above discussion, we obtain the following lemma.

Lemma 2.12. Let f .�/ 2 CSm.Rn;A1/, f .�/ �
P
j�0 fm�j .�/ and ˛ 2 Nn

0 . Then,
f B;˛.�/ given as in (2.15) belongs to CSm.Rn;A1/ and

f B;˛.�/ �
X
j�0

f
B;˛
m�j .�/;

where f B;˛m�j .�/, j � 0, are homogeneous symbols of degree m � j given by (2.17).

The following two results can be found in [14].

Proposition 2.13 ([14, Rem. 3.23]). Let f .�/ 2 Sm.Rn;A1/ be such that

f .�/ �
X
`�0

f .`/.�/;

where f .`/.�/ 2 CSm�`.Rn;A1/, f .`/.�/ �
P
j�0 f

.`/

m�`�j
.�/ is a classical symbol for

all ` � 0. Then, f .�/ is a classical symbol as well and we have f .�/ �
P
j�0 fm�j .�/ in

the sense of Definition 2.5, where fm�j .�/, j � 0, is the homogeneous symbol of degree
m � j given by

fm�j .�/ D
X
`�j

f
.`/
m�j .�/:

Proposition 2.14 ([14, Prop. 3.24]). Let f .�/ 2 CSm.Rn;A1/ with

f .�/ �
X
p�0

fm�p.�/;

and g.�/ 2 CSm
0

.Rn;A1/ with

g.�/ �
X
r�0

gm0�r .�/:

Then, f .�/g.�/ belongs to CSmCm
0

.Rn;A1/, and we have

f .�/g.�/ �
X
j�0

.fg/mCm0�j .�/;

where .fg/mCm0�j .�/, j � 0, is the homogeneous symbol of degreemCm0 � j given by

.fg/mCm0�j .�/ D
X

pCrDj

fm�p.�/gm0�r .�/:
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Now we are in a position to compute the asymptotic expansion of the composition
product (2.9) of two classical symbols.

Theorem 2.15. Let f .�/ 2 CSm.Rn;A1/ with

f .�/ �
X
j�0

fm�j .�/;

and g.�/ 2 CSm
0

.Rn;A1/ with

g.�/ �
X
j�0

gm0�j .�/:

Then, the product f ]g given by (2.9) is in CSmCm
0

.Rn;A1/. Furthermore, f ]g has the
asymptotic expansion f ]g.�/ �

P
j�0.f ]g/mCm0�j .�/, where

.f ]g/mCm0�j .�/ D
X

kClCj˛jDj

.�i/j˛j

˛Š
.@˛� fm�k/.�/g

B;˛
m0�l

.�/; j � 0: (2.18)

Here, gB;˛
m0�l

.�/ is given as in (2.17). In particular, we have

.f ]g/mCm0.�/ D fm.�/gm0.�/: (2.19)

Proof. We know by Theorem 2.8 that the symbol f ]g is in SmCm
0

.Rn;A1/. Thus, it
remains to prove that f ]g is a classical symbol and its homogeneous parts are given by
(2.18) and (2.19).

We know by Remark 2.6 and Lemma 2.12 that, for all ˛ 2 Nn
0 , we have

@˛� f .�/ �
X
j�0

@˛� fm�j .�/;

gB;˛.�/ WD @˛x
ˇ̌
xD0

�
˛�x

�
g.� C Bx/

��
�

X
j�0

g
B;˛
m0�j .�/;

where gB;˛m0�j .�/ is given as in (2.17). It then follows from Proposition 2.14 that

@˛� f .�/@
˛
x

ˇ̌
xD0

�
˛�x

�
g.� C Bx/

��
�

X
j�0

X
kClDj

@˛� fm�k.�/g
B;˛
m0�l

.�/:

Combining this with Proposition 2.13, we obtain

f ]g.�/ �
X
j�0

.f ]g/mCm0�j .�/;

where .f ]g/mCm0�j .�/ is given by (2.18). In particular, we see that .f ]g/mCm0.�/ D
fm.�/gm0.�/, and hence we get (2.19). The proof is complete.



Weakly parametric pseudodifferential calculus for twisted C�-dynamical systems 857

Remark 2.16. As we know by (2.17) that gB;0m0�j .�/ D gm0�j .�/ and

g
B;˛
m0�1.�/ D iı

˛gm0�1.�/ for j˛j D 1;

we see that, comparing with the corresponding term in the composition formula in the
untwisted case, the term .f ]g/mCm0�1.�/ remains unchanged.

We close this section with the introduction of the trace on the algebra of pseudodiffer-
ential multipliers of order< �n. Let  be an ˛-invariant trace on A . Then, using the dual
trace y given in (2.4), for f 2 Sm.Rn;A1/, m < �n, we set

Tr .Pf / WD y .f _/ D
Z

Rn

 
�
f .�/

�
µ �: (2.20)

This gives rise to a trace on
S
m<�n Lm� .R

n;A1/ (cf. [20, Rem. 3.4]).

3. Boundedness

In this section, we study the boundedness of pseudodifferential multipliers with respect
to the Hilbert C �-norm. To this end, we first generalize the classical Schur’s test on the
boundedness of integral operators (see, e.g., [16, Thm. 5.2]).

Let us denote the space of continuous maps on Rn vanishing at infinity (resp., Schwartz
class maps on Rn) with values in A by C0.Rn;A / (resp., S .Rn;A /). Let H .Rn;A /

be the Hilbert C �-module over A formed by completing S .Rn;A1/ with respect to
the norm k�k WD kh�; �ik

1
2 , where h�; �i is the inner product (2.1). Note that H .Rn;A / is

nothing but the exterior tensor product L2.Rn/˝A (cf. [18, Ch. 4]), where A is viewed
as a Hilbert module over itself.

Lemma 3.1. Let k W Rn �Rn ! A be a continuous map with k.x; y/ � 0 for all x; y 2
Rn. Furthermore, assume that there are positive measurable functions p; q W Rn ! RC
and numbers ˛ and ˇ such thatZ

Rn

k.x; y/q.y/ dy � ˛p.x/; for x 2 Rn; (3.1)Z
Rn

k.x; y/p.x/ dx � ˇq.y/; for y 2 Rn: (3.2)

Then, the integral operator W K W S .Rn;A /! C0.Rn;A / defined by

Ku.x/ D

Z
Rn

k.x; y/u.y/ dy; u 2 S .Rn;A /; (3.3)

extends by continuity to a bounded adjointable module endomorphism of the Hilbert A -
module H .Rn;A / with kKk �

p
˛ˇ.
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Proof. The proof is essentially the same as in [16, Thm. 5.2]. However, we recall and
emphasize that for an element u of H .Rn;A /, although the integral

R
u.x/�u.x/ dx

converges in A , in general,
R
ku.x/k2 dx is not necessarily finite. We thus prove the

boundedness in the case u 2 S .Rn;A / first and then extend the map to H .Rn;A / by
continuity.

Given u 2 S .Rn;A /, we note that

Ku.x/ D

Z
Rn

k.x; y/
1
2

p
q.y/k.x; y/

1
2
u.y/p
q.y/

dy

D

�
k.x; �/

1
2

p
q.�/; k.x; �/

1
2
u.�/p
q.�/

�
:

(3.4)

Hence, the Cauchy–Schwarz inequality for Hilbert C �-modules (see, e.g., [18, Prop. 1.1])
and (3.1) gives�

k.x; �/
1
2

p
q.�/; k.x; �/

1
2
u.�/p
q.�/

���
k.x; �/

1
2

p
q.�/; k.x; �/

1
2
u.�/p
q.�/

�
�





 Z
Rn

k.x; y/q.y/ dy





 Z
Rn

u.y/�
k.x; y/

q.y/
u.y/ dy

� ˛

Z
Rn

u.y/�
p.x/k.x; y/

q.y/
u.y/ dy:

Combining this with (3.4), we obtain

hKu;Kui D

Z
Rn

�
k.x; �/

1
2

p
q.�/; k.x; �/

1
2
u.�/p
q.�/

���
k.x; �/

1
2

p
q.�/; k.x; �/

1
2
u.�/p
q.�/

�
dx

� ˛

Z
Rn

�Z
Rn

u.y/�
p.x/k.x; y/

q.y/
u.y/dy

�
dx: (3.5)

Recall that the inequality c�ac � c�bc holds for all c 2A and self-adjoint elements a and
b in A such that a� b (cf. [22, Thm. 2.2.5]). By combining this with the assumptions (3.2)
and u 2 S .Rn;A /, we getZ

Rn

�Z
Rn

u.y/�
p.x/k.x; y/

q.y/
u.y/ dx

�
dy D

Z
Rn

u.y/�
�Z

Rn

p.x/k.x; y/

q.y/
dx

�
u.y/ dy

� ˇ

Z
Rn

u.y/�u.y/ dy�ˇkuk2H .Rn;A /<1:

It follows from this that the integrand u.y/�p.x/k.x; y/q.y/�1u.y/ on the right-hand
side of (3.5) is integrable with respect to the product measure dxdy and hence Fubini’s
theorem for the integration of vector-valued maps applies (cf. e.g., [14, Prop. B.21]). Thus,
we get

hKu;Kui � ˛

Z
Rn

�Z
Rn

u.y/�
p.x/k.x; y/

q.y/
u.y/ dx

�
dy

� ˛ˇ

Z
Rn

u.y/�u.y/ dy D ˛ˇhu; ui:
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Furthermore, we have

kKuk D


hKu;Kui

 12 �p˛ˇ

hu; ui

 12 Dp˛ˇkuk:

This shows that the map K W S .Rn;A /! C0.Rn;A / extends to a bounded linear map
from H .Rn;A / to itself with kKk �

p
˛ˇ. Furthermore, it is clear that K is right A -

linear and adjointable, whose adjoint is the continuous extension to H .Rn;A / of the
integral operator associated with the kernel Rn �Rn 3 .x;y/ 7! k.y;x/ 2A . This proves
the lemma.

Remark 3.2. We need an extension of Lemma 3.1 to not necessarily non-negative con-
tinuous kernels k W Rn � Rn ! A . One might be tempted to hope for a condition of the
kind, Z

Rn

ˇ̌
k.x; y/

ˇ̌
q.y/ dy � ˛p.x/; for x 2 Rn;Z

Rn

ˇ̌
k.x; y/

ˇ̌
p.x/ dx � ˇq.y/; for y 2 Rn:

We leave it as an open problem whether such a version of Schur’s test is valid for the
Hilbert C �-module H .Rn;A /. The next weaker result, Lemma 3.4, will suffice for our
purposes.

Remark 3.3. Needless to say in the previous and the next lemma, we could replace the
pair .Rn; dx/ by any � -finite measure space .X; �/ and the Hilbert module H .Rn;A /

by H .X;A ; �/ WD L2.X; �/˝A .

Lemma 3.4. Let k W Rn � Rn ! A be continuous and suppose that there are positive
measurable functions p; q W Rn ! RC and numbers ˛ and ˇ such thatZ

Rn



k.x; y/

q.y/ dy � ˛p.x/; for x 2 Rn;Z
Rn



k.x; y/

p.x/ dx � ˇq.y/; for y 2 Rn:

Then, Kf .x/ D
R
k.x; y/u.y/ dy extends by continuity to a bounded adjointable A -

module endomorphism of H .Rn;A / with K�f .x/ D
R
k.y; x/�u.y/ dy and kKk �

4
p
˛ˇ.

Proof. Let jkj; k� W Rn � Rn ! A denote the continuous maps defined by jkj.x; y/ D
jk.x; y/j and k�.x; y/ D k.x; y/�, x; y 2 Rn. We also set

<k D
1

2
.k C k�/ and =k D

1

2i
.k � k�/:

Then, we may write k D k1 � k2 C i.k3 � k4/, where kj W Rn � Rn ! A , 1 � j � 4,
are the continuous maps defined by

k1D
1

2

�
j<kj C<k

�
; k2D

1

2

�
j<kj �<k

�
; k3D

1

2

�
j=kj C=k

�
; k4D

1

2

�
j=kj � =k

�
:
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Note that kj .x; y/ � 0 for all x; y 2 Rn. Note also that any of the kj satisfies the assump-
tions (3.1)–(3.2) of Lemma 3.1 as we have kkj .x; y/k � kk.x; y/k and henceZ

Rn

kj .x; y/q.y/ dy �

Z
Rn



kj .x; y/

q.y/ dy
�

Z
Rn



k.x; y/

q.y/ dy � ˛p.x/ 8x 2 Rn;

and similarly for
R
kj .x; y/p.x/ dx. Thus, Lemma 3.1 implies that

kKk �

4X
jD1

kKj k � 4
p
˛ˇ;

where Kj denotes the respective integral operator associated with kj in the sense of (3.3),
1 � j � 4. Therefore, K extends to a bounded A -module endomorphism by continuity,
and its adjoint K� is the continuous extension of the integral operator associated with the
kernel Rn �Rn 3 .x; y/ 7! k.y; x/�. The proof is complete.

Lemma 3.5. Let f 2 S0.Rn;A1/. Suppose that f .�/ is a normal element in A for all
� 2 Rn and there are a; b 2 R with 0 < a < b such that Sp.f .�// � Œa; b� for all � 2 Rn.
Let� be an open subset of C containing Œa; b� and ' a holomorphic function on�. Then,
the map � 7! '.f .�// belongs to S0.Rn;A1/, where '.f .�//, � 2 Rn, is defined by
using holomorphic functional calculus.

Proof. Let � be a rectifiable contour that winds once around
S
�2Rn Sp.f .�//. We define

'.f .�//, � 2 Rn, by using holomorphic functional calculus; i.e., we set

'
�
f .�/

�
D

1

2�i

Z
�

'.z/
�
z � f .�/

��1
dz: (3.6)

We know by [4] that A1 is closed under holomorphic functional calculus. Therefore, we
have '.f .�// 2 A1 for all � 2 Rn.

By assumption, f .�/ is a normal element in A for all � 2 Rn, and so .z � f .�//�1 is
also normal for all z 2 � and � 2 Rn. As the spectral radius of a normal element x 2 A

agrees with kxk (see, e.g., [22]), for each z 2 � and � 2 Rn, we have

�z � f .�/��1

 D sup
®
j�j j � 2 Sp

��
z � f .�/

��1�¯
D sup

®
jz � �j�1 j � 2 Sp

�
f .�/

�¯
:

As � is a compact subset of C and Sp.f .�// � Œa; b� for all � 2 Rn, we see that there is
C > 0 such that jz � �j�1 � C for all z 2 � and � 2

S
�2Rn Sp.f .�//. Thus, we get

�z � f .�/��1

 � C for all z 2 � and � 2 Rn: (3.7)

Let ˛; ˇ 2 Nn
0 . Then, the partial derivative ı˛@ˇ

�
Œ.z � f .�//�1� can be written as a

linear combination of terms of the form,�
z�f .�/

��1�
ı˛

.1/

@
ˇ .1/

�
f .�/

��
z�f .�/

��1
� � �
�
z�f .�/

��1�
ı˛

.l/

@
ˇ .l/

�
f .�/

��
z�f .�/

��1
;

(3.8)
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where ˛.1/; : : : ; ˛.l/ and ˇ.1/; : : : ; ˇ.l/ are multi-orders such that ˛.1/ C � � � C ˛.l/ D ˛
and ˇ.1/ C � � � C ˇ.l/ D ˇ. As f 2 S0.Rn;A1/, we know that, for each j D 1; : : : ; l ,
there is Cj > 0 such that

ı˛.j /@ˇ .j /

�
f .�/



 � Cj h�i�jˇ .j /j for all � 2 Rn:

Combining this with (3.7) and (3.8) shows that there is C˛ˇ > 0 such that

ı˛@ˇ
�

��
z � f .�/

��1�

 � C˛ˇ h�i�jˇ j for all z 2 � and � 2 Rn: (3.9)

It follows from this that the partial derivative @ˇ
�

and the contour integral on the right-hand
side of (3.6) can be swapped [14, Prop. C.28]. Furthermore, as ı˛ W A1 ! A1 is a
continuous linear map, ı˛ can also be interchanged with the same contour integral. Thus,
by using (3.9), we obtain

ı˛@ˇ

�

�
'
�
f .�/

��

 � 1

2�

Z r1

r0

ˇ̌
'
�

.t/

�ˇ̌

ı˛@ˇ
�

��

.t/ � f .�/

��1�

ˇ̌
 0.t/ˇ̌ dt
�
C˛ˇ

2�

Z r1

r0

ˇ̌
'
�

.t/

�ˇ̌ˇ̌

 0.t/

ˇ̌
dt � h�i�jˇ j;

where 
 W Œr0; r1�! C is a parametrization of � . Thus, we see that

'
�
f .�/

�
2 S0.Rn;A1/:

This proves the lemma.

Proposition 3.6. Let f 2 S0.Rn;A1/. Then, the pseudodifferential multiplier Pf gives
rise to a continuous linear map from H .Rn;A / to itself. Furthermore, the map f 7! Pf
gives rise to a continuous linear map from Sm.Rn;A1/ to L .H .Rn;A // for every
m < 0.

Proof. Here, we mimic the strategy of the proof of the boundedness of pseudodifferential
operators on Rn using Schur’s lemma in the literature (see, e.g., [24]). However, as we are
dealing with A1-valued symbols, here we use Lemma 3.4 instead of the ordinary Schur’s
lemma (see, e.g., [24, Lem. 3.7]) and Lemma 3.5 instead of [24, Lem. 2.1] for reducing
the proof to the case of negative order symbols.

Let u 2 S .Rn;A1/ and suppose that f 2 S�n�1.Rn;A1/. Using (2.7) and (2.8),
we can write

Pf u.x/ D

“
eihx�y;�i˛�x

�
f .� C Bx/

�
u.y/ dy µ �

D

Z
Rn

�Z
Rn

eihx�y;�i˛�x
�
f .� C Bx/

�
µ �

�
u.y/ dy

DW

Z
Rn

K.x; y/u.y/ dy: (3.10)
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As u2S .Rn;A1/ and f 2 S�n�1.Rn;A1/, all the integrands are absolutely integrable
with respect to the norm k�k on A . Note also that, for every ˛ 2 Nn

0 , we have

.x � y/˛K.x; y/

 D 



 Z
Rn

.x � y/˛eihx�y;�i˛�x
�
f .� C Bx/

�
µ �






D





 Z
Rn

eihx�y;�i˛�x
�
@˛� f .� C Bx/

�
µ �






�

Z
Rn



˛�x�@˛� f .� C Bx/�

 µ �
D

Z
Rn



@˛� f .� C Bx/

 µ �:
We know that k@˛

�
f .� C Bx/k � pj˛j.f /h� C Bxi

�n�1�j˛j for all x; � 2 Rn since f 2
S�n�1.Rn;A1/. Here, pj˛j is the semi-norm on the space of standard symbols given
in (2.5). It then follows that

.x � y/˛K.x; y/

 � pj˛j.f / Z

Rn

h� C Bxi�n�1�j˛j µ �

D pj˛j.f /

Z
Rn

h�i�n�1�j˛j µ � <1:

By using this we deduce that there is C > 0 independent of f such that�
1C jx � yj2

�n

K.x; y/

 � Cp2n.f / 8x; y 2 Rn:

It follows from this that there is a continuous semi-norm p on S�n�1.Rn;A1/ such that

sup
x2Rn

Z
Rn



K.x; y/

 dy � p.f /; sup
y2Rn

Z
Rn



K.x; y/

 dx � p.f /:
Combining this with Lemma 3.4 and (3.10) shows that

kPf uk � 4p.f /kuk 8u 2 S .Rn;A1/:

As S .Rn;A1/ is dense in H .Rn;A /, this shows thatPf uniquely extends to a bounded
linear operator on H .Rn;A /. Furthermore, the map f 7! Pf gives rise to a continuous
linear map from S�n�1.Rn;A1/ to L .H .Rn;A //.

We know by Theorems 2.8 and 2.9 that if f 2 S�.nC1/=2.Rn;A1/, then f ?]f 2
S�n�1.Rn;A1/. Using the Cauchy–Schwarz inequality for Hilbert C �-modules (see,
e.g., [18, Prop. 1.1]) and the proof in the case of order �n� 1 symbols above, we see that,
for all f 2 S�.nC1/=2.Rn;A1/ and u 2 S .Rn;A1/, we have

kPf uk
2
D


hPf u; Pf ui

 D 

hPf ?]f u; ui

 � kPf ?]f ukkuk � 4p.f ?]f /kuk2:
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Combining this with the continuity assertions in Theorems 2.8 and 2.9, we see that there
is a continuous semi-norm q on S�.nC1/=2.Rn;A1/ such that

kPf uk � q.f /kuk; for f 2 S�.nC1/=2.Rn;A1/; u 2 S .Rn;A1/:

Since
S
m<0 Sm.Rn;A1/D

S
k2N0

S�.nC1/=2
k

.Rn;A1/, we can proceed by induction
to show that the map f 7! Pf gives rise to a continuous linear map from Sm.Rn;A1/
to L .H .Rn;A // for every m < 0.

Now suppose that f 2 S0.Rn;A1/. We set

g.�/ WD sup
�2Rn



f .�/

2 � f .�/�f .�/:
It follows from Lemma 2.2 that f .�/�f .�/ 2 S0.Rn;A1/, and hence g.�/ belongs to
S0.Rn;A1/. Furthermore, we also see that, for all � 2 Rn, we have

0 � sup
�2Rn



f .�/

2 � 

f .�/�f .�/

 � g.�/ � 

g.�/


� sup
�2Rn



f .�/

2 C 

f .�/�f .�/

 � 2C <1;

where we have set C D sup�2Rnkf .�/k2 and � is meant in the sense that, for x; y 2 A ,
x � y if x � y � 0 in A . Thus, we obtain

1 � 1C g.�/ �


1C g.�/

 � 1C 2C 8� 2 Rn:

This shows that Sp.1C g.�//� Œ1; 1C 2C �. As z 7! z
1
2 is a holomorphic function on the

domain containing Œ1; 1C 2C �, it follows from Lemma 3.5 that

h.�/ WD
�
1C g.�/

� 1
2 2 S0.Rn;A1/:

We know by Theorems 2.8 and 2.9 that both f ?]f .�/ � f .�/�f .�/ and h?]h.�/ �
h.�/�h.�/ are in S�1.Rn;A1/. Thus, there is b 2 S�1.Rn;A1/ such that

f ?]f .�/C h?]h.�/ D f .�/�f .�/C h.�/�h.�/C b.�/

D f .�/�f .�/C 1C g.�/C b.�/

D f .�/�f .�/C 1C C � f .�/�f .�/C b.�/

D 1C C C b.�/:

Combining this with Theorems 2.8 and 2.9 once again, we see that, for all u2S .Rn;A1/,
we have

hPf u; Pf ui � hPf u; Pf ui C hPhu; Phui

D hPf ?]fCh?]hu; ui D .1C C/hu; ui C hPbu; ui: (3.11)
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Thanks to the above proof of the result in the case of negative order symbols and the
Cauchy–Schwarz inequality for Hilbert C �-modules, we know that there is a continuous
semi-norm p on S�1.Rn;A1/ such that

hPbu; ui

 � kPbukkuk � p.b/kuk2 8u 2 S .Rn;A1/:

Combining this with (3.11), we get

kPf uk
2
� .1C C/kuk2 C



hPbu; ui

 � �1C C C p.b/�kuk2 8u 2 S .Rn;A1/:

This shows that Pf uniquely extends to a bounded linear operator from H .Rn;A / to
itself. The proof is complete.

Remark 3.7. The assertion about the continuity of the map f 7! Pf in Proposition 3.6
will be utilized in the construction of the resolvent in Section 5. For the sake of complete-
ness, it is tempting to extend the continuity of the map f 7! Pf to the space of symbols
of degree 0. However, due to the lack of continuity of the holomorphic functional calcu-
lus map f .�/ 7! '.f .�// on S0.Rn;A1/ used in the proof, the continuity of the map
S0.Rn;A1/ 3 f 7! Pf 2 L .H .Rn;A // cannot be obtained immediately from the
proof of the boundedness of ordinary pseudodifferential operators in the literature. Thus,
in this article, we only prove the continuity of the map f 7! Pf on the space of symbols
of negative orders, which suffices for our purpose.

4. Weakly parametric pseudodifferential calculus

In this section, we introduce weakly parametric symbols and construct the weakly para-
metric pseudodifferential calculus in the setting of twisted C �-dynamical systems.

In what follows, we let � be an open sector in C n ¹0º. Note that � admits an exhaus-
tion � D

S
j�0 �j , where the �j are closed subsectors of � such that �j � V�jC1.

By using Definition 2.1 of A1-valued symbols, we can define weakly parametric
A1-valued symbols in the same way as in [12, Def. 1.1] as follows.

Definition 4.1. Let m; d 2 R. The space Sm;0.Rn � �;A1/ consists of maps f .�; �/ 2
C1.Rn � �;A1/ that are holomorphic with respect to � 2 � and satisfy, for all j � 0,

@jzf
�
�; 1
z

�
2 SmCj .Rn;A1/ for 1

z
2 �;

with uniform estimates in SmCj .Rn;A1/ for jzj � 1 and 1
z

in closed subsectors of � .
Moreover, we set Sm;d .Rn��;A1/D�d Sm;0.Rn��;A1/; that is, Sm;d .Rn��;A1/
consists of maps f .�;�/ 2 C1.Rn � �;A1/ that are holomorphic with respect to � 2 �
such that, for all j � 0,

@jz
�
zdf

�
�; 1
z

��
2 SmCj .Rn;A1/ for 1

z
2 �;

with uniform estimates in SmCj .Rn;A1/ for jzj � 1 and 1
z

in closed subsectors of � .
We call these symbols weakly parametric.
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Remark 4.2. In Definition 4.1, we adapt the same notations and conventions given in [12,
pp. 483–484]. For example, @jzf .�; 1z /means the j th z-derivative of the map z 7! f .�; 1

z
/.

We endow Sm;d .Rn � �;A1/,m;d 2R, with the locally convex topology generated
by the semi-norms,

pN� 0.f / WD sup
j˛jCjˇ jCj�N

sup
�2Rn

sup
1
z 2�

0

jzj�1

�
1C j�j

��m�jCjˇ j

ı˛@ˇ
�
@jz
�
zdf

�
�; 1
z

��

;
where N ranges over all non-negative integers and � 0 ranges over all closed subsectors
of � . The space Sm;d .Rn � �;A1/ is a Fréchet space with respect to these semi-norms.
Note also that if m � m0 and d 0 � d 2 N0, then we have a continuous inclusion,

Sm;d .Rn � �;A1/ � Sm
0;d 0.Rn � �;A1/:

All the properties of weakly parametric pseudodifferential calculus and their proofs
hold verbatim in the setting of twisted C �-dynamical systems, except for the composition
formula (Theorems 4.13 and 4.14). Therefore, in the rest of this section, we only state the
results and omit proofs if the same arguments work verbatim in our setting.

Lemma 4.3. Letmj ;dj 2R, j D 1;2. Then, the product of A1 gives rise to a continuous
bilinear map,

Sm1;d1.Rn � �;A1/ � Sm2;d2.Rn � �;A1/ �! Sm1Cm2;d1Cd2.Rn � �;A1/:

Adopting the notation of [12], we shall denote

S1;d .Rn � �;A1/ WD
[
m2R

Sm;d .Rn � �;A1/;

S�1;d .Rn � �;A1/ WD
\
m2R

Sm;d .Rn � �;A1/:

The following is the definition of asymptotic expansions, i.e., the analogue of [12,
Def. 1.8].

Definition 4.4. Let f .�;�/2Sm;d .Rn��;A1/,m;d 2R and fj .�;�/2Sm�j;d .Rn��;
A1/, j � 0. We say that f .�; �/ �

P
j�0 fj .�; �/ in S1;d .Rn � �;A1/ if

f .�; �/ �
X
j<N

fj .�; �/ 2 Sm�N;d .Rn � �;A1/ for all N:

The following is Borel’s lemma for weakly parametric symbols, the counterpart of
[12, Lem. 1.9] in the setting of twisted C �-dynamical systems.

Lemma 4.5. Letm;d 2R and fj .�;�/2 Sm�j;d .Rn ��;A1/, j � 0. Then, there exists
f .�;�/ 2 Sm;d .Rn ��;A1/ such that f .�;�/�

P
j�0 fj .�;�/ in S1;d .Rn ��;A1/.

The following definition of weakly polyhomogeneous symbols is the analogue of [12,
Def. 1.10]. Here, we only deal with 1-step polyhomogeneous symbols; i.e., there ism 2R
such that mj D m � j for all j � 0.
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Definition 4.6. Let d 2 R. Then, f .�; �/ 2 S1;d .Rn � �;A1/ is said to be weakly
polyhomogeneous if there exist symbols fm�j .�; �/ 2 Sm�j�d;d .Rn � �;A1/, m 2 R,
j D 0; 1; : : :, homogeneous in .�; �/ for j�j � 1 of degree m � j , such that f .�; �/ �P
j�0 fm�j .�; �/ in S1;d .Rn � �;A1/ in the sense of Definition 4.4.

Remark 4.7. Let f .�; �/ 2 S1;d .Rn � �;A1/ be a weakly polyhomogeneous symbol
such that f .�; �/ �

P
j�0 fm�j .�; �/ in S1;d .Rn � �;A1/. Then, for every j � 0

and ˛; ˇ 2 Nn
0 , ı˛@ˇ

�
fm�j .�; �/ is in Sm�j�jˇ j�d;d .Rn � �;A1/ and homogeneous in

.�; �/ for j�j � 1 of degree m � j � jˇj. Furthermore, it follows from the very definition
of weakly polyhomogeneous symbols that, for all ˛; ˇ 2 Nn

0 , ı˛@ˇ
�
f .�; �/ is weakly

polyhomogeneous and

ı˛@
ˇ

�
f .�; �/ �

X
j�0

ı˛@
ˇ

�
fm�j .�; �/ in S1;d .Rn � �;A1/:

Lemma 4.8. Let f W Rn � .� [ ¹0º/! A1 be a smooth map such that f is homoge-
neous in .�; �/ of degree m 2 Z for .j�j2 C j�j2/

1
2 � 1 and holomorphic in � 2 V� . Then,

the following holds.

(1) If m � 0, then f 2 Sm;0.Rn � �;A1/ \ S0;m.Rn � �;A1/.

(2) For general m, f 2 Sm;0.Rn � �;A1/ C S0;m.Rn � �;A1/ and ı˛@ˇ
�
f 2

Sm�jˇ j;0.Rn � �;A1/ \ S0;m�jˇ j.Rn � �;A1/ when jˇj � m.

Proof. This is the analogue of [12, Lem. 1.14] for A1-valued symbols, and this can be
proved in the exact same way as in the proof of [12, Lem. 1.14].

Given a multi-index ˛, let us denote @˛1
B;�1
� � � @

˛n
B;�n

by @˛
B;�

as in Section 2.2. Let

f .�; �/ 2 S1;d .Rn � �;A1/, f .�; �/ �
P
j�0 fm�j .�; �/ in S1;d .Rn � �;A1/, be

a weakly polyhomogeneous symbol and ˛ 2 Nn
0 . In the same way of deriving (2.15), we

get

f B;˛.�;�/ WD @˛x jxD0˛�x
�
f .�CBx;�/

�
D

j˛jX
jD0

X
ˇC
D˛
j
 jDj

�
˛

ˇ

�
.iı/ˇ@




B;�
f .�;�/: (4.1)

We know by Remark 4.7 that each summand .iı/ˇ@

B;�
f .�; �/ is weakly polyhomoge-

neous and

.iı/ˇ@



B;�
f .�; �/ �

X
j�0

.iı/ˇ@



B;�
fm�j .�; �/ in S1;d .Rn � �;A1/:

Combining this with (4.1) shows that f B;˛.�; �/ is a weakly polyhomogeneous symbol
such that

f B;˛.�; �/ �
X
j�0

f
B;˛
m�j .�; �/ in S1;d .Rn � �;A1/;
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where for each j � 0, f B;˛m�j .�; �/ is in Sm�j�d;d .Rn � �;A1/ and homogeneous in
.�; �/ for j�j � 1 of degree m � j given by

f
B;˛
m�j .�; �/ D

8̂<̂
:
Pj

kD0

P
ˇC
D˛
j
 jDk

�
˛
ˇ

�
.iı/ˇ@




B;�
fm�jCk.�; �/ if 0 � j < j˛j;Pj˛j

kD0

P
ˇC
D˛
j
 jDk

�
˛
ˇ

�
.iı/ˇ@




B;�
fm�jCk.�; �/ if j � j˛j:

(4.2)

Summarizing the above discussion, we obtain the following lemma.

Lemma 4.9. Let f .�; �/ 2 S1;d .Rn � �;A1/ be a weakly polyhomogeneous symbol
such that f .�; �/ �

P
j�0 fm�j .�; �/ in S1;d .Rn � �;A1/ and ˛ 2 Nn

0 . Then, the
symbol,

f B;˛.�; �/ WD @˛x jxD0˛�x
�
f .� C Bx;�/

�
;

satisfies f B;˛.�; �/ �
P
j�0 f

B;˛
m�j .�; �/ in S1;d .Rn � �;A1/, where, for each j � 0,

f
B;˛
m�j .�;�/ is in Sm�j�d;d .Rn ��;A1/ and homogeneous in .�;�/ for j�j � 1 of degree
m � j given by (4.2). In particular, we have f B;˛m .�; �/ D .iı/˛fm.�; �/.

The following result is immediate from Definition 4.6.

Proposition 4.10. Let f .�; �/ 2 Sm;d .Rn � �;A1/ be such that

f .�; �/ �
X
`�0

f .`/.�; �/ in S1;d .Rn � �;A1/;

where, for each ` � 0, f .`/.�; �/ 2 Sm�`;d .Rn � �;A1/ is a weakly polyhomoge-
neous symbol such that f .`/.�; �/ �

P
j�0 f

.`/

m�`�j
.�; �/ in S1;d .Rn ��;A1/ with

f
.`/

m�`�j
.�; �/ in Sm�`�j�d;d.Rn��;A1/ and homogeneous in .�;�/ of degree m�`�j

for j�j � 1. Then, f .�; �/ is weakly polyhomogeneous as well and we have f .�; �/ �P
j�0 fm�j .�; �/, where, for each j � 0, fm�j .�; �/ is defined by

fm�j .�; �/ WD
X
`�j

f
.`/
m�j .�; �/; j � 0:

Furthermore, fm�j .�; �/ belongs to Sm�j�d;d .Rn � �;A1/ and is homogeneous in
.�; �/ of degree m � j for j�j � 1.

We also have the following result.

Proposition 4.11. Let f .�;�/ 2 S1;d .Rn � �;A1/, f .�;�/ �
P
p�0 fm�p.�;�/, and

g.�;�/2 S1;d
0

.Rn ��;A1/, g.�;�/�
P
r�0gm0�r .�;�/ be weakly polyhomogeneous.

Then, f .�; �/g.�; �/ is weakly polyhomogeneous and we have

f .�; �/g.�; �/ �
X
j�0

.fg/mCm0�j .�; �/ in S1;dCd
0

.Rn��;A1/;



G. Lee and M. Lesch 868

where .fg/mCm0�j .�; �/2SmCm
0�j�d�d 0;dCd 0.Rn��;A1/, j � 0, are homogeneous

symbols in .�; �/ for j�j � 1 of degree mCm0 � j given by

.fg/mCm0�j .�; �/ D
X

pCrDj

fm�p.�; �/gm0�r .�; �/:

Proof. By the very definition of weakly polyhomogeneous symbols, we have

f .�; �/ D
X
p<N

fm�p.�; �/ mod Sm�N�d;d .Rn � �;A1/;

g.�; �/ D
X
r<N

gm0�r .�; �/ mod Sm
0�N�d 0;d 0.Rn � �;A1/:

From this we get

f .�; �/g.�; �/

D

X
p;r<N

fm�p.�; �/gm0�r .�; �/ mod SmCm
0�N�d�d 0;dCd 0.Rn � �;A1/: (4.3)

As fm�p.�; �/ (resp., gm0�r .�; �/) is homogeneous in .�; �/ for j�j � 1 of degree m� p
(resp., degree m0 � r), the symbol,

.fg/mCm0�j .�; �/

WD

X
pCrDj

fm�p.�; �/gm0�r .�; �/ 2 SmCm
0�j�d�d 0;dCd 0.Rn � �;A1/;

is homogeneous in .�; �/ for j�j�1 of degree mCm0�j for all j �0. Furthermore, since
fm�p.�; �/ 2 Sm�p�d;d .Rn � �;A1/ and gm0�r .�; �/ 2 Sm

0�r�d 0;d 0.Rn � �;A1/,
we see that fm�p.�; �/gm0�r .�; �/ belongs to SmCm

0�N�d�d 0;dCd 0.Rn � �;A1/ when
p C r � N . Combining this with (4.3), we see that, for all N � 1, we have

f .�; �/g.�; �/

D

X
j<N

X
pCrDj

fm�p.�; �/gm0�r .�; �/ mod SmCm
0�N�d�d 0;dCd 0.Rn � �;A1/

D

X
j<N

.fg/mCm0�j .�; �/ mod SmCm
0�N�d�d 0;dCd 0.Rn � �;A1/:

This shows that f .�; �/g.�; �/ is weakly polyhomogeneous and

f .�; �/g.�; �/ �
X
j�0

.fg/mCm0�j .�; �/ in S1;dCd
0

.Rn � �;A1/:

The proof is complete.

The following theorem is the analogue of [12, Thm. 1.12].
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Theorem 4.12. Let m; d 2 R. For f 2 Sm;d .Rn � �;A1/, set

f.d;k/.�/ D
1

kŠ
@kz

�
zdf

�
�;
1

z

��ˇ̌̌
zD0

:

Then, f.d;k/ 2 SmCk.Rn;A1/, and for any N , we have

f .�; �/ �
X

0�k<N

�d�kf.d;k/.�/ 2 SmCN;d�N .Rn � �;A1/:

Proof. In the proof of [12, Thm. 1.12], the authors drop the variable x for notational
simplicity. If we regard the symbol p.�; 1

z
/ in [12, Thm. 1.12] as an A1-valued symbol

in Sm;d .Rn � �;A1/, then the proof of [12, Thm. 1.12] holds verbatim in the case of
A1-valued symbols.

Given f 2 Sm;d .Rn ��;A1/,m;d 2R, we define the parametric pseudodifferential
multiplier associated with f by

.Pf u/.x/ D

�Z
Rn

f _.y; �/UUUyudy

�
.x/; u 2 S .Rn;A1/:

Here, f _.y; �/ is the inverse Fourier transform of f .�; �/ in the variable �.
Let f 2 Sm;d .Rn � �;A1/ and g 2 Sm

0;d 0.Rn � �;A1/. For each � 2 � , let
f ]g.�; �/ be the composition product of f .�; �/ and g.�; �/ given by (2.9). As men-
tioned in [12] the composition rule for a pseudodifferential calculus extends to the weakly
parametric calculus in a straightforward way. The following theorems are the weakly para-
metric versions of Theorems 2.8 and 2.15.

Theorem 4.13. Let f 2Sm;d.Rn��;A1/ and g2Sm
0;d 0.Rn��;A1/. Then, f ]g.�;�/

belongs to SmCm
0;dCd 0.Rn ��;A1/ and we have Pf Pg D Pf ]g . Furthermore, f ]g has

the asymptotic expansion,

f ]g.�; �/

�

X
˛

.�i/j˛j

˛Š
@˛� f .�; �/@

˛
x jxD0

�
˛�x

�
g.� C Bx;�/

��
in S1;dCd

0

.Rn � �;A1/:

Theorem 4.14. Let f .�; �/ 2 S1;d .Rn � �;A1/, f .�; �/ �
P
j�0 fm�j .�; �/, and

g.�;�/2 S1;d
0

.Rn ��;A1/, g.�;�/�
P
j�0gm0�j .�;�/ be weakly polyhomogeneous.

Then, f ]g.�; �/ is weakly polyhomogeneous and we have Pf Pg D Pf ]g . Furthermore,
it admits the asymptotic expansion f ]g.�; �/ �

P
j�0.f ]g/mCm0�j .�; �/, where

.f ]g/mCm0�j .�; �/ D
X

kClCj˛jDj

.�i/j˛j

˛Š
@˛� fm�k.�; �/g

B;˛
m0�l

.�; �/; j � 0: (4.4)

Here, gB;˛
m0�l

.�; �/ is given as in (4.2). In particular, we have

.f ]g/mCm0.�; �/ D fm.�; �/gm0.�; �/: (4.5)
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5. Asymptotic expansions of resolvents

Let  be an ˛-invariant continuous trace on A . Then, there is a natural trace Tr on
the algebra of pseudodifferential multipliers of order < �n, which is given by (2.20). In
this section, we derive the asymptotic expansion of the trace Tr of weakly parametric
pseudodifferential multipliers in the given parameter and apply it to derive the asymp-
totic expansion of the resolvent of a pseudodifferential multiplier which is elliptic with
parameter.

5.1. Asymptotic expansions of weakly parametric pseudodifferential multipliers

In order to derive the asymptotic expansion of the trace of a weakly parametric pseudod-
ifferential multiplier, we need the following lemma.

Lemma 5.1 ([12, Lem. 2.3]). Let f .�/ be a holomorphic function on a sector and sup-
pose that

f .�/ D c.�/.rei� /j logk.rei� /C o
�
rj logk

�
1

r

��
as r ! 0;

where r and � are the modulus and argument of �, respectively. Then, c.�/ is independent
of � .

We are now in a position to get the asymptotic expansion of the trace of a weakly
parametric pseudodifferential multiplier.

Theorem 5.2. Let f .�;�/ 2 S1;d .Rn ��;A1/, f .�;�/�
P
j�0 fm�j .�;�/ be weakly

polyhomogeneous. Furthermore, assume that f .�;�/ and fm�j .�;�/withm�j�d ��n
are in Sm

0;d 0.Rn � �;A1/ with m0 < �n. Then, we have an asymptotic expansion,

Tr .Pf .�;�// �
1X
jD0

cj�
m�jCn

C

1X
kD0

.c0k log�C c00k/�
�kCd : (5.1)

Proof. First, suppose that d D 0. Given J 2 N0, set

rJ .�; �/ WD f .�; �/ �
X

0�j<J

fm�j .�; �/:

Here, we adapt the convention r0.�; �/ D f .�; �/. As  is a continuous trace on the
C �-algebra A , there is C > 0 such thatˇ̌

 .a/
ˇ̌
� Ckak 8a 2 A ;

where k�k is the norm on the C �-algebra A . Thus, we haveˇ̌
 
�
rJ .�; �/

�ˇ̌
� C



rJ .�; �/

 8.�; �/ 2 Rn � � (5.2)ˇ̌
 
�
fm�j .�; �/

�ˇ̌
� C



fm�j .�; �/

 8.�; �/ 2 Rn � � 8j � 0: (5.3)
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By combining this with the assumption, we see that, for each � 2 � ,  .rJ .�; �// is inte-
grable in � and so are  .fm�j .�; �// for all j � 0.

Now consider the remainder rJ .�; �/. Using Theorem 4.12, we get

rJ .�; �/ �
X

0��<N

s�.�/�
��
2 Sm�JCN;�N .Rn � �;A1/;

with s�.�/ 2 Sm�JC�.Rn;A1/. Combining this with (5.2), for any N , we obtain

 
�
rJ .�; �/

�
D

X
0��<N

 
�
s�.�/

�
��� CO

�
h�im�JCN��N

�
:

Given any N , choosing J such that m � J C N < �n ensures the integrability of each
term  .s�.�//. It then follows that

Tr .PrJ .�;�// D
Z

Rn

 
�
rJ .�; �/

�
µ � D

X
0��<N

cNJ��
��
CO.��N /: (5.4)

Here, the coefficients cNJ� , which contribute to c00
k

in (5.1), are defined by
R

Rn .s�.�//µ �.
In order to compute the contribution of the homogeneous terms fm�j .�; �/ as in the

proof of [12, Thm. 2.1], let us write Tr .Pfm�j .�;�// as the sum of three integrals as fol-
lows:

Tr .Pfm�j .�;�// D
Z

Rn

 
�
fm�j .�; �/

�
µ �

D

Z
j�j�j�j

 
�
fm�j .�; �/

�
µ � C

Z
j�j�1

 
�
fm�j .�; �/

�
µ �

C

Z
1�j�j�j�j

 
�
fm�j .�; �/

�
µ �: (5.5)

For j�j � 1, by using the homogeneity of fm�j .�; �/ for j�j � 1, we getZ
j�j�j�j

 
�
fm�j .�; �/

�
µ �D�m�jCn

Z
j�j�1

�
j�j

�

�m�jCn
 

�
fm�j

�
�;
�

j�j

��
µ �: (5.6)

This term will contribute to cj in (5.1). Note that, at first glance, the right-hand side seems
to depend on �=j�j, but this is not the case because fm�j .�; �/ is holomorphic in � and
hence  .fm�j .�; �// is a holomorphic function in � (cf. Lemma 5.1).

To compute the contribution of the second integral in (5.5), we apply Theorem 4.12 to
fm�j .�; �/. Then, we obtain

fm�j .�; �/ D
X

0��<M

���q�.�/CRM .�; �/: (5.7)

Here, q�.�/ WD 1
�Š
@�zfm�j .�;

1
z
/jzD0 is in Sm�jC�.Rn;A1/ and homogeneous of degree

m � j C � for j�j � 1. Furthermore, we also have

RM .�; �/ D O
�
h�im�jCM��M

�
; j�j � 1: (5.8)
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Thus, for the second term in (5.5), we getZ
j�j�1

 
�
fm�j .�; �/

�
µ � D

X
0��<M

���
Z
j�j�1

 
�
q�.�/

�
µ � CO.��M /: (5.9)

Given any N and its consequent choice of J such that m � J C N < �n, we use the
expansion (5.9) with M � N to fm�j .�; �/ for each 0 � j < J . This yields J contribu-
tions to c00

k
for each 0 � k < N in (5.1).

We utilize the expansion (5.7) again to compute the contribution of the third term in
(5.5). ChooseM such thatM >�mC j � n. As alluded to earlier, q�.�/ is homogeneous
of degree m � j C � for j�j � 1. Thus, by changing variables to polar coordinates, we
obtain

���
Z
1�j�j�j�j

 
�
q�.�/

�
µ � D ���c�

Z j�j
1

rm�jC�Cn�1 dr

D

´
���c0�

�
j�jm�jC�Cn�1

�
if m�jC�Cn¤0;

���c0� log j�j if m�jC�CnD0:
(5.10)

In (5.7), note that since fm�j .�; �/ is homogeneous of degree m� j in .�; �/ for j�j � 1
and each q�.�/ is homogeneous of degree m � j C � in � for j�j � 1, it follows that
RM .�; �/ is homogeneous of degree m � j in .�; �/ for j�j � 1. Let RhM denote the
extension of RM by homogeneity. Then, by using (5.8), we see that we have RhM .�; �/ D
O.h�im�jCM��M / for all � ¤ 0. This, together with the homogeneity of RhM and the
assumption m � j CM > �n, implies thatZ
j�j�j�j

 
�
RhM .�; �/

�
µ � D c00�m�jCn and

Z
j�j�1

 
�
RhM .�; �/

�
µ � D O.��M /;

and henceZ
1�j�j�j�j

 
�
RM .�; �/

�
µ � D

Z
j�j�j�j

 
�
RhM .�; �/

�
µ � �

Z
j�j�1

 
�
RhM .�; �/

�
µ �

D c00�m�jCn �O.��M /:

Combining this with (5.10), the expansion (5.7) and Lemma 5.1 shows that the third inte-
gral in (5.5) can be written in the formZ

1�j�j�j�j

 
�
fm�j .�; �/

�
µ � D .c C c0 log�/�m�jCn

C

X
0��<M

c��
��
CO.��M /: (5.11)

Here, c0 D 0 unless m � j C n is an integer � 0.
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Combining (5.6), (5.9) and (5.11), we get

Tr .Pfm�j .�;�// D
Z

Rn

 
�
fm�j .�; �/

�
µ �

D cj�
m�jCn

Cc0j�
m�jCn log�C

X
0��<M

cj��
��
CO.��M /: (5.12)

By choosing J such thatm� J CN < �n andM satisfyingM �N , the expansion (5.1)
for d D 0 can be derived by using (5.4) and (5.12). This proves the theorem for d D 0.

The result (5.1) for general d 2 R is immediate from the above proof since we can
write f .�; �/ D �df 0.�; �/ and the asymptotic expansion of f 0.�; �/ can be obtained
from the above computation in the case d D 0. This completes the proof.

5.2. Resolvents

Definition 5.3. Let f 2 Sm.Rn;A1/, f .�/ �
P
j�0 fm�j .�/ be a polyhomogeneous

symbol. We say that f is elliptic with parameter � 2 � if it is elliptic of order m and
fm.�/ � �

m is invertible in A1 for all � 2 � and j�j D 1. We also say that a pseudodif-
ferential multiplier P is elliptic with parameter if it is associated with a polyhomogeneous
symbol which is elliptic with parameter.

Theorem 5.4. Let f 2 Sm.Rn;A1/, f .�/�
P
j�0fm�j .�/ be a polyhomogeneous sym-

bol which is elliptic with parameter, where m is a positive integer. Then, there is a weakly
polyhomogeneous symbol g.�;�/2S�m;0.Rn��;A1/\ S0;�m.Rn��;A1/ such that:

(1) g.�; �/ has the asymptotic expansions,

g.�; �/�
X
j�0

g�m�j .�; �/

in S�m;0.Rn � �;A1/ \ S0;�m.Rn � �;A1/; (5.13)

g.�; �/�g�m.�; �/�
X
j�1

g�m�j .�; �/

in S�m�1;0.Rn��;A1/\Sm�1;�2m.Rn��;A1/: (5.14)

Here, the homogeneous parts

g�m.�; �/ 2 S�m;0.Rn � �;A1/ \ S0;�m.Rn � �;A1/;
g�m�j .�; �/ 2 S�m�j;0.Rn � �;A1/ \ Sm�j;�2m.Rn � �;A1/; j � 1;

are given by

g�m.�; �/ D
�
fm.�/ � �

m
��1

; (5.15)
g�m�j .�; �/

D �

X
kClCj˛jDj

l<j

.�i/j˛j

˛Š

�
fm.�/��

m
��1

@˛� fm�k.�/g
B;˛
�m�l

.�; �/; j �1: (5.16)

(2) We have
.f � �m/]g � 1 2 S�1;�m.Rn � �;A1/:
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Proof. Let g�m�j .�; �/, j � 0, be the symbols defined as in (5.15)–(5.16). As m is a
positive integer, we know by Lemma 4.8 that

g�m.�; �/ 2 S�m;0.Rn � �;A1/ \ S0;�m.Rn � �;A1/: (5.17)

Now we proceed by induction to show that

g�m�j .�; �/ 2 S�m�j;0.Rn � �;A1/ \ Sm�j;�2m.Rn � �;A1/ for all j � 1:

Combining (5.17) with the fact that @˛
�
fm�k.�/ 2 Sm�k�j˛j;0.Rn ��;A1/ for all ˛ 2Nn

0

and gB;˛�m .�; �/ D g�m.�; �/ for all ˛ 2 Nn
0 (cf. (4.2)) shows that

g�m�1.�;�/ 2 S�m�1;0.Rn��;A1/\S�1;�m.Rn��;A1/\Sm�1;�2m.Rn��;A1/:

Suppose that, given an integer j > 1, the symbol g�m�l .�; �/ in (5.16) belongs to
S�m�l;0.Rn � �;A1/\ S�l;�m.Rn � �;A1/\ Sm�l;�2m.Rn � �;A1/ for all l < j .
Then, (4.2) implies that, for all ˛ 2 Nn

0 , gB;˛
�m�l

.�; �/ belongs to the same symbol space.
Furthermore, we also know that

.fm.�/ � �
m/�1 2 S�m;0.Rn � �;A1/ \ S0;�m.Rn � �;A1/;

@˛� fm�k.�/ 2 Sm�k�j˛j;0.Rn � �;A1/ for all ˛ 2 Nn
0 :

Combining all this with (5.16) shows that

g�m�j .�; �/2S�m�j;0.Rn��;A1/\S�j;�m.Rn��;A1/\Sm�j;�2m.Rn��;A1/:

In particular, g�m�j .�;�/ belongs to S�m�j;0.Rn � �;A1/\ Sm�j;�2m.Rn � �;A1/.
Observe that .fm.�/��m/�1 is homogeneous of degree�m and @˛

�
fm�k.�/ is homo-

geneous of degree m � k � j˛j in .�; �/. Therefore, by using (4.2), (5.15)–(5.16) and an
induction, it follows that, for every j � 0, g�m�j .�;�/ is homogeneous of degree�m� j
in .�; �/.

By Lemma 4.5, there is a symbol g.�;�/2S�m;0.Rn��;A1/\ S0;�m.Rn��;A1/
satisfying (5.13)–(5.14). Recall that we have

f .�/ � �m �
�
fm.�/ � �

m
C

X
1�j<N

fm�j .�/
�
2 Sm�N;0.Rn � �;A1/ 8N 2 N;

where we adopt the convention that
P
1�j<N fm�j .�/ D 0 for N D 1. Combining this

with Theorem 4.14 and (5.13)–(5.14), we get

.f � �m/]g �
X
j�0

�
.f � �m/]g

�
�j

2 S�N;0.Rn � �;A1/ \ Sm�N;�m.Rn � �;A1/ 8N 2 N:

In particular, as we know by (4.4) and (5.15)–(5.16) that ..f � �m/]g/0.�; �/ D 1 and
..f � �m/]g/�j .�; �/ D 0 for all j � 1, we have

.f � �m/]g � 1 2 S�1;�m.Rn � �;A1/:

This completes the proof.
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Let f .�/ and g.�; �/ be symbols as in Theorem 5.4 and set P D Pf and Q.�/ D
Pg.�;�/. Then, Theorems 4.14 and 5.4 imply thatR.�/ WD.P ��m/Q.�/�1DPf ]g.�;�/�1
is a pseudodifferential multiplier associated with a weakly polyhomogeneous symbol in
S�1;�m.Rn � �;A1/. Along the same way as written in [12, p. 502], we can obtain the
inverse of P � � WD P � �m by letting

.P � �/�1 D Q.�/CQ.�/
X
j�1

R.�/j : (5.18)

We know by Proposition 3.6 that the operator norm of L .H .Rn;A // ofR.�/ isO.��1/
for large � in � . This ensures that the series in (5.18) converges in the operator norm on
L .H .Rn;A //.

Once the resolvent .P � �/�1 is constructed, all the arguments for the derivation of
the resolvent trace asymptotic [12, Thm. 2.7] hold verbatim in our setting. Thus, we obtain
the following result on the asymptotic expansion of the trace of the resolvent.

Theorem 5.5. Let P andA be classical (i.e., 1-step polyhomogeneous) pseudodifferential
multipliers with respective orders m 2 N and ! 2 R. Suppose that P is elliptic with
parameter � 2 � . Then, for � 2 ��m and k with�kmC! <�n, we have the asymptotic
expansion,

Tr 
�
A.P � �/�k

�
�

1X
jD0

cj�
nC!�j
m �k

C

1X
lD0

�
c0l log�C c00l

�
��k�l :

Here, the coefficients cj , c0
l

and c00
l

are given by the integral (over Rn) of the trace  of
the respective symbols f .�/ �

P
j�0 fm�j .�/ and a.�/ �

P
j�0 a!�j .�/ of P and A.

Remark 5.6. As addressed in [20, §6], the trace Tr on
S
m<�n Lm� .R

n;A1/ may not
agree with the Hilbert space trace of a representation. Thus, in the case of parameter
dependent symbols, the comparison of the two traces should be done as in [20, Thm. 6.2]
in order to derive the asymptotic expansion of the Hilbert space trace of the operator
A.P � �/�k . However, the argument in [20, §6] for comparing the two traces is not appli-
cable in the case of weakly parametric pseudodifferential calculus. The estimate in the
proof of [20, Lem. 6.1], which is a key ingredient in proving [20, Thm. 6.2], is in com-
plete analogy with the Shubin type parametric pseudodifferential calculus [26, §9]. If
f .�; �/ is a Shubin type parametric symbol, the �-derivatives enhance the rate of decay
in both � and �, which enables us to achieve the desired decay with respect to � in the
proof of [20, Lem. 6.1]. However, in the case of weakly parametric symbols f .�; �/, the
�-derivatives do not change the rate of decay with respect to � (cf. [12, Lem. 1.5]), and this
is the reason why the method for comparing the two traces proposed in [20, §6] cannot be
applied to the case of weakly parametric calculus. We plan to address this problem in a
future project where we want to conduct the comparison of the two traces and derive the
asymptotic expansion of the Hilbert space trace of A.P � �/�k . The derivation of such an
asymptotic expansion is important in view of the fact that the coefficient of the logarithmic
term log � in the expansion of the Hilbert space trace of A.P � �/�k is essential in the
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study of the noncommutative residue trace (see, e.g., [19] for a detailed account on this
point).
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