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Morita equivalence of two `p Roe-type algebras

Yeong Chyuan Chung

Abstract. Given a metric space with bounded geometry, one may associate with it the `p uniform
Roe algebra and the `p uniform algebra, both containing information about the large scale geometry
of the metric space. We show that these two Banach algebras are Morita equivalent in the sense of
Lafforgue for 1 � p <1. As a consequence, these two Banach algebras have the same K-theory.
We then define an `p uniform coarse assembly map taking values in theK-theory of the `p uniform
Roe algebra and show that it is not always surjective.

1. Introduction

The study of Morita equivalence began with the investigation of rings, initiated by Morita
in his seminal work [23] in 1958. Two rings are said to be Morita equivalent if there exists
a bimodule that yields an equivalence of the corresponding module categories. Morita
equivalence provides a way to translate algebraic properties from one ring to another,
facilitating the understanding of the structural similarities and differences between rings.

In the context of Banach algebras, Morita equivalence provides a means of compar-
ing the algebraic and topological properties of Banach algebras via equivalence of their
respective categories of modules. The theory of C �-algebras, a special class of Banach
algebras with a rich interplay between functional analysis and topology, has benefited
immensely from Rieffel’s theory of Morita equivalence introduced in the early 1970s
[30, 31, 34]. In particular, (strong) Morita equivalence provides a powerful framework
for studying crossed product C �-algebras arising from actions of locally compact groups
on C �-algebras [32, 33].

The classical Mackey’s imprimitivity theorem [22, Theorem 2] answered the question
of which representations of a locally compact group are induced from representations of
a given closed subgroup. Rieffel’s first construction of a Morita equivalence [30] recast
Mackey’s theorem as a Morita equivalence between a certain crossed product C �-algebra
and the group C �-algebra of the subgroup. Since then, Rieffel’s approach to Morita equiv-
alence has led to other imprimitivity theorems involving crossed product C �-algebras,
providing deep insight into the structure of these C �-algebras and their induced represen-
tations. We refer the reader to the monograph [45] for an introduction to crossed product
C �-algebras and imprimitivity theorems.
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Going beyond C �-algebras, Lafforgue introduced a notion of Morita equivalence for
nondegenerate Banach algebras in an unpublished note [18] using Banach pairs, which
are pairs of Banach modules that are dual to each other in a certain sense. He also showed
that Morita equivalences between Banach algebras induce isomorphisms on K-theory.
This notion of Morita equivalence generalizes an earlier notion of Morita equivalence
for Banach algebras introduced by Grønbæk [13, 14] as well as Rieffel’s (strong) Morita
equivalence for C �-algebras. Paravicini gave a systematic treatment and extension of Laf-
forgue’s ideas in [24], and further extended the notion of Morita equivalence to cover
possibly degenerate Banach algebras in [26, Section 1.2]. In Section 2, we recall defini-
tions that we need from [17] and [24].

Roe C �-algebras, introduced in the late 1980s, capture coarse geometric properties
of (discrete) metric spaces. Besides the original Roe algebra, there are variants that are
sometimes referred to as Roe-type algebras [38, Definition 2.1]. These C �-algebras offer
a bridge between geometric and algebraic concepts, making them objects of interest in
various areas of mathematics, including geometric group theory, index theory, and non-
commutative geometry (e.g. [1, 19, 21, 37, 38, 43, 46]).

In recent years, `p Roe-type algebras have been studied [5–7, 20, 35, 47] amidst more
general interest inLp operator algebras (e.g. [8–12,15,27,28,41,42]). In the current paper,
we are interested in two of these, namely the `p uniform Roe algebra and the `p uniform
algebra. We recall their definitions from [5].

Definition 1.1. Let X be a metric space. Then X is said to have bounded geometry if for
all R � 0 there exists NR 2 N such that for all x 2 X , the ball of radius R about x has at
most NR elements.

Note that every metric space with bounded geometry is necessarily countable and
discrete. The two `p Roe-type algebras are associated withX , and are generated by certain
bounded operators with finite propagation. In the following definition, we denote by ey
the standard basis vector in `p.X/ corresponding to y 2 X .

Definition 1.2. For an operator T D .Txy/x;y2X 2 B.`p.X//, where Txy D .Tey/.x/,
we define the propagation of T to be

prop.T / D sup¹d.x; y/ W x; y 2 X; Txy ¤ 0º 2 Œ0;1�:

We denote by Cp
u ŒX� the unital algebra of all bounded operators on `p.X/ with finite

propagation. The `p uniform Roe algebra, denoted byBpu .X/, is defined to be the operator
norm closure of Cp

u ŒX� in B.`p.X//.

Definition 1.3. Let UCpŒX� be the algebra of all finite propagation bounded operators
T on `p.X; `p/ for which there exists N 2 N such that Txy is an operator on `p of rank
at most N for all x; y 2 X . The `p uniform algebra of X , denoted by UBp.X/, is the
operator norm closure of UCpŒX� in B.`p.X; `p//.
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In the p D 2 case, Špakula [36] defined uniform K-homology groups and a uniform
coarse assembly map taking values in the K-theory of the uniform algebra UB2.X/. By
[37, Proposition 4.7], UB2.X/ is (strongly) Morita equivalent to the uniform Roe algebra
B2u.X/ in the sense of Rieffel. As Morita equivalent C �-algebras have the sameK-theory,
the uniform coarse assembly map may be regarded as taking values in the K-theory of
B2u.X/. Willett and Yu [44, Theorem A.3] established non-surjectivity of this uniform
coarse assembly map when X is an expander.

One should note that ifA andB areC �-algebras with countable approximate identities
(also known as � -unital C �-algebras), then A and B are strongly Morita equivalent if and
only if they are stably isomorphic, i.e., A ˝ K Š B ˝ K, where K is the algebra of
compact operators on a separable Hilbert space [2]. However, when X is infinite, this fact
cannot be applied to UB2.X/ as it is not � -unital.

In Section 3, we generalize [37, Proposition 4.7] from the p D 2 case to 1 � p <1.

Theorem 1.4 (Theorem 3.1). LetX be a metric space with bounded geometry. The Banach
algebras Bpu .X/ and UBp.X/ are Morita equivalent in the sense of Lafforgue for any
1 � p <1.

Morita equivalence in the sense of Lafforgue preservesK-theory. Also, for any count-
able discrete group � equipped with a proper left-invariant metric, the uniform Roe alge-
bra Bpu .�/ is isometrically isomorphic to the reduced crossed product `1.�/ Ì�;p � .
Hence, our main theorem has the following consequences.

Corollary 1.5 (Corollaries 3.2 and 3.3). The following hold for 1 � p <1:

(1) The Banach algebras Bpu .X/ and UBp.X/ have the same K-theory.

(2) The Banach algebras `1.�/ Ì�;p � and UBp.�/ are Morita equivalent for any
countable discrete group � , and thus, have the same K-theory.

The Morita equivalence constructed in the proof of our main theorem induces an iso-
morphism from the K-theory of UBp.X/ to the K-theory of Bpu .X/. In fact, the inverse
homomorphism can be induced from an algebra homomorphism

iP W B
p
u .X/! UBp.X/;

and we provide details of this in Section 4. This is analogous to the p D 2 case from
[37, Proposition 4.8].

An `p coarse Baum–Connes assembly map has been considered in [7,35,47]. In Sec-
tion 5, using the results above, we define an `p uniform coarse assembly map taking
values in the K-theory of the `p uniform Roe algebra. We then relate this `p uniform
coarse assembly map to the `p coarse Baum–Connes assembly map and show that it is
not always surjective.
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2. Morita equivalence of Banach algebras

In this section, we recall definitions that we need from [17] and [24]. All Banach algebras
and Banach spaces in this paper are complex. A Banach algebraB is called nondegenerate
if the linear span of BB is dense in B .

Since Bpu .X/ is unital, it is clearly nondegenerate.
Although UBp.X/ is non-unital, the dense subalgebra UCpŒX� has a left identity,

which is sufficient for nondegeneracy of UBp.X/. Given T D .Txy/x;y2X 2 UCpŒX� of
propagationM , there existsN 2N such that Txy is of rank at mostN for all x;y 2X . The
dimension of the sum of ranges

P
y2X im Txy is at most MN for each x 2 X . For each

x 2 X , let Px be the projection of `p onto
P
y2X im Txy . Then P D

L
x2X Px belongs

to UCpŒX�, and PT D T , so UBp.X/ is indeed a nondegenerate Banach algebra.

Definition 2.1. Let B be a Banach algebra. A right (respectively, left) Banach B-module
is a Banach space E with the structure of a right (respectively, left) B-module such that
kxbkE � kxkEkbkB (respectively, kbxkE � kbkBkxkE ) for all x 2 E and b 2 B .

We say that E is nondegenerate if the linear span of EB (respectively, BE) is dense
in E.

Definition 2.2. Let B be a Banach algebra, and let E; F be right (respectively, left)
Banach B-modules. A Banach B-module homomorphism from E to F is a continuous
linear map f W E ! F that is a B-module homomorphism in the algebraic sense, and we
set kf k D supx2E;kxkD1kf .x/kF .

Definition 2.3. Let B be a Banach algebra. A Banach B-pair is a pair E D .E<; E>/

such that

(1) E< is a left Banach B-module,

(2) E> is a right Banach B-module,

(3) there is a C-bilinear map h�; �i W E< �E> ! B such that

• hbe<; e>i D bhe<; e>i,

• he<; e>bi D he<; e>ib, and

• khe<; e>ik � ke<kke>k

for all e< 2 E<, e> 2 E>, and b 2 B .

We say that E is nondegenerate if both E< and E> are nondegenerate. We say that E is
full if the linear span of hE<; E>i is dense in B .

Example 2.4. For any Banach algebra B , we have the standard B-pair .B;B/, where the
module structures and bilinear map are given by the product in B .

Also, the notion of Banach pairs generalizes the notion of Hilbert C �-modules over
C �-algebras.
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Example 2.5. If B is a C �-algebra, and E is a right Hilbert B-module with inner product
h�; �i W E � E ! B , then E is a nondegenerate right Banach B-module. Let E� be the
nondegenerate left BanachB-module given by an isometric C-antilinear map � WE!E�

such that b�x� D .xb/� for x 2 E and b 2 B . Set hx�; yi D hx; yi for x; y 2 E. Then
.E�; E/ is a Banach B-pair [17, Proposition 1.1.4].

Definition 2.6. Let E and F be Banach B-pairs. A linear operator from E to F is a pair
T D .T <; T >/ such that

(1) T > W E> ! F> is a homomorphism of right Banach B-modules,

(2) T < W F< ! E< is a homomorphism of left Banach B-modules,

(3) hf <; T >e>iF D hT <f <; e>iE for all f < 2 F< and e> 2 E>.

The space of all linear operators fromE to F is denoted by LB.E;F / and is a Banach
space under the norm kT k WD max.kT <k; kT >k/. We will write LB.E/ for LB.E; E/.
We will sometimes omit the subscript and just write L.E; F /.

Note that if G is another Banach B-pair, T 2 L.E; F /, and S 2 L.F; G/, then we
have S ı T WD .T < ı S<; S> ı T >/ 2 L.E;G/, and kS ı T k � kSkkT k. Thus, L.E/ is
a Banach algebra with unit IdE D .IdE< ; IdE>/.

Example 2.7. For any Banach algebra B , each b 2 B acts as a linear operator on the
standard B-pair with b< acting as right multiplication by b, and b> acting as left multi-
plication by b.

Definition 2.8. Let E and F be Banach B-pairs. If e< 2 E< and f > 2 F>, then the
operator jf >ihe<j 2 LB.E; F / is defined by

jf >ihe<je> D f >he<; e>i and f <jf >ihe<j D hf <; f >ie<

for all e> 2 E> and f < 2 F<.
We call such operators rank one operators. The closed linear span in LB.E; F / of

these rank one operators is denoted by KB.E; F /, and the elements of KB.E; F / are
called compact operators. We write KB.E/ for KB.E;E/.

Definition 2.9. Let A and B be Banach algebras. A Banach A-B-pair E D .E<; E>/

is a Banach B-pair endowed with a contractive homomorphism �A W A! LB.E/. That
is, E< is a Banach B-A-bimodule, E> is a Banach A-B-bimodule, and he<a; e>iB D
he<; ae>iB for all e< 2 E<, e> 2 E>, and a 2 A.

Definition 2.10. Let B be a Banach algebra, let E be a right Banach B-module, and let
F be a left Banach B-module. A C-bilinear map ˇ from E � F to a Banach space H is
called B-balanced if ˇ.eb; f / D ˇ.e; bf / for all e 2 E; f 2 F; b 2 B .

Furthermore, a (projective) balanced tensor product of E and F is a Banach space
E ˝B F together with a C-bilinear B-balanced map � W E � F ! E ˝B F of norm at
most one with the property that for every Banach space H and every B-balanced con-
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tinuous map � W E � F ! H , there is a unique linear map Q� W E ˝B F ! H such that
k�k D k Q�k and � D Q� ı � .

Such a balanced tensor product can be constructed as a quotient of the usual pro-
jective tensor product (cf. [17, p.11]), and is unique up to isometry. If E is a Banach
A-B-bimodule, then E ˝B F is a left Banach A-module. Moreover, if E is nondegen-
erate as a left Banach A-module, then so is E ˝B F . Similar statements hold for right
Banach module structures on F .

We further observe that, if E 0 is another right Banach B-module, F 0 is another left
Banach B-module, S 2 LB.E; E

0/, and T 2 BL.F; F 0/, then there is a unique linear
map S ˝ T W E ˝B F ! E 0 ˝B F

0 such that

.S ˝ T /.e ˝ f / D Se ˝ Tf

for all e 2 E and f 2 F . Moreover, kS ˝ T k � kSkkT k. Also, if F and F 0 are Banach
B-C -bimodules, and T 2 LC .F; F

0/, then S ˝ T is also C -linear.

Definition 2.11. Let A;B;C be Banach algebras, let E be a Banach A-B-pair, and let F
be a Banach B-C -pair. We define a Banach A-C -pair E ˝B F by

(1) .E ˝B F /> D E> ˝B F>,

(2) .E ˝B F /< D F< ˝B E<,

(3) h�; �i WF<˝B E< �E>˝B F>!C , hf <˝ e<; e>˝ f >iD hf <;he<; e>if >i.

In particular, whenE is just a BanachB-pair, we may takeADC and obtain a Banach
C-C -pair, which is just a Banach C -pair.

Definition 2.12. Let A and B be Banach algebras. A Morita equivalence between A and
B is a pairE D .BE

<
A ;AE

>
B / equipped with a bilinear pairing h�; �iB W E< �E>! B and

a bilinear pairing Ah�; �i W E> �E< ! A such that

(1) .E<; E>/ with h�; �iB is a Banach A-B-pair,

(2) .E>; E</ with Ah�; �i is a Banach B-A-pair,

(3) he<; e>iBf < D e<Ahe
>; f <i and e>hf <; f >iB D Ahe

>; f <if > for all ele-
ments e<; f < 2 E< and e>; f > 2 E>,

(4) the pairs .E<; E>/ and .E>; E</ are full and nondegenerate.

A and B are said to be Morita equivalent if there is a Morita equivalence between the two.

Remark 2.13. The following are straightforward to verify:

(1) If B is a nondegenerate Banach algebra, then the standard B-pair .B; B/ is a
Morita equivalence between B and itself.

(2) If E D .E<; E>/ is a Morita equivalence between A and B , then NE D .E>; E</
is a Morita equivalence between B and A, and is called the inverse Morita equiv-
alence.
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(3) If E is a Morita equivalence between A and B , and F is a Morita equivalence
between B and C , then E ˝B F is a Morita equivalence between A and C .

Hence, Morita equivalence is an equivalence relation on the class of nondegenerate Banach
algebras.

Remark 2.14. As shown in the proof of [24, Proposition 5.21], if E is a Morita equiva-
lence between A and B , then the image of the A-action � W A! LB.E/ is contained in
KB.E/, because �.Ahe>; e<i/ D je>ihe<j for all e< 2 E< and e> 2 E>.

One may observe that the conditions in the above definition of Morita equivalence
imply that the Banach algebras involved are nondegenerate. The definition of Morita
equivalence was extended to include degenerate Banach algebras in [26, Section 1.2].
As the `p Roe-type algebras in the current paper are nondegenerate, we omit the more
general definition.

This notion of Morita equivalence generalizes the notion of strong Morita equivalence
for C �-algebras due to Rieffel [30].

Example 2.15. If A and B are C �-algebras, and E is an A-B-imprimitivity bimodule
(cf. [29, Definition 3.1]), then the pair .E�; E/ from Example 2.5 is a Morita equivalence
between A and B .

We include the next example for independent interest.

Example 2.16. For any Banach space X , let X� denote the dual Banach space. Then the
algebra N .X/ of nuclear operators on X is Morita equivalent to C.

Indeed, the Banach N .X/-C-pair .X�; X/ is a Morita equivalence with pairings
hx�; yiC D x

�.y/ and N .X/hy; x
�i D y ˝ x� for x� 2 X� and y 2 X , where y ˝ x� is

the rank one operator on X given by .y ˝ x�/.z/ D x�.z/y for z 2 X . The right N .X/-
module structure on X� is given by x� � T D T �x� for T 2 N .X/ and x� 2 X�.

We refer the reader to [39, Propositions 47.2 and 47.5] for basic properties of nuclear
operators used in the example above, i.e., the finite rank operators onX are dense in N .X/

under the nuclear norm, and the adjoint of a nuclear operator is nuclear. If X is a Hilbert
space, then the nuclear operators are commonly referred to as the trace class operators.

The following example of a Morita equivalence will be used in the proof of our main
theorem.

Example 2.17. If E is a full and nondegenerate Banach B-pair, then E is a Morita equiv-
alence between KB.E/ and B .

More specifically, the bilinear pairing KB .E/h�; �i W E
> � E< ! KB.E/ is given by

KB .E/he
>; e<i D je>ihe<j, and it is straightforward to verify the properties required of a

Morita equivalence.

For any Banach algebra A, its suspension is the algebra

SA D ¹f 2 C.Œ0; 1�; A/ W f .0/ D f .1/ D 0º Š C0.R; A/:
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The suspension of a nondegenerate Banach algebra is nondegenerate. Similarly, given a
Morita equivalence E D .E<; E>/, we may define

SE D .SE<; SE>/:

The following example is useful in the context of K-theory.

Example 2.18. If E is a Morita equivalence between nondegenerate Banach algebras A
and B , then SE is a Morita equivalence between SA and SB .

An important consequence of having a Morita equivalence between two Banach alge-
bras is that the two algebras have the sameK-theory. In fact, [24, Theorem 5.29] states that
if A;B; C are nondegenerate Banach algebras, and E is a Morita equivalence between B
and C , then � ˝B ŒE� is an isomorphism fromKKban.A;B/ toKKban.A;C / with inverse
� ˝B Œ NE�. Setting A D C, we get K0.B/ Š K0.C / by [17, Théorème 1.2.8]. Then, con-
sidering suspensions yields K1.B/ Š K1.C /. We provide more details in the rest of this
section.

Given nondegenerate Banach algebras A and B , classes in KKban.A; B/ are given
by cycles in Eban.A; B/. These are pairs .E; T /, where E is a Z2-graded nondegenerate
Banach B-pair on which A acts on the left by even elements of LB.E/, and T is an odd
element of LB.E/ such that the operators Œa; T � D aT � Ta and a.idE � T 2/ belong to
KB.E/ for all a 2 A. The groupKKban.A;B/ is defined to be the quotient of Eban.A;B/

by a certain homotopy relation (cf. [17, Définition 1.2.2]). We omit the details of the
definition as we do not need it in this paper.

Although Lafforgue’s original definition of KKban involves pairs of Banach modules,
it can be equivalently defined using single Banach modules, as was done in [16]. An
unpublished note [25] by Paravicini explains the equivalence between the two approaches.

The notion of Morita cycles generalizes Morita equivalences. In [24, Section 5.3],
homotopy classes of Morita cycles are called Morita morphisms, and they act on KKban

on the right (cf. [24, Section 5.7]).
Given nondegenerate Banach algebras A and B , a Morita cycle F from A to B is a

nondegenerate Banach A-B-pair such that A acts on F as compact operators. The class of
all Morita cycles from A to B is denoted by Mban.A;B/. Then Morban.A;B/ is defined to
be the quotient of Mban.A;B/ by a certain homotopy relation (cf. [24, Definition 5.8]).

Given nondegenerate Banach algebrasA;B;C , let .E;T / be an element of Eban.A;B/,
and let F be an element of Mban.B; C /. Then define

.E; T /˝B F D .E ˝B F; T ˝ 1/ 2 Eban.A; C /:

This operation lifts to a product

˝B W KK
ban.A;B/ �Morban.B; C /! KKban.A; C /:

If F is a Morita equivalence from B to C , then � ˝B ŒF � is an isomorphism from
KKban.A; B/ to KKban.A; C /, which we will denote by F�. In particular, when A D C,
we have an isomorphism from K0.B/ to K0.C /.
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3. Main result

In this section, we prove our main result on the Morita equivalence of the two `p Roe-type
algebras. This generalizes the p D 2 case in [37, Proposition 4.7].

Theorem 3.1. The Banach algebras Bpu .X/ and UBp.X/ are Morita equivalent for any
1 � p <1.

Proof. Let 1=p C 1=q D 1. Let E>alg be the set of all finite propagation X � X matrices
with uniformly bounded entries in `p , to be regarded as operators in B.`p.X/; `p.X; `p//
via the formula .T �/x D

P
y2X Txy�y for T 2 E>alg, � 2 `p.X/, and x 2 X . Similarly,

let E<alg be the set of all finite propagation X � X matrices with uniformly bounded
entries in `q , to be regarded as operators from B.`p.X; `p/; `p.X// via the formula
.S�/x D

P
y2X hSxy ; �yi for S 2 E<alg, � 2 `p.X; `p/, and x 2 X . Let E> and E< be

the completions of E>alg and E<alg in the respective operator norms.
For e> 2 E>alg and a 2 Cp

u ŒX�, one sees that e>a 2 E>alg, and ke>ak � ke>kkak.
Similarly, for e< 2E<alg and a 2Cp

u ŒX�, one sees that ae< 2E<alg, and kae<k � kakke<k.
Thus, setting e> � a D e>a makes E> a right Banach Bpu .X/-module, while setting a �
e< D ae< makes E< a left Banach Bpu .X/-module. Since Bpu .X/ is unital, E> and E<

are nondegenerate Bpu .X/-modules.
For e< 2 E<alg and e> 2 E>alg, one sees that e<e> 2 Cp

u ŒX� with the .y; z/-entry of
e<e> given by the sum of duality pairings

P
w2X he

<
yw ; e

>
wzi, and ke<e>k � ke<kke>k.

Moreover, for a 2 Bpu .X/, we have

.a � e</e> D .ae</e> D a.e<e>/;

e<.e> � a/ D e<.e>a/ D .e<e>/a:

Thus, setting he<; e>iBpu .X/ D e
<e> makes E D .E<; E>/ a Banach Bpu .X/-pair.

Any operator from Cp
u ŒX� can be written as a finite sum of operators of the form � � t ,

where � 2 `1.X/ and t is a partial translation, i.e., all nonzero matrix entries of t are 1 and
there is at most one nonzero entry in each row and column (cf. [6, Definition 2.9]). Choose
a unit vector v 2 `p , and define tv to be the matrix of t with each 1 replaced by v. Then
tv 2 E

>
alg. Let v0 2 `q be a unit vector such that hv0; vi D 1 (via Hahn–Banach), and define

�v0 by .�v0/yy D �yv0 and .�v0/xy D 0 if x ¤ y. Then �v0 2E<alg. Now h�v0 ; tviBpu .X/ D � � t ,
and hence E is full.

Consider the map � W UCpŒX�! LB
p
u .X/

.E/ given by

�.T />e> D Te>; �.T /<e< D e<T:

While both formulas are given by matrix multiplication, the matrix entries of Te> are
obtained by letting the entries of T act on the entries of e>, whereas the matrix entries
of e<T are obtained by composing the entries of e< with the entries of T to get bounded
linear functionals on `p and thus, elements of `q .
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We have

�.T />.e> � a/ D T .e>a/ D .Te>/a D .�.T />e>/ � a;

�.T /<.a � e</ D .ae</T D a.e<T / D a � .�.T /<e</;

he<; �.T />e>i D e<.�.T />e>/ D e<Te>;

h�.T /<e<; e>i D .�.T /<e</e> D e<Te>;

�.T1T2/
>
D �.T1/

>�.T2/
>;

�.T1T2/
<
D �.T2/

<�.T1/
<;

so � is a well-defined homomorphism. Moreover,

k�.T /k D max.k�.T /<k; k�.T />k/ � kT k

so � extends to a contractive homomorphism � W UBp.X/! LB
p
u .X/

.E/. Hence, E is a
Banach UBp.X/-Bpu .X/-pair.

Let e>e< be the matrix with entries .e>e</xy D
P
z.e

>/xz ˝ .e
</zy 2 `

p ˝ `q , for
e> 2 E>alg and e< 2 E<alg. Thus, the entries of e>e< are rank one operators on `p , and they
are uniformly bounded. Moreover, we have ke>e<k � ke>kke<k. For b 2 UBp.X/, we
have .be>/e< D b.e>e</ and e>.e<b/ D .e>e</b. So, setting UBp.X/he>; e<i D e>e<

makes .E>; E</ a Banach Bpu .X/-UBp.X/-pair. We also have the following identities
he<; e>iBpu .X/f

< D e<UBp.X/he
>; f <i and e>hf <; f >iBpu .X/ D UBp.X/he

>; f <if >

for e<; f < 2 E< and e>; f > 2 E>.
To show that the pair .E>; E</ is full, note that every T 2 UCpŒX� is a finite sum

of operators of finite propagation and rank one matrix entries. Each finite propagation
operator with rank one matrix entries can further be written as a finite sum of operators
of the form � � t , where � is a diagonal matrix with rank one entries and t is a partial
translation. Such operators belong to UBp.X/hE>; E<i, and hence .E>; E</ is full.

To show that the UBp.X/-action onE> is nondegenerate, choose a unit vector v 2 `p

and let v0 2 `q be a unit vector such that hv0; vi D 1. Let f > be the diagonal matrix with
all diagonal entries equal to v, and let f < be the diagonal matrix with all diagonal entries
equal to v0. Then for any e> 2 E>, we have e> D e>I D .e>f </f > 2 UBp.X/ � E>.
Similarly, the UBp.X/-action on E< is nondegenerate.

Hence, E is a Morita equivalence between UBp.X/ and Bpu .X/.

The following is an immediate consequence after applying [24, Theorem 5.29] and
[17, Théorème 1.2.8].

Corollary 3.2. For any nondegenerate Banach algebra A, and 1 � p <1,

KKban.A; UBp.X// Š KKban.A;Bpu .X//:

In particular, Bpu .X/ and UBp.X/ have the same K-theory for 1 � p <1.
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A case that may be of particular interest is whenX is a countable discrete group. Given
a countable discrete group � , one can always equip � with a proper left-invariant metric
that is unique up to coarse equivalence [40, Lemma 2.1]. For p 2 Œ1;1/, we may represent
elements of `1.�/ as multiplication operators on `p.�/, and consider the left translation
action of � on `1.�/. Then one can define an Lp reduced crossed product `1.�/Ì�;p �
just as how one defines the reduced crossed product C �-algebra (cf. [3, Definition 4.1.4]
and [4, Remark 2.7]). Then, the proof of [3, Proposition 5.1.3] shows that `1.�/ Ì�;p �
is isometrically isomorphic to Bpu .�/.

Corollary 3.3. For any countable discrete group � , and 1� p <1, the Banach algebras
`1.�/ Ì�;p � and UBp.�/ are Morita equivalent, and thus, have the same K-theory.

4. The inverse homomorphism on K -theory

By [24, Theorem 5.29], the Morita equivalence E from Theorem 3.1 induces an isomor-
phism E� given by � ˝ ŒE�, i.e.,

K0.UB
p.X// Š KKban.C; UBp.X//

�˝ŒE�
! KKban.C; Bpu .X// Š K0.B

p
u .X//

and, similarly, for K1 by considering suspensions. The inverse is given by � ˝ Œ NE� but we
can give a more concrete description, as was done for the p D 2 case in [37, Proposition
4.8]. To do so, we need to recall the identification of K0.A/ with KKban.C; A/ given by
Lafforgue [17, Théorème 1.2.8] for any nondegenerate Banach algebra A.

For a not necessarily unital Banach algebra A, its unitization is the Banach algebra
QAD ¹.a; �/ W a 2 A;� 2 Cº with product defined by .a; �/.b;�/D .abC �bC�a;��/

and norm defined by k.a; �/k D kak C j�j. There is a canonical inclusion A! QA where
a 7! .a; 0/ for a 2 A.

Next, given a nondegenerate Banach algebraA and x 2K0.A/, we pick an idempotent
q 2 MmCn. QA/ so that x D Œq� � Œ1m� and q � 1m 2 MmCn.A/. In addition, let q0 D q,
q1 D 1m, E0 D .AmCnq0; q0A

mCn/, and E1 D .AmCnq1; q1A
mCn/. In the definitions

of E0 and E1, AmCn denotes the .mC n/-fold direct sum A˚ � � � ˚ A with norm given
by k.a1; : : : ; amCn/k D ka1k C � � � C kamCnk. The pairings in E0 and E1 are given by
h.ai /; .bi /i D

PmCn
iD1 aibi .

Let i0 D .i<0 ; i
>
0 / W E0 ! AmCn be such that i>0 W q0A

mCn ! AmCn is the canoni-
cal inclusion while i<0 W A

mCn ! AmCnq0 is the canonical projection. Furthermore, let
�0 D .�

<
0 ; �

>
0 / W A

mCn ! E0 be such that �>0 W A
mCn ! q0A

mCn is the canonical pro-
jection while �<0 W A

mCnq0 ! AmCn is the canonical inclusion. Similarly, define i1 and
�1 corresponding to q1.

The pair
�
E0 ˚ E1;

�
0 �0i1
�1i0 0

��
belongs to Eban.C; A/. Its class in KKban.C; A/ is

independent of the choice of q, and is denoted by �.x/. The map � WK0.A/!KKban.C;A/
is a group isomorphism [17, Théorème 1.2.8].
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In the rest of this section, we define a homomorphism from B
p
u .X/ to UBp.X/, and

show that the homomorphism it induces on K-theory is the inverse of E�.
We may identify `p with `p.X/ isometrically since X is countable, and thus, we also

identify `p.X; `p/ with `p.X; `p.X//. For x 2 X , denote by ex the standard basis vector
in `p.X/ corresponding to x, and denote by e�x the standard basis vector in the dual space
`q.X/ (where 1=p C 1=q D 1) corresponding to x.

For x; y 2 X , define exy D ex ˝ e�y 2 B.`
p.X//, which in turn, maps � 2 `p.X/ to

e�y .�/ex 2 `
p.X/. Note that exzezy D exy for x; y; z 2 X . Let P be the X �X diagonal

matrix with Pxx D exx for all x 2 X .
For T 2 Cp

u ŒX�, define
iP .T /xy D Txyexy :

Then iP .T / has finite propagation, and iP .T /xy has rank at most one for all x;y 2X ,
so we may regard iP .T / as an element of UCpŒX�. Moreover, iP .I / D P .

For S; T 2 Cp
u ŒX� and x; y 2 X , we have

iP .ST /xy D .ST /xyexy D
X
z2X

SxzTzyexy

D

X
z2X

SxzTzyexzezy

D

X
z2X

SxzexzTzyezy

D

X
z2X

iP .S/xziP .T /zy

D .iP .S/iP .T //xy :

Hence, iP W C
p
u ŒX�! UCpŒX� is a homomorphism.

For � D .�x/x2X 2 `p.X; `p/ Š `p.X; `p.X//, we have for each x 2 X

.iP .T /�/x D
X
y2X

Txyexy�y D
X
y2X

Txye
�
y .�y/ex ;

so

kiP .T /�k
p
p D

X
x2X

k

X
y2X

Txye
�
y .�y/exk

p
p

D

X
x2X

j

X
y2X

Txye
�
y .�y/j

p

D kT .e�y .�y//y2Xk
p
p

� kT kpk.e�y .�y//y2Xk
p
p

� kT kpk�kpp :
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This shows that iP W C
p
u ŒX�! UCpŒX� is contractive, and thus extends to a contractive

homomorphism
iP W B

p
u .X/! UBp.X/:

We show that .iP /� W K�.B
p
u .X//! K�.UB

p.X// is the inverse of E�, for which it
suffices to show that E� ı .iP /� D idK�.Bpu .X//.

Lemma 4.1. Bpu .X/˝iP UBp.X/ and PUBp.X/ are isomorphic as Banach UBp.X/-
pairs. Under this isomorphism, any linear operator of the form T ˝ 1 2 L.B

p
u .X/˝iP

UBp.X//, where T 2 Bpu .X/, corresponds to P iP .T / D iP .T / 2 L.PUBp.X//.
Here, T D .T <; T >/, where T > acts on Bpu .X/ as left multiplication by T , and T <

acts on Bpu .X/ as right multiplication by T .

Proof. The map  W Bpu .X/ � UBp.X/! PUBp.X/ given by

 .a; b/ D iP .a/b D P iP .a/b

is a C-bilinear, Bpu .X/-balanced map of norm at most 1.
We consider the following linear map Q� W PUBp.X/! H , given any Banach space

H and any Bpu .X/-balanced bounded bilinear map � W Bpu .X/ � UBp.X/! H . Given
b 2 UBp.X/, we define

Q�.Pb/ D �.I; b/ D �.I; iP .I /b/ D �.I;Pb/:

Next, for any a 2Bpu .X/, we have�.a;b/D�.I; iP .a/b/D Q�.P iP .a/b/D Q�. .a;b//.
Furthermore, k Q�.Pb/k D k�.I;Pb/k � k�kkPbk so k Q�k � k�k. On the other hand,
k�.a; b/k D k Q�. .a; b//k � k Q�kkakkbk so k�k � k Q�k. Hence, Q� is the unique linear
map from PUBp.X/ to H such that k Q�k D k�k and � D Q� ı  .

It follows that we have an (isometric) isomorphism

Bpu .X/˝iP UBp.X/ Š PUBp.X/

of right UBp.X/-modules with a˝ b 7! iP .a/b D P iP .a/b.
The corresponding isomorphism

UBp.X/P ! UBp.X/˝iP Bpu .X/

of left UBp.X/-modules is given by SP 7! S ˝ I .
We omit the straightforward verification of the correspondence of linear operators.

Similarly, we also have the matrix version

Bpu .X/
n
˝iP UBp.X/ Š P˚nUBp.X/n;

and any linear operator of type T˝12L.B
p
u .X/

n˝iPUB
p.X//, where T 2Mn.B

p
u .X//,

corresponds to P˚ni
.n/

P
.T / D i

.n/

P
.1n/i

.n/

P
.T / 2 L.P˚nUBp.X/n/.
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Lemma 4.2. Let � W UBp.X/ ! K.E/ be the isomorphism obtained from the proof
of Theorem 3.1. Then Bpu .X/˝�ıiP E and �.P /E are isomorphic as Banach Bpu .X/-
pairs.

Proof. Observe that in Bpu .X/˝�ıiP E>, we have

a˝ � D I ˝ �.iP .a//
>� D I ˝ �.P />�.iP .a//

>�;

and similarly, in E< ˝�ıiP B
p
u .X/.

It is then straightforward to verify that an isomorphism is given by the following maps:

Bpu .X/˝�ıiP E> ! �.P />E>; a˝ �> 7! �.P />�.iP .a//
>�>;

�.P /<E< ! E< ˝�ıiP Bpu .X/; �.P /
<�< 7! �.P /<�< ˝ I:

Given �> D Œ�>xy � 2 E
>, we have

.�.P />�>/xy D .P �
>/xy D exx�

>
xy D e

�
x.�

>
xy/ex 2 `

p;

and
.�.P /<�</xy D .�

<P /xy D �
<
xyeyy D �

<
xy.ey/e

�
y 2 `

q :

Lemma 4.3. �.P /E and Bpu .X/ are isomorphic as Banach Bpu .X/-pairs.

Proof. An isomorphism is given by the following maps:

�.P />E> ! Bpu .X/; �.P /
>�> 7! Œe�x.�

>
xy/�;

Bpu .X/! �.P /<E<; S D ŒSxy � 7! ŒSxye
�
y � D �.P /

<ŒSxye
�
y �:

Combining the two results above, we obtain the following isomorphism of Banach
B
p
u .X/-pairs:

Bpu .X/˝�ıiP E Š Bpu .X/:

Lemma 4.4. Under the isomorphism B
p
u .X/˝�ıiP E Š B

p
u .X/, any linear operator of

the form T ˝ 12L.B
p
u .X/˝�ıiPE/, where T 2Bpu .X/, corresponds to T 2L.B

p
u .X//.

Proof. Tracing through the right module maps

Bpu .X/˝�ıiP E> ! �.P />E> ! Bpu .X/;

we need to prove that

Œe�x..�.iP .Ta//
>�>/xy/� D T Œe

�
x..�.iP .a//

>�>/xy/�

for a 2 Bpu .X/ and �> 2 E>. Setting �> D �.iP .a//>�>, it suffices to prove that

Œe�x..�.iP .T //
>�>/xy/� D T Œe

�
x.�

>
xy/�;
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and we do so by comparing their matrix entries as follows:

e�x..�.iP .T //
>�>/xy/ D e

�
x

�X
z

iP .T /xz�
>
zy

�
D e�x

�X
z

Txzexz�
>
zy

�
D

X
z

Txze
�
x.exz�

>
zy/

D

X
z

Txze
�
z .�

>
zy/:

Now, tracing through the left module maps

Bpu .X/! �.P /<E< ! E< ˝�ıiP Bpu .X/;

we need to prove that ST is mapped to ŒSxye�y �˝ T for S D ŒSxy � 2B
p
u .X/. This follows

from the fact that in E< ˝�ıiP B
p
u .X/, we have

ŒSxye
�
y �˝ T D �.iP .T //

<ŒSxye
�
y �˝ I D ŒSxye

�
y �iP .T /˝ I

D ŒSxye
�
y �ŒTxyexy �˝ I D Œ.ST /xye

�
y �˝ I:

Similarly, we also have the matrix version

Bpu .X/
n
˝�ıiP E Š Bpu .X/

n;

and any linear operator of the form T ˝ 12L.B
p
u .X/

n˝�ıiPE/, where T 2Mn.B
p
u .X//,

corresponds to T 2 L.B
p
u .X/

n/.

Proposition 4.5. E� ı .iP /� D idK�.Bpu .X//, whence .iP /� is the inverse of E�.

Proof. We consider the case of K0; the case of K1 is done similarly by considering sus-
pensions.

Any class in K0.B
p
u .X// is of the form Œq�� Œs�, where q; s 2Mn.B

p
u .X// are idem-

potents. We may assume that sq D qs D 0 by enlarging n and taking s of the form
0 ˚ 1m for some m 2 N. Then, the corresponding class in KKban.C; Bpu .X// is given
by .F0 ˚ F1; 0/, where

F0 D ..B
p
u .X//

nq; q.Bpu .X//
n/;

F1 D ..B
p
u .X//

ns; s.Bpu .X//
n/:

The class .iP /�.Œq�� Œs�/D Œi
.n/

P
.q/�� Œi

.n/

P
.s/� inK0.UBp.X//ŠKKban.C;UBp.X//

is similarly given by .G0 ˚G1; 0/, where

G0 D ..UB
p.X//n.i

.n/

P
.q//; .i

.n/

P
.q//.UBp.X//n/;

G1 D ..UB
p.X//n.i

.n/

P
.s//; .i

.n/

P
.s//.UBp.X//n/;
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and E�.iP /�.Œq� � Œs�/ is given by ..G0 ˚G1/˝� E; 0˝ 1/ D ..G0 ˚G1/˝� E; 0/.
Thus, the preceding lemmas give us the following isomorphisms of Banach pairs for

T 2Mn.B
p
u .X//:

.i
.n/

P
.T /.UBp.X/n//˝� E Š .T ˝ 1/.B

p
u .X/

n
˝iP UBp.X//˝� E

Š .T ˝ 1/.Bpu .X/
n
˝�ıiP E/

Š T .Bpu .X/
n/:

Letting T be q or s demonstrates that Œ..G0 ˚ G1/˝� E; 0/� D Œ.F0 ˚ F1; 0/�, whence
E� ı .iP /� D idK0.B

p
u .X//

.

5. An `p uniform coarse assembly map

In this section, we use our results to define an `p uniform coarse assembly map taking
values in the K-theory of the `p uniform Roe algebra. This assembly map is defined in
the same spirit as the `p coarse Baum–Connes assembly map studied in [7, 35, 47]. We
then show that this uniform coarse assembly map is not always surjective.

First, we extend the definition of the `p uniform algebra to proper metric spaces.

Definition 5.1. Let .X; d/ be a metric space.

(1) We say that X is proper if all closed balls in X are compact.

(2) A net in X is a discrete subset Y � X such that there exists r > 0 with the prop-
erties that d.x; y/ � r for all x; y 2 Y with x ¤ y, and for any x 2 X there is
y 2 Y with d.x; y/ < r .

(3) If X is proper, we say that it has bounded geometry if it contains a net with
bounded geometry.

Definition 5.2. LetX be a proper metric space with bounded geometry, and fix a bounded
geometry net Z � X . Denote by UCpŒX� the algebra of all finite propagation bounded
operators T on `p.Z; `p/ for which there existsN 2N such that Txy is an operator on `p

of rank at most N for all x; y 2 Z. The `p uniform algebra of X , denoted by UBp.X/, is
the operator norm closure of UCpŒX� in B.`p.Z; `p//.

Up to the non-canonical isomorphism, this definition of UBp.X/ does not depend on
the choice of Z.

Definition 5.3. Let X be a proper metric space with bounded geometry. The algebra
UCp

LŒX� consists of all bounded, uniformly continuous functions f W Œ0;1/! UCpŒX�

such that prop.f .t//! 0 as t !1. Equip UCp
LŒX� with the norm

kf k WD sup
t2Œ0;1/

kf .t/kUBp.X/:

The completion of UCp
LŒX� under this norm will be denoted by UBpL .X/.
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Definition 5.4. Let .X; d/ be a discrete metric space with bounded geometry, and let
R > 0. The Rips complex ofX at scaleR, denoted PR.X/, is the simplicial complex with
vertex set X and such that a finite set ¹x1; : : : ; xnº � X spans a simplex if and only if
d.xi ; xj / � R for all i; j D 1; : : : ; n.

Equip PR.X/ with the spherical metric defined by identifying each n-simplex with
the part of the n-sphere in the positive orthant, and equipping PR.X/ with the associated
length metric.

For any discrete metric space X with bounded geometry and any R > 0, there is a
homomorphism

iR W K�.UB
p.PR.X///! K�.UB

p.X//;

and the `p uniform coarse assembly map

�u W lim
R!1

K�.UB
p
L .PR.X///! K�.UB

p.X//
Š
! K�.B

p
u .X//

is defined to be the limit of the composition

K�.UB
p
L .PR.X///

e�
! K�.UB

p.PR.X///
iR
! K�.UB

p.X//
Š
! K�.B

p
u .X//;

where e W UBpL .PR.X//! UBp.PR.X// is the evaluation-at-zero map.
This assembly map is related to the `p coarse Baum–Connes assembly map, which is

defined in a similar manner but in terms of the `p (non-uniform) Roe algebra Bp.X/ and
a corresponding localization algebra BpL .X/. We refer the reader to [7, Section 2.1] for
details. There are inclusions � W UBp.X/! Bp.X/ and �L W UB

p
L .X/! B

p
L .X/, which

induce the following commutative diagram:

limR!1K�.B
p
L .PR.X///

�
�����! K�.B

p.X//

.�L/�

x?? x??��
limR!1K�.UB

p
L .PR.X///

�u
�����! K�.UB

p.X//
Š

�����! K�.B
p
u .X//

Using this diagram, we see that the `p uniform coarse assembly map is not always surjec-
tive.

Let G be a finitely generated, residually finite group with a sequence of normal sub-
groups of finite index N1 � N2 � � � � such that

T
i Ni D ¹eº. The group G is equipped

with a word metric. Let �G D
F
i G=Ni be the box space, i.e., the disjoint union of the

finite quotients G=Ni , endowed with a metric d such that its restriction to each G=Ni is
the quotient metric, while d.G=Ni ; G=Nj / � i C j if i ¤ j .

Proposition 5.5. Let p 2 .1;1/ and G be a residually finite hyperbolic group. Next, let
N1 � N2 � � � � be a sequence of normal subgroups of finite index such that

T
i Ni D ¹eº.

We assume that �G is an expander. Then, if q 2 Bpu .�G/ is the Kazhdan projection,
Œq� 2 K0.B

p
u .�G// is not in the image of the `p uniform coarse assembly map.
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Proof. The Kazhdan projection q is given by
L
qi , where qi D 1

ŒGWNi �
Mi and Mi is a

square matrix indexed by the elements of G=Ni with all entries equal to 1 (cf. [7, Proof
of Theorem 4.3]). Then iP .q/ 2 UBp.�G/ is a non-compact ghost idempotent. By the
commutative diagram above, if .iP /�Œq� is in the image of �u, then ��.iP /�Œq� is in the
image of �, which contradicts [7, Theorem 5.2].

When p D 2, a uniform coarse assembly map was defined by Špakula in [36], taking
values in the K-theory of UB2.X/. However, the domain of the map differs from ours. It
will be interesting to determine whether the two maps are equivalent.

Question 5.6. Is our `p uniform coarse assembly map equivalent to the one defined in
[36] when p D 2?
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