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Spectral metric and Einstein functionals for the
Hodge-Dirac operator

Ludwik Dabrowski, Andrzej Sitarz, and Pawet Zalecki

Abstract. We examine the metric and Einstein bilinear functionals of differential forms intro-
duced by Dabrowski et al. (2023), for the Hodge-Dirac operator d + § on an oriented, closed,
even-dimensional Riemannian manifold. We show that they are equal (up to a numerical factor) to
these functionals for the canonical Dirac operator on a spin manifold. Furthermore, we demonstrate
that the spectral triple for the Hodge—Dirac operator is spectrally closed, which implies that it is
torsion-free.

1. Introduction

Spectral geometry investigates relationships between geometric structures of manifolds
and the spectra of certain differential operators. Its direct and inverse problems are inex-
tricably linked to other areas of mathematics such as number theory and representation
theory, and areas of mathematical physics such as quantum mechanics and general relativ-
ity. In this regard, starting with the Laplace-Beltrami operator on a closed Riemannian
manifold, general Laplace-type operators have been extensively studied, and their spectra
provide insights into the geometry and topology of the underlying space. The distribution
of eigenvalues, for example, reveals information about the curvature or shape and global
geometric properties such as diameter or volume, connectivity, or the presence of holes.
In this vein, the Dirac-type operators have also been studied, beginning with the canonical
Dirac operator on the spin manifold. When subsumed into Connes’ concept of spectral
triples [1, 2], they “can hear the shape of a drum” [14] in the sense that their equivalence
(a suitably strengthened isospectrality) implies the isometricity of manifolds in virtue of
the reconstruction theorem [4]. Furthermore, they allow for broad and captivating gener-
alisations in noncommutative geometry.

Various (interrelated) spectral schemes that generate geometric objects on manifolds
such as volume, scalar curvature, and other scalar combinations of curvature tensors and
their derivatives are the small-time asymptotic expansion of the (localised) trace of the heat
kernel [11,12], certain values or residues of the (localised) zeta function of the Laplacian,
the spectral action, and the Wodzicki residue ‘W (also known as noncommutative residue).
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In this paper, we focus on the latter one, which is the unique (up to multiplication by
a constant) tracial state on the algebra of pseudodifferential operators (WDO) on a complex
vector bundle E over a compact manifold M of dimension n > 2 [13,18]. For the oriented
manifold M, it is given by an integral formula,

W(P) := /M w(P),

where the density w (P) is given in local coordinates by
/ tro_,(P)(x,&) Ve d"x.
&1=1

Here, tr is the trace over endomorphisms of the bundle E at any given point of M, o_, (P)
is the symbol of order —n of a pseudodifferential operator P and Vg denotes the volume
form on the unit co-sphere.

When applied to the (scalar) Laplacian A on a Riemannian manifold M of dimen-
sion n = 2m equipped with a metric tensor g, it yields, in a localised form, a functional
of f € C®(M),

o ()= W™ = vues [ f voly,
M
where
2

Vp_1 1= vol(S" ) = T m)

is the volume of the unit sphere S”~! in R”.
A startling result regarding a higher power of the Laplacian presented by Connes [3]
in the early 1990s (see [15, 16] for explicit computations) states that

n—2
12

RO = W™ =20 [ 7RG vl
which for n > 2 and f = 1 is, up to a constant, a Riemannian analogue of the Einstein—
Hilbert action functional of general relativity in vacuum. Here, R = R(g) is the scalar
curvature, that is, the g-trace R = g/* Ric; of the Ricci tensor with components Ric;x in
local coordinates, where g/* are the raised components of the metric g.

In the noncommutative realm, the spectral-theoretic approach to scalar curvature has
been extended to quantum tori in the seminal work of Connes and Tretkoff [6] and extens-
ively studied by many authors (see references in [8]).

In the recent paper [8], we accomplished the task of extracting two other important
tensorial geometrical objects through spectral methods. These were the metric tensor g
itself, its dual, and the Einstein tensor

1
G := Ric — ER(g) g,
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which directly enters the Einstein field equations with matter and its dual. In fact, for
this purpose, we employed the Wodzicki residue of a suitable power of the Laplace-type
operator or of the Dirac-type operator, multiplied by a pair of other differential operators.
Notably, we have recovered the tensors g and G as the density of certain bilinear func-
tionals of vector fields on a manifold M, while their dual tensors are the density of
bilinear functionals of differential one-forms on M . The latter functionals (up to a numer-
ical factor) we have obtained also for the canonical Dirac operators (in case M is a spin
manifold). Then, using Connes’ and Moscovici’s [5] generalisation of pseudodifferential
calculus for noncommutative spectral triples, we introduced their conspicuous quantum
analogue and probed it on two- and four-dimensional noncommutative tori.

The aim of this paper is, employing methods of the Wodzicki residue, to analyse
the metric and Einstein functionals for another natural Dirac-type operator, namely the
Hodge-Dirac operator d + § acting on (complex) differential forms (M) of arbitrary
order on an oriented even-dimensional Riemannian manifold M. It is worth mentioning
that the associated Hodge—Dirac spectral triple is characterised [7] by the fact that its dense
Hilbert subspace of continuous forms provides a Morita equivalence CI/(M) — CI(M)
bimodule, where C/(M) is the C *-algebra of continuous sections of the bundle of Clif-
ford algebras on M. As is well known, the canonical spectral triple on a spin manifold
is instead characterised by the fact that its dense Hilbert subspace of continuous Dirac
spinors provides a Morita equivalence CI/(M) — C(M) bimodule, where C(M) is the
algebra of continuous complex functions on M. As our first main result, we demonstrate
that these two different pivotal cases yield in fact equal spectral metric and Einstein func-
tionals (up to a numerical factor). Moreover, as our second main result, we prove that the
associated spectral triple is spectrally closed, that is, for any operator T of zero-order,

W(TD|D|™) = 0.

A forthcoming result [9] demonstrates that, as a consequence, the Hodge—Dirac operator
has no torsion.

2. Preliminaries

Let n = 2m be the dimension of an oriented, closed, smooth Riemannian manifold M.
We will use capital letters to denote increasing sequences of numbers between 1 and 7,
of fixed length 0 < £ < n. A differential £-form w = ) ; wydx”’ is determined by its
coefficients wy, with respect to coordinates indicated by the multi-index J, where with a
slight abuse of notation 0-forms (i.e., functions) will correspond to J = .

We introduce the operators )ki and A/, which respectively raise/lower the degree of

forms, with components given by

WD =el,. ) =t
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I
where €,

otherwise, and similarly for 851. They satisfy

J = (=)l if the juxtaposed index pJ is a permutation 7 of I and s; ;=0

APAL AR AR =0,
APAT +ATAP =0,

which follow from the relations (cf. [17])

I K _ I rl rK _ _I
ngKSrJ - gprJ’ ZSK &y = 8er’
K K

1 rK __ 1 rl rl K _ _rl
ngKEJ = 8prey — EpJ>s ZSK Epg = EpJ>
K K

where the juxtaposed indices can be ordered using a signed permutation. We also introduce
y? =—i(% - 22),
which satisfy the following Clifford algebra relation
Py} =28

In the rest of the paper, we employ normal coordinates x centred around some fixed
point on the manifold. Recall that then the components of the metric tensor g, its covariant
(raised) components, and the square root of the determinant of the matrix of the compon-
ents of g and the components of the Christoffel symbols of the Levi-Civitd connection
have the following Taylor expansion around x = 0:

1
8ab = Sab — gRacbdxcxd + O(Xz)a
1
gab = 8ap + gRacbdxcxd + O(Xz)s
1
Vdet(g) =1 — gRicabx“xb + o(x?),

1
Fgc = _g(Rabcd + Racbd)xd + O(Xz).

Here, R,.»q and Ric,p, are the components of the Riemann and Ricci tensors, respectively,
at the point x = 0, and we use the notation o(x¥) to denote that we expand a function up to
the polynomial of order k in the normal coordinates. The expansion in normal coordinates
is more convenient notation to obtain the value of relevant quantities (symbols of oper-
ators) and their derivatives at a given point on the manifold, which we need to compute
the products of symbols according to the rules of multiplication of symbols (A.1). The
position of indices for A . coordinates x and &, as well as Riemann and Ricci tensors at
the chosen point is chosen for simplicity only (as we are using normal coordinates and the
metric at this point is 8,5). We use Einstein summation convention for repeated indices
(independently of their position), by {, } we denote anticommutators.
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2.1. Hodge-Dirac operator

We focus on the Hodge—Dirac operator D = d + d*, where d is the exterior derivative
and d* is its (formal) adjoint. Using our notation, we compute (locally) the symbol of D,

o(D) = (iAL —igP Al )Ep, + APAT AS TS, g, .1
which in normal coordinates takes the form

1 1
o(D) = _Vpsp - gikgRsapbxaxbgs - gkgllks—(Rsrpa + Rspra)xa + 0(X2)~

We compute then the symbols of the Hodge—Dirac Laplacian D? in normal coordinates
up to orders relevant for our purposes.

Lemma 2.1. The three homogeneous symbols of D? read
= (5 l c..d 2
a = | %ap + 3Racbdx x4 )6a6p + 0(x%),
2. 2.
ap = +51Rlcab$axb - glkikr—(Rrpab + Rrapb)xbga + O(Xl)v
2 ) 1
apg = +§A1Ar—R1CPr + Eki)&lks_kl‘_(Rtsrp + Rtrsp) —+ O(XO)-
Proof. The computation of the principal symbol a, is obvious for the symbol of order 1:
1.
ap = _51{)& ) AEA:-AS—}(Rsrpa + Rspra)xagt
1, 1
+ gl{)‘t_, AEALAS—}(Rsrpa + Rspra)xagt + gypkr—(Raprb + Rabrp)xbé“a
I L,
= _glkr‘-/xs_(Rsrm + Rstra)xagt - glkg/xq_(Rtrpa + Rtpra)xaét
1, l.
- glkg/xs_(Rstpa + Rspta)xdét - glk.{ls_(Rtpsa + Rtasp)xagt

L.
+ gl/’\,fks_(Rtpsa + Rtasp)xagt

2. 1,

SZRICmXaES - glkg.ks_(Rsrta + Rstra — Rirsa — Risra + Ripsa + Rtasr)xagt
1 - qS a

— glk_/\_(Rstra + Rsrta — Rirsa — Reasr)X“&:

2. . 2.
= glRlcsaxags — glkq_ks_(Rsrta + Rslra)xa%-l
and the order 0 symbol:

1.
ap = _gl)’p/vik:-ks_(qurp + Rsrqp)

1
= —gxixz M A (Rsgrp + Rsrgp)

2 1
= MRS Ricps + ZALAL ALY (Ragrp + Rargp). -
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2.2. The inverse of D2 and its powers

In this section, we present the results that can be applied to a more general situation than
the Hodge—Dirac operator. Note that since we work with pseudodifferential operators, we
denote by the inverses of elliptic operator the corresponding parametrix. For this reason
we can ignore the kernel of these operators. Let us start with the following lemma:

Lemma 2.2. Let L be a Laplace-type operator with symbol
o(L)=az+a; +ap

expressed in normal coordinates as

1
az = (Sab + §Racbdxcxd)gagb + O(Xz)»

a1 = iPapEax” + o(x1),
ap = Q + o(x%).

Then the three leading symbols of 6(L™%) = ¢ + Cok+1 + Cok42 are:

3
Cokt1 = —ik||E] 7T Puptax® + o(x1),

1
caksa = ~KISI 4720 + Ktk + DIEN*(Pas — Rican s + 00).

Cor_ k
oo = €7 2(8@ _ —Racbdx”xd)sasb 062,

Proof. First, observe that we follow the notation of most papers (see [6]), and to simplify
the notation, indicate a negative order —k by k > 0, so b, in the below equation denotes
the symbol of order —2. We start with computing leading symbols of the inverse of L,
ie,o(L™") = by + b3 + by using the fact, that o (LL™!) = o(1) = 1. We have

_ _ 1
b2 = @™ = 1617 (Bap — 3 Rachan®s? Jéuts + 005,
by = ba(—a1bs + idfardab2) = —i[|§]7* Papax” + o(x"),

1
by = b, (—(1052 —a1bs + i3§a28a53 + iagalaabz + Eagbazaabbz)

= —E17*Q + 20817 Pab — 3Ricas )i + o),

To finish, we apply [8, Lemma A1] and compute the three leading symbols of the powers
of the pseudodifferential operator L. ]

Using the above lemma for L = D2, with the Hodge—Dirac operator D (2.1), we get
the following result.
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Proposition 2.3. The leading symbols of D~2* are, up to the appropriate order in x,
Y k
o = 151722 (805 = S Rachex®a? )i + 002,

2 e —2k—21 2 2k
Cok+1 = _gkl ”E” 2k ZRICabxb§a+§kl ”S” 2k ZAT{-AS—(Rsrba+Rsbra)xa§b+o(xl)
k(k + 1)
3
2 —2k—4 1 935
- gk(k + 1)”5” 2k 4A+A—(Rsrab + Rsarb)éaéb
1

+ KIENTHTPAEALALAL (Ragrp + Ryrgp) + 0(x").

Proof. For L = D32, we substitute in Lemma 2.2

2k+42 = T Ricgp&aép
c €172~ *Ric,pEaé

2 . 2
Py = gRlcab - EALAS—(Rsrab + Rsarp),

1
Q = A ALALAE (Ragrp + Rargp). )

3. Spectral functionals

In [8], we defined two spectral functionals for finitely summable spectral triples, which
for the canonical spectral triple over the spin manifold M allow to recover the metric and
the Einstein tensors, viewed as bilinear functionals over a pair of one-forms. We recall the
definition:

Definition 3.1 (cf. [8, Definition 5.4]). If (A, D, #) is an n-summable spectral triple,
let Qb be the 4 bimodule of one-forms generated by 4 and [D, 4A]. Moreover,
assume that there exists a generalised algebra of pseudodifferential operators which con-
tains 4, D, and |D|* for £ € Z with a tracial state ‘W over this algebra (called a
noncommutative residue), which identically vanishes on T|D|™ for any k > n and a
zero-order operator T (an operator in the algebra generated by A and Q!(+)). Then,
foru,w e QID(A), we call

g(u,w) ;== Wuw|D|™),
the metric functional, and
G(u,w) = Wu{D,w}D|D|™").

the Einstein functional.

3.1. Hodge—de Rham spectral triple

We compute now these functionals for A = C*°(M) and D = d + §, identifying for
dimM =n > 2,
QL(A) ~ QY (M)
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via the correspondence of local components
u=yu, < U=uye’,
with respect to an orthonormal coframe e” . First, let us compute the metric functional g.

Proposition 3.2. For U,V € Q'(M), the metric spectral functional reads
g(U, W) =2"v,_4 / g(U, W) volg.
M

Proof. It can be seen that it is adequate to expand U, W, and so u, w, up to o(xo) in normal
coordinates:
— D 0 A 0
u=yPu, +o(x"), w =y w+o(x).

We compute (locally) the density of W(U W|D|™") as

/ Tr (yPy upwy)en(D)d"x = vp—1/8 Tr (WP y upw;) d"x = 2"v,— 13 /g upw, d"x.
lgl=1

The factor 2" comes from the trace of 1 over the space of differential forms. ]

Proposition 3.3. For U,V € Q1 (M), the Einstein functional reads

2}1
U, W)= —vn_I/ G(U, W) volg,
6 M
where G is the Einstein tensor for M.

Before we begin with the proof, let us demonstrate some useful lemmas. The first
computes 'W(E D ~2™+2) for two specific cases of endomorphism E.

Lemma 3.4. If E is locally given by
e©® 4 el(,%])ypyq,
the density of the functional 'W(ED~2"%2) reads locally

n—2

24

2"y ﬁR(—e(O) - eg,)) d"x.

On the other hand, if E is locally given by
O +E@)8 24,

the local density of the functional "W(E~ D~2Mm+2) reads locally

n—2

7 2"Vp—1/ERE® d"x.
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The proof is based on direct calculations using Proposition 2.3:

Tr (E / Cz(m_1)+2)'V§- d"x
=1

—2
= v Tr (EQ(Rsrap + Rogrp)AZ 212725 + R = 2RicgpA A1) )d"x.

Lemma 3.5. For P such that 6 (P) = F®&,&, + G, + H, where locally

Fab = fOab 4 r@abypya,
w (PD™") reads locally

Vn—1 (TrH + zR(—f(")““ - fp(;)”“))d”x.
24

Also, for P such that 0 (P) = F®¢,&, + G, + H, where locally

I’;-"ab — f~(0)ab + f;qu)abkikti’
w (P D) reads locally

Vn—1 (TrH + %(—m f@aa _ pRaag 1 o(f@Dab 1 ﬁ,(;)b“)Rpaqb))d"x.

The proof follows directly by computation using Proposition 2.3 and Lemma A.3
applied to the explicit expression:

1 1
f U—zm(PD_Zm)vE = EFM |:(Rsrqp + qu,s)ki)@/\;ki + iR - quli)‘q]
ll=1

PP Rap + Ryapp + Rpagn)VLA] + H.
Proof of Proposition 3.3. We begin with computing the symbol of uDwD at x = 0, where
it suffices to expand u and w as:
u =y u, + o(xY), w = Y ws + P wgex® + o(x1),
and thus locally:
uDwD = yPy?y "y upw,bebs — iy?yly" v upwrebs

L.
— Elypyqyr/\s_lz_kz_(Rzmq + Rosiq)upwr + o(x%).
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Then, we use Lemma 3.4 for P = uDwD and £ = uw. In this case, we have
E =upwgy?y?,
1,
H = —glypyq)/rls_/\t_,_)tz_(thsq + Rzstg)upwy
2.
= —glyl’)k‘i)ti)ts_(Rsrqt + qurt)upwt
L.
=+ gl)/pyqyr)ti)tz,)&i(thsr + sttr)upwq7
qu%-p%-q = Vrypysyqurwsépgq = (Zurwp(sqsyrys - urwsyr)’sgpq)%-péq»
where we used that y?y?£,&, = §,4,6,€,. Next, we see
@ =, &) = uqwy,
b
f(O) =0, fc(j)a = 2UcWq8pa — UcWaBap-

Finally, the contribution arising from E gives

n—2
2 "1 Rugwy,

whereas the part from F is

2" (2)aa n—2
—— v, 1 Rf;; = —2"v,_1Ru w,.
24 n—1 f;, 4 n—1 aWa
These two terms cancel each other, and we are left with terms that arise from H . The only
possible terms in Tr H are linear combinations of u,w, R and u,wpRic,p; thus, we know

that the result is symmetric in u,, wp. It allows us to simplify the second term in H:
H = 2, PLIAS AT (R R
= —gl)/ AL “( tsgh T tqsb)upwb

I,
+ glyr/vi)‘ikt—(Rtsqr + thsr)uawa + -

where “-.” are terms antisymmetric in u4, wp, Which we can neglect. We can also
insert —i A4 instead of the remaining y’s because the part with A_ will be traceless. Now,

using (A.2), we get
1. 1 1
TrH = 8R1cab UgWp — ER UgWg = gGab UgWp.

This proves the result. u

We deduce that for the spin, manifolds the spectral functionals for the Hodge—
de Rham spectral triple are equal, up to the rank of the vector bundles, to those for the
canonical spin, spectral triple.
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3.2. Spectral closedness and torsion

In this section, we will prove that the Hodge—Dirac spectral triple has the property of being
spectrally closed.

Theorem 3.6. Let T be an operator of order O from the algebra generated by a[D, b],
a,b € C®(M). Then,
W(TD|D|") = 0.

Proof. If we compute the symbol of 7D at a chosen point on the manifold M in normal
coordinates at x = 0, we obtain,

o(TD) = T(=y"&p).

Next, if we combine it with Proposition 2.3, we see that the symbol of order —n
of TD|D|" is
o_n(TD|D|™) = 0 + o(x").

This ends the proof. ]

As a consequence, we demonstrate in [9] that the Hodge—Dirac spectral triple is
torsion-free. It is interesting to study generalised Hodge—Dirac operators, which are
defined through an arbitrary linear connection, are not metric compatible, and have a tor-
sion. Also, the extension to noncommutative Hodge—de Rham calculi and a comparison
with the approach of [10] would be of great interest. Note that we focused here on even-
dimensional manifolds only for the sake of simplicity and the result easily extends to the
case of odd-dimensional manifolds (for technical details that include the computation of
symbols, compare [9]).

A. Details of computations

We begin with a formula for the product of two pseudodifferential operators, P and Q,
which have expansion in homogeneous symbols,

o(P)(x.§) =Y 0(P)e(x.£),  0(Q)x.6) =) a(Q)p(x.8),
o B

respectively, where « and B are multi-indices (such that || = ) o and |B]| are
bounded from above). The symbol o (P )y (x, £) is homogeneous of order |«| if, for r > 0,
0(P)a(x,rE) = rl®lo(P)g(x, ). The composition rule for the symbols of their product
takes the form [11].

)8l
o(PO)(x.8) = 3¢ “’3)“
B

050 (P)(x,£)dp0(Q)(x, £), (A1)

where 8% denotes the partial derivative with respect to the coordinate of the cotangent
bundle.



L. Dabrowski, A. Sitarz, and P. Zalecki 1100

Lemma A.1. A direct computation of traces of products of A matrices is based on the
following recursive formula:

TrAZ! .o ADEQD )k

k
= % Z(—l)k—jgpnqj Tr (Af ..-)Lik/\ZI e A2 )i+ “'l‘i").

j=1

In particular, we have

Tr(AfA%) = n=lgpd.
Tr (/\il)t‘il/\izkzz) = QT2 (§P11§P292 | §P1T2§P2A1) (A.2)
and
Tr (U A AR AL AT AE)
=2" l Z §P140(1) §P240(2) §P390(3) — 18p1q28172‘]38173q1 ) (A3)
8 4

gesSs3

Next, we present the results on traces of products of y and A matrices.

Lemma A.2.
1
Tr(y?Py9A,AY) = 2”_2(281"15” + P59 — 81”8‘”) =21 (81"18” — Esfs‘]), (A.4)
Tr ()/p)/q/\:_/\s_lz_lz_) — 2n—28pq(8rs812 + 8r28st)
_ 2n—3(8rsgfzq + 5”853 + 5t28£)Sq + Srzgftq
We skip the computational proof, which is based on expressing y-matrices in terms
of A-matrices,
yPy? = —A4A2 + AEQAL 4 5P9 ..

and using the results of Lemma A.1.
As a consequence, we obtain the following identities for the geometric quantities:

Lemma A.3. In normal coordinates around x = 0, we have the following identities:
Tr (A7 A%) Ric,q = 2" 'R,
Tr ()L_{)L‘i)(Rpaqb + Ryapp) = 2" Ricgp,
Tr (AT ALAAS ) (Ryrgp + Rsqrp) = —2" 2R,
Tr (A AZA7 A% ) Ricyy = 2"72(8pg R + Ricpg).
Tr (y?y9A7 A% ) Ric,s = 2" 18,4 R,
Tr (A AL A5 ) (Ryasp + Rsarp) = 2" 2(28pqRicap + Ryapb + Rpagh)-
Tr (y?y? A5 A2) (Rrash + Rsarb) = 2" 8pqRicqp.
Tr WAL AT AL AZ) (Rarsr + Rasir) = 277 (= R8pq + 2Ricyy),
Tr (yPyIA A AL AZ) (Ratsr + Rzser) = —2"728pg R.
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Proof. Direct computation using (A.2)—(A.4) and the properties of the Riemann and Ricci
tensors. |
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