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On the noncommutative Poisson geometry of certain wild
character varieties

Maxime Fairon and David Fernandez

Abstract. To show that certain wild character varieties are multiplicative analogues of quiver vari-
eties, Boalch introduced colored multiplicative quiver varieties. They form a class of (nondegen-
erate) Poisson varieties attached to colored quivers whose representation theory is controlled by
fission algebras: noncommutative algebras generalizing the multiplicative preprojective algebras of
Crawley-Boevey and Shaw. Previously, Van den Bergh exploited the Kontsevich—-Rosenberg princi-
ple to prove that the natural Poisson structure of any multiplicative quiver variety with tautological
coloring is induced by an Hgp-Poisson structure on the underlying multiplicative preprojective alge-
bra; indeed, it turns out that this noncommutative structure comes from a Hamiltonian double
quasi-Poisson algebra constructed from the quiver itself. In this article, we conjecture that, via the
Kontsevich—Rosenberg principle, the natural Poisson structure on each colored multiplicative quiver
variety is induced by an Hg-Poisson structure on the underlying fission algebra which, in turn, is
obtained from a Hamiltonian double quasi-Poisson algebra attached to the colored quiver. We study
some consequences of this conjecture and we prove it in two significant cases: the interval and the
triangle.

1. Introduction

The Kontsevich—Rosenberg principle [29] states that a noncommutative structure on an
associative algebra A has algebro-geometric meaning if it induces the corresponding stan-
dard algebro-geometric structures on its representation schemes. A significant application
of this principle has yielded a program to explain symplectic/Poisson structures on inter-
esting moduli spaces in terms of canonical noncommutative structures on associative
algebras.

In [33,34], Van den Bergh defined double Poisson algebras and double quasi-Poisson
algebras to develop noncommutative analogues of Poisson geometry and quasi-Poisson
geometry [1,2]. Using the first of these newly introduced structures, he was able to trans-
late the Poisson structure of quiver varieties directly at the level of the quivers. More
importantly, he defined a Hamiltonian double quasi-Poisson algebra [34] (which is also
called a quasi-Hamiltonian algebra [24,25,33]) structure on (a localization of) the path
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algebra of the quiver A, given by two vertices and two arrows a, a*. Then, in agreement
with the Kontsevich—Rosenberg principle, the corresponding representation schemes are
Hamiltonian quasi-Poisson manifolds [1]. Furthermore, using fusion as well as quasi-
Hamiltonian reduction, Van den Bergh obtained a natural Poisson structure on each multi-
plicative quiver variety [20,35]. This follows from the fact that the canonical Hamiltonian
double quasi-Poisson algebra on the attached quiver induces an Hy-Poisson structure
[18] on the corresponding multiplicative preprojective algebra [20]—see Table 1 for an
overview and Theorem 2.9 for the precise statements. In another situation, Massuyeau and
Turaev [32] proved that the well-known Poisson structure on Hom(rr, GLy (R))/ GLy (R)
(here, 7 stands for the fundamental group of an oriented surface with boundary) is deter-
mined by a double quasi-Poisson bracket on the group algebra R.

In this article, we show a new instance of this far-reaching program by revealing
that certain Poisson structures on wild character varieties are induced by noncommuta-
tive Poisson structures encoded on fission algebras.

1.1. Previous results

1.1.1. Fission varieties. Tame character varieties, usually simply called character vari-
eties, are spaces of complex fundamental group representations of Riemann surfaces.
Wild character varieties form a class of algebraic varieties that generalize them, since
they enrich representations to so-called Stokes representations that fix extra monodromy
data around each puncture. From the analytic perspective, they parametrize more general
classes of connections where irregular singularities are allowed along the boundary. Inter-
estingly, wild character varieties are symplectic/Poisson algebraic varieties. This result
was derived by Boalch [7] as an adaptation of the infinite-dimensional Atiyah—Bott sym-
plectic quotient to this irregular/wild setting. Later, more algebraic finite-dimensional
approaches were privileged, based on convenient extensions of the quasi-Hamiltonian
geometry of [2] from the tame to the wild setting [8]. We recommend the excellent [9, 11]
as introductions to this exciting area of research.

All (tame) character varieties may be constructed inductively by gluing together conju-
gacy classes and pairs of pants. Analogously, all wild character varieties may be obtained
inductively by gluing together conjugacy classes, pairs of pants, and higher fission spaces
Gy with r > 1. As explained in [10, §3], the latter can be described in a pretty simple
way and carry a quasi-Hamiltonian (G x H)-structure, see [10, Theorem 3.1]; if r = 1
the space GA}, is just the double of G from [2]. However, the converse is not true: if we
consider the class of symplectic/Poisson or quasi-Hamiltonian varieties that arise by glu-
ing together these pieces and performing reduction, we will obtain a larger class of spaces
than wild character varieties: fission varieties [10, §3.2].

1.1.2. Multiplicative quiver varieties (after Boalch). As mentioned above, the work of
Van den Bergh [33] was motivated by the multiplicative analogues of Nakajima’s quiver
varieties, as introduced by Crawley-Boevey and Shaw in [20]. To sketch his result, we
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define the Van den Bergh space (see [6, 10, 15,35])
BY®(WV, W) := {(a.b) € Hom(W, V) & Hom(V, W) | (1 + ab) is invertible} (1.1)

for two finite-dimensional complex vector spaces V' and W. The key observation is that
BVYE(V, W) is a nondegenerate Hamiltonian quasi-Poisson GL(V) x GL(W )-space [1]
(that is, a quasi-Hamiltonian GL(V') x GL(W)-space). The corresponding Poisson vari-
ety obtained by quasi-Hamiltonian reduction is the multiplicative quiver variety associated
with the quiver A,. By fusion of different copies of (1.1) and then performing reduction,
we can obtain a Poisson structure on any multiplicative quiver variety. Thus, we can regard
the Van den Bergh spaces as the building blocks that underlie the (quasi-)Poisson geome-
try of multiplicative quiver varieties.

In fact, the Hamiltonian quasi-Poisson spaces BV (V, W) are examples of Boalch’s
fission varieties. In [10, §4], Boalch observed that if G = GL(V & W) and H = GL(V) x
GL(W), there exists an isomorphism of (nondegenerate) Hamiltonian quasi-Poisson H -
spaces between BV (V, W) and A2(V, W) //1 G, the quasi-Hamiltonian reduction of the
higher fission space A%(V, W) := g% with respect to G at the identity 1 € G. Next,
Boalch makes an observation of the utmost importance: since the Van den Bergh spaces
(1.1) are the basic building blocks for the multiplicative quiver varieties of [20], his results
suggest how to find other building blocks, such as 42(V1,..., Vi) /1 G (the higher fission
space is AZ(V1,..., Vi) := gA%, G = GL(Q};‘Z1 V;) and H = X*_, GL(V;)). Then,
these additional building blocks allow to construct more general multiplicative quiver vari-
eties by quasi-Hamiltonian reduction. The varieties hence obtained will again be fission
varieties.

1.1.3. Colored quivers and colored multiplicative quiver varieties. Inspired by the
construction of Nakajima quiver varieties (see Table 1), Boalch also realized that con-
structing more general multiplicative quiver varieties amounts to attaching an algebraic
symplectic manifold to a graph and some data on the graph. From this point of view, he
came up with colored graphs. In brief, these are finite graphs Y with nodes / and a color-
ing of each edge (i.e., amap ¢ : T — C to the set C of colors) such that each monochro-
matic subgraph is a complete k-partite graph—see Definition 3.3. Now, given a colored
quiver Y, fix a finite-dimensional graded complex vector space V = @,; Vi. By [12,
Corollary 5.7], there exists a canonical non-empty H -invariant open subset Rep* (Y, V) C
Rep(Y, V) which is a quasi-Hamiltonian H -space and admits a group-valued moment
map ® : Rep*(Y, V) — H.

Next, given parameters d € Zio (corresponding to the vector space V = @;o; Vi
through dim V; = d;), and ¢ € (C *)7, the colored multiplicative quiver variety M(Y,q,d)
(attached to the colored quiver Y) is the quasi-Hamiltonian reduction of Rep* (T, V) at
the value ¢ of the moment map. That is

M(Y,q,d) :=Rep*(Y,V) g H := &)_1(1_[%- IdVi) J H.
I



M. Fairon and D. Fernindez 768

We work in the algebraic category, so that the quotient on the right-hand side is taken
according to affine geometric invariant theory (GIT). Consequently, we get that the open
set M5(Y,q,d) C M(Y,q,d) of stable points is a smooth algebraic symplectic manifold.
It is important to note [12, Proposition 6.8] that for two inequivalent ways to color T, the
corresponding colored multiplicative quiver varieties will not be isomorphic in general.
Furthermore, if each monochromatic subgraph Y, = ¢! (c), where c is a color, just con-
sists of one arrow (this is the “tautological coloring”), then M (Y, g, d) is a multiplicative
quiver variety in the usual sense of [20]. In consequence, colored multiplicative quiver
varieties generalize standard multiplicative quiver varieties.

1.1.4. Fission algebras. Finally, we can introduce one of the main objects of study in
this article: fission algebras. As shown in Table 1, deformed (additive) preprojective alge-
bras govern Nakajima quiver varieties, while multiplicative preprojective algebras control
multiplicative preprojective varieties. Furthermore, Boalch [12, §12] introduced fission
algebras, a class of associative noncommutative algebras linked to colored quivers, that
regulate colored multiplicative quiver varieties. As a result, fission algebras serve as a
generalization of the multiplicative quiver algebras presented in [20]—as a byproduct, the
former are linked to the generalized double affine Hecke algebras of Etingof, Oblomkov
and Rains [22]. We define the Boalch algebra B(Y') as the path algebra of a quiver with
relations obtained from the input colored quiver Y by adding arrows and loops, see Defini-
tion 3.5. Then, the fission algebra ¥ 4(Y) is the quotient of B(Y) by the two-sided ideal
essentially generated by setting the loops equal to g; they will be carefully introduced
in 3.2. Remarkably, as explained in [12, §12] and illustrated in Table 1, the representa-
tion theory of ¥7(Y") governs the geometry of the colored multiplicative quiver varieties
M(7T,q, d) for each dimension vector d.

1.1.5. Van den Bergh’s noncommutative perspective. The key point that motivated the
present article is that the Hamiltonian quasi-Poisson structure on the Van den Bergh spaces
BVEB, W) introduced in (1.1) can be obtained from a natural noncommutative struc-
ture. Indeed, this structure can be derived from a (nondegenerate) double quasi-Poisson
bracket and a multiplicative moment map on a suitable localization of kA, (see [33,
Theorem 6.5.1] and [34, Proposition 8.3.1]), as well as the application of the Kontsevich—
Rosenberg principle (see [33, §7.12]). In other words, the Hamiltonian quasi-Poisson
GL(V) x GL(W)-structure on 8YB(V, W) is induced by a Hamiltonian double quasi-
Poisson structure on a certain quiver path algebra. If we perform quasi-Hamiltonian reduc-
tion and consider the corresponding multiplicative quiver variety, its Poisson structure can
be understood in terms of an Hy-Poisson structure [18] on the multiplicative preprojec-
tive algebra A?(A,) associated with A,, see [33, Theorem 6.8.1]. Furthermore, the same
statements hold for an arbitrary quiver and multiplicative quiver variety. This viewpoint is
summarized in Table 1.

In complete analogy with this original case, we would like to encode the Poisson
structure of all colored multiplicative quiver varieties introduced by Boalch directly into
the fission algebra F7(Y'), as we explain now.
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1.2. Main results

Our aim is to make a step towards the far-reaching program of understanding the different
classes of Poisson varieties introduced in Section 1.1 using noncommutative structures and
the Kontsevich—Rosenberg principle. Moreover, since such varieties can be obtained from
a Hamiltonian quasi-Poisson space, we want to encode the structure of these spaces in
terms of their noncommutative counterparts: Hamiltonian double quasi-Poisson algebras,
see Definition 2.4. More precisely, the initial motivation for this article was to deepen
Boalch’s insight on the “noncommutative quasi-Hamiltonian spaces” that yield the higher
fission spaces. One of the themes in Section 1.1 was the successive generalization of the
quiver A, (and consequently of the Van den Bergh spaces (1.1)) in terms of complete k-
partite graphs and colored quivers. Hence, as displayed in Table 1, in this article we want
to extend the noncommutative picture that was originally unveiled by Van den Bergh in
this direction.

It is interesting to observe that the quiver A, (and BV (V, W)) may be alternatively
generalized in terms of the double of the quiver I, on two vertices and n equioriented
arrows. This direction has been undertaken in [26]. In that article, we prove that an appro-
priate localization of the path algebra kT',, is endowed with an explicit Hamiltonian double
quasi-Poisson structure, whose multiplicative moment map is given in terms of Euler con-
tinuants, which were introduced by Euler in 1764. This result generalizes the Hamiltonian
double quasi-Poisson algebra associated with the quiver A, by Van den Bergh because
T'; = A,. This shows that some of the geometric structures found by Boalch for a partic-
ular class of wild character varieties in [13] have a noncommutative origin in application
of the Kontsevich—Rosenberg principle.

1.2.1. The Conjecture for colored multiplicative quiver varieties. Recall from Sec-
tion 1.1.2 that Boalch introduced colored multiplicative quiver varieties as generalizations
of multiplicative quiver varieties, being attached to colored quivers. In this article, we for-
mulate Conjecture 3.10 which states that for each colored quiver Y over / vertices, the
Boalch algebra B(Y) is endowed with a Hamiltonian double quasi-Poisson structure. The
significance of this conjecture relies on the following two consequences:

(i) LetV =P, V; be an I -graded vector space, and form H = [[; GL(V;). The com-
bination of Conjecture 3.10 and the Kontsevich—Rosenberg principle (see Theo-
rem 2.7) induces a Hamiltonian quasi-Poisson H -structure on Rep(B(Y), V) =~
Rep*(Y, V) in the sense of [1].

(i) By Conjecture 3.10 and [33, Proposition 5.1.5], the fission algebra ¥ 7(Y) carries
an Hy-Poisson structure (in the sense of [18]). Then, the Kontsevich—-Rosenberg
principle induces a standard Poisson structure on the colored multiplicative quiver
varieties.

As a byproduct of this construction, establishing the conjecture would extend the dic-
tionary summarized in Table 1 that relates various algebro-geometric structures defined
either on associative algebras constructed from quivers, or on associated moduli spaces of
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representations. To ascertain Conjecture 3.10, we first note that we can simplify the task: if
one proves the conjecture for monochromatic quivers, then it holds for any colored quiver.
This is proved in Lemma 3.11. We will also prove Conjecture 3.10 in two interesting cases,
which we explain in Section 1.2.2. Let us also note that (smooth loci of) colored multi-
plicative quiver varieties are symplectic varieties, obtained from quasi-Hamiltonian spaces
in the sense of [2]. Thus, we believe that the double quasi-Poisson structures appear-
ing in Conjecture 3.10 are nondegenerate, giving rise to quasi-bisymplectic algebras (see
[34, §6]). We shall pursue this direction in the future.

Before delving into our results, let us address an important remark. It is tempting to
say that, to tackle Conjecture 3.10, one only needs to consider the formulas that exist
in the known geometric context [10, 12] and make them “noncommutative”. However,
there are two substantial issues in this simple idea. First, while we consider these spaces
as equipped with a Poisson bracket, the latter is in fact nondegenerate and the varieties
are usually defined as symplectic varieties. They are obtained by reduction from quasi-
Hamiltonian spaces endowed with a “quasi-symplectic” form [2], and the corresponding
nondegenerate quasi-Poisson bracket is unknown in general. Hence, one would need to
properly work out the quasi-symplectic — quasi-Poisson yoga for these varieties, which is
tricky. Second, understanding the quasi-Poisson variety as the representation space asso-
ciated with a particular algebra is not obvious; see the proof of [12, Proposition 5.3].
Therefore, the naive approach of writing the quasi-Poisson bracket in a noncommutative
form gives rise to two non-trivial steps. This is the reason why in this article we preferred
to stay at the level of noncommutative algebras and we tried to obtain a Hamiltonian dou-
ble quasi-Poisson algebra structure by analyzing the algebras 8(Y') and ¥ 4(Y) directly.

1.2.2. Towards the conjecture: The monochromatic interval and triangle. We first
undertake the study of Conjecture 3.10 by considering the monochromatic interval case.
If we consider the partition {1, 2} = {1} U {2}, the input is the complete 2-partite graph
I with two vertices {1, 2} and one colored edge. Then, applying the construction in
Section 3.2, the output is the Boalch algebra 8 (1), which is explicitly described in Sec-
tion 4.1. The first result of this article is Proposition 4.1. It states that the algebra 8(I)
admits a double quasi-Poisson bracket, explicitly defined on generators in Lemma 4.2,
with multiplicative moment map given by y; + Y2, the sum of two loops. Thus, 8B(I)
is a Hamiltonian double quasi-Poisson algebra, confirming Conjecture 3.10 and its con-
sequences for the monochromatic interval. The idea of the proof is to reexpress B(I) in
terms of Van den Bergh’s Hamiltonian double quasi-Poisson algebra [33] associated with
the one-arrow quiver vy; : 2 — 1.

Next, we address the case that will be expectedly significant in the general proof of
Conjecture 3.10. It corresponds to the Boalch algebra B(A) attached to the monochro-
matic triangle, which is the complete 3-partite graph A over three vertices {1, 2, 3} with the
partition {1} Ul {2} LI {3}. In this case, B(A) is generated by the symbols {e;, vi;, v;;, wij,
wj;, yiﬂ}, where 1 <i < j < 3, that is, we have 12 arrows and 3 loops (with their
inverses); see Figure 2. These symbols are subject to the intricate defining relation (4.4).
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This relation can be further decoupled into 9 highly non-linear equations written in (4.5),
attending to the occurring idempotents.

Theorem 4.5 is the most fundamental result of this article: we succeed in explicitly
proving that B(A) is a Hamiltonian double quasi-Poisson algebra, whose multiplicative
moment map is given by y; + y2 + y3. So, Conjecture 3.10 and its consequences hold for
the monochromatic triangle—see Corollaries 4.6 and 4.7.

We should emphasize that the double quasi-Poisson bracket found in Theorem 4.5 is
quite surprising because some counter-intuitive linear terms appear in some (but not all
of the) double brackets. However, these terms are crucial to prove that y; + y, + y3z is a
multiplicative moment map for {—, —}} using the non-linear identities (4.5). In this sense,
the double brackets dramatically depend on the involved indices. Furthermore, the proof
of the quasi-Poisson property (i.e., equation (2.6) holds) for {—, —} on B(A) is intricate.
Indeed, in Section 5 we derive general conditions for a particular class of double brackets
to be quasi-Poisson, and we end up by showing that the double bracket defined on B(A)
as part of Theorem 4.5 satisfies those conditions. We hope that the derivations performed
in Section 5 will be crucial to tackle the remaining cases of Conjecture 3.10.

To conclude, we would like to draw the reader’s attention to a potential applica-
tion of Theorem 4.5. It was observed in [15, 16, 23] that tautologically colored mul-
tiplicative quiver varieties attached to an extension of the cyclic quiver can naturally
be regarded as the phase spaces of some integrable systems. Furthermore, the double
quasi-Poisson bracket associated with these quivers was an essential tool to prove the
Poisson-commutativity of the functions defining the integrable systems under consider-
ation in [16, 23]. Therefore, we expect that these works can be adapted to the case of
colored multiplicative quiver varieties and yield new classes of integrable systems. The
first non-trivial case to consider may be the extension of the monochromatic triangle, seen
as a cyclic quiver on 3 vertices (with a different color), by one arrow as in [16]. One
would certainly benefit from the double quasi-Poisson bracket unveiled in Theorem 4.5
for calculations.

Layout of the article. In Section 2, we start by introducing double quasi-Poisson brack-
ets and Hamiltonian double quasi-Poisson algebras following Van den Bergh [33], which
are central throughout this work. We also explain how they are related to the (noncommu-
tative) Hy-Poisson structure of Crawley-Boevey [18], and their importance with respect
to the Kontsevich—Rosenberg principle. We define colored quivers and fission algebras in
Section 3 following Boalch [12], and we also introduce the Boalch algebra, from which
fission algebras can be obtained as quotients. We can then turn to the main subject of
this article: the statement of Conjecture 3.10 about the existence of a Hamiltonian double
quasi-Poisson structure on Boalch algebras. We prove two instances of the conjecture in
Section 4, which are associated with the monochromatic interval and the monochromatic
triangle. Section 5 deals with a general result needed to prove the conjecture in the trian-
gle case. In Appendix A, for the reader’s convenience, we give the complete list of double
brackets for the monochromatic triangle case.
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Comment on the field. We always assume the field k to be of characteristic zero. When
considering GIT quotients, k needs also to be algebraically closed so that invariant ele-
ments are trace functions, cf. Section 2.3. For comparison with results of Boalch, one
needs k = C. Note that, for computations involving double quasi-Poisson algebras, one
could simply ask for k to be a general field where 2, 3 are invertible.

2. Noncommutative quasi-Poisson geometry

In this section, we introduce the noncommutative structures that will appear in relation to
Boalch’s fission algebras and colored multiplicative quiver varieties: Hamiltonian double
quasi-Poisson algebras (Section 2.1) and Hy-Poisson structures (Section 2.2). The former
induce Hamiltonian quasi-Poisson structures [1] on the representation schemes, while
the latter induce usual Poisson structures on them. Thus, they satisfy the Kontsevich—
Rosenberg principle, which will be explained in Section 2.3. Finally, in Section 2.4 we
review Van den Bergh’s works [33, 34], where these noncommutative structures naturally
appear in the setting of multiplicative preprojective algebras.

2.1. Hamiltonian double quasi-Poisson algebras

In this section, we follow [33], see also [19,24]. We fix a finitely generated associative
unital algebra A over a field k of characteristic zero, and we write ® = ®j for brevity.
Unless otherwise stated, given n € Z ¢, we will consider the A-bimodule A®" endowed
with its outer bimodule structure AZ?,

bi(a1 ® - ® an)bs = b1ay ® -~ @ azby in AZ",

wherea; ® --- ® a, € A®" and by, b, € A. Moreover, if S, denotes the group of permu-
tations of n elements {1,...,n}, givens € S, anda = a; ® --- @ a, € A®", we define

‘L’s(a) = ds-1(1) R Q As=1(n)-

An n-bracket [33, Definition 2.2.1] is a linear map {—, ..., —} : A®" — A®" (or
equivalently a map A*" — A®" linear in all the arguments) satisfying
taem o f— =Y otqly = D= ),

far.az, ... an-1,ana,}} = anflar,az,....an—1,a,} +{ar,az, ..., an-1,an}ay,
for all ay,...,an,a, € A. In other words, the first identity means that the n-bracket
{—, ..., —} is cyclically antisymmetric, and the second one states that it is a derivation

A — A®" in its last argument for A2”. We will call a 2-bracket (resp. a 3-bracket) a dou-
ble bracket (resp. a triple bracket). Since double brackets will be essential in this article,
we provide their explicit definition.
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Definition 2.1 ([33]). A double bracket on A is a k-bilinear map {—, —}} : A x A —
A ® A, satisfying for any a, b, c € A,

{a, b}y = —tup{b,a} (cyclic antisymmetry), 2.1
fa,bc)} = {a,b)c + bfa,c}} (right Leibniz rule). 2.2)

Using (2.1), it is straightforward to see that (2.2) is equivalent to
{bc,a}}y = {b,a}} xc+ b x{c,a} (left Leibniz rule), (2.3)

where * denotes the inner A-bimodule structure on A ® A, givenby a x (b’ ® b”") xa’ =
(b'a’) ® (ab”); throughout this article, we shall use Sweedler’s notation. From (2.2) and
(2.3), note that it suffices to define double brackets on generators of A.

Next, recall that given an associative k-algebra B, a B-algebra will mean an associa-
tive algebra A together with a unit preserving algebra morphism B — A. From now on,
we assume that the unit in A admits a decomposition 1 = > ; e, in terms of a finite set
of orthogonal idempotents, i.e., |I| € Z~¢ and ege; = &5e5. In that case, we view A as a
B-algebra for B = @ key. Then, we naturally extend the definition of an n-bracket to
require B-bilinearity: it vanishes if one of its arguments is in B.

Given a double bracket {—, —J} on A, let us introduce the following extension:

fa.b @Yy :={a, by ® c € A%,
for all a, b, ¢ € A. This allows us to define the following operation:

fa.b.c}t :={a. {b.c}} + ta23)fib. {c. af} + raszlic. {a. b} 24

it is easy to see that (2.4) is a triple bracket. Let us also define the following operation

1
{a,b, c}}qp = 1 Z(cesa R eshb ®eg —cesa® ey @ bey —cey @ aesh Q ey

sel
+ ces ® aey @ beg — ega @ eshb ® esc + ega ® eg Q bege
+es Q@ aesh  esc —es ® aes ® begc), 2.5)

which is also a triple bracket.

Definition 2.2 ([33, Definition 5.1.1]). Let A be an associative B-algebra equipped with
a double bracket {—, —}}. The double bracket is called quasi-Poisson (or we say the quasi-
Poisson property holds) if we can equate the triple brackets (2.4) and (2.5), that is,

{a,b,c} = {{a,b,c}}qP (2.6)

foralla, b, c € A. The pair (A, {—, —}}) is called a double quasi-Poisson algebra.
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There is a related construction with a condition simpler than (2.6). Namely, a double
Poisson bracket [33, Definition 2.3.2] on A4 is a double bracket {—, -} : A®2 — A%2 such
that (2.4) vanishes (that is, {—, —, —}} = 0). In that case, the pair (A, {—, —}}) is called a
double Poisson algebra.

Remark 2.3. By construction, the operations (2.4) and (2.5) are triple brackets. Thus, it
is a simple computation to check that if (2.6) holds on generators of A, then it holds for
any triple of elements in A.

Finally, Van den Bergh adapted the important notion of multiplicative moment maps
to the noncommutative context given by double quasi-Poisson algebras.

Definition 2.4 ([33, Definition 5.1.4]). Let (A, {—, —}}) be a double quasi-Poisson alge-
bra. A multiplicative moment map is an invertible element ® = Zse 1 ©s with @ € e Aeg
such that, foralla € A and s € I, we have

1
{D5,a)) = E(aes R Oy —es ® Dya +ady ® es — D5 ® e5a). 2.7

Then we call the triple (A, {—, —}}, ®) a Hamiltonian double quasi-Poisson algebra.

We observe that (2.7) and the invertibility of & € egAes imply foralla € A
1
(o' a) = —E(acbs_l Res— D! ®ega +ae; ® Py — ey ® D a).

2.2. Hy-Poisson algebras

Recall that the zeroth Hochschild homology of A is the vector space Hy(A) = A/[A, A],
where [A4, A] is the subset of A spanned by the commutators. We write @ for the image of
ae Ain A/[A, A].

Definition 2.5 ([18]). An Hy-Poisson structure on A is a Lie bracket {—, —} on Hy(A)
such that, for alla € Hy(A), the map {a,—} : Hy(A) — Hy(A) lifts to a derivation A — A.

Though there are examples of Hy-Poisson structures that do not come from double
Poisson structures (see [18, p. 208]), double Poisson algebras induce Hy-Poisson algebras
in a direct way. As proved in [33, Corollary 2.4.6], if (A4, {—, —}}) is a double Poisson
algebra and we define the associated bracket {—,—} :=m o {—, —}}, then Hy(A) equipped
with the bracket {—, —} is a Lie bracket, thus obtaining an Hy-Poisson structure.

Remarkably, Hy-Poisson structures can be obtained from Hamiltonian double quasi-
Poisson algebras, as in Definition 2.4. This is due to the following noncommutative coun-
terpart of quasi-Hamiltonian reduction.

Proposition 2.6 ([33, Proposition 5.1.5]). Consider a Hamiltonian double quasi-Poisson
algebra (A, {—, =}, ®), and fix an invertible element ¢ € B*. We define A = A/(® — q).
Then the associated bracket {—, —\ descends to an Hy-Poisson structure on A.
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2.3. The Kontsevich—Rosenberg principle

The Kontsevich—Rosenberg principle [29] states that a noncommutative structure on an
associative algebra A has algebro-geometric meaning if it induces the corresponding stan-
dard algebro-geometric structures on the representation schemes Rep(4, d).

From now on, let k be an algebraically closed field of characteristic zero, B =
P, kes be a semi-simple k-algebra, and A be an associative B-algebra, which is
finitely generated (over B). Following [33, §7],letd = (d1,...,d,) € ZZ,,, and we put
N :=Y"{_, ds. Also, we assume that B is diagonally embedded in My (]k)_:z My «n (k)
—the idempotent e, is nothing but the identity matrix in M x4, (k). Now, we define the
functor on the category of commutative k-algebras

Rep,;(A) : CommAlg, — Sets, C — Hompg(A4, My (C)). (2.8)

Building on the work of Bergman [5] and Cohn [17] (see [3, 4] for excellent expositions
and insightful generalizations), it is well known that the functor (2.8) is representable: we
have an adjunction (see [3, Proposition 3])

Homy (A4, C) = Homp (A4, My (C)).

Consequently, we define the representation scheme as the affine scheme Rep(4, d) :=
Spec(A4). More explicitly, Az can be described as the commutative algebra generated by
the symbols {a;; | a € A, 1 <i, j < N} subject to the relations (for a,a’ € 4, 1 € k,
i,jel{l,...,N})

(Aa)ij = Aaij, (a+ad)y =aij +aj;, (ad)i; = Z aikay;, (es)iy = Ajj,
1<k<N
where Afj =1,ifi=jand) ,_ d; <i < Z,Ss d;, and Afj = 0 otherwise, see [18,
p. 211].

Next, for a € A, we define the element tr(a) = Z;vzl ass € Ag. Since tr(ab) =
tr(ba), it induces a map A/[A, A] — Ad, which we also denote tr. The group GLy :=
[T5=; GL4, (k) acts on Ay via g.a;; = Zk 1 Ze | 8ikAke&y; L for all g €GLly,a €A,
1 <i,j < N. The celebrated Le Bruyn—Procesi theorem states that A 4 is the algebra
generated by the functions tr(a) for a € A. On the geometric side, A 4 is the coordinate
algebra of the GIT quotient Rep(4, d) // GLy classifying 1somorph1sm classes of semi-
simple A-modules of dimension vector d. The following result will be important in this
article.

Theorem 2.7 ([33, Theorem 7.12.2, Proposition 7.13.2]; [18, Theorem 4.5]).
(1) Let {—, =)} be a double quasi-Poisson bracket on a B-algebra A. We define

{aij. buv} = {a. b}, {a. by,

fora,b € A. Then {—, —} defines a quasi-Poisson bracket on Ag. Furthermore, a
Hamiltonian double quasi-Poisson algebra induces a Hamiltonian quasi-Poisson
GLg-structure on Rep(A, d) in the sense of [1].
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(i) If A is equipped with an Hy-Poisson structure with associated Lie bracket {—, —}
then AIS’L" has a unique Poisson structure with the property

{tr(a), tr(b)} = tr{@, b},

where a,b € A, anda,b € A/[A, Al.

2.4. Application: Multiplicative preprojective algebras

A quiver Q is an oriented graph, with set of vertices I and set of arrows Q. We form
the double Q of Q with the same vertex set / by adding an arrow going in the opposite
direction for each a € Q. More precisely, define on Q the tail (resp. head) map ¢ : Q — [
(resp. h : Q — I) which sends an arrow a € Q to its tail/starting vertex ¢(a) € I (resp.
head/ending vertex i (a) € I). Then Q is obtained by adding an arrow a* : h(a) — t(a)
for each a € Q. We naturally extend /, ¢ to Q, and set (a*)* = a for eacha € Q in order
to get an involution a > a* on Q. Finally, define ¢ : Q0 — {#1} as the map which takes
value +1 (resp. —1) on arrows originally in Q (resp. on arrows in Q \ Q).

Fix a field k of characteristic zero, and form k Q as the path algebra of the double O
by reading paths from right to left. We also form the algebra 4 (Q) obtained by universal
localization from the set S = {1 4+ aa* | a € Q}. This is equivalent to add local inverses
(en@) + aa*)~! foreach a € Q (i.e., they are inverses to en(a) + aa® in ey gy A(Q)en()).
The algebras kQ and A(Q) are seen as B-algebras for B = D;er kes.

In their study of a multiplicative version of the important Deligne—Simpson problem
in representation theory, Crawley-Boevey—Shaw introduced multiplicative preprojective
algebras, whose representation schemes are multiplicative quiver varieties.

Definition 2.8 ([20]). Let Q be a quiver with vertex set /. Fix a total order < of the arrows
of Q. The multiplicative preprojective algebra with parameter ¢ € (k*)? is the algebra

A1(Q) := A(Q)/Ry.

where R, is the ideal generated by

[T +aa*y@ =" gses. (2.9)

aeé sel
and the product is taken with respect to the chosen total order.

Quite strikingly, Van den Bergh [33] realized that the natural Poisson structure on
multiplicative quiver varieties attached to Q is induced, via the Kontsevich—-Rosenberg
principle, from an Hy-Poisson structure (Definition 2.5) on A9(Q), which in turn is
induced by a Hamiltonian double quasi-Poisson algebra (Definition 2.4) on A(Q). As
emphasized in the introduction, our article can be regarded as a generalization of this point
of view to fission algebras, which generalize multiplicative preprojective algebras as we
will explain in Lemma 3.9. Therefore, for the reader’s convenience, it shall be convenient
to recall Van den Bergh’s results first.
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Theorem 2.9 ([33, Theorems 6.5.1 and 6.7.1, and Proposition 6.8.1]).

(i) Let Ay be the quiver with vertices {1, 2}, and one arrow a : 1 — 2. Then A(A3)
carries a Hamiltonian double quasi-Poisson structure given by the double quasi-
Poisson bracket

fa.a} =0,  {a*.a"} =0

1
fa,a*}} =e;1 Q@ex + E(a*a Qex +e; ®aa®);

1
{a*,ay = —e, ® e — ;@ ® a*a+aa* ® ey),

and by the multiplicative moment map ® = (1 + aa*)(1 + a*a)™".

(i) Let Q be a quiver with vertex set 1. Fix a total order < on the arrows of Q
ending at s, for each s € I. Then A(Q) carries a Hamiltonian double quasi-
Poisson structure, whose multiplicative moment map is given by

d = l_[(l + aa*)*@,
acQ
Here, the product is taken so that the factors {es(1 + aa*)*@De | h(a) = s}
appearing in e; ey respect the chosen total order.

(iii) Let Q be a quiver with vertex set 1. Fix a total order < on the arrows of Q ending
at s, for each s € 1. Then the multiplicative preprojective algebra (with parame-
ter q) A1(Q) is endowed with an Hy-Poisson structure, as defined in [18].

Remark 2.10. Note that we follow the convention of reading paths from right to left
in this article, as in the works of Boalch [12] and Crawley-Boevey—Shaw [20]. This is
different from the convention of Van den Bergh [33]. Therefore, the double quasi-Poisson
bracket from Theorem 2.9 (i) looks different from the one given in [33, Theorem 6.5.1],
and in (ii) we consider the ordering of the arrows ending (not starting) at a vertex.

3. The conjecture on fission algebras

In this section, we give a precise formulation of the conjecture on the noncommutative
Poisson geometry of the colored multiplicative quiver varieties introduced by Boalch. In
the first two subsections, we present the algebraic structures from [12] that are necessary
to state Conjecture 3.10.

3.1. Colored graphs and quivers
Throughout this subsection we partly follow [12, §3, 5].

3.1.1. (Colored) graphs. Let Y be a (non-oriented) graph, whose set of vertices is de-
noted by I, while its set of edges is denoted by Y.
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We say that Y is a complete k-partite graph if there is a partition of its vertices I =
Ll;cs 1; into k non-empty subsets labeled by J, |J| = k, and such that two vertices
i,i’ € I are connected by a single edge if and only if i € I; and i’ € I for j, j' € J
satisfying j # j’. In other words, two vertices are connected by one edge if and only if
they are in different parts of the graph.

Given Y a k-partite graph, we can define on it an ordering by a choice of a total order
of its parts (/;);es which we thus label by /1, ..., I, and a total order <; on the elements
of each ;. This induces a total order on the vertex set / of Y by putting i < i’ ifi € I;,
i"e Iy with j < j',orifi,i’ € I; withi <; i’. We then say that Y is an ordered k-partite
graph.

Definition 3.1. Let Y be a graph. We say that Y is a colored graph if there exists a finite
set C whose elements are called colors, and a map ¢ : T — C such that for each ¢ € C
the subgraph

Y.=clc)cY

is a complete k.-partite graph for some k., > 1.

Remark 3.2. Note that in [12] each preimage ¢! (c) is allowed to be a union of complete
k-partite graphs. Up to refining the choice of colors, this is equivalent to our definition.

3.1.2. Colored quivers. Given an ordered k-partite graph Y, we can see it as a quiver Y
by replacing each edge e between vertices i, j € I by anarrow i — j ifi > j, or an arrow
j — i if j > i. (Since the graph is k-partite, this operation is well defined). The quiver
Y obtained in this way is called a monochromatic quiver, or a simple colored quiver. The
name “color” here can be thought to refer to the chosen ordering.

Definition 3.3. Let Y be a quiver. We say that Y is a colored quiver if there exists a finite
set C whose elements are called colors, and a map ¢ : T — C such that for each ¢ € C
the subquiver

Y.=clc)cY

is a monochromatic quiver obtained from a complete k.-partite graph for some k., > 1.

Equivalently, we can define a colored quiver Y as a colored graph whose subgraphs
Y. are ordered, and hence the edges can be replaced by arrows.

Example 3.4. A 2-partite graph consists of one edge between two arrows, and the asso-
ciated simple colored quiver is of the form 2 — 1. We can then see that any quiver Q (in
the sense of Section 2.4) is a colored quiver. Indeed, if Q is a quiver with vertex set I, we
let C = Q and ¢ : Q — C be the identity. Then Q. = ¢~ !(c) is just ¢(c) 5 h(c), which
is a simple colored quiver.

3.2. Boalch algebras and fission algebras

Following Boalch [12, §12], we assume that Y is a colored quiver, with vertex set / and
color set C. We let Y denote the double of Y, obtained by adding a new opposite arrow for
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each arrow initially in Y. Specifically, let /. denote the vertex set of the subgraph Y, =
¢~ 1(c), hence of Y. Since this subgraph is complete k-partite, I, = Ly <jo<k, Le,j. and
there is exactly one arrow i —i"ifi € I j,,i" € I, jr,and i > i’ with j. # j.. This implies
that when we consider the double Y, we have for each color ¢ € C and distinct indices
Je, jl €{l,... kc} precisely one arrow Ve,iti 11— i’ foreachi € I j, andi’ € I, ;.

We construct an extension of Y, denoted Y, by doing the following procedure for each
colorc € C:

(1) foralli, j € I distinct, we add an edge w¢ ;; : j — i}

(2) foralli € I, weaddaloop y¢; :i —i.
The extension Y is a quiver, but it is not seen as a colored quiver. An example of an
extension for the complete 3-partite graph on 3 vertices is depicted in Figure 2.

Next, we fix a field of characteristic zero denoted by k and we form the path algebra

kY. Note that our convention on reading paths (see Remark 2.10) implies in the path
algebra that for any ¢ € C,

Ve,iti = €'V iri€i, We,ij = €ijWe,ij€j, Ve,i = €iVe,i€i,

where i, j € I, are distinct, and if i € I, j,, i’ is taken in a subpart I j; C I distinct from
1., ;.. We will use the path algebra kT of the extended double T to form a new algebra,
denoted B(Y). To state its definition, we introduce for any ¢ € C the elements'

Wet = 17, + g We,ij, We— = 17, + E We,ij, Ve = E Veis
i<j i>j iel,

Vet =17, + Z Ve,ijs  Ve— =11, + Zvc,ij,

i<j i>j

3.

where 17, := ) (.} es is the idempotent corresponding to the unit of the subgraph Y.

Definition 3.5. The Boalch algebra B(Y) is the algebra obtained by constructing the
universal localization (kY')s of the path algebra kY from the set S = {(1 — 17,) + ¢ |
¢ € C}, and taking the quotient by the ideal generated by the following |C | relations:

Ve Vet = WetYcWe—, ¢ €C. 3.2)
The localization is equivalent to adding local inverses yc_il € e;kYe; satisfying
-1 o —1
VeiVei = € = VYe,iVe,i

for each i € I, and ¢ € C. Using the idempotents, note that we can decompose (3.2) in
three different ways:

e+ Y VeikVeki = Vei + ) WeitVeWe i (3.3a)

k<i >i

'"We sum over indices i, j € I.. Note that there are elements We,ij, We,ji foreachi < j. We do not
necessarily have elements v, ;;, V¢, j; for each i < j, as we have such arrows if and only if i, j belong to
distinct elements of the partition /. = | |;¢; Ic,j. Thus, we set vc;; = 0if i, j € I, for some j. € J.
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Uc,ij + Z Uc,ikVc,kj = We,ijVe,j + Z We,itVe tWe, ) » fori < ja

kel s.t. Lel, s.t.
k<iand k<j {>i and £>j
(3.3b)
Vi + D VeikVekj = VeiWeij + Y WeitVedWeutj. fori > j.
kel s.t. Lel, st
k<iand k<j £>i and £>j

(3.3¢)

While the algebra 8(Y') is defined from an extension Y of the double quiver Y, we
are in a position to explain that it can be directly obtained from the path algebra kY. This
observation should be crucial to prove Conjecture 3.10, stated below. Indeed, we think
that the desired double quasi-Poisson bracket on B(Y) is always induced by one on kY
through localization. Therefore, the double quasi-Poisson bracket only needs to be defined
on each couple of generators taken from the arrows v, ;; € Y. This is the strategy that we
use to prove the new case of the monochromatic triangle T = A in Section 4.2.

Lemma 3.6. If Y is monochromatic, i.e., |C| = 1, there exists a chain of algebra homo-
morphisms over @y ke,

]kT::An — Apg = o= A1 = Ao = B(Y), n:=|I|,

such that Ap_y is obtained by localization of Ay at one element. In particular, if Y is an
arbitrary colored quiver, the Boalch algebra B(Y) is a localization of kY.

Proof. We first consider the case where Y is monochromatic, and we identify its vertex set
I with {1, ..., n} so that we identify the total orders on / and {1, ...,n} as well, see Sec-
tion 3.1.1. We denote the elements of Y as {v;;}, i.e., we drop the color index ¢ from the
discussion made above. The proof is a noncommutative analogue of [12, Proposition 5.3].

We show by descending induction that, starting with 4,, we can form an algebra Ay
by localization of A4 containing elements

Vi € Ak, viE € Ag YU >k, wyi, wig € Ag Vi < £ with £ > k, (3.4)

satisfying the relations from (3.3) that depend only on these elements (we drop the color
index ¢). For the base case, we note that 4, = kY contains elements satisfying (3.4)
because
Vn i=e€n + Z VnkVkn € An
k<n
satisfies (3.3a) since there is no £ > n. Next, A,_1 is defined from A, by localization
at y,,. We can introduce for eachi < n

. —1
Wip 1= (vin + Zvij vjn)Vn € Ap—1,

j<i

-1
Wni 1= Yy (Um' + Zvnjvji) € An-1,

j<i
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and then

Yn—1 ‘= €n—1 + E Un—1,jVj,n—1 — Wn—1,nYnWn,n—1 € An—l'
j<n-—1

We can observe that these elements satisfy the relations in (3.3), hence the base case holds.

Next, we assume that the induction hypothesis holds for A, and we define Ax_; from
Ay by localization at yg. Thus, we only need to find elements yx_1, Wk;, Wik € Ag—1
having the required properties, because we already have elements

yEIVE >k, wi, wig Vi < £ with £ > k,

belonging to Ay_; with the desired properties by induction and localization.
If we introduce for all i < k

. -1
Wik = (Uik+ S v — Y. wiewwek))/k € A1,

JEI st Lel st
j<iand j<k {>i and {>k
we easily see that (3.3b) is satisfied for i < j with j = k. In the same way, we can
introduce an element wy; for all j < k such that (3.3c) is satisfied for i > j withi = k.
It remains to find an element y;_; € Ax_;, which we define from the previously obtained
elements as

Vi1 1= e+ Y Vko1jVik—1— Y Wko10VeWek—1 € Ag_1.
j<k—1 k-1

This element satisfies (3.3a), so we are done.

By induction, we can obtain A;, which we then localize at y; to get Ag. All the ele-
ments have been constructed in order to satisfy (3.3), which is equivalent to the defining
relation (3.2) in B(Y). Thus A9 = B(Y) can be obtained by a chain of localizations, as
expected.

If T is an arbitrary colored quiver, we repeat the above construction for each color
¢ € C in such a way that we introduce elements (y.;, w¢,;i;) satisfying (3.2). To conclude,
it suffices to observe that we end up with B(7Y). |

Remark 3.7. Since path algebras of quivers are formally smooth, their localization is
formally smooth too (see [21, Proposition 5.3 (2)] or [29, §1.2, (C3)]). Consequently,
Lemma 3.6 implies that Boalch algebras B () are formally smooth.

Definition 3.8 ([12, §12]). Let T be a colored quiver. Construct the extended double Y
and the algebra B () as above. Fix an ordering of the colors at each vertex s € /. The
fission algebra with parameter ¢ € (k*)? is the algebra

FUY) := B(Y)/Ry,
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where R, is the ideal generated by the |/ | elements

l_[ Ye,s —dqses, S €I, 3.5)
{ceC|sel.}

where the product is taken with respect to the chosen order at the vertex s € 1.

Fix a colored quiver Y such that each monochromatic subquiver Y, = ¢~ !(¢) C T
consists of exactly one arrow; we call this the rautological coloring. Then, it is mentioned
in [12, §12] that fission algebras and multiplicative preprojective algebras are isomorphic.
In fact, the Boalch algebra B(Y) and the algebra 4(Y') defined by Van den Bergh (see
Section 2.4) are also isomorphic. We will prove this result as these isomorphisms will be
important to establish the simplest case of Conjecture 3.10, see Section 4.1.

Lemma 3.9. If Y is endowed with the tautological coloring, then
B(Y) ~ AY) and FIYT) =~ AI(Y).

Proof. We make the identification C ~ Y. For a fixed color ¢ € C, Y. = ¢~!(c) consists
of exactly one arrow which we denote by ¢ : ¢(c) — h(c). Going to the double Y, we add
¢* : h(c) — t(c). Let us simplify notations and put ¢ = ¢(c), h = h(c), so that ¢ = v, p,
¢* = v, with the above notations. We must take the ordering such that & < ¢, since by
definition there is an arrow in Y, fromi = ¢ to j = h if and only if i > ;.

Going to the extended double Y, we add Wepe it = h, Weyp th—1t,yc,:t—tand
Ye.n - h — h. The elements defined in (3.1) are

Wet = ept+er + We pt, We— =e€p+ e+ Werh, Ve =Ver+ Yeh

Vey =ep+e+c, v =ep+e + .

Hence, the algebra 8(Y) is obtained from kY by inverting ., (resp. yc,z) in e,]k:fe,
(resp. epkYeyp), then performing the quotient by the ideal generated by the following
relations (3.2):

(en + e+ c)en + e +¢) = (en +er + Wene) Ve + Ven)(en +er + Ween), (3.6)
for any ¢ € C. Decomposing with the idempotents, this amounts to

en = Ye,h + We,htYe,t We,ths
e +ctc = yeu.
C = We htVe,t»

*
C = YctWe th-

By invertibility of y. ; in e; B(Y)e; and y, ;, in e5 B(Y)ep, we find that

— a1 )
Weht = CVeyr> Wegth = Ve € -
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In particular, we can omit these elements from the generators of B(Y). Furthermore,
* _ _ * \—1 %
Vet =€ +C°C, Ve =€nh— WehtVetWerth = €h — cle; +cc)y 'c”.

Noting that [ej, — c(e; + c*c) " c*](es, + cc*) = ey, and the same holds when we multiply
Ye,n on the left-hand side by (ej, + cc™), we get that

Ve = (en +cc)7h

In other words, we have obtained that B(Y') can be seen as the path algebra kY localized
foreachc € C at

(I=17) + Ve + Vea = A= 17,) + (en + cc®)™" + (e + ¢*¢)
=(1+c*e)(1 +cc*)7 L,

or equivalently localized for each ¢ € T at 1 4+ cc*. Thus B(T) ~ A(Y).
To get the second isomorphism, we rewrite the defining relations (3.5) of B(Y) as

1_[ Ye,s = 4sCs; 3.7

ceC st

s=t(c) or s=h(c)
where the product is taken with respect to the ordering at the vertex s. Let us extend the
operation (=)* : ¥ — T \ Y, ¢ > c*, to an involution on Y. Introduce 7 : T — {£1}
by n(c) = —1lifc e Y,and n(c) = +1ifc € T\ Y. From the discussion made above to
get the isomorphism B(Y) >~ A(Y), (3.7) can be written as

l_[ (eh(c) + CC*)W(C) = (gsé€s,
ceY st
s=t(c) or s=h(c)

or, after gathering all these relations together,

[T+ =3 gses. (3.8)

ceY sel

This is the defining relation> of A9(Y°P). Here, the multiplicative preprojective algebra
A9(Y°P) is constructed from the (double T of the) quiver Y = Y \ Y obtained by
changing the direction of all the arrows in Y. But those algebras are independent of the
direction of the arrows in the initial quiver by [20, Theorem 1.4], hence

FUY) = A1(TP) ~ A4(Y),

as desired. [

2What differs between (3.8) and (2.9) is that the exponents are opposite, i.e., n(c) = —&(c).
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3.3. Noncommutative Poisson geometry of fission algebras: The conjecture

Recall from [12] that, for any colored quiver Y, the corresponding colored multiplicative
quiver varieties M (Y, g, d) are parametrized by semi-simple modules of the fission alge-
bras F4(Y). Indeed, they are GIT quotients of the spaces Rep(¥?(Y), d). Furthermore,
these varieties are obtained by quasi-Hamiltonian reduction from Rep(B(Y), d), since
the subspace Rep(¥7(Y), d) corresponds to fixing the value of a multiplicative moment
map. This suggests that there could exist a Hamiltonian double quasi-Poisson algebra
structure on B(Y'), for which [ [, y¢ s is the component of the multiplicative moment map
supported at the vertex s € I.

Conjecture 3.10. For each colored quiver Y, the Boalch algebra B(Y) is endowed with
a double quasi-Poisson bracket {—, —}} for which

=05 =[] vesceB(Ves (3.9)
sel {ceC|sel.}

is a multiplicative moment map. In other words, the triple (B(Y), {—, =}, ®) is a Hamil-
tonian double quasi-Poisson algebra.

Lemma 3.11. If Conjecture 3.10 holds on monochromatic quivers, then it holds for any
colored quiver.

Proof. Assume that Y is an arbitrary colored quiver with color set C. Then Y can be
obtained from the monochromatic subquivers Y. = ¢~ 1(c), ¢ € C, by suitably identi-
fying their common vertices, see, for example, Figure 1. Recall the process of fusion
described in [33, §2.5, 5.3], which allows to identify idempotents in an algebra. We check
that B(Y) can be obtained from the algebras B(Y.) by successively performing fusion
of their idempotents corresponding to the identification of the vertices in the quivers Y.
The process of fusion yields a Hamiltonian double quasi-Poisson structure if the orig-
inal algebras are endowed with one by [33, Theorems 5.3.1 and 5.3.2] (see [24, Theo-
rems 2.14 and 2.15] in full generality). Thus, we get a Hamiltonian double quasi-Poisson
algebra structure on B () if there is one on each B (Y, ), which is our assumption. In par-
ticular, the component of the multiplicative moment map in es B (Y)es, s € I, is a product

.>: — .\- —————————— ® < @ --------- °

Figure 1. The quiver Y contains two monochromatic pieces, whose colors are represented by the
solid and dashed styles of the lines. The quiver Y can be obtained from Y'; and Y5 by identifying
the vertices s and s”.
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of the monochromatic moment maps y. s for each {c € C | I, > s}. The latter product
depends on the order in which the fusion of the idempotents is performed (see again the
work of Van den Bergh [33]). Hence, we can take the order in which we perform fusion
to be such that it coincides with the order fixed at each vertex of Y, which finishes the
proof. |

Remark 3.12. Note that up to isomorphism, the order in which the fusion operation is
performed is irrelevant [25, Theorem 4.10]. Thus, up to isomorphism, the Hamiltonian
double quasi-Poisson algebra structure on 8(Y') only depends on the Hamiltonian double
quasi-Poisson algebra structure on each 8(Y,), which are the Boalch algebras associated
with the monochromatic subquivers.

Remark 3.13. We expect that, as a consequence of Conjecture 3.10, we get noncom-
mutative versions of [12, Corollary 6.6 and Theorem 6.7]. Regarding the first result, it
means that the Hamiltonian double quasi-Poisson algebra structure should only depend
on Y seen as a graph without ordering, up to isomorphism. Regarding the second result,
it means that for any bipartite colored graph Y (1, n) associated with the partition (1, n)
(it has one color and is called star-shaped quiver), the Hamiltonian double quasi-Poisson
algebra structure is conjecturally isomorphic to the one associated with the same graph
where each arrow is assigned a different color.

To close this section, let us recall from Section 2.3 that a Hamiltonian double quasi-
Poisson algebra structure induces a Hamiltonian quasi-Poisson structure on representation
schemes. Therefore, if the conjecture holds and the representation scheme associated with
B(Y) is not empty, it carries a quasi-Poisson bracket and a group-valued moment map.

Lemma 3.14. Let Y be a colored quiver with vertex set I, and set B = @ kes. Given
a dimension vector d = (dy) € Zéw define the representation scheme (relative to B)
Rep(B(Y), d) as in Section 2.3. Then Rep(B(Y), d) is not empty, and we have

dimy Rep(B(Y).d) =2 Y _ di(wydna)- (3.10)
aeY

Proof. Set N = Y ; d;. For the first part, note that the assignment py;, given by
ptriv(wc,ij) = Op, ptriv(vc,ij) = Op, Ptriv(l —e + Vc,i) =Idny, i,j€l; ce C,

completely determines a representation pyiy : B(Y) — End(C?) relative to B by defini-
tion of B(Y).

For the second part, we have seen in Lemma 3.6 that 8(Y') can be obtained by local-
ization of kY. Thus, if Rep(B(Y), d) is not empty, it has the dimension of Rep(kY, d)
which is given by the right-hand side of (3.10). ]
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4. Towards the conjecture: The monochromatic interval and triangle

4.1. The monochromatic interval 7

We consider the simplest colored quiver I, which consists of one arrow vy, : 2 — 1. By
definition, the algebra 8 (1) is generated by the symbols

e1, ex Uiz, Va1, w2, war, yi', yil, 4.1
subject to the idempotent decomposition ey + e; = 1, eje; = 0 = ezeq, and
V21 = exVz1€], V12 = ejvizey, Wiz = ej1Wizey, w21 = exWz1e€q,
yi! = eryiler. yi = exys e, vivit =€ =vily,
together with the relation
(1 +v21)(1 +v12) = (1 + wi2)(y1 + y2)(1 + wa1).

As part of Lemma 3.9, we have seen that? this relation amounts to

-1 -1
Y2 = €3 + V21012, Wi2 =V12Y, , W21 = Y, V21,

" )
Y1 =e1 — Wi2Y2w21 = €1 — Vi2(e2 + v21V12)” V21 = (€1 + vi2v21) .

In particular, ey, €3, v12, V21 (and the inverses yj_l) generate the Boalch algebra 8(7).

Meanwhile, as we pointed out in Theorem 2.9 (i), we know from Van den Bergh’s
theory [33] (which is written for the opposite convention—see Remark 2.10) that A(I) is
a Hamiltonian double quasi-Poisson algebra for the double quasi-Poisson bracket

{{Ulz, Ulz}} =0, {{UZI, v21}} =0,
1
{var,v2ff = e1 ®ex + E(U12U21 ® ey +e1 ® va1V12), 4.3)
1
{viz, 121} = —e2 ® ey — 5(6’1 ® Vi2V21 + V21012 ® €1).

Note that the last equality is equivalent to the third one using the cyclic antisymmetry
(2.1). It is a simple exercise using (4.2) to show that ® := y; 4 y, is a multiplicative
moment map, since y; and y; satisfy (2.7) with s = 1, 2 respectively. Indeed, it suffices
to prove the claim on vq,, V31, and we can compute from the above double brackets that

1 1
{2, vi2} = 5(U12V2 ®ex+ V12 @ y2), vz, v21} = —5(6’2 ® Yav21 + ¥2 @ v21),

1 1
{yi, v} = —5(61 ® y1v12 + Y1 ® v12), {y1,v21} = E(Uzl)’l ®e1 + v21 ® y1)-

Gathering these observations together, we obtain the first instance of Conjecture 3.10.

3The vertices 1,2 correspond to &, t while v;5, vy correspond to ¢, ¢* respectively.
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Proposition 4.1. Let I be the monochromatic graph with two vertices and one edge, with
partition of the set of vertices {1} LU {2}, and B = ke; @ ke,. We construct the associated
Boalch algebra B(1) as above. We define a B-linear double bracket on B(I) from (4.3)
by using the cyclic antisymmetry (2.1) and the Leibniz rule (2.2). Furthermore, consider
the element

=y + 2.

Then the triple (B(I),{—, —}, ®) is a Hamiltonian double quasi-Poisson algebra.

If we want to understand the double quasi-Poisson bracket in terms of all the genera-
tors (4.1) of B(Z), it suffices to perform some elementary computations. In particular, we
will need the following identities that follow from (4.2):

Wi12Y2W21 = V12W21 = Wi12V21 = €1 — Y1, VU21V12 = Y2W21V12 = V21W12)2 = Y2 —€2.

Lemma 4.2. The Boalch algebra B(I) equipped with its double quasi-Poisson bracket
from Proposition 4.1 is such that

fviz, vi2}f = 0 = a1, v21 ),

1
fva1, vi2f =e1 Q@ ex + §(U12021 ® ez + €1 ® V21V12),
1
w21, v21}f = §(w21 ® V21 + V21 ® Way),
1
{wiz, vz} = _E(w12 ® viz2 + V12 ® wi2),

1 _ 1
{w21,v12} = 56’1 Q Vs s 5)/1 ® ea,

fwiz, v21}} = —%()/2_1 ®e1 +e2® 1),
{wiz, wiz}} = 0 = {war, war }},

_ 1
{war.w) =@y ' — §(w12w21 ® e +e1 Q@ wawiz).

Proof. The first three identities are just (4.3). The next two are obtained by a direct com-
putation using those identities and the moment map property for y,. For example, using
the decomposition

w21, v21 ) = 7/2_1 * {var, V21 )} — )/2_1 * {y2, V21 )} * War.
We then find {wi,, w1z} and {ws1, waq )} easily. Next, we note that

{war. v} = {¥5 'v21. v12})

_ 1 1 _ 1
=e1®Y, T4 —(e1 @ W21V12 —Vi2W21 Qex) = —e1 Q Y, s 71 ® es.

e—y; ! e1—v1
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We can also find {w;,, vp1 )} in this way. Finally, we can get from these expressions

{war, wiz} = {war, vi2lyy ' — winfwar, y2 )y !

1 _ _ 1 _
5(61 X Vs 2 4 Y1 Q Y, l) - §(w12)’2w21 X Y, ' wiwa ® e2)

1 -1 1 —1
e ®[y; —waiwiz] + SN ® ¥,

1[ 1@yt ! ®
— =le1 — — —wiaW e
5 1— N 1) ) 12W21 2

_ 1
V1 ® Y, ' E(w12w21 ® e+ e1 @ wrwiz),

which is the last identity. ]

Remark 4.3. Combining Lemma 3.11 and Proposition 4.1, we get that if T is an arbitrary
colored graph with the tautological coloring (that is, its edges have all different colors),
then B(Y) carries a Hamiltonian double quasi-Poisson structure. By construction, it is
obtained by fusion of the Hamiltonian double quasi-Poisson algebras associated with
the disjoint arrows of Y, hence this is equivalent to Van den Bergh’s result [33, Theo-
rem 6.7.1].

Using the Kontsevich—Rosenberg principle, we then get a quasi-Poisson bracket and a
group-valued moment map on representation schemes. This induces the Poisson structure
on multiplicative quiver varieties (in the original sense of [20,35]) uncovered by Van den
Bergh [33, Theorem 1.1].

4.2. The monochromatic triangle A

Consider the monochromatic triangle A whose set of vertices {1, 2, 3} has the partition
{1} L {2} U {3}. Following Boalch’s convention as in Section 3.1, we take the arrows such
that va3 : 3 — 2, v13 : 3 = 1, v12 : 2 — 1. Next, as explained in Section 3.2 and depicted
in Figure 2,

(i) we add the opposites v;; : j — i forany i # j, giving the double quiver A;
(ii) we add the elements w;; : j — i forall j # i and y; : i — i foralli to form A.

This means that we can see the Boalch algebra B(A) as being generated by the symbols

€, €2, €3, Vi2, V21, V13, U3i, Uz3, V32,

+1 +1 +1
Yi - Y2, Y3, Wi2, W21, W13, W31, W23, W32,
subject to the relations induced by the idempotent decomposition 1 = e; + e + e3,

€ e = Sikei, Vij = €jvjje;, Wi = ejwjje;, Vi = €;jYi€j, i,j,k € {1,2,3}, I 75 j,
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A Ay

1’\/ 3

Quiver A Quiver A A Quiver A

Figure 2. The quivers A, A, and A used to introduce the algebra B(A). In A a loop based at the
vertex i represents y;, while a plain (resp. dashed) arrow from the vertex i to the vertex j represents
vji (resp. wjj).

the invertibility conditions y;y;” l—¢ = yl-_ly,- fori € {1, 2,3}, as well as the following
relation obtained from (3.2):
(14 v21 + v31 4+ v32)(1 + vi2 + Vi3 + v23)
= +wiz+wizs+ws)(y1 +y2 + 31+ war +war +wsz). (44)

Decomposing (4.4) with respect to the idempotents, it is equivalent to the following
nine identities in B(A):

e1 = Y1 + Wi2y2W21 + Wi3Y3wsi, (4.52)

V12 = Wi2)2 + W13Y3W3z, (4.5b)

V13 = W13Y3, (4.5¢)

V21 = Y2W21 + W23Y3W31, (4.5d)

€2 + V21012 = Y2 + W23Y3W32, (4.5¢)

V21013 + V23 = W23Y3, (4.51)

V31 = Y3W3i, (4.52)

V32 + U31V12 = Y3W32, (4.5h)

€3 + VU31V13 + U32V23 = V3. (4.51)

Remark 4.4. Note that by Lemma 3.6, we can conclude that e;, v;;, v;;, and y;” 1 for
1 <i < j <3 generate the Boalch algebra B(A). Furthermore, we can observe from
(4.5) that the chain of localizations kA — B(A) is obtained by iteratively introducing
and then localizing at the following elements:

Y3 = €3 + V31013 + V32023,

Y2 = ez + V21012 — (V21013 + U23)V3_1(1)32 + v31V12),



On the noncommutative Poisson geometry of certain wild character varieties 791

Y1 =e1 —v13y; ‘a1 — [vi2 — v13y; (032 + vaivi)]ys
w21 — (va1v13 + v23) Y3 M3
Let B = ke; @ ke, @ kes. Building on Remark 4.4, we can introduce a B-linear

double bracket {—, —}} on B(A) by first specifying its expression on the arrows v;;, for
i,j €{1,2,3} andi # j. We start by setting

{vij,vij )} =0,
1 1
{{Ulz, 1)13}} = EUIZ ® V13, {{012, U32}} = §U32 ® V12,
1 1
fvar,va1} = —5031 ® v21, {va1, v23) = —51)21 ® V23,
1 1
{v13,v23)) = 5023 ® v13, {13, v32)} = —56’3 ® V13032,
1 1
{31, v23)} = 50231)31 ® es, {va1,va2}} = —5031 ® V32,
1
iz, v21ff = —e2 ® ey — 5(62 ® V12V21 + V21012 ® €1),
1 4.6)
{viz, a1} = V31t ®e; —v3 Qey,
1
{1z, v23} = —56’2 ® V12V23 + €2 ® V13,

1
{va1,v13)} = 561 ® V2113 + €1 ® V23,
1
{va1,v32)} = 50321)21 Q@ ex — V31 Q ey,
1
{vi3,v31}} = —e3 @ e1 — V32023 Q €1 — 5(63 ® v13V31 + V31013 @ €1),

1
{va3, v32)} = —e3 @ ex — 5(63 ® V23032 + V32023 ® €3),

so that using the cyclic antisymmetry (2.1) and the identities (4.6), we can define {—, —}}
on all the remaining pairs of arrows v;;, which we can then extend to kA by the Leibniz
rules (2.2)—(2.3). Note that (4.6) descends to the Boalch algebra B8(A) by Lemma 3.6.
Therefore, gathering the identities (4.5) and (2.1)—(2.3), we can obtain the rest of the
expressions for the double bracket {—, —}} when evaluated on the other elements of B(A).
For the reader’s convenience, we collect them in Appendix A.

Theorem 4.5. Let A be the monochromatic triangle, with partition of the set of vertices
{1} U {2} U {3}, and B = ke; @ kex @ kes. We construct the associated Boalch algebra
B(A) as above, and define a B-linear double bracket on B(A) from (4.6) by using the
cyclic antisymmetry (2.1) and the Leibniz rule (2.2). Furthermore, we consider the element

D=y + 2+ ys. .7
Then the triple (B(A), {—, —}, @) is a Hamiltonian double quasi-Poisson algebra.
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Proof. We will prove that the double bracket is quasi-Poisson as part of a more general
result, as described in Section 5. To prove that (4.7) is a moment map, we need to check
that the multiplicative moment map condition (2.7) holds by using (4.5). Moreover, using
the Leibniz rule (2.2), it is enough to show that (2.7) is satisfied for generators of B(A),
which we take to be the arrows v;; by Lemma 3.6.

Firstly, we shall prove that (2.7) is satisfied for v{,. By (4.51) and (2.3),

fy3, vi2) = {(e3 + v31v13 + v32023), 12}
= {vs1, 12} * V13 + V31 * {U13, V12 + {V32, V1)) * V23

+ v32 * {v23, v12)}

1 1
= §U13 ® V31V12 + V13 ® V32 — 5013 ® V31V12

1 1
— 5 V12V23 ® vz + V12023 ® vz — V13 Q@ vz =0.

This agrees with (2.7) since e3v1, = 0 = vyze3. Similarly, using that {v15, v12}} = 0 and
{y3,v12) = 0, by (4.5¢) we have

{2, vi2) = {(e2 + v21V12 — Wa3y3W32), V12 )}

= {21, Vi2}} * V12 — w233 * {w3z, vi2} — w23, viz) * yaws

1
=v12 Qe+ 5012 ® (V21V12 — W23Y3W32)

1
+ EUIZ(U21v12 — W23Y3W32) @ €

1
= 5(012 ® y2 + vi2y2 ® e3),
which is (2.7). Finally, by (4.52),

vz = {(e1 — wi2y2w21 — wi3y3wsy), V12j)
= —wi2V2 * {war, iz} — wiz * {y2, vi2} * war — {wiz, v21}} * yowo

—wi3ys * fwar, vz — wis, vi2}} * yawsg

1
= —e; ® (Wi2)2 + Wizy3ws32) + 561 ® (Wi2Y2W21 + W13Y3W31)V12

1
+ E(wm/zwm + wi3Y3Ws31) ® V12
1
= 5(012 ® y2 + vi2y2 ® e2),

where we used (4.5b) and (4.5¢), showing (2.7) applied to vy, holds. Since the proof of
(2.7) applied to vy is quite similar, we leave it to the reader.
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Next, we focus on the generator v;3. Since {v;3, v13}} = 0, by (4.51) and (2.3),

Ly, viz) = {vs1, vzl % viz + vaz * {23, i3} + {va2, Vi3 * 23

1 1
=v13Qe3 + 5U13(v31013 + v32023) @ e3 + SV13 ® (v31v13 + V32023)

1
= §(v13 ® y3 + v13y3 ® e3).
Similarly, by (4.5¢) and (4.5f),

{y2.vi3) = {va1, via} * viz2 + v21 * {2, Vi3
— wa3Y3 * {Waz, Vi3 — waz * {¥3, Vi3 k wip — {was, viz) * y3wss
= V12 @ V21013 + V12 ® V23 — V12 & W23)3

= V12 @ V21013 + V12 ® (W23Y3 — V21V13) — V12 ® wa3y3 = 0.

Finally, we state the multiplicative moment map condition for y; and v3. Applying
(4.52) and (4.5¢),

{1, vish = —wiayz * {war, vz} — {wiz, viz)} * yawa
—wi3Ys * qWwar, iz — w3 * {y3. viz) ok w3 — wis, vizf * yawsg

1
= 561 Q@ W12Y2W21V13 + Ewlzyzwm Q vz —e; @ Wi3ys

1 1
+ 581 Q@ W13Y3ws31V13 + §w13)/3w31 ® v13

1
=—e1 Q@V13 + 561 ® (W12y2W21 + W13Y3W31)V13
1
+ E(wlz)/zwzl + wi3y3wsr) @ Vi3
1
= —5(6’1 ® y1v13 + y1 ® v13),

as we wished. Since the proof of (2.7) concerning v3; is similar to the case that we just
showed, we leave it to the reader.
Now, we shall prove (2.7) for v,3. To start with, by (4.51),

{ys. vas}

{31, v23 )} * V13 + V31 * {13, Va3 l} + {v32, Va3 ) * V23
=v3 ®e3+ %023 ® (v31v13 + V32023) + %023(1)31013 + v32023) ® €3
= %(v23 ® y3 + v23y3 ®€3).

Next, by (4.5¢) and (4.50),

{y2, v23} = va1 * {vi2, va3 + {v21, Va3 * V12

— W23Y3 * §Waz, Va3 — wa3 * {¥3, Va3l * w3z — {was, va3 )} * 3wz
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1
= ez ® (V21v13 — W23Y3) + 582 ® (W23Y3W32 — V21V12)V23
1
+ §(w23)/3w32 —V21V12) ® V23

1
= —5(62 ® Y2023 + Y2 ® v23).

Finally, the last case to study deals with y; and v,3,

{1, v23) = —wiay2 * {war, V23 — Wiz * Ly2, vaz ) * war — {wiz, v23)} * yawa
—wi3ys * qWwar, vaz ) — wiz * {¥3, vz k w3 — {wis, va3 ) * y3wsg
1
= —szl ® Wi2)2V23 + szl ® Wi12)2vV23 + §y2w21 ® w1223

1
- §V2w21 ® wizv23 + §U23w31 & w13y3

1 1 1
- 5U23w31 ® wi3y3 — §U23)/3w31 ® wyz + §v237/3w31 ® w3

=0.

Due to the similarities, the reader can check that the multiplicative moment map condi-
tion (2.7) applied to vs; holds. ]

Now, under the notations of Theorem 4.5, and given a dimension vector d =
(dy1, d3, d3) with N := d; + d, + d3 as in Section 2.3, we consider the representation
scheme Rep(B(A), d), which is acted on by the group Gg = [[;c; GL4, (k), with k
an algebraically closed field of characteristic zero. Combining Theorem 4.5 with Propo-
sition 2.6 and Theorem 2.7, we obtain the following two interesting corollaries, which
match with Boalch’s results.

Corollary 4.6. Using the notation introduced in Section 3.2, the following holds:

(1) The fission algebra ¥ 1(A) admits an Hy-Poisson structure (in the sense of Defi-
nition 2.5).

(ii) The Hy-Poisson structure on ¥ 4(A) induces a Poisson structure on (¥4 (A))ng ,
the coordinate ring of the colored multiplicative quiver variety attached to A.

Corollary 4.7. The Hamiltonian double quasi-Poisson algebra (B(A), {—, =}, ®) in-
duces a Hamiltonian quasi-Poisson GLg-structure on Rep(B(A), d).

Note that Boalch [12, Corollary 5.7] proves in particular that Rep(8B(A), d) carries a
quasi-Hamiltonian GL;-structure (our Rep(B(A), d) corresponds to his “space of invert-
ible representations”) in the sense of [2, Definition 2.2] (after complexification), that is, a
triple consisting of a GL4-variety, an invariant 2-form, and a GL;-valued moment map.
Hence, as emphasized in the introduction, we expect that the double Poisson bracket
{—. —}} on B(A) obtained in Theorem 4.5 to be nondegenerate (see [34, Theorem 7.1]),
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thus, giving rise to a quasi-bisymplectic algebra [34, §6] that induces the quasi-Hamilton-
ian GLg-structure of [12, Corollary 5.7], via [34, Proposition 6.1]. Indeed, we expect that
Conjecture 3.10 can be updated by stating that for each colored quiver Y, the Boalch
algebra B(Y) carries a quasi-bisymplectic structure (cf. also [10, Remark 4.4]). We will
explore this line of research in a separate work.

Further, another consequence of Theorem 4.5 involves pre-Calabi—Yau algebras. A
pre-Calabi—Yau structure on a graded vector space is a solution of a certain Maurer—Cartan
equation formulated in terms of the so-called (generalized) necklace bracket (see [30]).
Geometrically, a pre-Calabi—Yau structure can be seen as a noncommutative shifted Pois-
son structure, since Yeung [36] proved that they induce shifted Poisson structures on the
derived moduli stack of representations in analogy with the Kontsevich—Rosenberg prin-
ciple. Furthermore, [27, Theorem 5.1] states that double quasi-Poisson algebras induce
pre-Calabi—Yau algebra structures. Hence, this result, combined with Theorem 4.5, gives
a pre-Calabi—Yau algebra structure on the Boalch algebra B(A), which we expect to be
nondegenerate, giving rise to a (right) Calabi—Yau structure. It would be interesting to
show how this structure descends to the fission algebra ¥ (A). In this direction, let us
note that some recent works have investigated (left) Calabi—Yau structures [14] and the
2-Calabi—Yau property [28] for multiplicative preprojective algebras and their differential
graded versions. Since by Lemma 3.9, they are particular examples of fission algebras, it
seems natural to search for analogous results in the case of colored quivers, with F7(A)
the first new case to investigate.

5. Proof of the quasi-Poisson property in Theorem 4.5

The algebra B(A) is obtained by localization of kA due to Lemma 3.6. Furthermore,
the double bracket given in Theorem 4.5 can be directly defined on k A—see (4.6). Thus,
if we show that this double bracket on kA is quasi-Poisson, it will also be the case on
B(A) by localization and we are done. We will prove the quasi-Poisson property on kA
in Section 5.6 as a particular case of a general construction that is explained in Section 5.1.
We expect that the general construction that is carried out in Sections 5.1-5.5 can be useful
to prove Conjecture 3.10 in the case of the monochromatic complete n-partite graph on n
vertices.

5.1. General conditions for a double quasi-Poisson bracket

Fix n > 2 and let K,, be the complete n-partite graph over n vertices. Following Sec-
tion 3.1, we fix a total order on the vertices which allows us to identify them with 7, =
{1,...,n}. The induced colored quiver Q, has for double Q,,, which can be seen as the
quiver over the vertex set /, with arrows v;; : j — i foreachi # j.

We define a double bracket on k@n as follows. Foreachi =1, .. .,n, we introduce two
skewsymmetric matrices @, B¢ whose entries along the i-th row and the i-th column
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are zero. That is, the entries satisfy

J(;c) = —a,(clj) (’) =0= a]('l), foralll1 < j, k <n,
B =B, ,3(’) =0=p%9, foralll<jk<n.
We also introduce for each i = 1,...,n two matrices ,bL(i), v® whose entries along the

diagonal, the i-th row and the i-th column are zero. That is, the entries satisfy

/Ll(;) =0, /Ll(;) =0= ,u](’l), v](;) =0, vl.(]’:) =0= v;?, foralll < j <n.
Finally, for any triple of strictly decreasing indices i > j > k, we choose an arbitrary
K](-l’k) € k. We let K](-l’k) = 0 whenever the condition i > j > k is not satisfied. We then
define for i, j, k,l € I,

{vij.vij}} = 0. (5.1
{vij, v} =0,  for{i, jyNik,1} =0, (5.2)
{{v,,,vk,}}—alk Uk ® v, (5.3)
{vij. vk = ,31(»1 vij ® Vil (54
{{vz,,v,z}} ({)e, ® vijvj1 + vF{)ej ® viz, (5.5
{{vij, vki}} _/’L]((lj)vklvlj Ke — V]EJ)Uk] ® ej, (5.6)

i 1 1 .
{vij. vji} izJ e; e + Evj,-vij Re; + Eej ® vijvj; + Z thl’J)ej ® VigVai,
i>a>j

5.7

i<j 1 1 7))
{{Uij, l)ji}} = —ej Qe — Evj,-v,-j ® e — Eej ® Vijvji — Z Kb] VipUpj R ei,
i<b<j

(5.8)

which can be checked to be a double bracket on kQ,,. In particular, if v,, appears on
the left-hand side with @ = b, the right-hand side vanishes; this is consistent with the fact
that there is no generator v,,. For later use, we note that the last two expressions can be
gathered together as
. 1 1
{vij.vji}y =sgn(@ — j)|ej @ e; + Evﬁv,-j ® e; + Eej ® vijvji
+ Z K De; @ viguai — Z Kl(,j’i)vjbvbj ® e,

i>a>j i<b<j

where sgn is the sign function and we follow the convention that a sum over an empty set
vanishes.
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We want to compute the triple bracket (2.4) on generators, which is given by

{vijs virs vpg}t = Luij, vkt vpg B + Ta23) {vrr, {vpg. vij L
+ t(132){Vpg. Lvij, v M) -
For the double bracket to be quasi-Poisson, we need to impose that the triple bracket
coincides with (2.5) for all indices, which will impose conditions on the coefficients in

(5.1)—(5.8). Thus, we will compute the above triple bracket using (5.1)—(5.8), and equate
it to the desired triple bracket

1
fvij, v, qu}}qp = 1 Z(quesvij ® esVp Q €5 — UpgesVi; @ €5 @ Vgjes)
sel

~ 3 Z(ques ® vijesVr @ es — Upges @ vijes @ vgjes)
sel

1
- Z Z(esvij R esVg] Q esVpg — esVij Q es vklesqu)
sel

1
+ 1 Z(es ® VijesVkl @ esVpg — s @ Vijes @ UgiesVpg).
sel

We note from this expression that {vij, vk, Upg Jiqp = O trivially if there is no index s
appearing simultaneously in the index sets {i, j}, {k,[} and {p, g}. We also remark that
since v, = 0if a = b, we only need to consider the cases where i # j,k # [ and p # q.
For example, if i = j, we directly get {vij, vkr, Upg)} = 0 and {vi;., vki, Vpgfigp = 0.

We will study the quasi-Poisson property on {v;;, vk;. Vpq}} according to different
cases. They depend on the cardinality of the intersection of the sets of “first” and “second”
indices

S={i,k,ptn{j.l.q} (5.9)

as follows:

Case 1. S = @ (considered in 5.2);

Case 2. S = {x} has cardinality 1 (considered in 5.3);

Case 3. S = {x, *} has cardinality 2 (considered in 5.4);

Case 4. S = {, *, o} has cardinality 3 (considered in 5.5).

We recall that we will always assume that i # j, k # [ and p # g, though we will not
always write these three conditions.

5.2. Conditions obtained from Case 1

Lemma 5.1. When S given by (5.9) is empty, the quasi-Poisson property holds for
{vij. i1, vpg ) if and only if the following two conditions are satisfied:

(i) either j =1 =q, orwe havei = k = p and

ﬂ(l)ﬁ(t) +/3(l)ﬁ(l) ’3(1),3](’1) = _- (5.10)
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(ii) eitheri =k = p, orwe have j =1 = q and

«Dal) 4¢P 4 (Dol = 1
+otkp pi T O o 1 (5.11)

Proof. We first compute that
{17 AVkr Vg Wi = S1pBL ik B vi ® Vit ® Vpg + 810 Vit ® vij ® vpgl

+ 51q“;(f,3 [6ip ]('i;) Vij @ Vpg & Vg1
+ (qu“z'(;)qu ® vij ® k1],

2340kt {Upg. Vi Wi = 8ip B Bkp Bl Vij ® Vit ® Vpg + S1g0f ) vij @ Vpg @ Vi)
+ Sq,oz(”[(‘sklﬁl] Upg ® V1 ® Vij
+ 81./'0‘ki Upg ® Vij ® vkil,

t132) g, Lvij. vt = Sik/s](-? [Spi,B;ij)vij ® Vg1 ® Upg + qua](){)qu ® vir @ vij]
+ 8107 [,k BYy vkt ® vij ® vpg
+ 5q106pkqu ® vij ® vgy].

After some simplifications relying on the skewsymmetry rules oz(a) (a) and /3(”) =

—,Bi ), we get that

(i vit. Vpa = ik SipBS) B + B BY) + BY BYY 10ij ® Vit @ vpg

—§; 151(1[0[1(,]{)()61({]; + Ot](cjp) 1(711) + Oé(J)Oll(ljc)]qu ® Vij ® vgg.

We also compute

1
{Vij s Vit Vpg g = Z(5j151qqu ® vij ® Vg1 — ik SkpVij ® Vg1 ® Vpg).

Both triple brackets vanish wheni = k = p and j = [ = ¢, while in the remaining cases
it suffices to equate the coefficients of the two triple brackets in order to find the claimed
conditions. ]

Remark 5.2. As a special case of Lemma 5.1, we recover the easy result that there are no
conditions to verify for {v;;, vij, vij } = 0 = {vi;, vij, vij Jgp-

5.3. Conditions obtained from Case 2

The single element » appearing in the intersection can occur either
Case 2.1. oncein {i,k, p} and once in {j, [, q};
Case 2.2. once in {i, k, p} and twice in {j, [, q};
Case 2.3. twice in {i, k, p} and once in {j, 1, ¢}.

As we assume that i # j, k # [ and p # ¢, there is no other case because all the other
possibilities would lead to having an element v;;, vk;, Vpq Of the form v,,.
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5.3.1. Case 2.1. From the cyclicity of the triple bracket given as (see Section 2.1)
{—— ) =taepof{———Jo T(_153)v
we can assume without loss of generality that either j = k = x,0or j = p = *.

Lemma 5.3. When S given by (5.9) is such that S = {x} with x = j = k, the quasi-
Poisson property always holds for {v;i, Vi, Vpq )}-

Proof. The condition on S implies that i, p # k, with [ # i, p,k and ¢ # i, p, k. Thus,
we compute that

(i A0rr- Vg Wi = —Ta23) {0kt 0pg vk WL = BipBigoiaBiIvik ® Vpg ® it

and {vpq, {vik, vk} = 0. Hence {vix, vki, vpg Jt = 0. Since {vij, vir, vpg Jiqp = 0, both
triple brackets vanish. ]

Lemma 5.4. When S given by (5.9) is such that S = {x} with x = j = p, the quasi-
Poisson property holds for {vip, vk, Vpg ) if and only if the following condition is satisfied:

oD [S1q () + ) + 8 (B + B = 0. (5.12)

Proof. The condition on S implies that i,k # p, with [ # i,k, p and g # i, k, p. We
compute

1
{vip. Qvrr. vpa i = SIqW,E;M,(f]’)ep ® VipUpg ® Vki

1
l(qzvi(tf)el’ & Vig & Vg,

1
7(123){{7)1617 {{qua vip}}}}L = —81qa,(€13u§§)ep ® VipUpg ® Vi1

I
- 31q0l,(ci)vi(5)ep ® Vig ® Vi1

+ 84

- 8ikﬂl(;,),“§5)ep & Vi1 & VipUpq

- 5ikﬂl(;)v,~(5)€p ® vk ® Vig,

T(132){{quv {{vip’ vkl}}}}L = _Sikﬂl(,ll)ﬂgg)ep ® Vi1 ® VipUpq

- 8ikﬁ;ll)vi(5)ep & Vi1 Q Vig.

After easy cancellations using the skewsymmetry of 8¢, we obtain

L o
{ip. vir. vpg} = v [S1g () + o)) + 8k (BY + Bi)ep ® vit & vig.

Since {vip, Vi, Upgllqp = 0, the quasi-Poisson property holds if and only if (5.12) is

satisfied. [

5.3.2. Case 2.2. Using the cyclicity of the triple bracket, we can assume without loss of
generality thati =/ = g = .
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Lemma 5.5. When S given by (5.9) is such that S = {x} with x = i =l = q, the quasi-
Poisson property holds for {vij, vri, vp; )} if and only if the following two conditions are
satisfied:

L , .
vy [“z(cl; + Mz(f} + 8B =0, (5.13)
@ @ @), @) @ G 1

XepHicj — Yptp; = Hpjtlij = e (5.14)

Proof. The condition on S implies that j, k, p # i, with j # k, p. We compute

{vij, Aok, vpi B = —a](ciﬂl(,lj)vpivij ® e ® vk — a](czvl(,_li)vpj ® e ® Vg,
T lvpi v v P = —e QU vpiviy ® ei @ Vi — o) 1 vpivij ® €5 ® v

N o G
— ng?v;})vpj Ke Vi — Skpﬂi(j)v,(c’j)vkj ® e Q vp,

while {vg;, {vpi, vij }}}; = 0. Summing the above terms, we get {v;;, vk, Vp; J}. Mean-
while, we can see that
1
{{Uij, Vki» Upi}}qp = _vaivij ®e Q V.

Thus the two triple brackets are equal if and only if (5.13) and (5.14) hold because these
are the coefficients of the terms v,; ® e; ® vk; and vp;v;; ® €; @ Vg, Tespectively. =

5.3.3. Case 2.3. Using the cyclicity of the triple bracket, we can assume without loss of
generality that j =k = p = *.

Lemma 5.6. When S given by (5.9) is such that S = {x} with x = j =k = p, the quasi-
Poisson property holds for {v;j,v;1, vj4} if and only if the following two conditions are
satisfied:

v B + 1D + 1400 = 0, (5.15)
Bt = B ud + P u) = %. (5.16)
Proof. The condition on S implies thati,/,q # j, withi # [, g. We compute
{vij . Avje. v iz = ﬁl(;)uf{)ej ® ijVj1 ® Vjg + ﬂl(é)”i(lj)ej ® Vi ® Vjg,
t123) 81, {vjg, vij Y3 = Mfé)(ﬂ,({) - ﬁ,(;))ej ® vijvj1 ® vjg
+ "i(lj)(“g) - Slq“;?)ej ® vi ® vjq,

while {vjg, {vi;, v}, = 0. Summing all these terms, we get {v;;, vj;, vjq}}. Mean-
while, we can see that

1
Hvij vj- vighep = 7€ ® VijUj1 ® vjg-

Thus the two triple brackets are equal if and only if (5.15) and (5.16) hold by matching
the coefficients of the terms e; ® v;; ® vj4 and e; ® Vi V1 ® Vjg. [
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5.4. Conditions obtained from Case 3
The distinct elements «, * appearing in the intersection S can appear in the sets {i, k, p}
and {J, [, ¢} according to the following cases:

Case 3.1. * and * both appear exactly once in each set;

Case 3.2. % appears twice in {i, k, p} and once in {J, /, ¢}, while * appears once in
each set;

Case 3.3. * appears once in {i, k, p} and twice in {j, [, ¢}, while * appears once in
each set;

Case 3.4. * appears twice in {i, k, p} and once in {j, /, ¢}, while *x appears once in
{i,k, p} and twicein {j,/, gq}.

As we assume that i # j, k # [ and p # ¢, there is no other case to consider. We derive
the conditions obtained in these different cases in the next subsections.

5.4.1. Case 3.1. Because both x and * appear once in each set, one of the elements must
be of the form v,«. Using the cyclicity of the triple bracket, we can assume without loss
of generality that we are considering one of the following cases:

Case 3.1.a. {vij, vji, vpg §y With p,q # 1, J;
Case 3.1.b. {vij, vki, vjg ) withk,q # i, j and k # g;
Case3.1.c. {vij,vj, vy with p,l #i,jand p #[.
Lemma 5.7. In Case 3.1.a, the quasi-Poisson property holds for {v;j, v;;, Vpq} if and

only if the conditions given in one of the following three cases are satisfied:
(1)

(i) wheni <p<j<gqorq<i<p<j,eitherky”7 =0or
(») » _ »P
g —Byj 0. vjg" =0

(i) wheni <g<j<porp<i<gq<j], eitherfcéj’i) =0or

(q) (@) (q)
My o, = =0, Vpi =0;

(iii) wheni < p,q < j with p # q, we have

] i) (q) (q) _ ] i), () (»)y _ G0 ,,P) _ G, (@) _
(M ) (/'L /3 )=0, Kp ™ Vig" —Kg "V = 0.
Proof. ltis easy to notice that §v;;, {vji, vpg )}z = 0and {v;i, {vpq, vij } )1 = 0 because
i,J,p,q are pairwise distinct by assumption. Thus,

{vij vji- vpa ) = T3 {0pg- vij- vyl = —Ta32) Y ks vpg. vpvss ) ® €
i<b<j
= 5(l<p<])K(] l)(ﬂ(p) ﬂ(p))vpj ® e ® VjpUpg

+ 8(l<p<1)"(1 D ]((1;)')17 ® e ®Vjq
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— 8i<q=pi P () + o

i VpgVgj ® € ® Vjg

— 5(i<q<j)Kéj’i)vl(:]I-)vpj R e R Vjgq.
(Here and below, the symbol 8, <p<¢) equals +1 if a < b < ¢, and is zero otherwise).

At the same time, we easily get that {v;;, vji, Vpg J}gp = 0. The vanishing of the different
coefficients in the above expansion for {v;;, vj;, Vpq )} gives the claimed conditions.  m

Lemma 5.8. In Case 3.1.b, the quasi-Poisson property holds for {vij, vk, Vjq)} if and
only if the following conditions are satisfied:
() 0] @ _

@) eitherv) =0, 0or ul) — ) = 0;
(i1) either v](;]) =0, or /,L](c{]) — p,%) =0;

(iii) v,ﬁlj) v,(cil) — v,(:q)vi(é) =0.

Proof. As the indices i, j, k, g are pairwise distinct, {v;;, {vki, vjq )} = 0. Next, we
compute

G, @ G ,®

t23) ki Wi, Vi ML = —Hig Hjei ® € ® VkiVijVjg — Iy Vi€ ® ei ® Vijvjg
— Ui(;)ﬂg[;ej ® e ® VkivVig — V,'(;)Viglq)ej ® ei ® kg
t132)8vjq Lij v Y = Mz(f])lil(clj)ej ® €i Q VkiVijVjq + “l(ch)vl(clj)ef ® ei & Vijliq

+ Vi(;)“l(clj)ej ® e ® Vg Vig + v,(({l)v,(;j)ej R e ® Vig.

Summing these terms, we get

{ij, ki Vgl = Vf;)(ﬂl((l; - M]((l;)ej ® e; ® VkiVig
+ v,if]?(ul(cjll) — /L;;))ej ® ei ® Vkjvjg

+ (v,(c?vlgj) - vi(é)v,(f;)ej ® e ® Vggq-

We want the latter expression to be equal to {vi;, Vki, vjqJlqp = 0, which is easily seen to
be equivalent to the conditions (i)—(iii). [

Lemma 5.9. In Case 3.1.c, the quasi-Poisson property always holds for {vi;, vji, vpi ).

Proof. By assumption, 7, j, [, p are distinct, and it is easy to see that {vik, vk, UpgJ} = 0
as well as {v;;, v, qu}}qP =0. .

5.4.2. Case 3.2. Recall that x appears twice in {i, k, p}. Using the cyclicity of the triple
bracket, we can assume without loss of generality that we are considering one of the
following cases:

Case 3.2.a. {{v;j, vk, vj; )y with i, j, k distinct;
Case 3.2.b. {{v;j, vji, vix )y with i, j, k distinct.
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Lemma 5.10. In Case 3.2.a, the quasi-Poisson property holds for {vi;, vik, vj;} if and
only if the conditions given in one of the following three cases are satisfied:

(i) wheni < jandk # i, j, we have
kPR + B =0, foralli <b < |,
0 1 D) — QD = 1
1

(l) (@) @,,0)
'Bjk _v]k ik =0

(M

7

(i) whenk < j <iorj <i <k, we have

chi’j)(/l“j(lk) + M[(ll]z) =0, foralj<a<i,

K{Ei,_i)(}gj(;c) + ,3](;3) =0, foralj<ac<i,
kG = o, forallj <a<i,
)+ B9y + Y =
(l)(ﬂfi) %) —0.
Hig + By v =0

(iii) when j <k < i, we have

iy 1 . .
Ka(lz,J)(MJ(zk) +M212 + Esak) =0, fordlj<a<i,

1
s J)(IB(I) + /3(‘) + E(Sak) =0, foralj<a<k,
@.j) g0 @) G.k), GJ) _ ;
K, (,Bjk + Bry) T Ka Ky =0, forallk <a <,
kB = o, forallj <a<i,
1
2( @) +,3(l)) +M(1)'31(;€) =
of,n_1)_
Vik (“ik - 5) =0,

1)+ 8D+ VDD 4 o,
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Proof. Asi, j, k are pairwise distinct, we can compute that
{vij. Qvik. vii B

1 . -
=—3 sgn(i — ]),u]ke] ® VijVjiVik ® €; — ](’k) Z K,Sl’])é’j ® ViaVaiVik ® €;

i>a>j
oL ; @Yy ) .
— Mg Sgn(l j)+ ﬂjk Vjivij ® Vik Qe

+ :u](lk) Z K vjbvb] Q Vi e — j(k)ﬂl(é)ej Q@ VijVjk & e;
i<b<j

— (sgn(i — sy +vviDe; ® v ® e,

t23) {vik, {ujis vij B
1 ;
=—= sgn(J — z),u]kej ® Vi VjiVik ® e; — Z "f(tl’j)“ff;zez ® ViaVai Uik ® 1

i>a>j

1 i 7 1
_ 55(j<k<i)'<;(cl’j)ej ® Vi VkiVik @ e; + 2 sgn(j — l)ﬁk, ej ® vix ® v;jvj;
_ G.7) p(@) _ 5 @.J

Z Kq .Bkaej & Vik ® VigVai (<k<i)Kp e} & Vik ® Vi Vk;

i>a>j
—8G<k<inky” > kEPe; @ vik ® vicve:

i>c>k

1 o
~3 sgn(j — 1) ej ® vijvjk @ €i — Z KL(II’J)ng)ej &® VigVak & €;

i>a>j
- 8(]<k<l)K](( e ik e,
t132)8vji» Qvij» vik

1
= —sgn(J —l)ﬂ]ke, ® Vik ® Vijvji — (l) Z K(”)e ® Vit ® VigVai

i>a>j

1 RN ;
+ 3 sgn(j — z)ﬂj(.;gvﬁv,-j ® vk @ e; + (l) Z K(j l)vjbvbj ® Vik R e;

j>b>i
+sgn(j —i)Ble; @ vik D e;.
Summing the expressions when i < j, we can get
{vij, vik, vji ) [subcase (i) where i < j]
Z K;gl l)(li(l) ﬂ;?)vjbvbj R vik ®e;
i<b<j

( (/L(l) ,8(')) — M(’)ﬂ(’))vﬁvi,‘ X Vik ® e

L
—v (MSQ + 2)e, ® vijvjk ® € + (g + B — v e @ vik ® ;.
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Doing the same fori > j whenk ¢ {j + 1,...,i — 1},

{ij. vik, vji [subcase (ii) where k < j <iorj <i <k]
== Z Kf(li,j)('u](lk) + /’szllz)ej ® VigVaiVik ® €;
j<a<i
_ Z K(l ’)(,3(’) ,B(l))e] ® Vik ® VigVai
j<a<i
- Z g ;lk)ej ® VigVak ® €;
j<a<i

( (M(l) ﬂ(z)) + /L(l),B(l))Ujivij R vk R e;

1
(l)(/h(i) - 5) j ® Vijvjk @ e — (M(') + /3(’) (’) (’))e, ® vik ® e;.

In the remaining case, we can write that

{vij, vik, vji ) [ subcase (iii) where j < k < i]
- 1
=- Z Kz(zl’])(li](lk) + /i,(;lz + E&zk)ej ® VigVaiVik @ €;
j<a<i
1
= 2 kDB Ba + S8ak)e; ® ik ® viavai
j<a<k
— Z (Ka(zi’j)(ﬁ_,(-l) ﬂ(l)) + K(z k), G, ]))e ® ik ® VigVai
k<a<i
— Z K(gi’j)v‘gllze]' R VigUgk K €;
j<a<i

( (1 + B + uﬁfﬂ}?)vﬁvz‘j ® vik ® e
N
— vy (Mﬂ) - z)ej ® vijvjk & €i

Putting these different expressions to be equal to

{vij, vik, vji}}qp = —V;iVij @ Vix ® e,

4

is equivalent to the claimed conditions. ]
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Lemma 5.11. In Case 3.2.b, the quasi-Poisson property holds for {vi;, v;;, vix )} if and
only if the conditions given in one of the following three cases are satisfied:

(i) wheni > jandk # i, j, we have

%(M} T 8D) + uDpY = _’ and u(’)(ﬁ(’) ) 0:
(ii) whenk <i < jori < j <k, we have

J02 + B~ DB = 5o ana (82 -3) =0
(iii) wheni <k < j, we have
D 4 pD)— uDpY = }1
(,)(/3(1) )+ P = g

U @® 4 %) =0,

(u

Proof. As i, j, k are pairwise distinct, we can compute that {v;;, {v;;. vix }}}; = 0 and
then

T(123) WVji» RVik, Vij } L = 13;(;,) ,(lk)vu ® e QVjivik + IBk,) ,(;C)Utj ® e QVjk,

casmvie, by ¥z = 5 seni — L) — Dy ® s ® vysvie
— i <k<iyky”’ )(Ol,(,k) + ﬂl]))vikvkj ® e ® vk
(; sgn(i — ])vjk + 8(1<k<1)"(1 ) l(Jk))vU ® e & Vjk-
We thus get that

1
oy vy v = (55800 =00+ B~ QB2 oy @ €5 @ vy
k
— S <k )(Ol,(J) + M,,))vikvkj ® e ® vjk
( (l) (ﬁ(l) Sgn(i - ])) + 8(l<k<j)K(] D (k))vz] Qe Q Vjk-

We then see that this triple bracket coincides with

1
—Vjj @ e Q VjjVik,

{vij. vji vikfgp = 1

if and only if the claimed conditions are satisfied. ]



On the noncommutative Poisson geometry of certain wild character varieties 807

5.4.3. Case 3.3. Recall that x appears twice in {J, [, ¢}. Using the cyclicity of the triple
bracket, we can assume without loss of generality that we are considering one of the
following cases:

Case 3.3.a. {vi;, vkj, vj; )y with i, j, k distinct;
Case 3.3.b. {vi;,v;;, vg; J with i, j, k distinct.

Lemma 5.12. In Case 3.3.a, the quasi-Poisson property holds for {v;j, vk;, v;; )} if and
only if the conditions given in one of the following three cases are satisfied:

(1) when j >iandk #1i, j, we have
1 1
L) el =L ana Do)+ 1) =0
(i) whenk < j <iorj <i <k, we have
L pDg) 1 W, _ 1 .
5 (ki + o)) — o)) = 7 wd v \og —5 ) =0

(iii) when j <k < i, we have

Lo, o Gy _ 1

_(I’Lkz + O ) A Z’

.o 1 (i), () _
Vi (akl 2) + Ky l] =0,

k k
J)(,B( ) ( )) =0.
Proof. In a way similar to Lemma 5.11, we get
1 .
i v v = (5 sen(j — i) () + o)) + uif,’a,i?)ej ® vij 8 Vkj ;i
k k
+ 8(]<k<1)K(l ])(,U«( ) /3( Nej ® VikVkj & Vki
k
+ (v]((],)(a](cjl) Sgl’l(j _l)> + 5(]<k<z)K( i) ( ))e] & Vjj Q Vi
This coincides with
1
{vij, v, vjifp = _Zej ® Vij @ VkjVki,
if and only if the stated conditions are fulfilled. ]

Lemma 5.13. In Case 3.3.b, the quasi-Poisson property holds for {v;j, vj;, vg; )} if and
only if the conditions given in one of the following three cases are satisfied:

(1) wheni > jandk #1i, j, we have

kD (D 4oy =0,  forallj <a<i,

GGy 1

9))
+akl ) Mri Qi = oo

(M

~
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.o, 1Y _

() ) )., @) _ n.
Ry o = v v =03

(ii) whenk <i < jori < j <k, we have
Klgj’i)(u,(cjl:) - /L,(CJ[;)) =0, foralli <b<j,
Kl()j’i)(a,g) —a,(cll;)) =0, foralli<b<],
kDD =0, foralli <b < j,

Lo, 0 G () 1
g + o) + e ==

(o _L1)_
Vki (:ukj - 5) =0,
o)) 0] 0,6 _ g
K togs TV v =0;

(iii) wheni <k < j, we have

N N1

Kl()]")(ul({]i) — “I(é/ly) + E(Skb) =0, foralli<b<],
. . |

Klﬁf”’(a,gfi) —a) 4 55"1’) =0, foralli <b<k,

kD@D — @y 4 kI =0, forallk <b < j,

i %p
Kl(,“) ) 0, foralli <b<j,

Vb =
1. . o 1
() ) (O)B0)
E(Mki tog) F gy = s

N
W, O —
Vki ('U“kj - 5) =0,
o+ 7 =0

Proof. Asi, j, k are pairwise distinct, we can compute that

fvij, Rvji v B
= —% sgn(i — j)/’Ll(ch:)Ukj Viivij ® e ®ej + M;(cj,:) Z Klgj’i)vkj VipUp; Q€ Qe
i<b<j
_ M,g:)(% sen(i — ) - ai’,f))vkj ® vijvji @ ¢
_ M/((]l:) Z K,Ei’j)vkj ® VigVai ® €j + Ulg)ﬂ](;;vkivij Re ®ej
i>a>j

— (sgn(i — g —vPvig @ e @ e;.
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t23) V)i vy vis L
1 .
= Esgn(] —l)oz](cj)vk, ® vijvj; Ve —akl) Z Kl j)vk/ ® VigVai ® €;

i>a>j

T .
+ —sgn(;j —z)oc,(c’l)vk, ® e; ® vj;vjj —l—ockl) Z K(“)vkj ® ei ® VjpUpj

2 i<b<j
+ sgn(j —i)a,({’l)vkj ®e; ®ej,
tas2)8ves, Qvij, v
1
Loy e we— X g ©a s
i<b<j

1 o 1 o
+ 58(i<k<j)K]£J’l)vkjUjkvkj ®e Qej — 3 sgn(j — z)oe,(c’l)vk, ® e ® vjivij
1 -
- Z K(”)Ot,(cjb)vkj ® e ®Vjpvp; + 55(i<k<j)K,§J’l)vkj ® e ® VjkVk;
i<b<j

+ 8<k<piy” > kv ® e ® vjeve
k<c<j

1
-3 sgn(j —z)vkl VkiVij ® € ® ej — Z K(”)v,(cé)vkbvbj Qe Re;

i<b<j
+8a<k<iycvg @ e ®e;.
Summing the expressions when i > j, we can get
{vij, vji, vk ) [subcase (i) where i > ]

= - Z Kz(zi’j)(:u“](cj) + ak,))vk] ® VigVai ® €j

i>a>j
1
- (E(M,i’,) + o)) - u,ii)a,ii’)vkj ® vijvji ® ¢

I
N V(])(Mz(c’,) N E)U"" vy @i ®e; — (1 +a v @ B ey,

Doing the same fori < j whenk ¢ {i +1,...,j — 1},

fvij, vji, v B [subcase (ii) where k <i < jori < j < k]
Z K(] 2 l(cjz) - “i(cjb))vkjvjbvbj Qe Bej
i<b<j
+ Z ijl)(()[(J) al(c]b))vkj Qe ® VjpUb)
i<b<j

— Z /c(j’ )v,(cjb)vkbvb] Ve ®ej

i<b<j
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1
+ (E(Ml(cjz) + akz)) + /L,(le)a,(c’l))vkj ® Vijvj; ® ej
1 .
+ v‘”(u,(j} z)vk,v” ®e ®ej + () + o) + v v, @ e ®e;.

In the remaining case, we can write that

{vij. vji, vej [subcase (iii) where i < k < j]
1
=Y (“)(u,(c’l) — )4 E(Skb)vkjvjbvbj ®ei Qe

i<b<j

+ )« (a,(c’l) o) + 5kb)vk, ® e; ® vjpvp;
i<b<k

+ Z (K(]l) (]) al(cjb)) +K(J k) (Jl))vk] ® e ® Vjpvp;
k<b<j

— Z K(j I)Vlgjb)vkbvbj Ve Rej
i<b<j

1
+ (g(ﬂz(f,) +a) + ﬂz(fl)“;(f,))vkj ® vijvji ® e

1
+ v,(ci)(,u,(;) 2)Ukivjj Qe Qej

() ) (), @) (i)

+ (g + oy F v v H i vk @ e Qe

Putting these different expressions to be equal to

1
{vij, vjis vijftgp = — 2 Vki ® Vijvji @ ¢j.
is equivalent to the claimed conditions. ]

5.4.4. Case 3.4. It suffices to consider the following case.

Lemma 5.14. The quasi-Poisson property holds for {vi;, v;j, v;; }} if and only if the con-
ditions given in one of the following two cases are satisfied:

(i) wheni < j, we have foralli < b < j that

Gl .o 1Y _ G, G, LY _ G0 —
K, (O‘ib _5) =0, Ky (/‘Lzb +2) =0, Vi =0

(i) wheni > j, we have foralli > a > j that

(l j)(ﬂ(l) —) = 0, K(l ])(/,Ll(ll]) 2) = O, K((ll’])l)[(l.lj) = O
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Proof. We compute
{vij, vy, v e
1

1 . .
= ZUjiUij R vij ®e;i — Z Kl(,j’l)(oci(i) — E)Ujbvbj QR vij ® e;

i<b<j

1
+ Zej ® VijVjiVij Q e — Z K(]l) f;’)e] ® VijvjpUp; R e;

i<b<j
! 1 (i)
+ 56 v ®e; + 3 Z Kg''ej @ VigVaiVij ® €;
i>a>j
- Z K(l l) l(l]))e] ® vlbvb] ®elv
i<b<j
Ta23){vij. Qvji. vij P
1 1
=19 ® Vij @ VijVji — Z (1’1)(,3(’) 2)€j ® Vij ® ViaVai
i>a>j

1 1
— Ze, ® iV Vij @ e; + Z K(”) (')e ® VigVgiVij ® €j — Eej ® vij Q e;

i>a>j

+ = Z Kl(,j’i)ej ® vijvjpvpj ® € + Z K},"’-")v,(l?e,- ® VigVaj ® ei,

i<b<j i>a>j
while {v;;, {v;;, vi; }} = 0. We can then write

< 1
i<j
{vij, vij, vji} = —(Ujivij ® v ®e; —ej QVij Q Vijvji)

. 1 A |
— Z K;]’l)(( l(l],) — E)vjbvbj Qvij e + (,u%) + E)ej ® VijVjpVp; R ei)

i<b<j
— Z K.(] i) l(ljj)e‘] ® vlbvb] ®eia
i<b<j
{{vl]»vl]7vjl}} = (U]zvzj RUijj Qei —e; Qvj; ® vl]vjl)
.. : 1
+ Z Kﬁ"-’)((ﬂfl}) - E)ej ® Vij B VigVai + (/ng) + 5)6]' ® VigVaiVij @ ei)
i>a>j

+ Z il ’)v(l)e] ® VigVqj ® €;.

i>a>j

These expressions are equal to
1
{vij. vij vjidgp = 7 (Vjivij ® vij @ € — ¢ @ vij ® vijvji),

if and only if the claimed identities are satisfied. ]
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5.5. Conditions obtained from Case 4

The distinct elements «, *, ® appearing in the intersection S all appear once in each of the
sets {i, k, p} and {j, [, ¢}. It suffices to consider the following cases:

Case 4.1. {vik, vkp, vpi J} with i, k, p distinct;
Case 4.2. {vip, vki, vpk )} With i, k, p distinct.
It is easy to derive the following result.

Lemma 5.15. In Case 4.1, the quasi-Poisson property always holds for vk, Vip, Vpi .

We finally arrive at the last set of conditions in Case 4.2. Note that by cyclicity of the
triple bracket, we only need to consider that eitheri <k < pori < p <k.

Lemma 5.16. In Case 4.2, the quasi-Poisson property holds for {vip, vki, vpi )} if and
only if the conditions given in one of the following two cases are satisfied:

(i) wheni <k < p, we have
Di 2
w,o_1Y_, @ (,o0_Y_,
Vpi Mkp_z — Y Vik /’Lkp_i -
. 1 : 1
IS o

i w 1 &) (pi) _
Vip (/Lpl- — 5) tvyk = 0,

V;E];)chp’i) =0, vi(,f)lcc(lk’i) =0, forali<a<k,

; 1
v v v =00 p (“L’? +3)=o

v;(;];)’cép’i) - V;EQKép’k) =0, forallk <c < p;
(i) wheni < p <k, we have

M _ 0 _

o » 1) _
R The (/L,f +§) =0,

®&( o 1Y) _ YO
Vpi ('“kp - E) =0 Vik (“kp - 5)
o o, 1) _ of o, 1Y _
Vik (Mp,- + E) =0, Vip (Mp,- + 5) =0,

YO ), (ki) _
Vip (H’ik - 5) + v Y =0,

(p)
Uik - vkp pi

0,

”;IE)Kl(wp’i) =0, V,-(If)K;(,k’i) =0, foralli <b< p,
vt — v,ﬁifx,ﬁk’p) =0, forallp<d <k.
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Proof. Let us first compute the terms appearing in {v;p, vi;, vpi )} for arbitrary i, k, p
which are pairwise distinct. We have

{vip, Lvkis vpi L
= MI(,I;)M;?I),Upk VkiVip @ €; Q e — /Lf,?,ugf)ep @ VipUpk Vki @ ek
+ Mg? U,Ei; Upk Vkp @ €; ® e — u,‘,’? Ui(]f)ep ® VikVki ® ek
+ v;lf) Z Klgp’i)vpbvbp e Qe — vlg];) Z /cg’p)ep ® VigVai ® e
i<b<p i>a>p

1 & . [N .
— ! )sgn(z — P)UpiVip V€ @ ep — 5”1(71') sgn(i — plep, @ Vipvp; ® ex

2P
— By n(i —ple, ®e; Qe
pi g Pléep i k>
T(123){{Uki ) {{Upk’ Uip}}}}L
" .
= Mgf)u;i)ep Q VipUpkVki @ €x — /Lgf)ul(;;ep & e; & VgiVipUpk

(p),, (k) (p),, @)
T Wik Vpi €p ® VipUpi ® e — ;3" vV jep @ e ® VipUpk
" ki
+ P 3" ke @ vipvpi @ ek v D ke ® € ® vkarvan
k<b'<i k>a'>i

1 . 1 .
—vl.(,f) sgn(k —i)ep, ® vigvk; ® ex — Evl.(,f) sgn(k —i)ep, ® €; ® Vv

2
— vl.(,f) sgn(k —i)e, ® e; ® ek,
T(132) 8 Vpk» LVip, Ve 1

i i) (k
= u,‘!;uﬁ,’j)ep ® e; Q Vg VipVpk — Mg;u;i)vpkvkivip Re; R ey

i 0 (k
+ M,(Cl),vi(,f)ep ® e; ® VkivVik — ;L,(c;vlgi)vp,-v,-,, ®e R e
. ‘. . P
+ v,(j; > kPe, ® i @ vgpr v — vg > K2R v, ® € @ e
p<b’<k p>a’>k

|y 1 ¢
_ Evg sgn(p —k)e, ® e; @ VkpUpk — Evg sgn(p — k)vprvrp ® e @ ek
— ”I(c2 sgn(p —k)e, ® e; @ ey.

Wheni < k < p, we get by summing these terms

{{'Uip, Uki vpk}}

o N
= —(V,.(,f) + W?; - V;(;i))ep Rei Qep + VJ(:; (:“;i) - E)v”kvk” B ®ex
k y 1 : !
_ vl(;i)( l(clz)r B E)Upivip ®ei e+ vy D K ey @ e @ e
i<b<k
D S R
k<c<p
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o 1 k 1

@ (“;(n) + 2)e,, ® VikVki ® ex + vy )(/éﬁ) + E)ep R VipUpi ® ek
: 1

—v (ufﬁ) + z)e,, ® € ® VipUpk + 0P (u,(c,i 2)ep ® €; ® Vkivik

(p) Z K(k i)ep ® e; ® VipVUpk-
i<b<k

(Note that in the first sum that appears there is a term with v, Vg, ® €; ® eg).
Wheni < p < k, we get by summing these terms

{ip. Vki Vpic )}

(k)

1
(v(p) Vl(cl; (k))ep Qe Qep + v](:p) (/’Lpl + _)Upkvkp ®e Ve

2

1 .
(k) (M,(C’; )vpiv,-p ®ei e+ v(k) Z Kép’l)vpbvbp ®e Qe
i<b<p

K, 1 k 1
(p) (u;,) + E)e ® VikVki Q ex + & )(/JL%) + E)ep ® VipVpi ® ek

1 1
v (Mfﬁ) ep @ ei @ VkpUpk + V(p) (M,(;; 2)61; R e & VkiVik

2
(p) Z "(k’i)ep ® ei ® VkpVbk
i<b<p
k, k,
+ Z (v,(;;/cfi - z(lf)"c(z Z))ep ® € ® VkdVdk-
p<d<k

(Note that in the penultimate sum that appears there is a term with e, ® e; ® Vi Vpk).
Since {vip, vki, vpk J}gp = 0, the quasi-Poisson property is equivalent to the vanishing
of all the coefficients that appear, which is in turn equivalent to the claimed conditions. m

5.6. Checking the conditions for the double bracket of Theorem 4.5

Recall that the (Boalch) algebra 8(A) corresponding to the monochromatic triangle is a
localization of the path algebra ]k§3 = kA. Its double bracket given in Theorem 4.5 can
be defined on k§3 directly, where it takes the form (5.1)—(5.8) for the coefficients given
in Table 2.

All the coefficients that do not appear in this table are taken to be zero, in agreement
with the properties of the coefficients given in (5.1)—(5.8). Therefore, if these coefficients
satisfy the different conditions derived in the previous subsections, we get a double quasi-
Poisson bracket on k Q5. Since localization preserves the quasi-Poisson property, this will
induce that the double bracket given in Theorem 4.5 is quasi-Poisson.

In the remainder of this subsection, we check that the different conditions that have
been derived in Sections 5.2-5.5 are satisfied when n = 3 with the coefficients from
Table 2.
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o = +3 [of = | ot =t | @@ —p | o -t | o =4}

D=t |p2=t | A= b | AR = | AR =+t | AR =

W=t | =d = | @ =d (W=t a8 = 4

v%)z—i-l VS):O v§13)=+1 v§21)=+1 v§31)=0 v§12)=+1
K§3’1) +1

Table 2. Non-zero coefficients of the double bracket of the form (5.1)—(5.8) on ]1«@3 (with n = 3)
which descends to the double bracket from Theorem 4.5 after localization.

Remark 5.17. An important task consists in classifying all solutions to the conditions
obtained in Sections 5.2-5.5. Indeed, this would yield potential candidates for the double
quasi-Poisson bracket solving Conjecture 3.10 for the monochromatic n-partite graph on
n vertices. A classification for n = 2 is available in [24, §4.2] (though the conjecture
is settled in that case, cf. Section 4.1). The use of a computer algebra software seems
relevant; for the interested reader, let us mention Leray’s code written in Singular for
checking the double Poisson property on a quasi-free DGA [31, Ann. C].

Finally, note that there always exist solutions to these conditions. Starting with 7 dis-
joint copies of the bipartite case and performing fusion as in [33, §5.3], we end up with a
double quasi-Poisson bracket with all K](-i’k), v;i’k) = 0and aj(-i’k), ﬂj(-i’k), /Lj(~i’k) e{ j:%}.
5.6.1. Conditions from Lemma 5.1. Let us check that (5.10) is always satisfied, and a
similar argument for (5.11) holds.

Assume thati = k = p, and that j, [, ¢ are distinct from i and not all the same. Since
n = 3, two of the indices j, [, g are the same. If j = [ is distinct from ¢, (5.10) becomes

D2 _ g0 g0 g@ g6 | g0 a6 _ 1
—(Bjg)" = PBjj Big +BigBej T By Biy =7

by skewsymmetry of 8. As ,BJ(.;) € {:l:%} for all distinct indices i, j, g, this equality is
always satisfied. It is easy to deal with all the other cases in the same way.

5.6.2. Conditions from Lemma 5.4. Since i, p, g are pairwise distinct and we have at
most n = 3 different indices, (5.12) can only occur with [ = g and i = k, in which case
the condition becomes

cither v? =0, or a? + ﬁgg =

iq p

It is easy to check that this condition is satisfied for the coefficients given in Table 2 with
arbitrary distinct i, p, q.
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5.6.3. Conditions from Lemma 5.5. Since we have at most three distinct indices, and
i # j,k,pwith j # k, p, we only have to consider the cases where k = p. The condition
(5.14) becomes

_( (l))2

which is trivially satisfied since [L(l) € {ii} whenever i, j, k are distinct. The other con-
dition (5.13) reads
k
[ (l) IB( )]

)

Since v® = 0, we only need to check that /,L(t ﬂ(k) whenever i # 3, and this is easy

to see from Table 2.
5.6.4. Conditions from Lemma 5.6. The discussion is similar to the case of Lemma 5.5.

5.6.5. Conditions from the Lemmae in Section 5.4.1. There is nothing to check in all
these cases because the conditions rely on the existence of four different indices, which is
not possible when n = 3.

5.6.6. Conditions from Lemma 5.10. We only check the case (iii), and leave the other
cases to the reader. For j < k < i to happen with n = 3, we need (i, j, k) = (3,1,2). The
first and second equations can only happen with a = k = 2, when

) 1 1 1
K;l’])( w4 ul) + 58‘”‘) = 1(—5 +0+ 5) =0,

1 1 1
e ’)(ﬂ"’ + 89 4 zgak) = 1(—5 +0+ E) =0,

hence they are both satisfied. The third equation cannot occur since it requires a, j, k,i to
be distinct while we have at most 3 indices. The fourth equation appears witha = k = 2

only, and it vanishes identically as ”1813 = 0. The remaining three equations are satisfied as

W ) O g Sy 1
300+ 8D+ 16 = 3(—5-3) =1

(z) G LY _of1 1\ _
Y =3)=o5-3) =

1 1
i B v i) =5 =20+ 1=0.
5.6.7. Conditions from Lemma 5.11. We only check the case (iii), which occurs for

@i, j, k)= (1,3, 2). The different identities are

(,) M) _ ,© g I 1y _t_1
K H P~ b = 5 (2 2) 4 &

(l) Q@ MONC 11
—1f(-—==-Z)+1=0.
(ﬂ ) e =1(-3g) ¢

1 -1
o it = 120 2) <o
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5.6.8. Conditions from Lemmae 5.12 and 5.13. This is similar to checking the condi-
tions from Lemmae 5.11 and 5.10, respectively.

5.6.9. Conditions from Lemma 5.14. The only conditions to check are when there exists
a non-zero symbol « ) In the case at hand, this only occurs for Kf’l) = +1. Thus, we
only need to check the identities in (i) for (i, j, b) = (1, 3, 2) and in (ii) for (i, j, b) =
(3, 1, 2), which is straightforward.

5.6.10. Conditions from Lemma 5.16. Case (i) only occurs with (i, k, p) = (1, 2, 3),
while case (ii) only occurs with (i, k, p) = (1, 3, 2). The different conditions are easily
verified for these particular indices (the last two can be omitted each time, because they
require to have four distinct indices).

A. Remaining expressions for the double bracket on 8B(A)

As a consequence of Lemma 3.6 we get that the arrows {v;;, vj; }1<i<j<3 are generators
of the Boalch algebra B8(A) in the case of the monochromatic triangle. Therefore, it is
sufficient to define the double quasi-Poisson bracket {—, —}} on such arrows, as done
in (4.6). Nevertheless, for completeness, we provide the rest of the expressions of the
double quasi-Poisson bracket from Theorem 4.5 involving at least one arrow w;;. In their
determination we used the cyclic antisymmetry (2.1), the Leibniz rules (2.2) and (2.3),
and the identities (4.5).

A.1. The brackets of the form {w;;, vi;}}

Using (2.3) and (4.5) we can give the complete list:
1
{wiz, vi2f} = —5(012 ® wiz + w12 ® v12);

1
{wiz, v21)} = 5(0211012 ®e1 +ex Q@ wizvar) —ex Qey;

1 1
{wiz, vz} = _§w12 ® v13; {wiz, v31}} = 503111)12 ®eq;
1 1
{wiz, v23)} = 5¢3 ® Wi2V23; {wiz, v32}} = —5 V32 ® wiz;

1
w21, vi2)f = e1 @ex — §(U12w21 ® ez +e1 ® wav12);
1
{war, v} = 5(w21 ® V21 + V21 ® Wa21);
1 1
{war, vzl = —561 & W21V13; fwar,v31} = 5031 ® wa1;

1 1
{war, va3)} = W21 ® v23; {war,v3l = —5V32W21 ® ez;

1 1
{wiz, v} = —5W13 ® v12; {wiz, v21}} = V21013 ® e — w3 @ ey;
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1
{wiz, viz)} = —5(11)13 ® vi3 + V13 @ wi3);

1
{wiz, va1)} = §(U31w13 ®e1 +e3 Q@ wizvir) —e3 Qey;

1 1

{wiz, vz} = —5 V23 ® wis; {wiz, v} = 563 ® w13v32;
1

{wsi, vz} = —561 ® w31v12 + €1 ® Wiz,

1
{wsy,v21 ) = V21 ® w3r;

1
{wsr,vi3ff = e ez — 5(01311131 ® e3 + €1 ® w31V13);

1
{wsr,va1)} = §(w31 ® v31 + V31 ® W31);

1 1
{wsi, vz} = —5V23W31 ® e3; {wsi, v} = S W31 ® v32;
1 1
{wasz, vz} = V1223 ® e3; {wasz, v21}} = 5 W23 ® V215
1
{wos, vi3) = —§U13 ® w23; w2z, v} = 56’3 ® wa3v31 —e3 Q V21,

1
{was, va3)} = —5(023 ® wa3 + Wa3 ® V23);

1
{was, v32)} = 5(63 ® W23V32 + V32W23 @ €2) — €3 @ €3]

1 1
{wsz, vz} = SU12 ® waz; w3z, v21}} = —5e ® W32v21;
1
{wsz, vz = —501311)32 R e3 + V12 ®es;

{wsz, v31} = %wsz ® V3]
{wsz, v23)) = e2 @ e3 — %(Uzz,waz ® €3 + €2 ® W32023);
{wsz, va2}} = %(wsz ® v32 + V32 ® W32).

A.2. The brackets of the form {vy;, w;; }

The brackets {vg;, w;;}} are obtained from the brackets {w;;, vg;}} appearing in A.1 by
applying the antisymmetry (2.1). For instance,

1
fvsr, waal} = —ta2){wsz, Va1 = —5 V31 ® w3a.
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A.3. The brackets of the form {w;;, wx;}
Fori,j € {1,2,3}and i # j, we have {w;;, w;; }} = 0. In addition,
1 _
{wiz, war}} = 5(62 ® Wia2W21 + W2 W12 ® €1) — Y, '® Y1,
1 1
{wiz, wiz)} = _Ewlz & W33 {wiz, w31} = §w31w12 ®er1;

1
{wiz, was}} = 56’2 Q WipW23 — €2 Q@ W13;

1 1
fwiz, wa}} = —5Ws2 ® Wwiz; {war, wis) = —5el ® Wwa1W13;
1 1
{{w21, w31}} = §w31 & war; {{w21, w23}} = szl & Wa3;
1
{war, wa}} = —§w32w21 ® ex + w31 ® ea;

1 _ _
{wiz, w3} = 5(33 ® wisws1 + w3iwiz ®e1) + y3 | ® wizyawsr —y;  Qer;
1 1 B
{wis, was)} = —§w23 Q@ w13; f{wis, wa ) = 583 ® WwizWszz — Y3 '® wiaya;
1 _
fwsi, was} = —5 W23l ® e3 + y2wa ® ¥3
1
fwsr, wa}} = §w31 & w3z,

1
w2z, w3z} = 5(63 ® w23w32 + W32W23 ® €2) — )/3_1 ® V2.

The reader can obtain the 15 missing expressions by applying the antisymmetry (2.1) to

these identities. For example, {w23, w21} = —ta2){wa1, was)} = —%wzs ® Wwa1.
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