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Abstract. We show that elliptic Calabi–Yau threefolds form a bounded family. We also show that
the same result holds for minimal terminal threefolds of Kodaira dimension 2, upon fixing the rate
of growth of pluricanonical forms and the degree of a multisection of the Iitaka fibration. Both of
these hypotheses are necessary to prove the boundedness of such a family.
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1. Introduction

Throughout this paper, we work over the field of complex numbers C.
Normal projective varieties with numerically trivial canonical bundle (in short, K-

trivial varieties) and mild singularities are one of the fundamental building blocks in the
birational classification of projective varieties and they play a prominent role in many
areas of research. It is well known that their birational geometry is rather rich and subtle,
and many phenomena in this context are yet to be fully understood. Among K-trivial
varieties, an important and rich class that still defies our understanding is given by Calabi–
Yau varieties, i.e., projective varieties X with Q-factorial terminal singularities, KX � 0
and hi .OX / D 0 for 0 < i < dimX .

A fundamental and long-standing question, originally due to Reid and Yau, see, for
example, [44,52], is whether Calabi–Yau threefolds have finitely many topological types.
From the point of view of birational geometry, one could try to answer affirmatively the
above question by showing that Calabi–Yau threefolds are parametrized by finitely many
algebraic families of deformations. In general, K-trivial varieties certainly do not form
finitely many algebraic families: in dimension 3, it suffices to consider, for example, the
case of products of K3 surfaces and elliptic curves – although this example does not con-
tradict the conjecture on the finiteness of topological types in a fixed dimension. Hence,
we cannot drop the condition on the vanishing of the middle cohomology of the struc-
ture sheaf. An interesting and important result towards a definitive answer to the question
posed by Reid and Yau is due to Gross [23]: he showed that there exist finitely many
projective families Xi ! �i ! Ti over finite type schemes Ti such that for any ellip-
tic Calabi–Yau fibration f WX ! S , whose base S is a rational surface, there is a closed
point t in some Ti such thatX (resp. S ) is birationally isomorphic to the fiber Xt (resp. �t )
over t and these birational isomorphisms can be chosen so that they identify f with the
induced fibration Xt ! �t . Even better, it is not hard to show that the birational map
X Ü Xt is an isomorphism in codimension 1, and hence can be decomposed into a finite
sequence of flops. We summarize this property by saying that elliptic Calabi–Yau three-
folds form a bounded family modulo flops. Recently, Wilson [50, 51] has proven some
new results in the context of boundedness of Calabi–Yau threefolds at large.

The class of elliptic Calabi–Yau threefolds is of central importance in the study of
Calabi–Yau threefolds in general: indeed, it is expected, based on known examples, that
Calabi–Yau threefolds of large Picard rank are always elliptically fibered, perhaps after
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flopping a finite number of curves. Thus, this approach may eventually show that Calabi–
Yau threefolds of large Picard rank have finitely many topological types. When the base S
of an elliptic Calabi–Yau f WX ! S is not rational, then it is birational to a (possibly
singular) Enriques surface and f is isotrivial, see [20, Theorem 3.1]. Thus, the birational
geometry of these fibrations is well understood. Even better, by work of Kollár and Larsen
[35, Theorem 14], it is known that X becomes a product of a K3 or Abelian surface with
an elliptic curve, after a quasi-étale cover, see also [42, Appendix].

Since Calabi–Yau threefolds may have infinitely many models that are isomorphic in
codimension 1, it is not clear whether the result of Gross implies the boundedness of topo-
logical types for these Calabi–Yau varieties. However, another celebrated conjecture, the
Kawamata–Morrison conjecture, predicts that the isomorphism types of such models are
just finitely many distinct ones. Kawamata [31] proved a weaker version of this conjec-
ture in the elliptically fibered case: given an elliptic threefold f WX ! S , he showed that,
up to isomorphism over S , there are only finitely many models of f over S isomorphic
in codimension 1, cf. Theorem 3.4. Hence, Kawamata’s result offers a first hint towards
proving the boundedness of the topological types elliptic Calabi–Yau varieties starting
from Gross’s theorem.

We give a complete and affirmative answer to Yau’s question for elliptic Calabi–Yau
threefolds. In this paper, an elliptic Calabi–Yau threefold will be a terminal Q-factorial
projective variety X with KX � 0 and H i .X;OX / D 0 for i D 1; 2, which is moreover
endowed with a morphism with connected fibers f WX ! S of relative dimension 1 –
which immediately implies, asKX � 0, that the generic fiber is a curve of genus 1. We do
not require any further assumptions on the morphism f , besides that on its relative dimen-
sion. The surface S is only assumed to be normal; then, the canonical bundle formula and
the assumptions on the singularities of X immediately imply that S has Kawamata log
terminal (klt) singularities.

Theorem 1.1. The set F3
CY;ell of elliptic Calabi–Yau threefolds forms a bounded family.

Our result includes also the case of those elliptic fibrations whose base is non-rational;
in such case, the bases of the fibration are surfaces with at worst Du Val singularities
whose minimal resolution is an Enriques surface. Following the philosophy introduced
above, we show that there exists a finite number of algebraic families such that any elliptic
Calabi–Yau threefold appears as the fiber of one of the families.

Theorem 1.1 immediately yields the following important corollary proving the finite-
ness of the topological types of elliptic Calabi–Yau threefolds, answering a classical
question in string theory, see [21] for a detailed account of the consequences of bounded-
ness in string theory.

Corollary 1.2. There are only finitely many topological types of elliptic Calabi–Yau
threefolds.

Most of the methods developed to tackle Theorem 1.1 can be used to study the bound-
edness of elliptically fibered varieties in general. For instance, they naturally apply to
minimal n-folds X with �.X/ D n � 1, as their Iitaka fibration f WX ! Y is an elliptic
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fibration. This circle of ideas has been explored by the first-named author in [13], where
necessary and sufficient conditions for boundedness modulo flops are settled. By fur-
ther exploring the methods of the proof of Theorem 1.1, we are also able to improve the
criteria in [13] to criteria for honest boundedness in the case of threefolds of Kodaira
dimension 2. Let us recall that for a divisor D on a normal algebraic variety, we define
volk.D/ D limm!1

h0.X;mD/

mk=kŠ
and this value is strictly positive (and finite) exactly when

the Iitaka dimension of D is k.

Theorem 1.3. Fix a positive integer d and a positive real number v. The set

F3;v;C
�D2 WD

®
X j X is a projective Q-factorial terminal threefold; KX is nef;

�.KX / D 2; vol2.KX / D v; and the Iitaka fibration of X admits
a degree C rational multisection

¯
forms a bounded family.

We stress that the conditions in Theorem 1.3 are all necessary. Indeed, as discussed in
[13, §3], given a family � WX ! T of minimal n-folds of Kodaira dimension n � 1, up
to a stratification of T , their Iitaka fibrations deform along the family, that is, � factors as
X!Y! T and for any t 2 T , Xt!Yt is the Iitaka fibration of Xt . Consequently, up to
a further stratification, Kodaira’s formula for the canonical bundle of Xt ! Yt is obtained
by restriction of the formula for X ! Y. Furthermore, up to an additional stratification,
a rational multisection of X ! Y induces a rational multisection of Xt ! Yt .

The following examples will show that these conditions are not vacuously satisfied,
but they need to be imposed and they are independent of each other.

Example 1.4. In this example, we produce an unbounded class of smooth minimal three-
folds of Kodaira dimension 2 with bases belonging to a bounded family. The unbounded-
ness will follow from the fact that the elliptic threefolds in our construction do not admit
a multisection of bounded degree, and vol2.X/ does not belong to a finite set.

Fix an elliptic curveE. Let us consider the diagonal action of Z=nZ onE � P1 given
as the translation by an element of order n on E and the action of a primitive n-th root of
unity on P1. Then, the induced action on E � P1 has no fixed points, and we obtain the
following commutative diagram:

E � P1
'

//

f

��

Sn WD .E � P1/=.Z=nZ/

gn

��

P1
 

// P1 D P1=.Z=nZ/:

By construction, gn has fibers of multiplicity n over ¹0º and ¹1º. Thus, Kodaira’s canon-
ical bundle formula for surfaces implies that KSn �Q g�n.KP1 C .1 �

1
n
/.¹0º C ¹1º//.

Let C be a genus 2 curve obtained by as a degree 2 cover hWC ! P1 branched away
from ¹0º and ¹1º. Taking the base change of gn by h, we obtain a surface Tn WDSn �P1 C

with a morphism lnW Tn ! C such that �.Tn/ D 1 and KT �Q h�.KC C .1 �
1
n
/.p C

q C r C s//, where p, q, r , s are the preimages of ¹0º and ¹1º on C . The divisor
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KC C .1 �
1
n
/.p C q C r C s/ has degree 2 C 4.1 � 1

n
/. As mentioned above, when

considering the Iitaka fibration in a bounded family of minimal models, Kodaira’s for-
mula for the canonical bundle is obtained by restriction, up to a suitable stratification.
Thus, the fact that the log pairs .C; .1� 1

n
/.p C q C r C s// have coefficients varying in

an infinite set implies that corresponding surfaces Tn do not belong to a bounded family.
As the fibration Tn ! C has fibers of multiplicity n, that cannot admit a multisection
of degree less than n. Thus, as n varies, the fibrations gn do not admit a common upper
bound for the minimal degree of a multisection. Then, taking the product of Tn ! C

with C , we get an example of a smooth minimal threefold Xn with �.Xn/ D 2 and with
the same properties as above. Indeed, if Wn is a multisection of Xn ! C � C , for a gen-
eral choice of c 2 C , Wn induces a multisection of Xn �C�C ¹cº � C ! ¹cº � C which
is isomorphic to Tn! C . Hence, although the bases of the Iitaka fibrations of the Xn are
all isomorphic and thus trivially belong to a bounded family, on the other hand, vol2.Xn/
does attain infinitely many distinct values, and there is no lower bound for the degree of
a rational multisection of Xn ! C � C .

Example 1.5. In this example, we show that the conditions of Theorem 1.3 are indepen-
dent of each other.

Let Cn be a smooth curve of genus n, and let E be an elliptic curve. Then, Cn � Cn �
E ! Cn � Cn is a smooth minimal elliptic threefold of Kodaira dimension 2 admitting
a section. Furthermore,

vol2.Cn � Cn �E/ D .2n � 2/2

depends on n. Thus, the set of the varieties Cn is not bounded, showing that it is not
sufficient to just assume the existence of an upper bound on the degree of a multisection
of the Iitaka fibration to prove the boundedness of the minimal terminal n-folds of Kodaira
dimension n � 1.

Fix a curve C with g.C / � 2, and let E be an elliptic curve. Then, by [13, Exam-
ple 3.1], there exists a set of smooth surfaces fnWSn ! C with the following properties:
fn is smooth, isotrivial, and fn does not admit a multisection of degree less than n. Set-
ting Xn WD Sn � C and gnWXn ! C � C the induced map, then Xn is a smooth minimal
threefold with �.Xn/ D 2, vol2.KXn/ D .2g.C /� 2/

2 fixed, whereas Xn does not admit
a rational multisection of degree less than n. Hence, this example in turn shows that it is
not sufficient to just assume the existence of an upper bound on voln�1.Y / to prove the
boundedness of the minimal terminal n-folds Y of Kodaira dimension n � 1.

Strategy of proof

In the context of Theorems 1.1 and 1.3, we shall consider a set of elliptically fibered
varieties F that is known to be bounded modulo flops. Furthermore, we can assume that
these flops preserve the elliptic fibration. More precisely, we shall assume that there exists
a family

� W X
zf
��! �

zg
��! T
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of projective morphisms of quasi-projective varieties such that � is a flat family of three-
folds, zg is a flat family of surfaces, and for every fibration f WX ! S 2 F, there exists
t 2 T such that the following diagram holds:

X
sequence ofKX -flops

//

f

��

Xt

zf jXt
��

S
isomorphism

// �t :

In this setup, Kawamata [31] showed that each X ! S admits only finitely many
relatively minimal models over S , up to isomorphism. That is, while there may be infinite
sequences of flops over S and thus infinitely many marked minimal models, these models
belong to finitely many isomorphism classes of S -schemes. In view of this, our strategy
will be to show that also X ! � admits only finitely many relatively minimal models,
up to isomorphism over � , and that every X ! S in F appears as a fiber of one of those
finitely many models of X ! � . More precisely, we shall prove the following two steps:

(i) generalize the results of [31] to relatively minimal elliptic fibrations of arbitrary
dimension; and

(ii) argue that, under suitable geometric assumptions, every sequence of KXt
-flops

Xt Ü X0t relative to �t can be lifted to a sequence of KX-flops X Ü X0 rela-
tive to � .

Step (i) guarantees that X ! � admits only finitely many relatively minimal models,
X1; : : : ;Xk , up to isomorphism over � , see Section 3. Then, step (ii) guarantees that each
fibration in F appears as the fiber over a closed point of Xi ! T for some 1 � i � k.
Indeed, let X ! S be an element of F. Then, by assumption, there is a closed fiber
Xt ! �t such that �t D S and Xt Ü X decomposes as a sequence of KXt

-flops over
S D �t . Then, by (ii), we can lift this sequence as a sequence of KX-flops X Ü X0

over � . Then, by construction, we have that X is isomorphic to the fiber X0t . Since X0

is isomorphic over � , and hence over T , to Xi for some 1 � i � k, it follows that X is
isomorphic to Xi;t , showing the boundedness as desired.

In general, it is hard to show that a flop can be lifted from a special fiber of a fam-
ily, as the Picard rank of the fibers can jump countably many times. On the other hand,
the Calabi–Yau condition guarantees that, under a suitable base change, the Picard rank
remains constant in a family, allowing for identification between the relative Néron–Severi
group and the Néron–Severi group of each fiber. This is worked out in Section 4. The
results of Sections 3 and 4 are then combined to prove Theorem 6.18, which represents
a general criterion to prove the boundedness for Calabi–Yau varieties that form a bounded
family up to flops. Then, Theorem 1.1 immediately follows from Theorem 6.18.

The case of Theorem 1.3 is different, as it is not true in general that threefolds of
Kodaira dimension 2 have locally constant Picard rank. To circumvent this issue, we shall
use results of Kollár and Mori showing that flops of terminal threefolds are locally unob-
structed, see [36, Theorem 11.10]. Thus, while Theorem 1.1 relies on arguments that are
valid in higher dimensions, the proof of Theorem 1.3 is special to the case of threefolds.
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2. Preliminaries

2.1. Terminology and conventions

Throughout this paper, we will work over C. For anything not explicitly addressed in this
subsection, we refer the reader to [34, 37].

2.2. Notation on morphisms and maps

A contraction is a projective morphism f WX ! Y of quasi-projective varieties with
f�OX D OY . If X is normal, then so is Y , and the fibers of f are connected.

A fiber space is a contraction f WX ! Y of normal quasi-projective varieties with
dimX > dimY . Given a fiber space f WX ! Y , we define

Bir.X=Y / WD ¹' 2 Bir.X/ j f ı ' D f º

and
Aut.X=Y / WD ¹ 2 Aut.X/ j f ı  D f º:

There exists a natural identification Bir.X=Y / D Bir.X�/, where � is the generic point
of Y , see [28] – Bir.X=Y / is denoted by BirY .X/ in [28]. More precisely, the k-points
of Bir.X=Y / are identified with the k.Y /-points of Bir.X�/. Hence, if f WX ! Y is an
elliptic fibration, then

Bir.X=Y / D Autk.Y /.X�/:

We will need the following simple result.

Lemma 2.1. Let f WX ! Y be a contraction of normal varieties. Assume that f admits
a factorization

X
g
//

f

&&
Y 0

h // Y;

where hWY 0 ! Y be a birational contraction. Then,

Bir.X=Y / D Bir.X=Y 0/ and Aut.X=Y / D Aut.X=Y 0/:

Proof. Fix ' 2 Bir.X=Y /. Since f D h ı g, then Bir.X=Y 0/ � Bir.X=Y / – this inclu-
sion holds even when Y 0 ! Y is not a birational morphism. Let U � Y be an open
subset over which h is an isomorphism, and let XU WD X �Y U . Then, by construction,
g D g ı ' on XU . Thus, ' 2 Bir.X=Y 0/. This proves Bir.X=Y / D Bir.X=Y 0/. Finally,
Aut.X=Y / D Aut.X=Y 0/ follows immediately.

Let r WX Ü X 0 be a birational map of quasi-projective varieties. We say that r is an
isomorphism in codimension 1 if there exist closed Zariski subvarieties Z � X , Z0 � X 0

of codimension at least 2 such that r induces an isomorphism betweenX nZ andX 0 nZ0.
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Let f WX ! Y , f 0WX 0 ! Y be morphisms (with the same target variety Y ). Then an
isomorphism in codimension 1 r WX ÜX 0 is said to be an isomorphism in codimension 1
over Y if the naturally induced diagram

X
r //

f

��

X 0

f 0
~~

Y

commutes.

2.3. Divisors

Let K denote Z, Q, or R. We say that D is a K-divisor on a variety X if we can write
D D

Pn
iD1 diPi , where di 2 K, n 2 N and the Pi are prime Weil divisors on X for all

i D 1; : : : ; n. We say that D is K-Cartier if it can be written as a K-linear combination of
Z-divisors that are Cartier. The support of a K-divisor D D

Pn
iD1 diPi is the union of

the prime divisors appearing in the formal sum Supp.D/ D
Pn
iD1 Pi . In all of the above,

if K D Z, we will systematically drop it from the notation.
Given a K-divisorD and a prime divisor P in the support ofD, we denote by �P .D/

the coefficient of P in D. Given D D
P
P prime �Pi .D/Pi on a normal variety X , and

a morphism � WX ! Z, we define the vertical (resp. horizontal) part Dv (resp. Dh)
of D by

Dv
WD

X
�.Pi /¤Z

�Pi .D/Pi ; Dh
WD

X
�.Pi /DZ

�Pi .D/Pi :

Let D1 and D2 be K-divisors on X , and let � WX ! Z be a projective morphism of
normal varieties. We write D1 �K;� D2 if there is a K-Cartier divisor L on Z such that
D1 �D2 �K f

�L. Equivalently, we may also writeD1 �K;Z D2, orD1 �K D2 overZ.
Similarly, if Z D Spec.k/, where k is the ground field, we omit Z from the notation.
In case D1 and D2 are K-Cartier, we say that D1 and D2 are numerically equivalent
over Z if D1 � C D D2 � C for every curve C � X such that �.C / is a point, and we
write D1 �� D2, or, alternatively, D1 �Z D2. If K D Z, we omit it from the notation.

2.4. Cones of divisors

Let f WX ! Y be a projective morphism of varieties. We denote by N1R.X=Y / the real
vector space generated by Cartier divisors on X modulo numerical equivalence on curves
in X that are contracted by f . It is a finite-dimensional vector space, and its dimension is
denoted by �.X=Y /.

We denote by V.X=Y / the R-subspace of N1R.X=Y / generated by the classes of
vertical divisors and by v.X=Y / its dimension.

We denote by A.X=Y / the cone of f -ample divisors and by xA.X=Y / its closure,
that is, the cone of f -nef divisors. Similarly, we denote by B.X=Y / the cone of f -big
divisors and by xB.X=Y / its closure, that is, the cone of f -pseudo-effective divisors.
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A Cartier divisorD onX is f -movable if we have f�OX .D/¤ 0 and the codimension
of the support of coker.f �f�.OX .D//! OX .D// is at least 2. We denote by xM.X=Y /

the closed cone of f -movable divisors: this cone is the closure of the cone generated by
f -movable divisors.

We denote by Be.X=Y / the cone of f -effective divisors, and we set Ae.X=Y / WD
xA.X=Y / \ Be.X=Y / and M e.X=Y / WD xM.X=Y / \ Be.X=Y /.

Lemma 2.2. Let f WX ! Y and gWY ! Z be contractions of normal varieties. Let L be
a line bundle on X that is movable over Z. Then, L is movable over Y .

Proof. We wish to show that the cokernel of the natural morphism f �f�L! L is sup-
ported in codimension at least 2. By assumption, f�L is a coherent sheaf on Y , and there
is a natural morphism

g�g�.f�L/! f�L: (2.1)

By assumption, the cokernel of the natural morphism

.g ı f /�.g ı f /�L! L (2.2)

has codimension at least 2. By (2.1), the morphism in (2.2) factors as

f �g�g�f�L! f �f�L! L;

and the claim follows.

Lemma 2.3. Let f WX ! Y be a contraction of normal varieties. Let L be a line bundle
on X that is movable over Y . Let H be a general member of a basepoint-free linear
system on Y , and let XH WD X �Y H . Then, LjXH is movable over H .

Proof. Let us consider the Cartesian diagram

XH
v //

g

��

X

f

��

H
u // Y:

By assumption, the natural morphism

f �f�L! L

is surjective outside a subset V � X of codimension at least 2. Since H is a general
element of a basepoint-free linear series, then XH is a general element of the free linear
series jf �H j, by the projection formula. Thus, we may assume that V \ XH has codi-
mension at least 2 in XH . By construction, we have LXH WD LjXH D v

�L, and we need
to show that

g�g�LXH ! LXH
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is surjective outside a set of codimension 2. Since the pull-back is a right exact functor,
we have that

v�f �f�L! v�L

is surjective outside V \XH , which has codimension at least 2 in XH .
Since f ı v D u ı g, we have that v�f �f�L D g�u�f�L. By cohomology and base

change [29, Remark III.9.3.1], there is a natural morphism

u�f�L! g�v
�L:

Thus, if we consider the pull-back to XH , we have morphisms

v�f �f�L D g
�u�f�L! g�g�v

�L! v�L:

Since the composition is surjective outside of V \XH , then so is g�g�v�L! v�L. This
concludes the proof.

Lemma 2.4. Assume that f WX ! Y is a contraction of quasi-projective varieties. Let

 2 B.X=Y /, and let .
i /i2N � N1R.X=Y / be a sequence converging to 
 . Then, there
exist Weil R-divisors D and Di on X , and i 2 N, such that

(1) ŒD� D 
 , ŒDi � D 
i ;

(2) there exists a reduced divisor ‚ on X such that for all i 2 N, the support of Di is
contained in ‚;

(3) .Di /i2N converges to D in the vector space of R-Weil divisors;

(4) D � 0 and Di � 0 for i � 0.

Moreover, if X is Q-factorial and .X; 0/ is klt, then there exists a positive real number "
such that .X; "D/ is klt and for all i � 0, .X; "Di / is klt.

Proof. Since f is projective and N1R.X=Y / is finite-dimensional, we may choose a basis
ŒH1�; : : : ; ŒHk � for N1R.X=Y / such that each Hj is ample and effective. Since bigness is
an open condition, up to rescaling, we may assume that 
 �

Pk
jD1ŒHj � is big over Y .

Thus, since 
 �
Pk
jD1ŒHj � is big over Y , there exists a divisor G � 0, representing 
 �Pk

jD1ŒHj �, that is big onX . We setD WDGC
Pk
jD1Hj . Since 
i! 
 and ŒH1�; : : : ; ŒHk �

constitute a basis for N1R.X=Y /, then, for i � 0, 
i is contained in²

 C

kX
jD1

aj ŒHj �
ˇ̌̌
8j; �1 � aj � 1

³
:

Thus, for i � 0, 
i can be represented by the divisor Di WD G C
Pk
jD1 �i;jHj , where

0 � �i;j � 2 and �i;j ! 1 for all j .
We now prove the last claim. Since we can assume that X is Q-factorial and .X; 0/ is

klt, then there exists " > 0 such that .X; ".G C
Pk
jD1 2Hj // is klt. In particular, for any

of choice of real numbers cj 2 Œ0; 2�, j D 1; : : : ; k, .X; ".G C
Pk
jD1 cjHj // is also klt.

Taking cj D 1 8j and taking cj D �i;j for all i � 0 show that the last claim holds.
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Lemma 2.5. Let .X; �/ be a klt pair and f WX ! Y be a contraction of normal vari-
eties. Assume that KX C � �Q;f 0 and that f factors as X

g
�! Y 0

�
�! Y , where � is

a birational morphism of normal varieties. Then, there is a short exact sequence

0! N1R.Y
0=Y /! V.X=Y /! V.X=Y 0/! 0:

Proof. The morphism V.X=Y /! V.X=Y 0/ is naturally induced by the equivalence rela-
tions of numerical equivalence over Y and Y 0, respectively, as any curve C � X that is
vertical over Y 0 is also vertical over Y . Since a divisor on X is vertical over Y if and only
if it is vertical over Y 0, this morphism is clearly surjective.

The morphism N1R.Y
0=Y /! V.X=Y / is induced by g�. By considering curves in X

that are vertical for � ı g but not for g, and using the projection formula, it follows that
N1R.Y

0=Y / ! V.X=Y / is injective. It also follows immediately that g�N1R.Y
0=Y / is

contained in ker.V .X=Y /! V.X=Y 0//.
Now, let D be a divisor such that ŒD� 2 ker.V .X=Y / ! V.X=Y 0//: to conclude,

we need to show that ŒD� 2 g�N1R.Y
0=Y /. By the definition of the relative Néron–Severi

group, without loss of generality, we may assume that D is a Q-divisor vertical over
both Y and Y 0. Possibly adding the pull-back of a sufficiently ample divisor on Y , we may
assume that D is effective. Hence, for 0 < "� 1, the log pair .X; �C "D/ is klt and
KX C�C "D �g 0. Thus, X is a minimal model for .X;�C "D/ over Y 0. Since D is
vertical andKX C� �Q;g 0, it follows from [26, Theorem 1.1] and [38, Proposition 2.4]
that X is a good minimal model for .X;�C "D/: in particular,D is semi-ample over Y 0,
and thus, D �Q;g 0. Hence, ŒD� 2 g�N1R.Y

0=Y /.

2.5. Boundedness

We now recall the notion of boundedness for a set of log pairs, and we introduce a suit-
able notion of boundedness for fibrations. First, we recall the notion of log pair. A log
pair .X; B/ is the datum of a normal quasi-projective variety and an R-divisor B , called
boundary, such that KX C B is R-Cartier and 0 � B � Supp.B/.

Definition 2.6. Let D be a set of projective log pairs.

(1) We say that D is log bounded if there exist a log pair .X;B/ and a projective
morphism � WX ! T , where T is of finite type, such that for any log pair .X;B/ 2D,
there exist a closed point t 2 T and an isomorphism ft WXt !X such that .ft /�Bt D B .

(2) We say that D is log birationally bounded if there exist a log pair .X;B/ and
a projective morphism � WX ! T , where T is of finite type, such that for any log pair
.X;B/ 2D, there exist a closed point t 2 T and a birational map ft WXt Ü X such that

Supp.Bt / D Supp..f �1t /� Supp.B/CE/;

where E is the exceptional divisor of ft .

(3) If D is log birationally bounded and for any log pair .X;B/ 2D the map ft in (2)
is an isomorphism in codimension 1, then we say that D is log bounded in codimension 1.
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When a set D of log pairs is actually a set of varieties, i.e., for any pair .X;�/ 2 D, the
condition � D 0 is satisfied, then we shall say that D is bounded (resp. birationally
bounded, bounded in codimension 1) rather than log bounded (resp. log birationally
bounded, log bounded in codimension 1).

Definition 2.7. Let F be a set of triples ..X;B/; .Y;D/; '/, where .X;B/ and .Y;D/ are
projective log pairs and 'WX ! Y is a contraction.

(1) We say that F is log bounded if there exist log pairs .X;B/, .Y;D/, a variety of
finite type T , and a commutative diagram of projective morphisms

X
� //

�

  

Y
�

��

T

(2.3)

such that for any ..X; B/; .Y; D/; '/ 2 F, there is a closed point t 2 T together with
morphisms ft WXt ! X and gt WYt ! Y inducing a commutative diagram

Xt
ft //

� jXt
��

X

'

��

Yt
gt // Y

such that .X;B/ Š .Xt ;Bt / and .Y;D/ Š .Yt ;Dt /.

(2) We say that F is log birationally bounded if there exist log pairs .X;B/, .Y;D/,
a variety of finite type T , the same commutative diagram as in (2.3) holds, and for any
..X;B/; .Y;D/; '/ 2 F, there is a closed point t 2 T together with birational morphisms
ft WXt Ü X and gt WYt Ü Y inducing a commutative diagram

Xt
ft //

� jXt
��

X

'

��

Yt
gt // Y

such that Supp.Bt / contains the strict transform of Supp.B/ and all the ft exceptional
divisors, and Supp.Dt / contains the strict transform of Supp.D/ and all the gt excep-
tional divisors.

(3) If F is log birationally bounded and the maps ft , gt in (2) are isomorphisms in
codimension 1, we say that F is log bounded in codimension 1.

When in a set F of triples, for any triple ..X; B/; .Y;D/; '/ 2 F, the condition B D
0 D D is satisfied, then we say that F is bounded (resp. birationally bounded, bounded
in codimension 1) rather than log bounded (resp. log birationally bounded, log bounded
in codimension 1).
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2.6. Crepant birational models

The following statement is known to the experts and follows from [5, Theorem E]. For
the reader’s convenience, we include a short proof.

Lemma 2.8 (Finiteness of crepant models). Let .Y;�/ be a klt pair with Y quasi-projec-
tive. Let us consider the set M of all �W yY ! Y projective birational morphisms of normal
varieties such that if K yY C� yY D �

�.KY C�Y /, then � yY � 0. Then M is finite.

Proof. Let AY be an ample effective divisor on Y . For any model �W yY ! Y in M, we set
A yY WD �

�AY .
Let .Y 0; �0/ be a Q-factorial terminal model of .Y; �/ realized by a birational con-

traction r W Y 0 ! Y such that KY 0 C �0 D r�.KY C �/ – such model exists by [5,
Corollary 1.4.3]. By the construction in loc. cit., for any model �W yY ! Y in M, there
exists a birational contraction r� WY 0 Ü yY such that

Y 0
r� //

r

##
yY

� // Y

and r�� .K yY C� yY / D KY 0 C�
0, and also r��A yY D r

�AY . Here the pull-back under the
birational map r� is well defined since r� is a birational contraction, i.e., r� does not
contract any divisor.

Let us write AY 0 �Q HY 0 C EY 0 , where HY 0 is an r-ample and effective Q-divisor,
while EY 0 is effective. Since .Y 0; �0/ is klt by construction, then there exists a positive
rational number 0 < "� 1 such that .Y 0; �0 C ".HY 0 C EY 0// is still klt. Then, given
any pair . yY ;� yY / with �W yY ! Y which belongs to the set M defined in the statement of
the lemma, we get

r�� .K yY C� yY C "A yY / D KY 0 C�
0
C "AY 0 �Q KY 0 C�

0
C ".HY 0 CEY 0/: (2.4)

In particular, (2.4) implies that . yY ;� yY C ".r�;�HY 0 C r�;�EY 0// is a weak log canonical
model of .Y 0;�0C ".HY 0 CEY 0// relatively over Y , in the sense of [5, Definition 3.6.6].
Then [5, Theorem E] implies the finiteness of all possible distinct weak log canonical
models of .Y 0;�0C ".HY 0 CEY 0//, which in turn also proves the finiteness of the models
contained in M.

Proposition 2.9. Suppose that X is a projective klt variety admitting an elliptic fibration
f WX ! Y . Assume that KX �Q;Y 0. There exist finitely many birational morphisms
hi W Yi ! Y , i D 1; : : : ; n such that the following property holds: given a commutative
diagram

X
'

//

f

��

X 0

f 0
��

g

  

Y Y 0;
h

oo

(2.5)
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where ' is an isomorphism in codimension 1 over Y , and h is birational, then there exists
1 � i � n such that Y 0 D Yi and h D hi .

The definition of a relative isomorphism of codimension 1 can be found in Section 2.2.

Proof. The canonical bundle formula, see, for example, [2], guarantees the existence of
a generalized log pair1 .Y; BY CMY / with generalized klt singularities such that KX �
f �.KY C BY CMY /. Furthermore, given a commutative diagram as in (2.5), it holds
that

(0) the canonical bundle formula for g provides a generalized pair .Y 0;BY 0 CMY 0/ such
that h�.KY C BY CMY / D KY 0 C BY 0 CMY 0 , BY D h�BY 0 , and MY D h�MY 0 ;

(1) there exists an effective Q-divisor N �Q MY independent of Y 0 such that, setting
�Y WD BY CN , then .Y;�Y / is klt; and

(2) the log pull-back .Y 0; �Y 0/ of .Y;�Y / to Y 0 satisfies �Y 0 � 0.

Item (0) immediately follows from the canonical bundle formula and the definition of
generalized pair. To achieve (1) and (2), we argue as follows. Consider a resolution
Y 00! Yterm ! Y of a terminalization Yterm of the generalized pair .Y;BY CMY /, where
the trace MY 00 of the moduli part on Y 00 descends. Since BY 0 is effective on any model
as in (2.5) and Yterm is a generalized terminalization for .Y; BY CMY /, we have that
Yterm Ü Y 0 is a birational contraction.

Let 'W Y 00 ! Y denote the induced morphism, and write KY 00 C BY 00 CMY 00 D

'�.KY CBY CMY /. Since .Y;BY CMY / is generalized klt, then .Y 00; BY 00/ is sub-klt.
By [43, Example 7.16], 12MY 00 is globally generated divisor on Y 00. By Bertini’s theorem,
we may choose a general element 12N 00 2 j12MY 00 j such that .Y 00; BY 00 C N 00/ is sub-
klt. Then, by construction, .Y; BY CN/ is a klt pair, where N denotes the push-forward
of N 00 to Y . Then, (1) follows.

By construction, .Y 00; BY 00 C N 00/ is the log pull-back of .Y;�Y /, and Y 00 Ü Y 0 is
a rational contraction. Therefore, the log pull-back .Y 0; �Y 0/ of .Y; �Y / coincides with
the sub-pair obtained by pushing forward the sub-pair .Y 00; BY 00 C N 00/ via the rational
map Y 00 Ü Y 0. Then, by construction, �Y 0 is the sum of BY 0 , which is effective by (0),
and the strict transform of N 00. In particular, �Y 0 is effective, and (2) follows.

Specifically, as .Y;�Y / is klt, it follows from Lemma 2.8 that there are finitely many
log pairs .Y 0; �Y 0/ that can arise in the above construction.

Lemma 2.10. Let � W Y 0 ! Y be a birational contraction, where Y 0 is Q-factorial. As-
sume there exists a boundary�0 � 0 on Y 0 such that .Y 0;�0/ is klt andKY 0 C�0 �Q;� 0.
Then, M.Y 0=Y / D xM.Y 0=Y /.

Proof. Let ŒD0� 2 xM.Y 0=Y /. Since � is birational, D0 is relatively big, and we may
assume that D0 � 0. Since ŒD0� 2 xM.Y 0=Y /, there exists a sequence of divisors D0i � 0

1For the theory of generalized log pairs and their canonical bundle formula, we refer the reader
to [16].
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such that ŒD0i � 2 M.Y
0=Y / and ŒD0i �! ŒD0� in N1R.Y

0=Y /. For 0 < "� 1, the log pair
.Y 0; �0 C "D0/ is klt, and

KY 0 C�
0
C "D0 �Q;� "D

0:

In particular, we may run aD0-MMP with scaling over Y , and this terminates with a good
model Y 00 ! Y since � is birational. Let D00 be the push-forward of D0 to Y 00. Thus,
D00 is semi-ample over Y and ŒD00� 2M.Y 00=Y /.

To conclude, it suffices to show that Y 0 Ü Y 00 is an isomorphism in codimension 1.
For this purpose, we observe that, as the MMP Y 0 Ü Y 00 has finitely many steps, and
since ŒD0i � converges to ŒD0� in N1R.Y

0=Y /, it follows that Y 0 Ü Y 00 is a composition of
steps of the D0i -MMP over Y for all i � 1. Since each ŒD0i � is in M.Y 0=Y /, the MMP is
forced to be an isomorphism in codimension 1.

Lemma 2.11. Let � WY 0! Y be a birational contraction of Q-factorial normal varieties.
Assume there exists a boundary�0�0 on Y 0 such that .Y 0;�0/ is klt andKY 0C�0�Q;� 0.
Let E 01; : : : ; E

0
k

denote the prime �-exceptional divisors. Then, the classes of the E 0i form
a basis of N1R.Y

0=Y /. Furthermore, if ŒD0� 2M.Y 0=Y /, and we write ŒD0� D
P
ai ŒE

0
i �,

then ai � 0 for all i .

Proof. For 0 < "� 1, the log pair .Y 0;�0 C
Pk
iD1 "E

0
i / is klt and big over Y ; therefore,

it admits a good minimal model zY over Y . Since the E 0i are contained in the stable base
locus of KY 0 C�0 C

Pk
iD1"E

0
i , it follows that zY ! Y is a small birational morphism of

Q-factorial varieties and hence is an isomorphism. But then �.Y 0=Y / D k as it is well
known that every divisorial contraction contracts an irreducible exceptional divisor.

Fix ŒD0� 2 M.Y 0=Y /. We can write D0 D
P
aiE

0
i . As D0 is movable and KY 0 C

�0 �Q;� 0, up to replacing Y 0 by a model that is isomorphic in codimension 1, we may
assume that D0 is semi-ample over Y . Then, since D0 is supported on the exceptional
locus of Y 0 ! Y , by the negativity lemma, it follows that D0 � 0.

2.7. Calabi–Yau fiber spaces

Let X and Y be normal quasi-projective varieties, and let f WX ! Y be a projective
morphism. We say that f WX ! Y is a Calabi–Yau fiber space if the following conditions
hold:

(CYF1) X is terminal and Q-factorial;

(CYF2) f is a contraction; and

(CYF3) KX �f 0.

Remark 2.12. In view of [19, Theorem 1.2], [26, Theorem 1.1], and [38, Proposition 2.4],
condition (CYF3) is equivalent to KX �Q;f 0.

For a given Calabi–Yau fiber space f WX! Y , a relatively minimal model ofX over Y
(or, of f ) is a contraction f 0WX 0 ! Y such that X 0 is terminal, Q-factorial, KX 0 �f 0 0,



S. Filipazzi, C. D. Hacon, R. Svaldi 3598

andX 0 is birationally equivalent toX . It is a well-known fact that, if f 0WX 0! Y is a rela-
tively minimal model of f , thenX andX 0 are isomorphic in codimension 1. Furthermore,
X and X 0 are connected by a sequence of KX -flops over Y , see [32].

Given two Calabi–Yau fiber spaces f WX ! Y , f 0WX 0 ! Y with X , X 0 birationally
equivalent, let ˛WX 0 Ü X be the isomorphism in codimension 1 over Y . We refer to ˛
as the marking of the minimal model f 0. A marked minimal model of f is the datum of
an ordered couple .f 0WX 0! Y; ˛/, where f 0 is a relatively minimal model of f together
with the marking ˛. A marked birational model of Y is the datum of a birational projective
morphism r WY 0 ! Y .

Let f WX ! Y be a Calabi–Yau fiber space and .f 0WX 0! Y;˛/ be a marked minimal
model. Then, ˛� induces an isomorphism between N1R.X

0=Y / and N1R.X=Y / such that

˛�B.X
0=Y / D B.X=Y /; ˛�M.X

0=Y / DM.X=Y /; ˛�V.X
0=Y / D V.X=Y /:

We define

A.X=Y; ˛/ WD ˛�A.X
0=Y /;

xA.X=Y; ˛/ WD ˛� xA.X
0=Y /;

Ae.X=Y; ˛/ WD ˛�A
e.X 0=Y /:

By [31, Lemma 1.5], A.X=Y; ˛/ \ A.X=Y / ¤ ; if and only if ˛ is an isomorphism.
Having introduced this notation, it is easy to show that, assuming the termination of

a relative MMP for any element of M e.X=Y /, we have

M e.X=Y / D
[

.f 0WX 0!Y;˛/

Ae.X=Y; ˛/; (2.6)

where .f 0WX 0! Y;˛/ runs over all distinct Q-factorial marked relatively minimal models
of f . In particular, (2.6) holds true whenever dimX � dim Y � 3; see, e.g., [13, Theo-
rem 1.5].

Notation 2.13. We call the decomposition in formula (2.6) the chamber decomposition
of M e.X=Y /. We call each cone Ae.X=Y; ˛/ in (2.6) a chamber of the decomposition.

Let f WX ! Y be a Calabi–Yau fiber space, and let

X
g
//

f

%%
W

h // Y

be a factorization of f such that h is a contraction of normal varieties which is not an iso-
morphism. In particular, g is itself a Calabi–Yau fiber space. Moreover, g�WN1R.W=Y /!
N1R.X=Y / is injective, and g�Ae.W=Y /D g�N1R.W=Y /\A

e.X=Y / is an extremal face
of Ae.X=Y /. Analogously, if .f 0WX 0 ! Y; ˛/ is a marked minimal model of f factor-
ing as

X 0
g0
//

f 0

&&
W 0

h0 // Y; (2.7)
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where h0 is a contraction of normal varieties which is not an isomorphism, then

˛� ı .g
0/�W N1R.W

0=Y /! N1R.X=Y /

is injective. If dim.X 0/ > dim.W 0/ or if g0 is a birational morphism that contracts at least
one divisor, ˛�..g0/�Ae.W 0=Y // D ˛�..g

0/�N1R.W
0=Y // \M e.X=Y / is an extremal

face of M e.X=Y /. If g0 is a small birational morphism, ˛�..g0/�Ae.W 0=Y // is a cone
intersecting the interior of M e.X=Y / and is called a wall. The terminology comes from
the following observation: if g0WX 0!W 0 is a small contraction with �.X 0=W 0/D 1, then
˛�..g

0/�Ae.W 0=Y // is the wall separating the chambers corresponding to .f 0WX 0!Y; ˛/

and ..f 0/CW .X 0/C ! Y; ˛C/, where .g0/CW .X 0/C ! W 0 is the flop of g0.

Notation 2.14. With the notation and assumptions introduced above, if g0 in (2.7) is
a birational morphism that contracts at least a divisor, we say that ˛�..g0/�Ae.W 0=Y //
is an extremal face of M e.X=Y / corresponding to a birational contraction. If dimX 0 >

dimW 0, we say that ˛�.g0/�Ae.W 0=Y / is an extremal face of M e.X=Y / corresponding
to a fiber space structure.

If f WX ! Y is a Calabi–Yau fiber space, as X is terminal and minimal over Y ,
then for any ' 2 Bir.X=Y /, 'WX Ü X is a small birational map over Y . Hence, '�
induces a bijection on the lattice of Weil divisors and on its quotient modulo numerical
equivalence

¹Weil divisors on Y º= �Y� N1R.X=Y /:

Thus, there exists a natural induced representation

� W Bir.X=Y /! GL.N1R.X=Y /;Z/; ' 7! '�:

Moreover, '� preserves the subspace V.X=Y / and permutes the chambers of the partition
of M e.X=Y / given in (2.6).

The following result shows that the chamber decomposition of M e.X=Y /, cf. (2.6),
is well behaved in the part of the movable cone of a Calabi–Yau fiber space consisting of
big divisors. The result generalizes [31, Theorem 2.6].

Lemma 2.15. Let f WX ! Y be a Calabi–Yau fiber space. Then, the decomposition

M e.X=Y / \ B.X=Y / DM.X=Y / \ B.X=Y /

D

[
.f 0WX 0!Y;˛/

marked minimal model of f

Ae.X=Y; ˛/ \ B.X=Y / (2.8)

is locally finite in the open cone B.X=Y /.

By local finiteness of the decomposition in (2.8), we simply mean that if† is a closed
convex cone contained in ¹0º [ B.X=Y /, then there exist only finitely many relatively
minimal models .f 0i WX

0
i ! Y; ˛i /, i D 1; : : : ; k, such that the cones Ae.X=Y; ˛i / \

.¹0º [ B.X=Y // intersect †.
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Proof of Lemma 2.15. By definition, M e.X=Y / �M.X=Y /. Therefore, the inclusion

M e.X=Y / \ B.X=Y / �M.X=Y / \ B.X=Y /

is clear, so we will prove the reverse inclusion. Suppose that ŒD�2M e.X=Y /\B.X=Y /,
we must show that ŒD� 2 M.X=Y /. Since ŒD� 2 Be.X=Y /, there is � � 0 such that
� �R;Y ˛D, for some positive real number ˛, and .X;�/ is terminal. Then, for a general
point y 2 Y , the divisor �y is f -big and KXy C �y �Q �y . By [5], the general fiber
.Xy ;�y/ has a good minimal model. By [25, Theorem 1.2] and [26, Theorem 1.1], .X;�/
has a good minimal model 'WX Ü X 0 for .X;�/ over Y and in particular '�D is semi-
ample over Y . By continuity, there is a movable divisor D0 (sufficiently close to D in
N1R.X=Y /) such that ' is given by a sequence of D0-flips and divisorial contractions.
Suppose that ' contracts a divisor F ; then F is in the stable base locus of D0, which is
impossible as D0 is movable. Thus, ' is small and hence D D '�1� '�D is also movable.

Hence, if ŒD� 2 †, then ŒD� is contained in the interior of a rational polyhedral cone
spanned by effective big Q-divisorsDi such that "Di �Q;Y �i for some rational number
0 < "� 1, where .X;�i / is klt. Thus, we may apply finiteness of models [5, Theorem E].
Since, for all i , Di is relatively movable if and only if the corresponding minimal models
do not contract any divisors, then the claim now follows easily.

The following result is a generalization of [31, Lemma 3.3 (2)]. See also [22, Theo-
rem 40] for a similar statement.

Lemma 2.16. LetX be a Q-factorial terminal variety. Assume that there exists a Calabi–
Yau fiber space f WX ! Y of relative dimension 1. There exists a marked minimal model
.f 0WX 0 ! Y ; ˛/ of f together with a factorization

X 0
g0
//

f 0

&&
Y 0

h0 // Y

such that

(1) Y 0 is Q-factorial;

(2) h0 is birational; and

(3) every prime divisor in X 0, vertical over Y 0, dominates a divisor in Y 0.

Proof. We will proceed by induction on the relative Picard number �.X=Y /. First, assume
�.X=Y / D 1. In this case, there is nothing to prove, as every vertical prime divisor is rel-
atively numerically trivial and, thus, it is numerically the pull-back of a Q-divisor on Y .
So, we can assume that �.X=Y / > 1 and that the conclusions of the lemma hold for all
Calabi–Yau fiber spaces of Picard rank lower than �.X=Y /.

Let E � X be a prime divisor such that codim.f .E// � 2. Let us consider a suffi-
ciently positive very ample divisor A on Y . Fix a general element H of the non-complete
sub-series V � jAj of divisors in jAj containing f .E/. Passing to a higher multiple of A,
if needed, we may assume that the sub-series V is non-empty and has no fixed divisor.
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Writing f �H D D1 C D2, where each component of D1 dominates a divisor on Y ,
while the image of each prime component of D2 has codimension at least 2 on Y , then
D1 ¤ 0 and E �D2. By construction,D1 is f -movable, as it is a general member of the
moving part of the linear series obtained by pull-back.2 Thus, by running a .KX C "D1/-
MMP over Y , where 0 < " � 1, this must terminate with a model zf W zX ! Y where
the strict transform zD1 of D1 is relatively nef over Y . Since dim.Y / D dim. zX/ � 1,
then zD1 is semi-ample over Y , cf. [13, Theorem 1.5]. In particular, zD1 induces a mor-
phism zgWX ! zY over Y : as zD1 is vertical over Y , then zY ! Y is birational and zD1
is trivial over zY . Since ŒD1� ¤ 0 2 N1R.X=Y /, then zY is not isomorphic to Y . Thus,
�.X=Y /D �. zX=Y />�. zX= zY /, and the claim follows by the inductive hypothesis applied
to X 0 ! Y 0. Finally, the Q-factoriality of Y 0 follows from [13, Proposition 2.9].

Lemma 2.17. Let .X; �/ be a Q-factorial log canonical pair, and let f WX ! Y be
a contraction. Assume that KX C� �Q;f 0 and that f admits a factorization

X
g
//

f

%%
Z

h // Y:

Let 
 WX Ü X 0 be a sequence of .KX C �/-flops over Z, and let f 0WX 0 ! Y and
g0WX 0 ! Z be the induced morphisms. Then,

g�N1R.Z=Y / D 

�1
� ..g0/�N1R.Z=Y //:

Furthermore, all the cones inside N1R.Z=Y / are identified by this identity.

Proof. By induction, it suffices to show the statement for one flop. Thus, we may assume
that X admits a small contraction 'WX ! X 00 over Z such that 
 WX Ü X 0 arises as
the flop of '. Let g00WX 00 ! Z,  WX 0 ! X 00 be the induced morphisms. Since g� D
'� ı .g00/� and .g0/� D  � ı .g00/�, it suffices to show that, if D is an R-Cartier divisor
on X 00, then  �D D ˛�'�D, which follows at once from the construction. This equality
also implies the claim about the cones of N1R.Z=Y /.

Lemma 2.18. Let f WX ! Y be a Calabi–Yau fiber space. Assume that f admits a fac-
torization

X
g
//

f

%%
zY

h // Y

such that h is a birational contraction with zY Q-factorial. Let . zY ;� zY / be a klt log pair
such thatKX �R g

�.K zY C� zY /, and let ˇW zY Ü zY C be a .K zY C� zY /-flop over Y . Then,

2To see this, it suffices to consider the linear series jW j D f �jV j: two general elements T1;T2 2
jW j have the same multiplicity along any prime divisor D on X such that f .D/ � f .E/ and they
share no other component; thus, T1 D F1 C D2 and T2 D F2 C D2, where the support of D2
is mapped to f .E/; hence, F1 � F2 and they share no prime divisor, so jF1j is movable. It then
suffices to take D1 WD F1.
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there exists a marked minimal model .f CWXC! Y;˛/ of f together with a commutative
diagram

XC
˛ //

gC

��

X

g

��

zY C
ˇ�1

//

hC
''

zY

h
xx

Y:

(2.9)

In particular, g�N1R. zY =Y / D ˛�..g
C/�N1R. zY

C=Y // � N1R.X=Y /:

Proof. The existence of the marked minimal model and of the diagram in (2.9) follows
from [13, Proposition 2.9].

To prove the final claim, it suffices to notice that the linear map

˛�W N1R.X
C=Y /! N1R.X=Y /

is an isomorphism, as ˛ is an isomorphism in codimension 1; similarly,

ˇ�W N1R. zY =Y /! N1R. zY
C=Y /

is also an isomorphism; the conclusion then follows from the commutativity of (2.9).

Corollary 2.19. Let f WX ! Y be a Calabi–Yau fiber space of relative dimension 1.
There exist only finitely many extremal faces of M e.X=Y / corresponding to fiber space
structures.

Let us recall, cf. Notation 2.14, that, since the relative dimension of f is 1, an ex-
tremal face of M e.X=Y / corresponding to a fiber space structure is an extremal face of
M e.X=Y / of the form ˛�..g

0/�Ae.Y 0=Y //, where .f 0WX 0! Y; ˛/ is a marked minimal
model of X ! Y together with a factorization

X 0

f 0

%%g0
// Y 0

h0 // Y

such that h0 is birational.

Proof of Corollary 2.19. By Proposition 2.9, there exist finitely many birational mor-
phisms zY ! Y such that if zX is a relatively minimal model for X ! Y , then zX ! Y

factors through zY .
Fix one such choice of zX and zY , and let gW zX ! zY be the corresponding morphism.

By Lemma 2.1, g�Ae. zY =Y / � N1R.X=Y / is invariant under the action of Bir.X=Y /;
notice that here we are identifying N1R.X=Y / and N1R. zX=Y /. According to Lemma 2.17,
if hW yX ! zY is another model whose structure morphism over Y factors through zY ,
we have h�Ae. zY =Y / D g�Ae. zY =Y /. Then, by the finiteness of the models zY , the claim
follows.
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2.8. Calabi–Yau varieties

A normal projective variety X is a Calabi–Yau variety if

(CY1) KX � 0;

(CY2) X has terminal Q-factorial singularities; and

(CY3) hi .X;OX / D 0 for 0 < i < dim.X/.

Some authors define Calabi–Yau varieties using instead of (CY1) the slightly weaker
condition that the canonical bundle is a torsion rank 1 divisorial sheaf. Passing to the
index 1 cover of such variety, one can always reduce to the case where the canonical
bundle is trivial. Nonetheless, this reduction may affect conditions (CY2-3).

In our treatment, the condition (CY1) will be used to guarantee that any elliptic
Calabi–Yau f WX ! S can be reconstructed via the Tate–Shafarevich group (over a big
open set of S ) of the associated Jacobian fibration j W J.X/! S , see Section 6. In order
to do that, we need to know that over any codimension 1 point of S the general fiber is not
a multiple one, which is implied by adjunction and the fact that KX is linearly equivalent
to 0 rather than torsion, cf. Remark 6.8.

2.9. The cone conjecture

Consider a Calabi–Yau fiber space f WX ! Y . Then, as explained in Section 2.7, the
cone of effective movable divisors M e.X=Y / admits a decomposition into chambers
Ae.X=Y; ˛/, where ˛WX Ü X 0 is some marked minimal model of X over Y . Under
this decomposition, either Ae.X=Y; ˛/ D Ae.X=Y / and ˛ is an isomorphism, or
˛�Int.Ae.X=Y // \ Int.Ae.X 0=Y // D ;, where Int indicates the interior of a set, see
[31, Lemma 1.5].

Therefore, to study all the possible minimal models of f WX ! Y , we can analyze the
cones M e.X=Y / and Ae.X=Y /. It can happen that a minimal model X 0 is isomorphic
to X , while the rational map over Y , ˛WX Ü X 0 is not an isomorphism [31, Exam-
ple 3.8 (2)]. Thus, we may have more chambers corresponding to the same isomorphism
class of varieties. Therefore, if we are only interested in the isomorphism classes as
schemes over Y of the relative minimal models of X Ü Y , we should study when dif-
ferent marked minimal models are actually isomorphic over Y .

The so-called Kawamata–Morrison cone conjecture [46, Conjecture 2.1] addresses the
discrepancy, mentioned above, between isomorphism classes of varieties X 0 that appear
as total spaces of a relatively minimal model f 0WX 0 ! Y of f and isomorphism classes
over Y of relatively minimal models of f .

Cone conjecture (Kawamata–Morrison). Let f WX ! Y be a projective morphism with
connected fibers between normal varieties. Let .X;�/ be a klt pair such that

KX C� � 0=Y:

Let Ae.X=Y / and M e.X=Y / be defined as in Section 2.4. Then, the following holds:
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(1) The number of Aut.X=Y;�/-equivalence classes of faces of the cone Ae.X=Y / cor-
responding to birational contractions or fiber space structures is finite. Moreover,
there exists a rational polyhedral cone … which is a fundamental domain for the
action of Aut.X=Y;�/ on Ae.X=Y / in the sense that

(a) Ae.X=Y / D
S
g2Aut.X=Y;�/ g�…; and

(b) Int… \ g� Int… D ; unless g� D 1.

(2) The number of PsAut.X=Y; �/-equivalence classes of chambers Ae.X=Y; ˛/ in
M e.X=Y / corresponding to marked small Q-factorial modifications X 0 ! Y of
X ! Y is finite. Equivalently, the number of isomorphism classes over Y of small
Q-factorial modifications of X over Y (ignoring the birational identification with X )
is finite. Moreover, there exists a rational polyhedral cone …0 which is a fundamental
domain for the action of PsAut.X=Y;�/ on M e.X=Y /.

In the statement of the conjecture, PsAut.X=Y; �/ denotes the group of pseudo-
automorphisms of the pair .X;�/ relative to Y . Here, pseudo-automorphism means a bira-
tional automorphism that does not contract nor extract any divisor. In particular, ifX! Y

is a Calabi–Yau fiber space as defined in Section 2.7, we have Bir.X=Y /D PsAut.X=Y /,
see [31, §1].

This is a very deep conjecture connecting the birational geometry of a log Calabi–Yau
fibration to the structure of the (birational) automorphism group. The intuition behind
such connection is rooted in mirror symmetry and physics, see, for example, [40], but it
is still unclear how exactly to determine the existence of automorphism starting from the
geometry of the cone of divisors. Conjecture 2.9 is known to hold just in very few cases:
Totaro proved it in dimension 2 [46], Kawamata proved the relative case (i.e., dimY > 0)
for threefold Calabi–Yau fiber spaces [31], and there are a few other cases known in
dimension > 2.

3. Finiteness of models for elliptic Calabi–Yau fiber spaces

The results in this section are a higher-dimensional generalization of the results of [31,
§3], originally stated for elliptic threefolds. The main subtlety in passing to a dimension
higher than 3 is that the base of the elliptic fibration has a more complicated birational
geometry: in particular, such base may admit birational modifications in codimension 2,
while in the case of elliptic threefolds the base is a surface and its birational geometry is
completely determined by the set of exceptional divisors in the birational morphisms of
interest.

Lemma 3.1. Let f WX ! Y be a Calabi–Yau fiber space of relative dimension 1. Let
.f 0WX 0 ! Y; ˛/ be a marked minimal model of f . Let

X 0
g0
//

f 0

$$
Y 0

h0 // Y
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be a factorization of f satisfying the conclusions of Lemma 2.16. Then, the following
hold:

(1) Given any marked minimal model . xf W xX ! Y; x̨/ of f , there exists a uniquely deter-
mined factorization

xX
xg
//

xf

$$
xY

xh // Y; (3.1)

where xg is a Calabi–Yau fiber space of relative dimension 1 and xh is a projective
birational morphism which satisfies the following maximality property: any other fac-
torization xX xg 0

��! xY 0
xh0
��! Y with xg0 a Calabi–Yau fiber space of relative dimension 1

and xh0 a projective birational morphism factors through xg, i.e., there exist a projective
birational morphism l W xY ! xY 0 and a factorization

xX
xg
//

xf

��

xg0

��

xY
l //

xh

==
xY 0

xh0 // Y:

In particular, any factorization

X 00
g00
//

f 00

$$
Y 00

h00 // Y

of a marked minimal model .f 00WX 00 ! Y; ˛0/ of f satisfying the conclusions of
Lemma 2.16 also satisfies the maximality property just described.

(2) There exists a birational contraction ˇWY 0 Ü xY making the following diagram com-
mute

X 0
x̨�1ı˛ //

g0

��

xX

xg
��

Y 0
ˇ

//

h0

&&

xY

xh0

xx
Y;

where xX
xg
��! xY is as in (3.1). Furthermore, up to replacing g0WX 0 ! Y 0 by another

Calabi–Yau fiber space g000WX 000 ! Y 000 satisfying the same properties and assump-
tions of the lemma, and such that X 000 (resp. Y 000) is isomorphic in codimension 1
to X 0 (resp. Y 0), we can assume the map ˇ above is a morphism.
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(3) Let . zf W zX ! Y; z̨/ be a marked minimal model of f admitting a factorization

zX
zg
//

zf

$$
zY

zh // Y

satisfying the conclusions of Lemma 2.16. Then zY and Y 0 are isomorphic in codimen-
sion 1. In particular, they are connected by a sequence of flops over Y with respect to
any klt pair .Y 0; �0/ (resp. . zY ; z�/) induced by the canonical bundle formula for f 0

(resp. zf ).

(4) IfD0 is a g0-vertical prime divisor and ŒD0�¤ 0 2 N1R.X
0=Y 0/, thenD0 is the excep-

tional divisor of a birational contraction of X 0 over Y 0.

Proof. (1) Since xf W xX! Y is a Calabi–Yau fiber space of relative dimension 1, a divisor
is xf -semi-ample if and only if it is xf -nef and xf -effective. Furthermore, if two xf -semi-
ample divisors are not xf -big, neither is their sum, as xf -bigness is characterized by the
intersection with a general fiber. Thus, if D1, D2 are xf -semi-ample divisors that are
not f -big, then so is D1 CD2. Thus, D1 CD2 induces a factorization that dominates
the ones induced by D1 and D2, respectively. In particular, any two factorizations xX !
xY1 ! Y and xX ! xY2 ! Y , where Yi is birational to Y , for i D 1; 2, are dominated by
a third factorization xX ! xY3 ! Y . This shows the uniqueness of the maximal element.
Assuming that

xX ! xY4 ! xY5 ! Y

is a non-trivial factorization of xf , where xY4 ! xY5 ! Y is a composition of birational
morphisms, then �. xX= xY4/ < �. xX= xY5/ < �. xX=Y /. Since the relative Picard number is
a positive integer, a maximal element must exist.
To show that any factorization

X 00
g00
//

f 00

$$
Y 00

h00 // Y

of a marked minimal model .f 00WX 00 ! Y; ˛0/ of f satisfying the conclusions of Lem-
ma 2.16 also satisfies the maximality property introduced in the statement of the lemma,
it suffices to notice that Lemma 2.16 implies that any g00-vertical divisor dominates a divi-
sor on Y 00. Then, if there was a further factorization of the form

X 00
gm //

f 00

''
Y m

hm // Y 00
h00 // Y

since Y 00 is Q-factorial, hm would have to contract a prime divisor Dm and then D00 WD
g�1m .Dm/ would be a g00-vertical divisor such that g00.D00/ has codimension at least 2
in Y 00.
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(2) Let xH be a relatively ample divisor on xY over Y . Set M WD .x̨�1 ı ˛/�1� xg
� xH ,

thenM is movable over Y , as xg� xH is semi-ample and .x̨�1 ı ˛/ is a small birational map;
a fortiori, M is movable also over Y 0, see Lemma 2.2. Therefore, there is a sequence of
flops 
 WX 0 Ü yX over Y 0, making the strict transform yM of M on yX nef over Y 0. Thus,
yM is semi-ample over Y 0. Let yX ! yY ! Y 0 be the corresponding morphism. Since

every divisor that is vertical for X 0! Y 0 dominates a divisor in Y 0, and since 
 is a small
birational map, then any divisor that is vertical for yX ! Y 0 must also dominate a divisor
on Y 0. Thus, for dimensional reasons, the morphism yY ! Y 0 cannot contract any divisor,
that is, zY ! Y 0 is a small birational morphism. Since Y 0 is Q-factorial by assumption,
see Lemma 2.16, then yY ! Y 0 is an isomorphism. But then M D .g0/�H 0 holds for
some divisor H 0 on Y 0. As M is movable over Y , the same holds for H 0. Let .Y 0; �0/ be
a klt pair induced by the canonical bundle formula for g0WX 0 ! Y 0; in particular KY 0 C
�0 �Q;Y 0. As H 0 is movable over Y , running a relative .KY 0 C �0C"H 0/-MMP, for
0 < "� 1, over Y , we obtain a sequence of .KY 0 C�0/-flops Y 0 Ü Y 000 over Y such
that the strict transformH 000 ofH 0 on Y 000 is semi-ample over Y . In particular, Y 0 Ü Y 000

is a birational contraction. By construction, taking the relatively ample model of H 000

over Y induces a morphism Y 000 ! xY .
Furthermore, by repeatedly applying [13, Proposition 2.9], there exists a Q-factorial

Calabi–Yau fiber space g000WX 000 ! Y 000 such that X 000 is isomorphic to X 0 in codimen-
sion 1.

(3) By Lemma 2.16, Y 0 and zY are Q-factorial. Moreover, as both Y 0 and yY satisfy
the assumptions of part (2), there exist birational contractions zY Ü yY and yY Ü zY

which implies that they are isomorphic in codimension 1. If .Y 0; �0/ (resp. . zY ; z�/) is
induced by the canonical bundle formula for f 0 (resp. zf ), then K 0Y C�

0 �Q;Y 0 (resp.
K zY C

z� �Q;Y 0) holds, and Y 0 and zY are connected by a sequence of .K 0Y C�
0/-flops

(resp. .K zY C z�/-flops).

(4) Let D0 be a prime and g0-vertical divisor such that ŒD0� ¤ 0 2 N1R.X
0=Y 0/.

Then, g0.D0/ D xD is a divisor on Y 0 and D0 ¤ �f � xD for any � 2 R. Thus, we may
assume that D0 C D00 D �0f

� xD, where �0 2 R>0, D0; D00 � 0 and they do not have
components in common. Moreover, every component of D00 dominates xD. Then, D0 is
g0-very exceptional in the sense of [3, Definition 3.1] and it is contracted by running
a .KX 0 C "D0/-MMP over Y 0, for 0 < "� 1, since KX 0 C "D0 �Q;Y 0 "D

0.

Remark 3.2. We use the setup and the notation of Lemma 3.1. Proposition 2.9 implies
that there exist only finitely many marked birational models zY zh

��! Y that appear in a fac-
torization of the form zX zg

��! zY
zh
��! Y , where zh ı zgW zX ! Y is a relatively minimal model

of f .

Given an elliptic fibration f WX! Y , and a class z 2N1R.X=Y /, we define deg.z/2R
to be the intersection number D � F , where D is an R-Cartier divisor such that

ŒD� D z 2 N1R.X=Y /

and F is a smooth fiber of f .
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Lemma 3.3. Let X be a terminal Q-factorial variety, and let f WX ! Y be a Calabi–
Yau fiber space of relative dimension 1. Let � WBir.X=Y /! GL.N1R.X=Y /;Z/ be the
induced representation. Then, the image of � contains an Abelian subgroup G.X=Y /
which is the image of a finite index subgroup of H < Bir.X=Y / that acts on the affine
space W.X=Y / WD ¹z 2 N1R.X=Y /=V.X=Y / j deg.z/ D 1º as a group of translations.
Moreover, the quotient space W.X=Y /=G.X=Y / is a real torus.

Proof. We follow the strategy of proof of [31, Lemma 3.5].
Let � 2 Y be the generic point. For a Weil divisorD onX , we denote byD� its restric-

tion to the schematic fiberX� ofX over �. Since Bir.X=Y /DAut.X�/, the degree of any
divisor on X is preserved under the push-forward by elements of Bir.X=Y /. Similarly,
the subspace V.X=Y / is fixed by the push-forward action by elements of Bir.X=Y /.

Case 1. We prove the lemma under the additional assumption that f has a rational
section.

Fix such a section D0, which will serve as the origin for X� . By the structure of the
automorphism group of an elliptic curve, the group of rational sections M , known as the
Mordell–Weil group, can be identified as a subgroup H of finite index of Aut.X�/ and
hence of Bir.X=Y / that acts via translations.

Let � 2 Bir.X=Y / be an element corresponding to a rational section D1 D ��D0.
For a K-divisor D with deg.D/ D 1, ��D� �D� �K D1;� �D0;� on X� . Thus, � acts
on W.X=Y / as the translation by ŒD1 �D0�. We define the map

� 0W M ! .N1R.X=Y /=V.X=Y //0; D1 7! ŒD1 �D0�;

where

.N1R.X=Y /=V.X=Y //0 WD ¹
 2 N1R.X=Y /=V.X=Y / j deg.
/ D 0º:

It is immediate from its definition that

dim.N1R.X=Y /=V.X=Y //0 D �.X=Y / � v.X=Y / � 1:

Claim. Under the assumption that D0 corresponds to the identity of M , � 0 is a homo-
morphism of Abelian groups and its image G.X=Y / is a finitely generated subgroup.

Proof. Let D1 and D2 be two rational sections, and let �1 and �2 be the correspond-
ing birational automorphisms. To avoid confusion with the summation between divisors,
we denote by D1 ? D2 the sum of the two sections in the Mordell–Weil group of f ,
that is, the group law of the elliptic curve X� . Since we have fixed D0;� as the identity
of X� , thenD1 ?D2 � .D1 �D0/� C .D2 �D0/� CD0;� D .D1 CD2 �D0/� . Thus,

D1 ? D2 � .D1 CD2 �D0/�;

or, equivalently,

.D1 ? D2/ �D0;� � .D1 �D0/� C .D2 �D0/�: (3.2)
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Since the linear equivalence in (3.2) holds over an open subset of Y , and since we are
considering the vector space N1R.X=Y /=V.X=Y /, that is, vertical divisors are negligible,
then

Œ.D1 ? D2/ �D0� D ŒD1 �D0�C ŒD2 �D0� 2 .N1R.X=Y /=V.X=Y //0:

It just remains to show that G is finitely generated. Since X is Q-factorial and by defini-
tion of numerical equivalence, the relative (over Y ) first Chern class map is well defined
on Cl.X/ with values in N1R.X=Y /, and its image G1 is a full rank lattice. Moreover,
the degree function also yields a group homomorphism degW Cl.X/ ! Z. We denote
by Cl.X/0 its kernel. Let us also notice that, by its definition, V.X=Y / is spanned over R
by classes of Weil divisors that have degree 0. Thus, the image G2 of Cl.X/0 via the
first Chern class map into the quotient .N1R.X=Y /=V.X=Y //0 yields in turn a full rank
lattice. Then, by the definition of � 0, G.X=Y / WD Im.� 0/ is a subgroup contained in G2.
Thus, G is finitely generated.

For any Weil divisor D on X , we define DdegD1 WD D � .deg.D/ � 1/D0. Then,
deg.DdegD1/ D 1 and f�OX .DdegD1/ is a torsion free sheaf of rank 1 on Y . In particu-
lar, by Riemann–Roch theorem on X� , there exists a rational section SDdegD1 such that
ŒDdegD1� D ŒSDdegD1 � 2 N1R.X=Y /=V.X=Y /. Thus,

ŒDdegD1 �D0� D ŒSDdegD1 �D0� 2 G:

Since we are free to choose D to be any Weil divisor on X , it follows that G.X=Y / is
a Z-module of maximal rank in .N1R.X=Y /=V.X=Y //0, i.e., rank Im.� 0/ D �.X=Y / �
v.X=Y /� 1. Therefore, asW.X=Y / is an affine space under the (fully faithful) action of
.N1R.X=Y /=V.X=Y //0, the statement of the lemma follows.

Case 2. We prove the lemma without assuming the existence of a section.
Let d be the minimal positive integer such that X� has a divisor of degree d defined

over k.Y /. Fix D0 a horizontal divisor on X such that D0;� has degree d . Let J� denote
the Jacobian of X� . As before, we will denote by M the group of k.Y /-rational points
of J� . Since M acts on X� as a group of translations, M naturally embeds in Bir.X=Y /
and its image H � Bir.X=Y / has finite index. Let � 2 M , and let D be a divisor with
deg.D/ D d . Then, ��D� �D� � ��D0;� �D0;� on X� . Hence, dividing by d , we de-
duce that � acts as a translation by 1

d
Œ��D0 �D0� on W.X=Y /. As in case 1, we define

the morphism � 0WM ! .N1R.X=Y /=V.X=Y //0 by � 0.�/ WD 1
d
Œ��D0 �D0�. As in case 1,

� 0 is a group homomorphism and its image G.X=Y / � .N1R.X=Y /=V.X=Y //0 is a full
rank lattice. Let us consider the group homomorphism 'D0;� W J� ! J� defined by
'D0;�.x/ WD �x.D0;�/ �D0;� , where �x denotes the translation by x 2 J� . Then, 'D0;�
is an étale morphism of degree d2, by the theorem of the square for Abelian varieties,
see [41, p. 59]. For every (integral) divisor D on X , we define Q-divisor DdegDd D

D � . 1
d

deg.D/� 1/D0. Then, deg.DdegDd /D d and, by the minimality of d , d jdeg.D/,
so thatDdegDd is actually a Weil divisor. Again, by Riemann–Roch theorem onX� and the
minimality of d , the class ŒDdegDd � 2 N1R.X=Y /=V.X=Y / can be represented by a prime
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divisor SDdegDd on X . We regard the degree 0 Weil divisor SDdegDd ;� �D0;� on X� as
a k.Y /-rational point pSDdegDd ;��D0;�

2 J� . The fiber Fp WD '�1D0;�.pSDdegDd ;��D0;�
/ is

a 0-dimensional scheme defined over k.Y / of length d2. In Jx� WD J��Speck.Y / Spec k.Y /,
where k.Y / is the algebraic closure of k.Y /, Fp �Speck.Y / Spec Nk.Y / is an effective divi-
sor of degree d2. On the other hand, since Fp is defined over k.Y /, the sum in Jx� of
these d2 points is in turn a closed point of Jx� defined over k.Y /, that is, it is a k.Y /-
rational point of J� which we denote by p0. The point p0 is by definition an element
of M . By definition, �p0.D0;�/�D0;� � d2.SDdegDd ;� �D0;�/. As �p0.D0;�/�D0;� D
d� 0.p0/, then one can now conclude exactly as at the end of case 1.

Theorem 3.4. Let f WX ! Y be a Calabi–Yau fiber space of relative dimension 1. Then,
there are only finitely many orbits for the action of Bir.X=Y / on

(1) the set of chambers of M e.X=Y /:

¹Ae.X=Y; ˛/ j .f 0WX 0 ! Y; ˛/ is a marked minimal model of f ºI and

(2) the set of extremal faces ofM e.X=Y / induced by non-trivial factorizations of marked
minimal models of f :

°
˛�.g

0/�Ae.Z0=Y / j X 0
g0
//

f 0

**
Z0

h0
// Y is a non-trivial factorization

of a marked minimal model .f 0WX 0 ! Y; ˛/ of f
±
:

Proof. For the reader’s convenience, we divide the proof into several steps. We observe
that

� replacing f by a marked relatively minimal model of f does not affect the conclu-
sions of the theorem, cf. Section 2.7;

� since f is a contraction of relative dimension 1, the only contractions that can factor f
are either birational models of X or birational models of Y .

Step 0. In this step, we make a first reduction and then we introduce the strategy of proof.
By Lemma 2.16, up to replacing f by a relatively minimal model, we can assume

that f factors as

X

f

))

g
// Y 0

h

// Y; (3.3)

where every divisor that is g-vertical dominates a divisor in Y 0, h is birational, and Y 0 is
Q-factorial. To keep the notation light, we define

v WD v.X=Y /; � WD �.X=Y /; and k WD �.Y 0=Y /:

By Lemma 2.5, g�N1R.Y
0=Y / � V.X=Y /. If

X

f

))

g0
// Y 00

h0
// Y;
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is another factorization of f satisfying the same properties as the one in (3.3), then
by Lemmas 2.18 and 3.1 (3), Y 0, Y 00 are isomorphic in codimension 1 and g�N1R.Y

0=Y /D

.g0/�N1R.Y
00=Y / in N1R.X=Y /. In particular, g�N1R.Y

0=Y / is an intrinsically defined k-
dimensional subspace of V.X=Y /. Let .y1; : : : ; yk/ be a basis of g�N1R.Y

0=Y /. Then,
we may complete it to a basis .y1; : : : ; yk ; ykC1; : : : ; yv/ of V.X=Y /. In turn, we com-
plete this basis to a basis .y1; : : : ; yk ; ykC1; : : : ; yv; yvC1; : : : ; y�/ of N1R.X=Y /.

By Corollary 2.19, there exist only finitely many extremal faces of M e.X=Y / cor-
responding to fiber space structures of a marked minimal model of f : that proves the
finiteness of the extremal faces ofM e.X=Y / corresponding to a factorization of a marked
minimal model of f which lie on the boundary of the big cone. Thus, in the remainder of
the proof, we will focus on the extremal faces ofM e.X=Y / corresponding to a birational
contraction factoring f , that is, those extremal faces that intersect B.X=Y /.

Our strategy for the proof of the theorem is to now proceed by induction on v. Let us
recall that in Lemma 3.3 we definedW.X=Y / WD ¹z 2N1R.X=Y /=V.X=Y / j deg.z/D 1º.

Step 1. In this step, we prove the base case of the induction, that is, the case where v D 0.
If v D 0, thenW.X=Y /D ¹z 2 N1R.X=Y / j deg z D 1º. We then prove the following

claim.

Claim. If v D 0, then W.X=Y / �M e.X=Y / \ B.X=Y /.

Proof. Let z 2 W.X=Y /. As deg z D 1 > 0, then z 2 B.X=Y /, thus its class can be
represented by an effective Q-divisor D, that is, z D ŒD� 2 Be.X=Y /.

Now, let D be a divisor with degD > 0. If F is a component of the relative stable
base locus of D over Y , then F is a vertical divisor. As v D 0, all vertical divisors are
movable over Y since they are numerically equivalent to the pull-back of a divisor on Y .
It then follows easily that D itself is movable over Y .

To prove the statement of this step, as W.X=Y /=G.X=Y / is compact, it suffices to
invoke Lemma 2.15.

We will now proceed to prove the inductive step: we assume that v > 0 and that
the inductive hypothesis holds. We define I.X=Y / to be the collection of all cones in
M e.X=Y / of the form ˛�.g

�
zZ
A. zZ=Y // for a marked minimal model . zf W zX ! Y; ˛/

of f factoring as

zX
g zZ

//

zf

**zZ // zY
h zY

// Y; (3.4)

where zY ! Y is a birational contraction that is not an isomorphism, whereas zX ! zZ is
a birational morphism, where, in this last case, an isomorphism is also allowed. If zX ! zZ
is an isomorphism, then ˛�.g�zZA.

zZ=Y //DA.X=Y;˛/which is the interior of a chamber
ofM e.X=Y /. If zX ! zZ is not an isomorphism, then the cone ˛�.g�zZA.

zZ=Y // is the rel-
ative interior of an extremal face of M e.X=Y / corresponding to a birational contraction,
that is, the extremal face intersects B.X=Y /.
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Step 2. In this step, we show that the theorem holds for those chambers and extremal
faces of M e.X=Y / belonging to the collection I.X=Y /.

Let . zf W zX ! Y; ˛/ be a marked minimal model together with a factorization of zf as
in (3.4). Then, the cone ˛�.g�zZA.

zZ=Y // belongs to I.X=Y /. By Lemma 2.5, v. zX= zY / <
v. zX=Y / D v. Thus, we can apply the inductive hypothesis to the morphism zX ! zY .
Then, there are only finitely many orbits for the action of Bir. zX= zY / on:

(i) the chambers of M e. zX= zY /; and

(ii) the extremal faces of M e. zX= zY / induced by factorizations of a marked minimal
model of zX ! zY .

By the inductive hypothesis and since

˛ is an isomorphism in codimension 1‚ …„ ƒ
Bir.X=Y / D Bir. zX=Y / D Bir. zX= zY /„ ƒ‚ …

by Lemma 2.1

;

then there are only finitely many orbits in (i) and (ii) also for the action of Bir.X=Y /
on N1R. zX= zY /. Hence, up to this action, there are finitely many marked minimal models
.fi WXi ! Y; ˛i /, i D 1; : : : ; s, of f admitting a factorization

Xi //

fi

((
zY

h zY

// Y:

Since by Lemma 2.8 there exist only finitely many birational models h zY W zY ! Y that
may appear in a factorization of marked minimal models of f , then there are finitely
many orbits of the action of Bir.X=Y / on

(i0) the chambers ofM e.X=Y / corresponding to marked minimal models of f admitting
a non-trivial factorization through a higher birational model of Y ; and

(ii0) the extremal faces of M e.X=Y / induced by factorizations of a marked minimal
model as in (3.4).

By Remark 3.2, we may restrict our attention to the chambers and the faces thereof not
corresponding to fiber space structures.

To conclude the proof, we study the orbits of Bir.X=Y / on the extremal faces and
chambers of M e.X=Y / not contained in I.X=Y /. To this end, we define yI .X=Y / �
N1R.X=Y / to be the union of all the cones that are contained in I.X=Y /, that is, of all
the cones of the form ˛�.g

�
zZ
A. zZ=Y //, where . zf W zX ! Y;˛/ is a marked minimal model

of f admitting a factorization as in (3.4). Moreover, we define

J.X=Y / WD ¹z 2 N1R.X=Y / j deg.z/ D 1; z 2M e.X=Y / n yI .X=Y /º:

Step 3. In this step, we show that J.X=Y / is closed in N1R.X=Y /.
The condition deg.z/D 1 is clearly a closed one. The set ¹z 2M e.X=Y / j deg.z/D1º

is also closed, as every element is big over Y and hence R-linearly equivalent to an effec-
tive divisor over Y .
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Let z be a point in the closure of J.X=Y /: we will show that z 62 yI .X=Y /. To this
end, we assume that z 2 yI .X=Y / and we shall proceed to obtain a contradiction.

By Lemma 2.15, in a neighborhood U of z, M e.X=Y / decomposes as a finite union
of chambers

U \M e.X=Y / D

b[
tD1

Ae.X=Y; ˛t /:

Let us fix one of the chambers appearing in the decomposition above, which we denote by
Ae.X=Y; ˛t /. If z is in the interior of Ae.X=Y; ˛t /, then A.X=Y; ˛t / is one of the cones
in I.X=Y /, since z 2 yI .X=Y /. In particular, z belongs to the interior of yI .X=Y / and
we immediately obtain the sought contradiction, as z is a limit point for J.X=Y /. Thus,
z must belong to the relative interior of a face of the form ˛�l

�
1A.X

00=Y / � Ae.X 0=Y; ˛/

induced by a factorization of the formX 0
l1
��!X 00

l2
��!Y , where l1 is a birational morphism

which is not the identity. As X 0! Y is a Calabi–Yau fiber space of relative dimension 1,
then by [5], X 00 can be constructed as the relatively ample model of the relatively big
and movable class z. But then, as z 2 yI .X=Y /, we have that the cone ˛�l�1A.X

00=Y / is
an element of I.X=Y /, and X 00 ! Y admits a non-trivial factorization X 00 ! Y 00 ! Y ,
which in turn induces a non-trivial factorization X 0! Y 00! Y . Thus, in a neighborhood
of z, we haveAe.X 0=Y;˛/� yI .X=Y /. Since the same reasoning can be used for any other
chamber Ae. zX=Y; ˛/ arising from the decomposition claimed in Lemma 2.15, then z
must be in the interior of yI .X=Y /, thus we reach the sought contradiction.

Let us underline here that, in the definition of I.X=Y /, we must use cones of the
form A. zZ=Y / and not of the form Ae. zZ=Y /: indeed, if we chose instead to work with
Ae. zZ=Y /, it would not be true that the set J.X=Y / is closed in N1R.X=Y /. In fact,
to define J.X=Y /, we wish to consider all birational models of X over Y for which
the structure morphism to Y does not admit a factorization through a higher birational
model of Y . If I.X=Y / contains cones of the form ˛�.g

�
zZ
Ae. zZ=Y //, where zZ is part of

a factorization as in (3.4), then it may happen that the boundary of such cone contains as
an extremal face the nef cone of another birational model zZ0 of X over Y which instead
cannot be factorized in any way.

Step 4. In this step, we show that, in order to prove the theorem, it suffices to show that
the map pWJ.X=Y /! W.X=Y / is proper.

By Lemma 3.3, there exists a finite index subgroup H < Bir.X=Y / such that the
imageG.X=Y / ofH under the natural representation � WBir.X=Y /!GL.N1R.X=Y /;Z/
acts on W.X=Y / as a group of translations and W.X=Y /=G.X=Y / is a compact torus.
Thus, G.X=Y / acts also on J.X=Y /: indeed, the action of Bir.X=Y / on N1R.X=Y / pre-
serves

� the degree of a divisor on the generic fiber of f ; and

� the property that a marked minimal model . zf W zX ! Y; ˛/ of f admits a non-trivial
factorization of zf .

Thus, there exists a natural morphism J.X=Y /=G.X=Y /! W.X=Y /=G.X=Y /, where
the latter is compact. The properness of the map pWJ.X=Y /!W.X=Y /, in turn, implies
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the properness of J.X=Y /=G.X=Y /!W.X=Y /=G.X=Y /, and, in particular, the com-
pactness of J.X=Y /=G.X=Y /. Then, the claim follows by combining the local finiteness
of the movable cone inside the big cone and the compactness of J.X=Y /=G.X=Y /. In
particular, the claim follows from Lemma 2.15: indeed, the faces on the boundary of the
big cone are taken care of by Corollary 2.19.

Step 5. In this step, we verify the properness of the map p.
Since the topological spaces of interest have the Heine–Borel property, we can check

the properness of pW J.X=Y /! W.X=Y / using sequences. Arguing by contradiction,
we assume that there exists a sequence .zn/n2N � J.X=Y / such that the sequence
.p.zn//n2N converges in W.X=Y / whereas .zn/n2N does not admit any convergent
subsequence. Both of these conditions are not affected by passing to a subsequence of
.zn/n2N and of .p.zn//n2N relative to the same subset of indices.

For all n 2 N, we write zn D
P�
iD1 a

i
nyi and we set

wn WD

kX
iD1

ainyi ; xn WD

�X
iDkC1

ainyi ; and tn WD

�X
iDvC1

ainyi :

For all n 2 N, zn D xn C wn, zn, tn, and xn are big over Y , as well as over any bira-
tional model zY ! Y of Y . By construction, span.yvC1; : : : ; y�/ maps isomorphically
onto N1R.X=Y /=V.X=Y /.

Step 5:1. In this step, we show that the sequence .xn/n2N contains a converging subse-
quence.

Let Y 0 be the higher model of Y defined in step 0. For all n 2 N,

Œzn� 2M
e.X=Y 0/ � N1R.X=Y

0/ D N1R.X=Y /=N1R.Y
0=Y /

by Lemma 2.2. Here Œ�� indicates the equivalence class in the quotient. As .y1; : : : ; yk/ is
a basis of N1R.Y

0=Y /, Œzn� D Œxn� 2 N1R.X=Y
0/. Thus, .Œzn�/n2N � N1R.X=Y

0/ contains
a converging subsequence if and only if .xn/n2N does.

We then argue as in [31, proof of Theorem 3.6] and look at the intersection numbers
with the general fibers of the g-exceptional divisors over their images in Y 0. By Lem-
ma 2.3, this can be reduced to a lower-dimensional question by considering a very general
hyperplane section of Y 0. Thus, proceeding inductively, we can reduce to the case when Y 0

is a surface and X is a threefold, which is treated in [31, proof of Theorem 3.6]. Thus,
.xn/n2N admits a converging subsequence.

Since we are assuming that .zn/n2N contains no convergent subsequence, by step 5.1,
the same must hold for .wn/n2N , in view of the discussion above. As both of these con-
ditions are not affected by passing to a subsequence, then we pass to the subsequence of
.xn/n2N whose existence was shown in step 5.1, and we also pass to the subsequences
of .zn/n2N , .wn/n2N corresponding to the same indices. Hence, we can assume that
.xn/n2N is converging, while .zn/n2N , .wn/n2N do not contain any convergent subse-
quence.



Boundedness of elliptic Calabi–Yau threefolds 3615

For all n 2 N, we set w0n to be the unique element of N1R.Y
0=Y / such that

g�.w0n/ D wn:

As .wn/n2N does not contain any convergent subsequence, also .w0n/n2N does not contain
any convergent subsequence.

Step 5:2. In this step, we show that there exists a birational contraction Y 0Ü YN over Y
which is the outcome of a run of the MMP for a suitable subsequence of .w0n/n2N .

Since KY 0 C �0 �Q;Y 0, .Y 0; �0/ is klt, and Y 0 ! Y is birational, for any divisor
class in N1R.Y

0=Y / we can run a relative MMP over Y , by [5, Corollary 1.3.2]. Hence,
for all n 2 N, the w0n-MMP over Y can be run and it must terminate with a relatively
minimal model for w0n. By Lemma 2.8, there are just finitely many marked birational
models of Y that can appear in those runs of the MMP. Furthermore, by the negativity
lemma, for a fixed n 2 N no model can appear more than once in the w0n-MMP. Thus,
up to passing to a subsequence .w0nk /k2N � .w

0
n/n2N , we may assume that there exist

a sequence of divisorial contractions and isomorphisms in codimension 1

Y 0 DW Y0
 0 //

))

Y1
 1 //

  

� � �
 N�2// YN�1

 N�1 //

||

YN

uu
Y

(3.5)

which yields, for any k 2 N, a run of the w0nk -MMP over Y . In particular, for all k 2 N,
. N�1 ı � � � ı  0/�w

0
nk

is nef over Y . Moreover, for all i D 1; : : : ; N , by [10, Propos-
tion 2.26], there exists a marked minimal model .fi WXi ! Y; ˛i / of f together with
a factorization

Xi
li //

fi

&&
Yi // Y

such that the induced diagram

Xi

li

��

'i WD˛
�1
iC1
ı˛i

isomorphisms in codimension 1
// XiC1

liC1

��

Yi
 i

// YiC1

is commutative. Finally, passing to a suitable subsequence .w0nkj /j2N � .w
0
n/n2N , we can

assume that, for all j 2 N, the w0nkj all have the same ample model  N W YN ! YNC1
over Y .

We pass to the subsequence of .w0n/n2N whose existence was shown in step 5.2;
we also pass to the subsequences of all the other sequences involved in the proof cor-
responding to the same indices.
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We set wn;0 WD wn, w0n;0 WD w
0
n, zn;0 WD zn, and xn;0 WD xn. We define inductively for

i D 0; : : : ; N � 1,

N1R.XiC1=Y / 3 zn;iC1 WD .'i /�zn;i ;

N1R.YiC1=Y / 3 w
0
n;iC1 WD . i /�w

0
n;i ;

N1R.XiC1=Y / 3 wn;iC1 WD l
�
iC1w

0
n;iC1;

N1R.XiC1=Y / 3 xn;iC1 WD .'i /�.xn;i C wn;i / � wn;iC1:

(3.6)

With these definitions, since Œzn; 0� D Œxn;0� 2 N1R.X=Y
0/, then, for all i D 0; 1; : : : ; N ,

xn;i D zn;i � wn;i and Œzn;i � D Œxn;i � 2 N1R.X=Yi /: (3.7)

As  N is the ample model for the w0n, we define w0n;NC1 to be the only element of
N1R.YNC1=Y / such that w0n;N D  

�
Nw
0
n;NC1; thus, we have

Œzn;N � D Œxn;N � 2 N1R.X=YNC1/:

Step 5:3. In this step, we show that for all i D 0; 1; : : : ; N , there exists a converging
subsequence .xnk ;i /k2N � .xn;i /n2N which can be chosen independently of i .

We proceed to prove the claim by induction on i D 0; : : : ; N .
By step 5.1, the claim is true for i D 0 as xn;0 D xn. Hence, we can assume that

i > 0 and that we have converging subsequences .xnk ;l /k2N for all l D 0; : : : ; i � 1,
corresponding to the same set of indices.

If i � N and  i�1 in diagram (3.5) is a flip, there is nothing to prove, as xn;i D
.'i�1/�xn;i�1, by definition, in (3.6), and since .'i�1/� descends to an isomorphism
between N1R.Xi�1=Yi�1/ and N1R.Xi=Yi /, cf. Lemma 2.18.

If i � N and  i�1 in (3.5) is a divisorial contraction, denoting by Ei�1 its excep-
tional divisor, then w0n;i�1 �  

�
i w
0
n;i D cn;i�1ŒEi�1� 2 N1R.Yi�1=Y /, cn;i�1 > 0. Since

cn;i�1> 0, by Lemma 2.11 cn;i�1Ei�1 62 xM.Yi�1=Yi /. On the other hand, setting Fi�1 WD
. i�2 ı � � � ı 1 ı g/

�Ei�1, Œzn�D Œxn;i �D Œxn;i�1C cn;i�1Fi�1� 2N1R.X=Yi /. By Lem-
ma 2.2, Œxn;i�1 C cn;i�1Fi�1� 2 xM.X=Yi /. Since .xnk ;i�1/k2N � .xn;i�1/n2N is a con-
vergent subsequence (independent of i ) and cn;i�1Fi�1 is not movable, then .cnk ;i�1/k2N

must be a sequence of positive real numbers bounded from above: hence, it contains a con-
verging subsequence .cnkj ;i�1/j2N . Hence, taking the subsequences .xnkj ;l /k2N for all
l D 0; : : : ; i proves the inductive step in this case.

We pass to the subsequences of .xn;i /n2N , i D 0; : : : ;N , whose existence was shown
in step 5.3; we also pass, for all i , to the subsequences of .zn;i /n2N , .wn;i /n2N , .w0n;i /n2N ,
corresponding to the same indices. Since for all i , .'i /�WN1R.Xi=Y /! N1R.XiC1=Y / is
an isomorphism, then for all i , .zn;i /n2N , (resp. .wn;i /n2N , .w0n;i /n2N) does not contain
any converging subsequence.

Step 5:4. In this step, we show that YNC1 ! Y is not an isomorphism.
As .xn;N /n2N is convergent, and zn;N D xn;N C wn;N , cf. (3.7), then YNC1 ! Y

is not an isomorphism: otherwise, zn;N D xn;N 2 N1R.XN =Y / and .zn;N /n2N would be
convergent.
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Step 5:5. In this step, we show that there exists a marked minimal model .fNC1WXNC1!
Y; ˛NC1/ of f together with a factorization

XNC1
lNC1

//

fNC1

**
YNC1 // Y

such that for infinitely many n 2N, Œxn;NC1� is nef over YNC1, where 'N WD ˛�1NC1 ı ˛N
and xn;NC1 WD .'N /�xn;N .

Since .xn;N /n2N is convergent, calling xxN 2 N1R.XN =Y / its limit, then, by construc-
tion xxN ; xn;N are big over both Y , YNC1, for all n 2 N. Hence, Lemma 2.15, applied to
XN ! YNC1, implies that there exist a subsequence .xnk ;N /k2N � .xn;N /n2N and an
isomorphism in codimension 1 'N WXN Ü XNC1 such that .'N /�xnk ;N is nef for all
k 2 N.

We pass to the subsequence .xnk ;NC1/k2N � .xn;NC1/n2N just defined; we also pass
to the subsequences of all the other sequences involved in the proof corresponding to the
same indices. We define for all n 2 N, zn;NC1 WD .'N /�zn;N , wn;NC1 WD l�NC1w

0
n;NC1.

Step 5:6. In this step, we show that there exists a positive real number "NC1 such that for
any curve C � XNC1 contained in the fiber of fNC1, xn;NC1 � C > �

2 dimXNC1
"NC1

.
By step 5.3 and Lemma 2.4 applied to fNC1, there exist effective divisors Dn;NC1,

n 2 N big over Y such that xn;NC1 D ŒDn;NC1� 2 N1R.XNC1=Y / and 0 < "NC1 < 1

(independent of n) such that for all n 2 N, .XNC1; "NC1Dn;NC1/ is klt. Hence, the
conclusion follows from the cone theorem.

We fix an integer TNC1 � 2
2 dimXNC1
"NC1

, and fix a Cartier divisorHNC1 on YNC1 ample
over Y .

Step 5:7. In this step, we show that for infinitely many n 2 N, zn 2 yI .X=Y /. This
prompts the desired contradiction, since zn 2 J.X=Y / and hence it cannot be an element
of yI .X=Y / and, hence, concludes the proof.

We must distinguish two separate cases at this point.

Case 5.7.a. In this case, we assume that there exists a subsequence .w0nk ;NC1/k2N �

.w0n;NC1/n2N such that for all k 2 N, w0nk ;NC1 � TNC1HNC1 is nef over Y .
SinceHNC1 is ample over Y and Cartier, then for any irreducible curve C 0 � YNC1 in

the fibers of the structure morphism YNC1 ! Y , HNC1 � C 0 is a positive integer. In turn,
the assumption in case 5.7.a implies that for any irreducible curve C 0 � YNC1 in the
fibers of YNC1 ! Y , w0nk ;NC1 � C

0 � TNC1 holds. Therefore, for any irreducible curve
C � XNC1 in the fibers of fNC1, wnk ;NC1 � C

0 is either 0 or � TNC1. As XNC1 has
been chosen so that xn;NC1 is nef over YNC1, cf. step 5.5, then, by step 5.6, xnk ;NC1 C
1
2
wnk ;NC1 is nef over Y . In turn, znk ;NC1 D xnk ;NC1 Cwnk ;NC1 is nef and big over Y ,

and hence it is relatively semi-ample over Y . Let fa;nk WXa;nk ! Y denote its relatively
ample model over Y . We claim that it admits a factorization of the form

XNC1 rnk

//

fNC1

++Xa;nk
// YNC1 // Y: (3.8)
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To show that the claim holds it suffices to show that for any curve C 0NC1 � XNC1 con-
tracted by rnk , then wnk ;NC1 � C

0
NC1 D 0, as that would imply that wnk ;NC1 descends

to Xa;nk and thus it must induce a morphism Xa;nk ! YNC1 inducing the desired factor-
ization, by the definition of wnk ;NC1. By contradiction, let us assume that

wnk ;NC1 � C
0
NC1 ¤ 0;

then wnk ;NC1 � C
0
NC1 must be positive, since wnk ;NC1 is nef over Y . As C 0NC1 is con-

tracted by rnk , then znk � C
0
1 D 0 holds. But then these two observations imply�

xnk C
1

2
wnk

�
� C 0NC1 < 0;

which is impossible, since xnk C
1
2
wnk is nef over Y .

By definition, cf. the end of step 2, and by the fact that YNC1 ! Y is not an isomor-
phism, cf. step 5.4, the factorization in (3.8) implies that for all k 2 N, znk � yI .X=Y /,
which contradicts our initial choice of the sequence which required .zn/n2N � J.X=Y /

and concludes the proof.

Case 5.7.b. Now we deal with the case where the assumption of case 5.7.a is not satisfied.
For all n 2 N, we set

�n WD inf¹� 2 R j w0n;NC1 C .� � 1/TNC1HNC1 is nef over Y º;

and we fix an extremal contraction  n;NC1W YNC1 ! Yn;NC2 over Y contracting an
extremal ray Rn � NE.YNC1=Y / such that Rn � .w0n;NC1 C .�n � 1/TNC1HNC1/ D 0.
In particular, there exists a subsequence .w0nk ;NC1/k2N � .w

0
n;NC1/n2N such that for

all k 2 N,

(a)  nk ;NC1 and Ynk ;NC2 are the same, by Lemma 2.8; and

(b) .�nk /k2N converges, since for all n 2 N, �n 2 Œ0; 1�.

To simplify the notation, we pass to the subsequence .w0nk /k2N � .w
0
n/n2N (resp.

.�nk /k2N � .�n/n2N) just defined; we also pass to the subsequences of all the other
sequences involved in the proof corresponding to the same indices. We also define YNC2
to be the variety from property (a) above and  NC1W YNC1 ! YNC2 to be the induced
morphism. We set

x0n;NC1 WD xn;NC1 C .1 � �n/l
�
NC1TNC1HNC1

in N1R.XNC1=Y /. Thus, .x0n;NC1/n2N converges. Moreover, for all n 2 N,

wn;NC1 � .1 � �n/l
�
NC1TNC1HNC1 �YNC2 0:

Hence,
Œzn;NC1� D Œx

0
n;NC1� 2 N1R.XNC1=YNC2/;

which implies that YNC2 ! Y is not an isomorphism, as otherwise .zn/n2N would be
convergent, which contradicts the assumption made before step 5.2.
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At this point, we iterate this procedure. Exactly the same proof as in step 5.5 shows
that there exist a marked minimal model .fNC2WXNC2 ! Y; ˛N / and a commutative
diagram

XNC1
'NC1WD˛

�1
NC2

ı˛NC1
//

lNC1

��

XNC2

lNC2

��

YNC1
 NC1

//

''

YNC2

ww
Y

such that, defining x0n;NC2 WD .'NC1/�x
0
nk ;NC1

, by construction, .x0nk ;NC2/ is nef over
YNC2 for a suitable subsequence .x0nk ;NC2

/k2N � .x0n;NC2/n2N . Proceeding as in
step 5.6, there exists "NC2 > 0 such that for any curve C � XNC1 contained in the
fiber of fNC1, xn;NC2 � C > �

2 dimXNC2
"NC2

. We fix an integer TNC2 � 2
2 dim.XNC2/

"NC2
and

a Cartier divisor HNC2 on YNC2 ample over Y , and we set

w0n;NC2 WD . NC1/�w
0
n;NC1 C .�n � 1/TNC1HNC1

for all n 2 N. If there exists a subsequence .w0nk ;NC2/k2N � .w
0
n;NC2/n2N such that

for all k 2 N, w0nk ;NC2 � TNC2HNC2 is nef over Y , we apply case 5.7.a and reach
a contradiction. Otherwise, we repeat the procedure of case 5.7.b.

This procedure must stop after finitely many steps. In fact, our construction yields
a commutative diagram of birational morphisms

YNC1
 NC1

//

++

YNC2
 NC2

//

))

YNC3
 NC3

//

""

� � �
 NCl�1

// YNCl
 NCl

//

||

YNClC1
 NClC1

//

uu

� � �

Y

such that for all i � 1, morphism YNCi ! Y is not an isomorphism. Hence, the finite-
ness of the diagram follows from Lemma 2.8. But this means that on the last step of this
procedure, we must be in the situation of case 5.7.a, and again we reach a contradic-
tion.

4. Deforming divisors in a family

In this section, we study how divisor classes deform in families of certain types of K-
trivial varieties.

We start with the following generalization of [47, Theorem 4.1]. The proof has been
kindly suggested by Totaro.
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Theorem 4.1. Let X0 be a projective variety with rational singularities. Assume that
H 1.X0;OX0/ D H 2.X0;OX0/ D 0, and that X0 is smooth in codimension 2 and Q-
factorial in codimension 3. Then, given a deformation X ! .T; 0/ of X0 over a smooth
variety T , there is an étale morphism .T 0; 0/! .T; 0/ such that the class group of XT 0
maps split surjectively to the class group of Cl.Xt / for all t 2 T 0, and all these surjections
have the same kernel.

We summarize the property proven in Theorem 4.1 by saying that the divisor class
group is unchanged under nearby deformations of X0.

Proof. Let X ! T be a deformation of X0 as in the statement. Under these assumptions,
we can apply [47, Theorem 3.1] showing that Cl.Xt /!H2n�2.X;Z/ is an isomorphism
for t 2 T , where nD dim.X0/. By Grothendieck’s six functor formalism, these homology
groups form a constructible3 sheaf of Abelian groups on T . Thus, T is stratified by a union
of finitely many locally closed algebraic subsets T D

Sn
iD1 Ti such that Cl.Xt / is locally

constant on each of the Ti . Hence, if there is just one stratum near 0 2 T , then the claim
follows by the definition of locally constant sheaf.

Let us assume by contradiction that there is more than one stratum near 0 2 T . Then,
there is a smooth curve C through 0 that crosses a stratum exactly at 0 2 T . Thus, the
groups Cl.Xt / would not be locally constant around 0 2 C , contradicting [47, Theo-
rem 4.1].

Theorem 4.2. Let X0 be a terminal Q-factorial variety. LetKX0 � 0,H 1.X0;OX0/D 0

and H 2.X0;OX0 / D 0. Given a deformation X ! .T; 0/ of X0 over a smooth variety T ,
then X is terminal Q-factorial,KX �Q;T 0 over a neighborhood of 0 2 T . Furthermore,
after an étale base change, the following facts hold:

(1) xA.X�/ � xA.X0/, where the inclusion is possibly strict;

(2) xB.X=T / � xB.X0/, where the inclusion is possibly strict; and

(3) xM.X=T / � xM.X0/, where the inclusion is possibly strict.

The inclusion in (2) in Theorem 4.2 can be strict, see Section 5 and, in particular,
Lemma 5.5 for an example of such phenomenon.

Proof. (1) By repeatedly applying [9, Corollary 3.2 and Proposition 3.5], it follows
that X is Q-factorial and terminal. Since ˙KX0 is nef, then so is ˙KX� , where � 2 T
denotes the generic point of T . Thus, passing to the algebraic closure x�, KXx� �Q 0,
by [19], and hence also KX� �Q 0. Therefore, there is an open neighborhood T 0 � T
such that KX

T0
�Q;T 0 0. By [3, Theorem 1.5], 0 2 T0. By Theorem 4.1, after an étale

base change T 0 ! T 0, we may assume that the class group of Cl.Xt / is constant for all
t 2 T 0. To simplify the notation, we replace X ! T by XT 0 ! T 0. Hence, if DjX0 is

3In this context, we only mean that the sheaf is locally constant on a suitable stratification, while
we do not require that the stalks are finite.
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ample then so is DjX� . On the other hand, Wilson’s example [49, Example 4.6] shows
that we could have a strict inclusion.

(2) Let xB.X=T / be the relative pseudo-effective cone and xB.X0/ be the pseudo-
effective cone of the central fiber. By Theorem 4.1, there is a natural restriction map
r W xB.X=T / ! N1R.X0/ and, by semi-continuity [29, Theorem III.12.8], the inclusion
xB.X=T / � xB.X0/ is clear. The inclusion could be strict by the example discussed in
Section 5.

(3) Note that by (1), xA.X0/ � xA.X�/ � xB.X�/. Therefore, r. xB.X=T // \ xM.X0/

contains an open subset. Indeed, we may consider a rational polyhedral cone…� A.X0/,
and, up to shrinking T around 0, every non-zero divisor class in … lifts to a class in
A.X=T /.

First, we claim that r. xB.X=T // � xM.X0/. Assume by contradiction that this is not
true. Then, as these are full-dimensional cones with a non-empty and full-dimensional
intersection, we may pick a divisor D in the boundary of xB.X=T / such that D0 D DjX0
is in the interior of xM.X0/ and in particular vol.D0/ > 0. We will show that vol.Dt / �

vol.D0/ > 0 for every t 2 T . This contradicts the assumption that D is in the boundary
of xB.X=T / and so r. xB.X=T // � xM.X0/.

To see the claim, we proceed as follows. First, as our goal is to show that vol.Dt / �

vol.D0/ > 0 for every t 2 T , we may assume that T is a smooth affine curve, as any
point in t can be joined to 0 with a smooth curve. Let Di be a sequence of Q-divisors
contained in the interior of xB.X=T / such that limDi D D. For any i , we may choose
Q-divisors Bi and rational numbers ˇi > 0 such that Di �Q ˇiBi and .X; X0 C Bi / is
purely log terminal (plt) and .X0; Bi jX0/ is terminal. Since Bi is big over T , there is a
minimal model 'WX Ü X 0 over T . Since D0 D DjX0 is in the interior of xM.X0/, then
so isDi jX0 for i� 0. Thus, since the stable base locus ofDi jX0 contains no divisors, each
step of this minimal model program is an isomorphism at codimension 1 points of X0.
It follows that ' is an isomorphism on a neighborhood of each codimension 1 point inX0.
Since .X0;Bi jX0/ is terminal, it follows easily that '0WX0 ÜX 00 extracts no divisors and
so '0 is a small birational map. Let B 0i D '�Bi , then .'0/�.Bi jX0/ D B

0
i jX 00

. Since B 0i is
nef over T , the volume of its restriction to any fiber is computed by self intersection.
Thus, it follows that

vol.X�; Bi jX�/ D vol.X 0�; B
0
i jX 0�/ D vol.X 00; B

0
i jX 00

/ D vol.X0; Bi jX0/;

where the last equality follows from the fact that '0 is an isomorphism in codimension 1.
Thus, we have the following chain of equalities:

vol.X�;Di jX�/ D ˇ
d
i vol.X�; Bi jX�/ D ˇ

d
i vol.X0; Bi jX0/ D vol.X0;Di jX0/;

where d D dim.X0/. As the volume function is a continuous function on the pseudo-
effective cone, it follows that vol.X�;DjX�/D vol.X0;D0/ > 0. By upper-semi-continu-
ity of the volume function, it followsthat

vol.Xt ;DjXt / � vol.X0;D0/ > 0

for every t , which is the sought contradiction.
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Now assume by contradiction that (3) does not hold. Then, we may find a divisor D
that is not in xM.X=T / and D0 is in the interior of xM.X0/. Since D0 is in the interior
of xM.X0/, it follows that D is in the interior of xB.X=T /. Proceeding as above, there is
aD minimal model 'WX ÜX 0 over T such that '0WX0 ÜX 00 is a small birational map.
In particular, '0 contracts no divisors and hence by semi-continuity of the fiber dimension,
' also contracts no divisors over a neighborhood of 0 2 T . Therefore, there cannot be
a divisorial component of the base locus Bs.D=T / dominating T . Thus D 2 xM.X=T /

which is the required contradiction, and (3) follows. Wilson’s example [49, Example 4.6]
shows that we could have a strict inclusion.

Remark 4.3. The proof of part (3) of Theorem 4.2 can be adapted to show the follow-
ing: if D0 is in the interior of xM.X0/, then for m > 0 sufficiently divisible the natural
morphismH 0.X;mD/!H 0.X0;mD0/ is surjective. Indeed, working on the model X 0

constructed in the proof of (3), we can apply the relative Kawamata–Viehweg vanishing
theorem on X 0 to argue that the Euler characteristic �.X 0t ; mD

0
t /, which is constant by

flatness, is given by h0.X 0t ; mD
0
t /.

5. Interludium: An example

This section aims to study the behavior of the different cones of divisors in a family of
Calabi–Yau threefolds. We will study the following example in the category of smooth
Calabi–Yau threefolds which first appeared in Wilson’s work, cf. [49]. The example that
we explain in this section is an analog for 1-parameter families of Calabi–Yau threefolds
of the Atiyah flop that naturally appears in families of K3 surfaces, see, for example, [30,
§§ 6.5 and 7.5].

5.1. Setup

Let f WX ! C be a family of smooth Calabi–Yau threefolds. In particular, for any t 2 C ,
the log pair .X;Xt / is plt and Xt is terminal. Let 0 2 C be a closed point and X0 the cor-
responding fiber. We assume that X0 contains an elliptic ruled surface, that is, E0 ! G0
is a minimal ruled surface over the elliptic curve G0. In [49], Wilson showed that it is
possible to construct families X ! C in which E0 is rigid, that is, E0 does not deform
in the family. Up to shrinking C around 0, we can identify the cohomology of X with the
cohomology of any fiber, via restriction to X0. Furthermore, up to an étale base change
centered at 02C , we may assume that the conclusions of Theorem 4.1 are satisfied. Under
these assumptions, we shall show that the pseudo-effective cone cannot be constant in the
fibers of this family.

Lemma 5.1. The surface E0 can be contracted on X0 by means of a .KX0 C E0/-
extremal contraction �0WX0 ! Y0 to an elliptic curve isomorphic to G0.

Proof. By assumption, E0jE0 D KE0 and KE0 � R D �2, where R is a fiber of the pro-
jective bundle structure on E0. As R2 D 0 as a divisor on E0, then R is an extremal ray
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both in the nef and the pseudo-effective cones of E0. Since E0 is a minimal ruled sur-
face, then N1;R.E0/ D RŒR� ˚ RŒKE0 �. Since KX0 C E0 is not nef, we may consider
a .KX0 CE0/-extremal contraction �0WX0 ! Y0.

Claim. The embedding i WE0 ! X0 induces an embedding i�WN1;R.E0/! N1;R.X0/,
and �0jE0 is the contraction E0 ! G0.

Proof. Indeed, we may consider the plt pair .X0;E0/. By adjunction, .KX0CE0/ �R<0,
and all the .KX0 C E0/-negative curves are E0-negative, hence, contained in E0. By ad-
junction and the fact that R2 D 0 inside E0, we have .KX0 CE0/ �R D �2. Now, let zG0
be the section of E0 ! G0 of minimal self-intersection. To show that i�WN1;R.E0/!
N1;R.X0/ is an embedding, we will show that zG0 is not numerically equivalent to R
in N1;R.X0/. By the classification of ruled surfaces over an elliptic curve, see [29, §V.2],
we either have zG20 � 0 or zG20 D 1. In the former case, since g.G0/D 1, then deg.K zG0/D 0
and, by adjunction,

.KX CE0/ � zG0 D KE0 �
zG0 D � zG

2
0 � 0:

Thus, R and zG0 are linearly independent in N1;R.X0/. Now, assume that zG20 D 1. In this
case, we have that .KX C E0/ � zG0 D �1. As .KX C E0/ � R D �2, to conclude, it suf-
fices to rule out that ŒR� D 2Œ zG0� in N1;R.X0/. Now, let L be an ample divisor on X0.
Then, by [29, Proposition V.2.21], up to rescaling the numerical class of L, we have that
LjE0 �

zG0 C bR with b > �1
2

. Thus, we have L � zG0 D . zG0 C bR/ � zG0 D 1C b, and
L �RD . zG0C bR/ �RD 1. Thus, we have ŒR�¤ 2Œ zG0�, as b ¤�1

2
. Hence, we conclude

that i�WN1;R.E0/! N1;R.X0/ is an embedding. Now, since any .KX0 C E0/-negative
extremal ray is spanned by the class of a rational curve in E0 and since E0 is ruled over
a curve of positive genus, it follows that the only possible ray is R�0ŒR�. Now, as we
showed that zG0 is not in R�0ŒR�, zG0 cannot be contracted by �0 and no irreducible curve
C � E0 horizontal over G0 can be contracted, as this would force E0, and hence also
zG0, to be contracted. Thus, E0 cannot be contracted to a point by a .KX0 CE0/-extremal
contraction, as otherwise dim i�.N1R.X0// D 1.

As all rational curves inE0 are vertical above the elliptic base, they must all be numer-
ically equivalent to R. Thus, R is a .KX0 C E0/-extremal curve, and its contraction �0
is a divisorial contraction that maps E0 to a curve. The conclusion on the image of E0
follows from the fact that E0 is the projectivization of a vector bundle overG0 and we are
contracting the fibers of this bundle.

5.2. Goal

The primitive contraction �0WX0! Y0 is the first (and only) step in the E0-MMP on X0.
Let H0 be a big and nef Cartier divisor in the relative interior of the facet of xA.X0/
given by ��0 . xA.Y0//. As �0 is divisorial, then Y0 is canonical, and it contains an ellip-
tic curve G0 of canonical singularities. As the conclusions of Theorem 4.1 are met for
X ! C , any divisor class on X0 comes from the ambient space X . We denote by H , E
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the corresponding cohomology classes on X restricting to H0, E0 on X0. Up to replac-
ing H0 by a multiple, we may and shall assume that H is a Cartier divisor on X .

Our goal is now to understand the models that appear on X when moving along
the segment ŒH; E� in N1R.X=C/. In [49, Proposition 4.4], Wilson showed that H0 is
big and nef but not ample, while Ht WD H jXt is ample for any t ¤ 0. In view of this,
by Kawamata–Viehweg vanishing, for all t 2 C , for all m � 0 and all i > 0,

H i .Xt ; mHt / D 0:

Thus, by cohomology and base change, since X ! C is flat by construction, it follows
that for all i > 0 and all m � 0, Rif�OX .mH/ D 0, which in turn implies that for all
m � 0, f�OX .mH/ is a vector bundle over C , or, equivalently, that the restriction map

H 0.X;mH/! H 0.Xt ; mHt /

is surjective for any t 2 C and for any m � 0. Hence, the natural morphism � WX ! Y

over C induced byH lifts �0. For 0 < "� 1, the divisorH C "E is relatively big over C
and relatively ample over C n ¹0º. Therefore, the relative stable base locus of H C "E
is a proper subset of X0, and it follows that H C "E is relatively movable over C . Now,
fix 0 � � �Q H C "E. For 0 < ı � 1, the log pair .X; X0 C ı�/ is plt, and the log
pair obtained by adjunction .X0; ı�0/ is terminal. Thus, we can interpret the contraction
� WX! Y as a step of a .KX CX0C ı�/-MMP overC , that is, � is a flipping contraction
for such MMP, as its exceptional locus is small, and the flip

X
 

//

�

��

XC

�C

}}

Y

of � exists. We shall denote the strict transform of a Weil divisorM onX byMC onXC.

Lemma 5.2. The threefold X0 is isomorphic to XC0 .

Proof. The map  is a step of the .KX C X0 C ı�/-MMP over C , .X;X0 C ı�/ is plt,
and .X0; ı�0/ is terminal. Then, .X; XC0 C ı�

C/ is plt as well; similarly, .XC0 ; ı�
C
0 /

is terminal. Thus, �C0 WX
C
0 ! Y0 is a terminalization of Y0. Since KXC � 0, as  is

an isomorphism in codimension 1, then K
X
C

0

� 0. So, X0 and XC0 are isomorphic in
codimension 1, as they are both terminal and minimal, see [37, Corollary 3.54]. Since X0
is Q-factorial and �0 is an extremal divisorial contraction, then also Y0 is Q-factorial.
Then, as also �C0 is extremal, it follows that XC0 is Q-factorial as well. In particular,
as X0 and XC0 are Q-factorial, terminal, and minimal, they are connected by a sequence
of flops

X0
�
// XC0 :

Thus, also �C0 is a divisorial contraction; we shall denote by xE0 its exceptional divisor
which is contracted by �C0 to the curve G0 � Y0.
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Let RC denote the class of the curves contracted by �C0 . As �C0 is an isomorphism
outside xE0, the first flop in the chain of flops connecting X0 to XC0 must flop a ratio-
nal curve in E0. The only rational curves here are the fibers of the projective bundle
structure E0 ! G0 and they are all contained in a 1-dimensional family. Hence, they
cannot be possibly flopped. This shows that X0 and XC0 are isomorphic. In particular,
xE0 �R

C D �2.

Abusing notation, we denote by  0WX0 ! XC0 the isomorphism whose existence is
demonstrated in the proof of Lemma 5.2. Given that N1R.X0/ (resp., N1R.X

C
0 /) comes

equipped with a natural marking given by the identification with N1R.X/, the two mark-
ings cannot possibly be identified by  �0 : in fact, for example, .H C "E/jX0 is not ample
on X0 for 0 < "� 1, while the corresponding class .HC C "EC/j

X
C

0

is ample on XC0 .
Hence, under such markings, the nef cones are not even identified.

Lemma 5.3. Let xE0 be the exceptional divisor of the morphism �C0 . For any class D0 2
N1R.Y0/,

EC0 � ..�
C
0 /
�D0/

2
D 0 D xE0 � ..�

C
0 /
�D0/

2
D 0 D E0 � .�

�
0D0/

2:

Proof. As xE0 is contracted by �C0 to a curve, for any general ample divisors J0 and J 00
on Y0, we have xE0 � .�C�0 J0/ � .�

C�
0 J 00/ D 0, as we may assume that the intersection

J0 \ J
0
0 avoids G0. As the Néron–Severi group is generated by ample divisors, the con-

clusion of the lemma follows for xE0.
The same reasoning shows also that the conclusion holds for E0 on X0, as E0 is

contracted by �0.
Let V � N1R.X=C/ be the subspace that is generated by the classes that restrict to

��0 .N
1
R.Y0// on X0. By the conclusion of the lemma for E0 and the deformation invari-

ance of intersection products, it follows that, for any t 2 C and any L 2 V , we have
Et � .Lt /

2 D 0. However, when we apply  , as nothing happens on X n ¹X0º, then
ECt � .L

C
t /
2 D 0 for t ¤ 0. This also implies, by the constancy of the intersection numbers

in the family, that EC0 � .H
C
0 /

2 D 0.

Remark 5.4. (1) We observe that Y0 is a local complete intersection. Indeed, as ob-
served by Wilson [49, p. 567], Y0 has compound Du Val (cDV) singularities. Thus, Y0 has
locally analytically hypersurface singularities. Hence, by [45, Tag 09PY], Y0 is a local
complete intersection. In particular, cf. [39, Remark 3.1.34], the Lefschetz hyperplane
theorem can be applied to Y0.

(2) Let

N1R.Y0/˝R N1R.Y0/! N1;R.Y0/; ˛ ˝ ˇ 7! ˛ � ˇ

be the morphism induced by the intersection pairing on Y0. Let M0 � N1;R.Y0/ be the
image of this morphism. We claim thatM0 D N1;R.Y0/, or, equivalently, thatM?0 D ¹0º,
whereM?0 � N1R.Y0/. Let us assume that this is not the case, i.e., that there is an element
0 ¤ v 2 N1R.Y0/ such that v � h � h0 D 0 for any divisors classes h; h0 2 N1R.Y0/. Taking
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h D ŒH �, where H is a general very ample divisor and hence a surface with canonical
singularities, then, v � h � h0 D vjH � h

0jH D 0. By the previous part of this remark, the
morphism H 2.Y0;Z/ ! H 2.H;Z/ is injective, and therefore vjH ¤ 0. Now, assume
that h0 is an ample class. Then, since vjH � h0jH D 0, by the Hodge index theorem and the
fact that vjH ¤ 0, it follows that vjH � vjH < 0. Thus, we reach the required contradiction,
as v � v � h ¤ 0.

We will denote by xE the class in N1R.X
C=C / whose restriction to XC0 is xE0.

Lemma 5.5. There exists a negative real number � such that ŒEC� D �Œ xE� in N1R.X
C/.

Proof. By Lemma 5.3, we know that EC0 , xE0 2 .��0M0/
?. As

dim��0N1R.Y0/ D dim N1R.X
C
0 / � 1 and ��0N1R.Y0/ \ .M0/

?
D ¹0º;

then .��0M0/
? is a line generated by either one of the divisors EC0 and xE0. Let RC be the

class contracted by �C (RC is just the class of any curve in the ruling of xE0). Hence, as
already observed at the end of the proof of Lemma 5.2, xE0 � RC < 0. On the other hand,
by construction, EC0 �R

C > 0, as EC is the strict transform of E through the flip.

Remark 5.6. Lemma 5.5 provides an instance in which the inclusion (2) in Theorem 4.2
is strict. Indeed, using the notation of Section 5, if E were pseudo-effective, then so
would EC be. Yet, this would imply that EC0 is pseudo-effective. Then, by Lemma 5.5,
xB.X=C/ would contain a line, which is impossible.

The conclusions of Lemma 5.5 are consistent with the observations made by Wilson
in [49, §5]. Indeed, Wilson showed that the transformation induced on N1R.X0/ by the
flip is a reflection through the plane generated by the pull-back of classes from Y0 which
sends E0 to its negative. In particular, the coefficient � in Lemma 5.5 is � D �1.

6. Elliptic threefolds

We recall that, by the notation set in Section 2.8, a Calabi–Yau threefold X is a nor-
mal projective threefold with Q-factorial terminal singularities such that KX � 0 and
h1.X;OX / D h

2.X;OX / D 0.

6.1. Elliptic Calabi–Yau threefolds and their bases

If f WX ! S is an elliptic Calabi–Yau threefold, the base S is either rational, or it is a sur-
face with Du Val singularities whose minimal resolution is an Enriques surface, see [20].

Remark 6.1. Let X be a klt variety with KX �Q 0. Assume that X is endowed with an
elliptic fibration f WX ! S . Then, by the canonical bundle formula, cf. Proposition 2.9,
there exists a generalized pair structure .S; BS CMS / on S such that

KX � f
�.KS C BS CMS /:
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By [18], the coefficients of BS lie in the set ¹1 � 1
n
j n 2 N>0º [ ¹

1
6
; 1
4
; 1
3
º, and, by

Kodaira’s canonical bundle formula, we can find an effective and integral divisor D such
that 1

12
D �Q MS , and .S;�S / is klt, where �S WD BS C 1

12
D, cf. [43, Example 7.16].

In particular, coeff.�S / � ¹1 � 1
n
j n 2 N>0º [ ¹

1
6
; 1
4
; 1
3
; 1
12
º.

We will denote the set ¹1 � 1
n
j n 2 N>0º [ ¹

1
6
; 1
4
; 1
3
; 1
12
º by Cell.

In order to prove the boundedness of the elliptic Calabi–Yau threefolds, one first needs
to address the boundedness of the bases of the corresponding elliptic fibrations.

The set of possible rational bases is bounded by the work of Alexeev [1].

Proposition 6.2. The set of log pairs

B2;Cell
LCY;RC WD

®
.S;�S / j dimS D 2; coeff.�S / � Cell; KS C�S �Q 0;

S is rationally connected, and .S;�S / is projective klt
¯

is log bounded.

Proof. Fix .S;�S / 2B2;Cell
LCY;RC. By [43, Corollary 1.11], there existsN 2N, only depend-

ing on the data of our problem such that N.KS C �S / � 0. Since .S; �S / is klt, this
implies that it is 1

N
-log canonical. Then, by [1, Theorem 6.9], the surface S belongs to

a bounded family. The statement about the boundary follows from [7, Theorem 4.1].

On the other hand, we could not find in the literature a result showing the boundedness
of singular models of Enriques surfaces. The following statement fills this gap. We deduce
the boundedness of these varieties from the boundedness of Enriques surfaces and the
Kawamata–Morrison cone conjecture.

Theorem 6.3. The set of varieties

B2
Enr;DV WD

®
S j S is a projective surface with at worst Du Val singularities

and its minimal resolution is an Enriques surface
¯

is bounded.

Proof. It is well known that Enriques surfaces form a bounded family. For instance, by [8,
Theorem 1], every Enriques surface admits a birational morphism onto a (possibly sin-
gular) projective surface of degree 10 in P5. Projective surfaces of degree 10 in P5 form
a bounded family – it suffices to consider their Hilbert scheme in P5. Then, also the
set given by their resolutions forms a bounded family, thus proving the boundedness of
Enriques surfaces.

Now, we need to show the boundedness of the set of surfaces admitting Du Val sin-
gularities whose minimal resolution is Enriques. Let X ! T be a family that bounds the
set of Enriques surfaces. Up to replacing this family, we may assume that the conclusions
of Theorems 4.1 and 4.2 hold. As there are finitely many of these components, in the
following we focus on a single one, with the understanding that the same argument has to
be repeated on each one of them individually.
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Let � 2 T be the generic point. By [31, Remark 2.2], there is a rational polyhe-
dral cone …� � xA.X�/ that serves as fundamental domain of the action of Aut.X�/

on Ae.X�/ D xA.X�/, where we use the fact that every nef Cartier divisor on an Enriques
surface is semi-ample. Then, the semi-group of lattice points of …� is finitely generated.
Let M 1

� ; : : : ; M
k
� be a set of generators of this semi-group. We denote by M 1; : : : ; M k

the corresponding classes in N1R.X=T / given by the identification of N1R.X�/ and
N1R.X=T /. Since any integral nef divisor on an Enriques surface is semi-ample, eachM i

�

spreads out to a divisor that is relatively semi-ample over a non-empty open subset of T .
Thus, up to shrinking T finitely many times (this is allowed by Noetherian induction),
we may assume that each M i is relatively semi-ample.

Let L� be a divisor in …� , and let L 2 N1R.X=T / be the corresponding divisor class.
Then, we claim that L is semi-ample over T . Indeed, as …� is a rational polyhedral cone
and M 1

� ; : : : ; M
k
� generate its lattice points over Z�0, then M 1

� ; : : : ; M
k
� generate …�

over R�0. Thus, L D
Pk
iD1 aiM

i , where each ai � 0. Since each M i is semi-ample
over T , then so is L.

We will now show that, under the assumptions of the previous reductions, xA.X�/ D
xM.X=T /, where we identify the vector spaces N1R.X�/ and N1R.X=T /. Clearly, we have
xM.X=T /� xA.X�/, as any relatively movable divisor restricts to a movable divisor on the

generic fiber, and movable divisors are nef on surfaces. Now, let D� 2 xA.X�/, and let D
be the corresponding divisor class in N1R.X=T /. By assumption, there is an automor-
phism ' 2 Aut.X�/ and a divisor L� 2 …� such that '�D� D L� . Then, by regarding '
as an element of Bir.X=T /, we have '�DDL. Since X is smooth and relatively minimal
over T , ' does not contract nor extract any divisor. Thus, '� preserves linear equivalence.
Thus, as L is semi-ample and the indeterminacy loci of ' and '�1 are small, it follows
that the relative stable base locus of D over T does not contain any divisor. In particular,
D 2 xM.X=T /.

In particular, we have that …� is a fundamental domain for the action of Aut.X�/ D

Bir.X=T / on xA.X�/ D xM.X=T /. Since …� is rational polyhedral, it follows that the
cone conjecture holds in this particular setup. Thus, there are only finitely many chambers
for the marked minimal models of X! T and finitely many faces of them up to the action
of Bir.X=T /. In particular, there are finitely many varieties Y1; : : : ; Yl over T such that,
for every divisor D 2 xM.X=T /, the ample model of D over T is isomorphic over T to
some Yi , for i D 1; : : : ; l .

Now, suppose that S0 is a surface with Du Val singularities whose minimal resolution
is f WX0 ! S0 for some 0 2 T . Let H0 be the pull-back via f of an ample divisor
on S0. Also, let H be the corresponding divisor class in N1R.X=T /. By Proposition 4.2,
H 2 xA.X�/. Let Yi be the distinguished model that is isomorphic over T to the relative
ample model of H . Then, by construction, we have that the fiber of Yi ! T over 0 2 T
is isomorphic to S0. In particular, the Du Val models of the Enriques surfaces appearing
as fibers of X ! T are bounded, as they all appear as fibers of some Yi ! T .

By iteration of this argument on all the finitely many components of T and by Noethe-
rian induction on the closed subsets of T removed in the construction, this shows the
claim.
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6.2. Elliptic Calabi–Yau threefolds with a rational base

In [23, Theorem 1], Gross proved the following result showing that minimal terminal
elliptic Calabi–Yau threefolds with rational base are birationally bounded. Recall that, in
this work, a Calabi–Yau threefoldX is a Q-factorial, terminal threefold withKX � 0, and
h1.X;OX / D h

2.X;OX / D 0.

Theorem 6.4 ([23, Theorem 1]). The set of triples

F3
CY;ell;rat WD

®
.X; S; h/ j hWX ! S is an elliptic Calabi–Yau threefold and

S is normal and rational
¯

is birationally bounded.

By the above theorem together with Definition 2.7, passing to a resolution of a bound-
ing family of fibrations, we can assume that there exist quasi-projective varieties X, � , T
and a commutative diagram

X
f

//

�

&&

�

g
xx

T

(6.1)

of projective morphisms satisfying the following properties:

(1) � and g are smooth;

(2) for every t 2 T , Xt is birational to a Calabi–Yau threefold, �t is a smooth rational
surface, and the general fiber of ft is an elliptic curve; and

(3) if hWX ! S is an elliptic Calabi–Yau threefold over a rational surface S , thenX ! S

is birationally equivalent to Xt ! �t for some t 2 T , that is, there exists a commu-
tative diagram

X
'

//

h

��

Xt

ft

��

S
 

// �t ;

(6.2)

where the horizontal arrows are birational maps.

Using techniques of the MMP, up to stratifying the base T , we can birationally modify
the family in (6.1) to obtain a new family of elliptic fibrations

X0
f 0

//

� 0

&&

� 0

g0

xx
T

(6.3)
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such that for every t 2 T , Xt and X0t (resp. �t and � 0t ) are birationally equivalent, and X0t
is a minimal model for Xt (in particular, X0t is terminal and Q-factorial, but not neces-
sarily smooth). In particular, this implies that F3

CY;ell;rat is log bounded in codimension 1
since the rational map 'WX Ü X0t is a sequence ofKX -flops, cf. Definition 2.7.3. On the
other hand, the rational contraction ft ı 'WX Ü � 0t is not necessarily a morphism, as the
birational map S Ü � 0t may extract some divisor. Hence, the sequence of flops connect-
ing X and X0t is not necessarily a sequence of flops relative to a 2-dimensional base.

To remedy this issue, we can prove the following more precise version of the bound-
edness in codimension 1 of elliptic Calabi–Yau threefolds.

Proposition 6.5. There exist quasi-projective varieties X, � , T and a commutative dia-
gram

X
f

//

�

&&

�

g
xx

T

of projective morphisms satisfying the following properties:

(1) � is a flat family of threefolds and g is a flat family of surfaces;

(2) for every t 2 T , Xt is a Calabi–Yau threefold. In particular, Xt has terminal Q-
factorial singularities; and

(3) for every terminal elliptic Calabi–Yau threefold with rational base hWX ! S , there
exists t 2 T together with an isomorphism in codimension 1 'WX Ü Xt such that �t
and S are isomorphic and ' is a birational morphism over S .

The main feature of the statement of Proposition 6.5 is given by property (3), i.e., by
the fact that the family will contain every base of an elliptic fibration. This will be a useful
feature when trying to prove the boundedness of elliptic fibrations.

To do so, we will apply Theorem 3.4 which allows us to control the number of bira-
tional models of an elliptic fibration with a fixed base. As the statement of Theorem 3.4
works for any Calabi–Yau fiber space of relative dimension 1, it can also be applied to con-
trol the birational models of a given family of elliptic fibrations. We utilize Theorem 3.4
to turn the statement of Proposition 6.5 on the boundedness in codimension 1 of elliptic
Calabi–Yau threefolds into a full boundedness statement. In order to use Theorem 3.4
effectively, we need to guarantee that in the above sketch, the birational map S Ü � 0t is
an isomorphism, that is, that all bases of elliptic Calabi–Yau varieties appear in a bound-
ing family such as the one in (6.3). One possible way to achieve this would be to adapt the
proof of Theorem 6.4 to start from the families of surfaces guaranteed by Proposition 6.2,
rather than considering suitable smooth models of such surfaces as in [23]. A more direct
approach, which still relies on the ideas of [23], is given by the results of [13].

Proof of Proposition 6.5. Let hWX ! S be an elliptic Calabi–Yau threefold with rational
base. By Proposition 6.2, S belongs to a bounded family. Therefore, there exist v 2 N
(independent of S ) and a very ample divisor HS on S such that H 2 � v and .S; 1

2
HS /
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is klt. By Theorem 6.4, .X;S;h/ 2F3
CY;ell;rat and the latter is birationally bounded. In par-

ticular, h admits a rational d -section, for some d 2 Z>0 bounded from above. Then, the
claim follows by applying [13, Theorem 1.1] to the log pair .X; 1

2
h�HS /. Finally, the fact

that we may assume that every fiber Xt is a Calabi–Yau threefold follows readily from
Theorem 4.2.

6.3. Elliptic Calabi–Yau threefolds with non-rational base

Let f WX! S be an elliptic Calabi–Yau threefold such that S is a surface with at worst Du
Val singularities whose minimal resolution is an Enriques surface. Then, the fibration f
is isotrivial. Furthermore, by [35, Theorem 14], after a quasi-étale cover, X splits as the
product E � Y , where E is an elliptic curve and Y is either a K3 surface or an Abelian
surface. Thus, the structure of such elliptic Calabi–Yau varieties is rather clear. On the
other hand, the boundedness of these varieties has not been addressed before. For this
purpose, we perform an analysis of this case that is similar to the one carried out by Gross
in [23] for rational bases.

First, we start by analyzing Jacobian fibrations. Given an elliptic fibration f WX ! Y ,
the generic fiberX� is a smooth curve of genus 1; we denote by J.X/� its Jacobian, which
is then a smooth curve defined over C.Y / of genus 1 with a C.Y /-rational point. Then, the
Jacobian fibration of f is defined birationally as any elliptic fibration j WJ.X/! Y such
that the generic fiber of j is J.X/� , cf. [23, Definition 1.4]. In general, we may assume
that j is relatively minimal over Y : indeed, by passing to a log resolution, we may first
assume J.X/ is smooth; then, we may run a relative minimal model program over Y ,
which terminates with a good minimal model by [26, Theorem 1.1]. Thus, in general,
we may choose a representative j W J.X/! Y for the Jacobian fibration of f such that
J.X/ is terminal, Q-factorial, andKJ.X/ is semi-ample over Y . In particular, form� 1,
the relative linear system jmKJ.X/=Y j induces a factorization J.X/! Y 0 ! Y , where
Y 0 ! Y is birational.

If the base Y is a curve, then the Jacobian fibration is an elliptic fibration with a sec-
tion, and there is extensive literature about the Weierstrass models of these fibrations.
Furthermore, Weierstrass models for elliptic fibrations with a rational section still exist if
the base is a smooth surface, see [11, Proposition 2.4]. In particular, if j W J.X/! S is
a Jacobian fibration over a surface and S 0 is any smooth birational model of S mapping
to S , we may construct a Weierstrass model of j with base S 0. Then, by further blowing
up the discriminant locus of the fibration in S 0, we may further improve the geometry of
the fibration to guarantee that the total space of the Weierstrass model is smooth and the
corresponding morphism is flat, see [23, p. 276]. These special models are called Miranda
models, see Definition 6.6.

Definition 6.6. Let f WX! S be an elliptic fibration. A Miranda model of f is an elliptic
fibration f 0WX 0 ! S 0 such that

� f 0 is birationally equivalent to f in the sense of (6.2);

� X 0 and S 0 are regular;
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� f 0 is flat and it admits a section;

� the discriminant locus†D ¹s 2 S 0 jX 0s is not regularº is simple normal crossing; and

� all fibers over the singular points of † have Kodaira types IM1 C IM2 , IM1 C I
�
M2

,
II C IV , II C I �0 , II C IV�, IV C I �0 , or III C I �0 .

In [23], the singular points of the simple normal crossing divisor † are called colli-
sion points. This terminology reflects the fact that, as † has simple normal crossings, its
singularities come from different components †1 and†2 meeting transversally. Then, by
definition, the Kodaira type of the fiber over a point p 2 †1 \ †2 is determined by the
type of fiber over the general point of the two components. For instance, if the general
fiber over †1 has Kodaira type IM1 and the general fiber over †2 has Kodaira type IM2 ,
we say that the fiber over p has Kodaira type IM1 C IM2 . Then, all the types of fibers
appearing in the last item of Definition 6.6 are explained analogously.

In this subsection, we will analyze the Jacobian fibration of an elliptic Calabi–Yau
threefold with Enriques base to prove the birational boundedness of the latter, cf. Theo-
rem 6.12. We start our analysis by showing that the Jacobian of such an elliptic Calabi–
Yau variety is Calabi–Yau as well, cf. [22].

Proposition 6.7. Let f WX ! S be an elliptic Calabi–Yau threefold. Assume that the
minimal resolution of S is an Enriques surface. Let j WJ.X/! S be a relatively minimal
model over S of the Jacobian fibration of f . Then, J.X/ is a Calabi–Yau threefold.

Proof. By assumption, J.X/ is terminal and Q-factorial, as it is a relatively minimal mod-
el of a smooth variety. By [22, Corollary 29], then h0.J.X/;KJ.X// D 1, �.J.X// D 0,
and h1.J.X/;OJ.X//D h2.J.X/;OJ.X//D 0. Thus, to conclude, it suffices to show that
KJ.X/ �Q 0, i.e., that J.X/ is minimal.

Let
J.X/

j 0

||

j

!!
S 0

� // S

be the relatively ample model of J.X/ over S . By the canonical bundle formula,

KJ.X/ �Q .j 0/�.KS 0 C�
0/;

where .S 0; �0/ is a klt pair. Then, KS 0 C �0 is � -ample. By assumption, the canonical
bundle formula applied to the morphism f WX ! S induces the trivial boundary part and
the trivial moduli part. Thus, by [23, Lemma 1.6] applied over a big open set of S , it
follows that �0 is �-exceptional.

Since S has Du Val singularities, then KS 0 �Q;S E � 0, where E is �-exceptional.
Thus, KS 0 C�0 �Q;S E C�

0, where E C�0 is effective, �-exceptional, and �-ample.
The negativity lemma then implies that � is the identity morphism.

In order to retrieve birational boundedness of the original models f WX ! S from
the boundedness in codimension 1 of the Jacobian fibrations j W J.X/ ! S , we need
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to understand how many smooth curves of genus 1 over k.S/ admit the same Jaco-
bian J.X/� . This association is controlled by the Weil–Châtelet group WC.J.X/�/,
see [11]. In particular, WC.J.X/�/ parametrizes birational equivalence classes of ellip-
tic fibrations over S whose generic fiber has prescribed Jacobian. On the other hand,
an elliptic fibration that arises from a Calabi–Yau variety has very restrictive geometric
conditions, which then restrict the class of generic fibers that can possibly arise. These
fibrations can be parametrized by a much smaller subgroup of the Weil–Châtelet group,
known as the Tate–Shafarevich group XS .J.X/�/. We refer to [11, 23] for a systematic
treatment of this topic and for the formal definitions of these groups using étale cohomol-
ogy. Here, we limit ourselves to the following geometric characterization of XS .J.X/�/

as a set:

XS .J.X/�/ D
®
C 2WC.J.X/�/ j XC ! S has a rational section étale locally at s

for every point s 2 S
¯
;

where XC ! S is some proper model of the curve C defined over k.S/, see [23, §3].
Thus, XS .J.X/�/ imposes pretty restrictive conditions on the type of singular fibers that
can occur. In particular, as there is no local obstruction to admitting a rational section, mul-
tiple fibers cannot occur over codimension 1 points of the base. Lastly, we observe that,
as in the case of WC.J.X/�/, XS .J.X/�/ parametrizes birational equivalence classes
of elliptic fibrations over S .

Remark 6.8. When considering an elliptic Calabi–Yau threefold f WX ! S , the mor-
phism f does not admit multiple fibers over codimension 1 points of the base S , as
KX � 0. Thus, f WX ! S corresponds to a class in XU .J.X/�/, for a big open subset
U � S . For more details, see [23, p. 276].

A first step towards proving birational boundedness of elliptic Calabi–Yau threefolds
with a non-rational base is to show that their Tate–Shafarevich groups are finite.

Proposition 6.9. Let f WX ! S be an elliptic Calabi–Yau threefold. Assume that the
minimal resolution of S is an Enriques surface. Then, X 2XSnSsing.J.X/�/.

Proof. First, we show that we may assume that f is equidimensional. Let f WX ! S

be an elliptic Calabi–Yau threefold and assume that the minimal resolution S 0 of S is
an Enriques surface. Then, as KX � 0 and KS �Q 0, in the canonical bundle formula
KX � f

�.KS C BS CMS / the boundary part BS D 0 while the moduli part MS � 0.
Up to floppingX over S , by Lemma 2.16, we may assume that f factors asX! S 0! S ,
where f 0WX ! S 0 is equidimensional, and � W S 0 ! S is birational. Since KX � 0 and
KS �Q 0, it follows that S 0 ! S is a partial resolution. Let ¹p1; : : : ; pkº be the singular
locus of S , and let � be an isomorphism over pi for 1 � i � l for some 1 � l � k. Then,
S 0sing D ¹p1; : : : ; pl ; q1; : : : ; qmº, where qj 2 Ex.�/ for all j . For each i D l C 1; : : : ; k,
let Ei be the (possibly reducible) �-exceptional curve mapping to pi . Then,

S n ¹p1; : : : ; pkº D .S
0
n ¹p1; : : : ; plº/ n

� k[
iDlC1

Ei

�
:
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Then, assuming the claim in the equidimensional case,X 2XS 0nS 0sing
.J.X/�/. As S 0singD

¹p1; : : : ; pl ; q1; : : : ; qmº, it then follows that

XS 0nS 0sing
.J.X/�/ �X

.S 0n¹p1;:::;pl º/n.
Sk
iDlC1Ei /

.J.X/�/ DXSnSsing.J.X/�/:

Thus, in the following, we may assume that f is equidimensional. By [35, Theorem 14],
there exists a commutative diagram

X zX D zF � zS

S zS;

f g

 

'

where  is étale in codimension 1, K xX � 0, and ' is a generically finite rational map.
As X is terminal, then so is zX . Note then that zF is an elliptic curve and zS is a smooth
surface withK zS � 0. From the above diagram, it follows that ' is a morphism, étale over
the regular locus of S , such that deg.'/ D deg. /. Since f and g are equidimensional,
it follows that ' is finite. Since ' is étale outside of Ssing and deg.'/D deg. /, it follows
that  is étale over the complement of Ssing. In particular, f is a smooth fibration over the
complement of Ssing. Thus, X 2XSnSsing.J.X/�/.

Miranda models are particularly important for the direct computation of the Tate–
Shafarevich group of an elliptic fibration of a Calabi–Yau threefold.

Proposition 6.10. Let f WX ! S be an elliptic Calabi–Yau threefold. Assume that the
minimal resolution of S is an Enriques surface. Let Qj W zJ .X/! zS be a Miranda model of
the Jacobian fibration j WJ.X/! S of f . Let zE be the exceptional locus of the birational
morphism zS ! S with the reduced structure. Then, X 2X zSn zE .J.X/�/, and this group
is finite.

Proof. By [11, Theorem 2.24], X zS .J.X/�/ is an extension of .Q=Z/r by a finite group,
where

r D b2. zJ .X// � �. zJ .X// � .b2. zS/ � �. zS//:

By Proposition 6.7, zJ .X/ is a resolution of a Calabi–Yau variety, and the minimal model
of zS is an Enriques surface. Thus, it follows that h2. zJ .X/;O zJ.X// D h2. zS;O zS / D 0.
Therefore, b2. zJ .X//D �. zJ .X// and b2. zS/D �. zS/. In particular, r D 0 and X zS .J.X/�/

is a finite group.
Let S 0 denote the minimal resolution of S . Then, zS ! S factors through S 0, as zS

is smooth. By [11, Proposition 2.4], J.X/ admits a model over S 0 that is a Weierstrass
fibration. Then, by [11, proof of Theorem 2.8], we may assume that zS is obtained by blow-
ing up the discriminant locus of the Weierstrass model. By the proof of Proposition 6.9,
J.X/! S is smooth over the complement of Ssing. In particular, zE is the inverse image
of Ssing. Then, by Proposition 6.9, X 2XSnSsing.J.X/�/ DX zSn zE .J.X/�/.

To conclude, we need to show that X zSn zE .J.X/�/ is finite. This follows from the
finiteness of X zS .J.X/�/ and [23, Proposition 3.2].
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Since only finitely many birational classes of Calabi–Yau threefolds can admit the
same Jacobian fibration, to prove the boundedness of elliptic Calabi–Yau threefold with
base a singular Enriques surface, we need to show that the assignment “fibration to Jaco-
bian” can be inverted in a family in a finite-to-one way, rather than just on a fixed model.
For this purpose, one needs to arrange for a family of Jacobian fibrations with some spe-
cial geometric properties, to guarantee that the Tate–Shafarevich group behaves well in
the family.

Proposition 6.11. There exist quasi-projective varieties zJ, z� , T and a commutative dia-
gram

zJ
zf

//

z�
&&

z�

zg
xx

T

of projective morphisms satisfying the following properties:

(1) z� is a smooth family of threefolds and zg is a smooth family of surfaces;

(2) zf admits a section;

(3) for every elliptic Calabi–Yau threefold hWJ ! S admitting a rational section and for
which the minimal resolution of S is an Enriques surface, there exists a closed point
t 2 T such that zJt ! z�t is isomorphic to a Miranda model zJ ! zS of J ! S as in
Proposition 6.10; and

(4) there exists a reduced divisor zE � z� that is log smooth over T such that any of the
isomorphisms z�t ! zS , whose existence is claimed in (3), maps zEt (considered with
its reduced structure) on the reduced exceptional locus zE of z� ! S .

Proof. Let hWJ ! S be an elliptic Calabi–Yau threefold admitting a rational section and
for which S is an Enriques surface. By Theorem 6.3, S belongs to a bounded family.
Therefore, there exist C 2 N and a very ample divisor H on S such that H 2 � C and
.S; 1

2
H/ is klt. By assumption, h admits a rational section. Then, we can apply [13, The-

orem 1.1] to the log pair .J; 1
2
'�H/ – in this case, we are taking d D 1 with respect to

the notation of [13, Theorem 1.1]. Furthermore, since we are considering fibrations with
a rational section, their boundedness in codimension 1 actually follows from [13, Theo-
rem 7.8]. In particular, by [13, step 6 of proof of Theorem 7.8], also the rational section
of J ! S is bounded in codimension 1. Therefore, the fibrations f WJ ! S are bounded
in codimension 1 together with a rational section. Let J ! � ! T be the family thus
obtained. Then, as the rational section of the fibrations is bounded as well, it follows that
J! � has a rational section which is defined over every t 2 T . In particular, J�! S� has
a rational section, where � denotes the generic point of an irreducible component of T .
The fact that we may assume that every fiber Jt is a Calabi–Yau threefold follows easily
from Theorem 4.2. To prove the statement of the claim, we will stratify and resolve the
family thus obtained.
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In the following, we will focus on one irreducible component of T at a time, and we
will possibly stratify and resolve such a component. Since T is of finite type, by Noethe-
rian induction the following process has to be repeated only finitely many times. By abus-
ing notation, in the following, we will assume T is irreducible.

Let � denote the generic point of T . Then, the geometric generic fiber Jx�! �x� admits
a Miranda model. Up to a finite cover of T , then so does J� ! �� . Thus, we may assume
that J� ! �� has a birational model zJ� ! z�� as in Proposition 6.10. We denote by zE�
the exceptional divisor of z�� ! �� . Up to shrinking T , we may assume that the generic
fiber spreads out, and we obtain a tower of morphisms zJ ! z� ! T , where zJ ! T and
z�! T are smooth and zE! T is log smooth. Up to shrinking T , we may also assume that
zJ! z� has a section. Thus, we obtain a family of Miranda models as in Proposition 6.10,
and the claim follows.

Theorem 6.12. The set of triples

F3
CY;ell;Enr WD

®
.X; S; f / j X is a Calabi–Yau threefold, hWX ! S is an elliptic fibration,

and the minimal resolution of S is an Enriques surface
¯

is birationally bounded.

Proof. By Proposition 6.11, the set of corresponding Jacobian fibrations is birationally
bounded by a family of Miranda models. Then, the claim follows by [23, Theorem 4.3],
since the condition on the Tate–Shafarevich group in [23, Theorem 4.3] is guaranteed to
hold by Proposition 6.10.

We can also prove an analog of Proposition 6.5 for the elliptic fibrations in F3
CY;ell;Enr.

Proposition 6.13. There exist quasi-projective varieties X, � , T and a commutative dia-
gram

X
f

//

�

&&

�

g
xx

T

of projective morphisms satisfying the following properties:

(1) � is a flat family of threefolds and g is a flat family of surfaces;

(2) for every t 2 T , Xt is a Calabi–Yau threefold. In particular, Xt has terminal Q-
factorial singularities; and

(3) for every terminal elliptic Calabi–Yau threefold with non-rational base hWX ! S ,
there exists t 2 T together with an isomorphism in codimension 1 'WX Ü Xt such
that �t and S are isomorphic and ' is a birational morphism over S .

Proof. The proof is identical to the one of Proposition 6.5, where we replace Theorem 6.4
by Theorem 6.12.
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6.4. Threefolds of Kodaira dimension 2

The tools developed in Section 3 can also be applied to study the boundedness of bira-
tionally bounded elliptic varieties that are not of Calabi–Yau type. In this case, the dif-
ficulty is that dropping the Calabi–Yau condition, it may be difficult to show that flops
deform, as needed in the proof of Theorem 6.18. Here, we consider minimal terminal
threefolds of Kodaira dimension 2. By [13], it is known that these are bounded in codi-
mension 1 under certain natural and necessary geometric conditions. In order to show
the boundedness of these varieties, we rely on the work of Kollár and Mori, showing
that the deformation of flops of Q-factorial terminal threefolds is locally unobstructed,
see [36, §11].

Theorem 6.14. Let X ! T be a flat projective family of minimal terminal Q-factorial
threefolds of Kodaira dimension 2. Then, up to stratifying T into a finite union of locally
closed Zariski subsets and taking finite covers, the following holds: Let 02T be any closed
point, and let  0WX0 Ü XC0 be a KX0 -flop. Then, there exists a KX-flop X Ü XC

over T extending X0 Ü XC0 .

Remark 6.15. After the stratification, T is the disjoint union of finitely many irreducible
components. Thus, theKX0 -flop extends over the irreducible component of T containing
the point 0.

Proof of Theorem 6.14. Let

X0
 0 //

r0

  

XC0

r
C

0}}

Z0

(6.4)

be a KX0 -flop associated to the contraction of an extremal ray R0 � NE.X0/. We now
divide the rest of the proof into steps for the reader’s convenience.

Step 0. In this step, we make some reductions.
Up to stratifying T into a union of locally closed subsets, we may assume that T is

smooth. By [14, Proposition 2.9] and [13, cf. proof of Theorem 6.1],

(1) X is a terminal Q-factorial variety;

(2) there exists a commutative diagram

X
f

//

  

�

��

T

such that � D ProjT R.KX/ and f is the relative Iitaka fibration X over T . In particular,
KX D f

�H� , where H� is a Q-divisor which is a relatively ample over T ;
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(3) for every t 2 T , �t D ProjR.KXt
/;

(4) ifE �Xt is a prime ft -very exceptional divisor in the sense of [3, Definition 3.1],
then there exists a prime divisor E � X horizontal over the connected component xT
of T containing t such that Et D kE for some k > 0. Indeed, up to a finite cover, we
may assume that all the divisors that are very exceptional for the morphism of geometric
generic fibers Xx� ! �x� is defined over k.T /. Then, by [34, §4.38], we may assume that
any such prime divisor restricts to a prime divisor fiber by fiber. Lastly, we may shrink T
around � so that, for every t 2 T , every ft -very exceptional divisor is the restriction of
the closure of one of the divisors that are very exceptional for X� ! ��; and,

(5) the local systems GN 1.X=T /; GN 1.X=T / defined in [36, Definitions 12.2.4
and 12.2.7] are constant: indeed, by [36, Propositions 12.2.5 and 12.2.8] those have finite
monodromy; hence, substituting T with a suitable finite cover, we can assume that their
monodromy is trivial.

Moreover, let us recall that, for a very general t 2 T ,

GN 1.X=T /jXt
D N1;R.Xt /;

see [36, Propositions 12.2.5 and 12.2.8]. Thus, by (5), we may assume that N1R.Xt / D

GN 1.X=T /jXt
for a very general t 2 T .

Finally, since T has finitely many irreducible components, restricting to one of these
components we may also assume that T is irreducible, by Noetherian induction.

Step 1. In this step, we show that there exists a polydisk 0 2 �k � T over which the flop
X0 Ü XC0 deforms (in the analytic topology).

By [36, Theorem 11.10], the flop X0 Ü XC0 deforms over a germ of 0 2 T in the
analytic topology: the deformation is obtained as a base change of a flop of a miniversal
deformation space of X0, cf. [36, Theorem 11.10]. More precisely, as T is smooth, there
exists a polydisk 0 2 �k � T over which the flop of X0 deforms, that is, there exists
a commutative diagram of analytic spaces

X�k
‰ //

��

r
�k

''

XC
�k

��

r
C

�k

ww
Z

��

�k ;

(6.5)

where X�k WD X ��k �
k , and the following properties are satisfied:

(a) the restrictions of the maps in (6.5) to X0 yield the diagram in (6.4);

(b) 8t 2 �k , ‰jXt
is an isomorphism in codimension 1; and

(c) 8t 2 �k , XCt is Q-factorial.
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For t 2 �k , we shall consider the restriction of the diagram in (6.5) to Xt

Xt

 t WD‰jXt //

rt
  

XCt

r
C
t}}

Zt ;

where XCt WDXC
�k ;t

,  t WD‰jXt
WXt Ü XCt denotes the induced isomorphism in codi-

mension 1 and
rt WD .r�k /jXt

; rCt WD .r
C

�k
/jXt

:

Step 2. In this step, we show that

(i) XCt and Zt are projective for t general in (the analytic Zariski topology of) �k ; and

(ii) for t 2 �t very general, any irreducible curve Ct contracted by rt specializes to
a curve in X0 contracted by r0; in particular, Ct �KXt

D 0.

Since �k is open in the Euclidean topology, �k contains a point t 2 T , very general
in the Zariski topology, such that GN 1.X=T /jXt

D N1;R.Xt /.

(i) By assumption, XC0 , Z0 are projective; thus, by [36, Theorem 12.2.10], for t 2 �k

general, XCt , Zt are projective.

(ii) This is just a consequence of the countability of the components of the relative
Douady space of X over Z together with the fact that those are proper over Z, cf. [17].

Step 3. In this step, we construct an effective divisor D on X such that for general v 2�k

(in the analytic topology), XCv is the ample model of both Dv and also of KXv C "Dv
for any choice of " > 0. In particular, XCv is the relatively ample model of KXv C "Dv
over �v .

Let t 2 �k be a very general point for which properties (i)–(ii) of step 2 hold; then,
KXt
�Q;Zt 0, by [36, Proposition 12.1.4]. Hence,KXt

D r�t KZt andK
X
C
t
D .rCt /

�KZt ,
as  t is an isomorphism in codimension 1. In particular,  t is crepant birational with
respect to KXt

and K
X
C
t

is nef. Hence, given an ample divisor DCt on XCt , which exists
by (i) in step 2, K

X
C
t
C "DCt is ample for all positive real numbers ". We define Dt WD

. �1t /�D
C
t . Choosing 0 < "� 1 and DCt general in its Q-linear series, we obtain that

.Xt ; "Dt / is terminal and  t is the outcome of the run of a .KXt
CDt /-MMP. As  t is

crepant birational with respect to KXt
and KXt

�Q;�t 0, then  t can also be obtained as
a run of the relative Dt -MMP over �t .

Since N1R.Xt / D GN 1.X=T /jXt
, as t is very general, there exists a divisor D on X

such that the numerical class of D restricts toDt on Xt . Furthermore, as the identification
N1R.Xt / D GN 1.X=T /jXt

relies on the relative Hilbert scheme of X over T , cf. [36,
proof of Proposition 12.2.5], we may assume that D is itself effective, flat over T , and
D jXt

D Dt as divisors. In particular, we can assume that D does not contain any fiber.
We set D�k WD D jX

�k
. Let DC

�k
be the strict transform of D�k on XC�k ; to simplify

the notation, for v 2 �k , we set DCv WDDC
�k
j
X
C
v

. For our choice of t 2 �k , DCt D D
C
t .
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Hence, DCt is ample on XCt . As ampleness is an open property, cf. [36, proof of The-
orem 12.2.10], then, for v 2 �k general (in the analytic Zariski topology) DCv is ample
on XCv .

Step 4. In this step, we show that

(A) for all v 2 T , Dv (resp. KXv CDv) is big;

(B) there exists a positive real number "0 such that for all 0 � " � "0, .Xv; "Dv/ is
terminal for all v 2 T ;

(C) for all v 2 T , Dv is movable over �v .

(A) By step 3, Dv is big for v 2 �k general in the analytic Zariski topology. By the
semi-continuity theorem [29, Theorem III.12.8], for v 2 T very general in the Zariski
topology, h0.Xv;OXv .mDv// is constant for any fixed choice ofm 2N. Hence, for very
general v 2 T , Dv is big; finally, applying the semi-continuity theorem again, we can
conclude that Dv is big for all v 2 T . The exact same argument applies to prove the
bigness of KXv CDv for all v 2 T .

(B) As for all t 2 T , Xt is terminal and Q-factorial, and Dt is effective, then the
conclusion simply follows by Noetherian induction on T , thanks to [33, Theorem 4.8] and
the fact that being terminal is an open condition in a family, see [9, Proposition 3.5].

(C) By part (B) of this step and since KX is Q-linearly equivalent to the pull-back
of an ample divisor on � , cf. step 0, for all 0 < "� 1, all .KX C "D/-negative curves
are contained in the fibers of X ! � . Hence, we may assume that for all 0 < " � 1,
any run of the relative .KX C "D/-MMP over T with scaling of an ample divisor is
also a run of the relative .KX C "D/-MMP over � . Furthermore, with the same choice
of ", .KX C "D/ �Q;� "D ; hence, the way a relative .KX C "D/-MMP is run will
be independent of " for 0 < "� 1. As KX C "D is big over T for all positive values
of ", then any run of the .KX C "D/-MMP must terminate with a good minimal model,
see [5]. Thus, for 0 < "� 1, let

X DW X0
ˆ0

//

--

ˆDˆn�1ıˆn�1ı���ıˆ1ıˆ0

))

X1
ˆ1

//

,,

X2
ˆ2

//

  

� � �
ˆn�3

// Xn�2
ˆn�2

//

||

Xn�1
ˆn�1

//

rr

Xn DW X
0

oo�

��

T

(6.6)

be one such run of the relative .KX C "D/-MMP with scaling of an ample divisor –
over T or � , equivalently. We define D 0 WD ˆ�D and 't WD ˆjXt

. As D 0 is nef and big
over � by construction, then to conclude the proof of (C) it suffices to prove the following
claim.



Boundedness of elliptic Calabi–Yau threefolds 3641

Claim. For all v 2 T , 'vWXv Ü X0v is an isomorphism in codimension 1.

Proof. Let us assume, by contradiction, that for some v 2 T , 'vWXv Ü X0v is not an
isomorphism in codimension 1. By steps 2 and 3, for any t 2 �k very general (in the
analytic Zariski topology),

(I) XCt is Q-factorial, cf. step 1, and for every " > 0, K
X
C
t
C "DCt ample on XCt ;

(II) for all 0 < "� 1, .X0t ; "D
0
t / is terminal and KX0t

C "D 0t is big and semi-ample
on X0t ; and,

(III) 't WXt Ü X0t is an isomorphism in codimension 1, by [25, Lemma 3.2]: indeed,
with reference to the statement of [25, Lemma 3.2], it suffices to take

� X WD X, U WD T , 0 WD t ;

� � WD "D for 0 < " � 1 such that .X; �/ is terminal, the same holds for
.Xt ; �t / so that property .2/ in the statement of the lemma is satisfied. Fur-
thermore, for such choice of ", the Q-linear system of KXt

C�t is movable
by (I), thus property .3/ in the statement of the lemma is satisfied; and

� D1; : : : ; DdimT , sufficiently general effective divisors meeting transversely
at 0.

As the indeterminacy locus of ˆ is Zariski closed and its exceptional locus is locally
closed in the Zariski topology, it follows that 'u must be an isomorphism in codimension 1
for u 2 T general. On the other hand, as 'v is a birational map over �v , any divisor
contracted by 'v is very exceptional with respect to fvWXv ! �v . By condition (4) in
step 0, there exists a prime divisor E � X horizontal over T such that Et D kE for
some k > 0. It suffices to show that E must be contained in the exceptional locus of ˆ
to obtain the sought contradiction. But, if that were not the case, there would exist an
integer i 2 ¹0; 1; : : : ; n� 1º such that for the extremal contraction �i WXi ! Zi in the i -th
step of the .KX CD/-MMP in (6.6), then dim �i .Ei /t D 2 for t 2 T general, whereas
dim �.Ei /v D 1; here, Ei is the strict transform of E on Xi . This is clearly impossible, by
the upper semi-continuity of fiber dimension.

Step 5. In this step, we show that there exists a positive real number "1 such that for all
0 < " � "1,KX0v

C "D 0v is big and semi-ample on X0v for all v 2 T , where the model X0

is the one constructed in (6.6).
The MMP in (6.6) terminates with a good minimal model X0 over � . Thus, for all

u 2 T , D 0u is big and semi-ample over �u. As KX is the pull-back of a Q-divisor on �

ample over T , then KX0u
C "D 0u is big and semi-ample on X0u.

Step 6. In this step, we show that DC0 is ample over �0.
We first show that DC0 is nef over �0. Let us assume by contradiction that this is

not the case. Thus, there must exist a DC0 -negative curve �C0 vertical over �0 spanning
an extremal ray of the effective cone of curves on XC0 . As K

X
C

0

�Q;�0 0, then �C0 is
also a .K

X
C

0

CDC0 /-negative curve. Since in step 4 we showed that D0 is movable
over �0, then the same conclusion must hold for DC0 over �0, as  0 is an isomorphism in
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codimension 1 over �0, by construction. Hence, the contraction of �C0 gives rise to a rel-
ative .K

X
C

0

CDC0 /-flipping contraction �0WXC0 ! Y0 over �0 which is also a relative
K

X
C

0

-flop. Then, [36, Corollary 11.11] implies that up to possibly passing to a positive
multiple, for very general t 2 �k (in the analytic Zariski topology) there exists a curve
Ct � XCt specializing to a curve supported on the exceptional locus of �0. But then, for
some irreducible component C it of Ct , DCt � C

i
t < 0: this yields the desired contradiction

as DCt is ample for t 2 T general by construction, cf. step 3.
The same reasoning, utilizing [36, Corollary 11.10], shows that if DC0 is nef, then the

effective cone of curves of XC0 does not admit a DC0 -trivial extremal ray over �0. Hence,
DC0 is ample over �0.

Step 7. In this step, we show that there exist an analytic Zariski open neighborhood
U 0 � �k of 0 and an isomorphism overU 0 between the restrictions of X0jU 0 and XC

�k
jU 0 .

As DC0 is ample over �0 andK
X
C

0
D f �0 H�0 , withH�0 ample, then for all 0 < "� 1,

K
X
C

0
C "DC0 is ample on XC0 . By the openness of ampleness, K

X
C
v
C "DCv is ample on

XCv for v 2 �k general (in the analytic Zariski topology) and XC
�k
! �k is projective

over an analytic Zariski open neighborhood U � �k of 0. Hence, over U we have the
following commutative diagram:

XjU

‰jU

##

X0jU

ˆ�1jU

<<

„U //

""

XC
�k
jU

{{
U;

where„U WD .‰jU / ı .ˆ�1jU /. By the claim above and the construction of‰, cf. step 1,
„U jX0

0
is an isomorphism in codimension 1. Since

.„U j
�1
X0
0
/�.KX

C

0

CDC0 / D KX0
0
CD 00;

KX0
0
CD 00 is big and semi-ample on X00, and XC0 is Q-factorial, Lemma 6.17 implies that

KX0
0
CD 00 is ample and that„U jX0

0
is an isomorphism. Thus,KX0CD 0 andK

X
C

�k

CDC
�k

are both ample over a common analytic Zariski open U 0 � U .
Hence, .„U /jU 0 is an isomorphism over U 0 since

.„U /�.KX0 CD 0/jU D .KX
C

�k

CDC
�k
/jU :

Step 8. Conclusion of the proof.
To conclude the proof we just need to show that ˆ is just given by a KX-flop over T .
As mentioned at the start of [36, proof of Theorem 12.2.10], the restriction to X0

induces a natural injection, cf. [36, Proposition 12.2.6],

r0W NE.X=T / ,! NE.X0/:
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Recall that  0WX0 Ü XC0 is the flop of an extremal ray R0 � NE.X0/. Moreover,
[36, Corollary 12.3.3] implies that R0 � Im.r0/. We set zR0 WD r�10 .R0/. Then, zR0 is an
extremal ray in NE.X=T /. Moreover, by specialization, KX �

zR0 D 0 and D � zR0 < 0.
Since KX C "D is big, by step 4, then there exists the flop of zR0 over T ,

X
‡ //

s
  

X00

s00}}

Z0:

(6.7)

Since r0. zR0/ D R0, then the curves contracted by X0 ! Z00 are all the curves in R0.
By construction then, denoting s0 WD sjX0 , s000 WD sjX000 , s0 D r0 and, by the uniqueness
of flops, it follows then also that s000 D r

C
0 . Hence, the flop ‡ in (6.7) yields a flop of X

lifting the flop  0 in (6.4) on X0 as claimed in the statement of the theorem.
To conclude, we argue that X00 D X0 and ‡ D ˆ. Let D 00 denote the strict transform

of D to X00, and let D 000 denote its restriction to X000 . By construction, we have �0 D
 0 D '0, where �0 denotes the restriction of ‡ to the special fiber. Then, as X00 is Q-
factorial and ampleness is an open condition, D 00 is ample over an open neighborhood
of 0. Thus, X00 D X0 and ‡ D ˆ hold true over a non-empty open set of T containing 0.

By construction, X0 and X00 are Q-factorial and isomorphic in codimension 1 to X.
Thus, X0 and X00 are connected by a sequence of flops, which is also a sequence of flips
for a suitable pair structure. As X00 D X0 holds true generically over the base, these flips
are concentrated over a proper closed subset G of T . Yet, the results of [36, §§11 and 12]
imply that extremal curves deform over the base under our assumptions. Thus, it follows
that G D ; and X00 D X0 and ‡ D ˆ.

The following is an immediate corollary of Theorem 6.14.

Corollary 6.16. Let X ! T be a flat projective family of minimal terminal Q-factorial
threefolds with Kodaira dimension 2. Then, up to stratifying T into a finite union of locally
closed Zariski subsets and taking finite covers, the following holds: Let 0 2 T be any
closed point, and let  0WX0 Ü XC0 be a finite sequence ofKX0 -flops. Then, there exists
a finite sequence of KX-flops X Ü XC over T extending X0 Ü XC0 .

In the proof of Theorem 6.14, we used the following easy consequence of [31, Lem-
ma 1.5].

Lemma 6.17. Let .Y1;D1/, .Y2;D2/ be projective klt pairs. Assume that

(1) KY1 CD1 is ample and KY2 CD2 is nef and big;

(2) Y1 is Q-factorial;

(3) there exists a birational map �WY1 Ü Y2 which is an isomorphism in codimension 1;
and

(4) ��.KY1 CD1/ D KY2 CD2.

Then � is an isomorphism.
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Proof. Let � WY3 ! Y2 be a Q-factorialization of Y2. We set D3 WD ��1� D2; thus,

KY3 CD3 D �
�.KY2 CD2/

so that KY3 C D3 is big and nef. Then, � WD ��1 ı �W Y1 Ü Y3 is an isomorphism
in codimension 1 of Q-factorial varieties such that ��.KY1 C D1/ D KY3 C D3. But
then, [31, Lemma 1.5] implies that � is an isomorphism since the interiors of Nef.Y3/ and
of ��Nef.Y1/ have non-empty intersection. Hence, since � D � ı �, then � is a morphism
and KY1 CD1 D �

�.KY2 CD2/. As KY1 CD1 is ample on Y1, then � can only be an
isomorphism.

6.5. Towards progress in higher dimension

The following result is the main technical result in the proof of the boundedness of elliptic
Calabi–Yau threefolds. It shows how the results of Section 3 can be used to prove the
boundedness of certain elliptically fibered varieties once we know that they are bounded
up to flops over the base.

Theorem 6.18. Fix a positive natural number d . Suppose that F is a set of triples
..X; 0/; .Y; 0/; f /. Let B WD ¹Y j 9.X; Y; f / 2 Fº. Assume that all triples .X; Y; f / 2 F

satisfy the following properties:

� X is a projective terminal Q-factorial variety of dimension d ;

� h1.X;OX / D h
2.X;OX / D 0; and

� f WX ! Y is a relatively minimal elliptic fibration.

If F is bounded in codimension 1 and B is bounded, then F is bounded.

The assumption h1.X;OX /D 0D h2.X;OX / in Theorem 6.18 is needed to apply the
results in Section 4, which allow extending flops from a special fiber to the whole family.

Proof of Theorem 6.18. Let .X; Y; f / 2 F. As Y belongs to the bounded set B, there
exist v 2 N and a very ample divisor HY on Y such that H dimY

Y � v and .Y; 1
2
HY /

is klt. Such choice of v is independent of Y 2 B. Up to replacing HY by a multiple
only depending on F, by the boundedness of the extremal rays, we can assume that
KX C

1
2
f �H is semi-ample with �.X; 1

2
f �H/D n� 1. Then, arguing as in step 0 of the

proof of Theorem 6.14, up to a stratification of a family bounding F in codimension 1, we
may partition F into a finite number of classes such that h0.O.m.KX C 1

2
f �H/// only

depends on m sufficiently divisible for all X in one of the given classes partitioning F .
In particular, as the stratification is finite, vol.X; KX C 1

2
f �H/ can only attain finitely

many values. Moreover, since, by assumption, F is birationally bounded, then there exists
a positive integer C , independent of the triple .X; Y; f /, such that f admits a rational l-
section for some d � C . Thus, we can apply [13, Theorem 1.1] to deduce that the set of
pairs°�
X;
1

2
f �HY

� ˇ̌
.X; Y; f /2F and HY is the very ample divisor on Y constructed above

±
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is log bounded. Even better, [13, Theorem 1.1] implies that there exist quasi-projective
varieties X, Y, T and a commutative diagram

X
f

//

�

&&

Y

g
xx

T

(6.8)

of projective morphisms such that for any triple .X;Y; f / in F, there exists a closed point
t 2 T such that

(1) Y ' Yt ;

(2) X and Xt are connected by a sequence of flops over Y D Yt .

Up to passing to a stratification and an étale base change of the original parameter
space T , we may assume that Theorems 3.4 and 4.2 apply to the pull-back of the mor-
phisms in (6.8) to each of the finitely many irreducible components of T . Furthermore,
we may assume that each irreducible component of T is affine. As there are finitely many
of these components, in the following we focus on a single one, with the understanding
that the same argument has to be repeated on each one of them individually. By abusing
notation, we will denote this irreducible component by T .

By Theorem 3.4, X ! Y admits finitely many minimal models X1; : : : ;Xk over Y,
up to isomorphism over Y. For any .X;Y;f / 2F, there exist t 2 T and an isomorphism in
codimension 1  WX Ü Xt which can be factored into a sequence of flops over Y D Yt .
The cones xM.Xt / and xM.X/ are naturally identified by  �, and the same holds also for
xM.Xt=Yt / and xM.X=Y /. Then, there exists a class Dt 2 xM.Xt / such that the rational

map  �1WXt Ü X is a Dt -MMP over Yt . Furthermore, we may assume that Dt lies in
the interior of both xM.Xt / and of  �1� . xA.X=Y // in the decomposition of xM.Xt=Yt /.
By Theorem 4.2, there exists D 2 xM.X=T / such that D jXt

D Dt . Let ˆWX Ü X0 be
a D-MMP over Y. By Theorem 3.4, there is 1� i � k such that X0 and Xi are isomorphic
over Y.

Then, by [25, §3], the D-MMP ˆ above restricts to a Dt -negative birational map
ˆjXt

WXt Ü X0t on the fiber Xt which can be factored into a sequence of small KXt
-

trivial birational maps. By Remark 4.3 and the fact thatDt is in the interior of xM.Xt /, up
to rescaling by a positive rational number, there exists D such that .X;D/ and .Xt ;Dt /

are both terminal. Thus, X0t is itself terminal and it is connected to Xt by a sequence
of flops. Since Dt 2  �. xA.X=Y // \ .ˆjXt

/�. xA.X
0
t=Yt //, and it is in the interior of

 �. xA.X=Y //, then by [31, Lemma 1.5] X0t and X are isomorphic. In turn, Xi;t and X
are also isomorphic and since there are only finitely many models X1; : : : ;Xk , the claim
follows.

Remark 6.19. While Theorem 6.18 is stated in the setting of elliptically fibered varieties,
its underlying philosophy is quite general. In fact, as soon as we have boundedness mod-
ulo flops for a set of K-trivial varieties (resp. a set of Calabi–Yau fiber spaces), one could
try to prove the Kawamata–Morrison cone conjecture for that particular situation. If that
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is successful and one can argue that flops can be extended from a fiber to the total space,
then the corresponding analog of Theorem 6.18 would follow.

As an immediate corollary of Theorem 6.18, we are able to bound a large class of
elliptic Calabi–Yau fibrations in higher dimension.

Corollary 6.20. Fix positive integers d , C . Let Fd;C
CY;ell;LF be the set of triples

Fd;C
CY;ell;LF WD

®
.X; Y; f / j X is a terminal projective Calabi–Yau variety of dimension d ,

f WX ! Y is an elliptic fibration admitting a rational
l-section of degree l � C , and Y is a log Fano variety

¯
:

Then Fd;C
CY;ell;LF is bounded.

Proof. Let Dd�1;"
log Fano be the set of varieties

Dd�1;"
log Fano WD

®
Y j dimY D d � 1; and there exists an effective divisor � on Y

such that .Y;�/ is "-klt; KY C�Y �Q 0; � is big
¯
:

By [4, Theorem 1.4], for any fixed real number " > 0, Dd�1;"
log Fano is log bounded.

Let .X; Y; f / 2 Fd;C
CY;ell;LF. By Proposition 2.9 and Remark 6.1, given an elliptic Cal-

abi–Yau variety f WX! Y , there exists a boundary�Y on Y with coefficients in Cell such
that .Y;�Y / is klt andKY C�Y �Q 0. By [24, Theorem 1.5], there exists a positive real
number "0 such that .Y; �Y / is "0-klt. As Y is log Fano, then, �Y is big and, hence,
Y 2D

d�1;;"0
log Fano . Hence, the set Bd�1

log Fano of varieties

Bd�1
log Fano WD ¹Y j 9.X; Y; f / 2 Fd;C

CY;ell;LFº

is bounded.
On the other hand, Fd;C

CY;ell;LF is bounded in codimension 1 by [13, Theorem 7.2].
Hence, we can apply Theorem 6.18 with F D Fd;C

CY;ell;LF and B D Bd�1
log Fano.

7. Proof of the main results

Proof of Theorem 1.1. This follows immediately from Propositions 6.5 and 6.13, and
Theorem 6.18.

Remark 7.1. Theorem 6.18 can be used to deduce analogs of Theorem 1.1 in higher
dimensions. So far, there have been several results addressing the boundedness in codi-
mension 1 of elliptic Calabi–Yau varieties admitting a rational section in any dimension,
see [6, 10, 15]. Unfortunately, for n � 4, the current state of the art regarding elliptic
Calabi–Yau n-folds f WX ! Y can only guarantee that Y is bounded in codimension 1.
Once we are able to address the actual boundedness of the set of bases Y , the statements
in [6, 10] could be enhanced to the full boundedness using the tools discussed here.
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Proof of Corollary 1.2. This follows immediately from Theorem 1.1 and Verdier’s gen-
eralization of Ehresmann’s theorem [48, Corollaire 5.1].

Proof of Theorem 1.3. By [13, Theorem 1], F3;v;C
�D2 is bounded up to flops. Moreover,

by [12, Theorem 1.14] the set of varieties

¹S j 9.X; S; f / 2 F3;v;C
�D2 º

is bounded, cf. Proposition 2.9. Thus, there exist N 2 N and a very ample effective divi-
sor HS on S such that H 2

S D Nv and .Y; 1
2
HY / is klt. Such choice of N is independent

of the triple .X; S; f / 2 F3;v;C
�D2 . As we are assuming the existence of a degree C rational

section of f , we can apply [13, Theorem 1.1] to deduce that the set of pairs°�
X;
1

2
f �HS

� ˇ̌
.X; S; f / 2 F; HY is the very ample divisor on Y constructed above

±
is log bounded in codimension 1. Even better, [13, Theorem 1.1] implies that there exist
quasi-projective varieties X, � , T and a commutative diagram of projective morphisms

X

�

&&

ˆ // �

g
xx

T

such that for any .X;S;f /2F3;v;C
�D2 , there exists t 2T such that S Š �t and f is birational

to ˆt WXt ! �t over S for some t 2 T . Note that X Ü Xt is given by a sequence of
flops over S D �t . Moreover, by [27, Proposition 2.4], [9, Proposition 3.5], and [36,
Theorem 12.1.10], we may assume that X is Q-factorial and all fibers Xt are terminal
Q-factorial projective varieties; furthermore, up to an additional stratification, we may
assume that all fibers are varieties of Kodaira dimension 2 and �t Š Proj.R.KXt

// for
every t 2 T , see [13, cf. proof of Theorem 6.1].

By Theorem 3.4, there exist k 2 Z>0 and finitely many marked minimal models
'i WX Ü Xi over � , for i 2 ¹1;2; : : : ; kº, such that for any Q-divisor D pseudo-effective
over � and any minimal model 'WX Ü X0 over � , there exists 1 � i � k for which 'i
is birationally equivalent over � to '. In particular, if 'WX Ü X0 is a sequence of flops,
then up to isomorphism over � , ' D 'i for some 1 � i � k. Let X 2 F3;v;C

�D2 and let
Xt Ü X be the sequence of flops mentioned above. By Theorem 6.14, we may assume
that this extends to a sequence of flops X Ü X0 and there exists a birational isomorphism
X0 Š Xi over � for some 1 � i � k, hence X Š Xi;t .
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