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Abstract. We define and study an `-adic Fourier transform for a relative version of Banach–Colmez
spaces (over a perfectoid space which is not necessarily a geometric point), which can be thought
of as some analytic analogue of the `-adic Fourier transform for unipotent perfect group schemes.
We explicitly describe it on some examples.
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1. Introduction

Let p and ` be two distinct primes.
Let k be a characteristic p perfect field and let  W Fp ! xQ�` be a fixed non-trivial

additive character. Let S be a k-scheme, and let E be a vector bundle of constant rank d
on S . Let pE W V .E/! S be the total space of this vector bundle, and pE_ W V .E_/! S ,
where E_ is the OS -linear dual of E . Denote by � W V .E_/ �S V .E/! V .E/ and �_ W
V .E_/ �S V .E/! V .E_/ the two projections. Finally, let ˛ W V .E_/ �S V .E/! A1S
come from the duality pairing between E and its dual. The geometric Fourier transform
for E , invented by Deligne in a 1976 letter to Kazhdan, is the functor

F W D
b
c .V .E/; xQ`/! Db

c .V .E
_/; xQ`/

defined by
F .�/ WD R�

_
Š .�

�.�/˝ ˛�L /Œd �;

where L is the rank 1 xQ`-local system on A1S deduced from  by Artin–Schreier the-
ory. When S D Spec.k/ and E D Od

S (so that V .E/ D Ad
k

), the trace function of the
geometric Fourier transform of an object A 2 Db

c .A
d
k
; xQ`/ which is defined over Fq , for

some power q of p, agrees up to sign with the Fourier transform, in the function-theoretic
sense, of the trace function of A, justifying the name.

The geometric Fourier transform has been studied extensively by Laumon [31], who
gave several striking applications of it. The key property of the Fourier transform is that
it induces an equivalence of triangulated categories, identifying the subcategories of per-
verse sheaves on both sides.

The possibility of extending this Fourier transform to a more general setting was
already noticed by Deligne in the same letter. Assume that S is a perfect scheme over k,
which is harmless as far as categories of étale `-adic sheaves are concerned. Let G be
a connected unipotent perfect group scheme over S (i.e., a commutative perfect group
scheme over S whose pullback to any perfect-field-valued point s of S admits a compos-
ition series with quotients isomorphic to the perfection of A1

k.s/
) with Serre dual1

G_ D Ext1� .G ;Qp=Zp/;

where � denotes the perfect étale site of S . (For more on unipotent perfect group schemes,
we refer the reader to [40, Section 2] or [5, Section 2].) If one fixes an additive character
 W Qp=Zp ! xQ�` , one can define as before a Fourier transform functor

F W D
b
c .G ;

xQ`/! Db
c .G

_; xQ`/;

using the natural pairing
G �S G_ ! ŒS=.Qp=Zp/�

1All the sheaves Exti
�
.G ;Qp=Zp/, i ¤ 1, vanish.
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coming from the definition of the Serre dual. Since any vector bundle E on S gives rise to
a connected unipotent perfect group scheme GE , which is simply the perfection of V .E/,
this generalizes the Fourier transform defined before.2 The basic properties of this Fourier
transform were established in Saibi’s thesis [45]. This formalism could be extended to a
more general class of perfect unipotent group schemes (perfect unipotent group schemes
are perfect group schemes whose pullback to any perfect field-valued point s of S admits
a composition series with quotients isomorphic to Z=p or the perfection of A1

k.s/
), not

necessarily connected. The price to pay is that one then has to work with complexes in
degrees Œ�1; 0� of unipotent perfect group schemes whose cohomology in degree �1 is
étale: this comes from the fact that

Hom� .Z=p;Qp=Zp/ Š Z=p; Exti� .Z=p;Qp=Zp/ D 0; i > 0;

so that the duality for étale groups comes with a different shift than the one for connected
groups.

Let E be a local field of residue characteristic p. Our goal in this text is to study an
analogue of these constructions when S is assumed to be a perfectoid space in charac-
teristic p (thus living in Huber’s world of adic spaces), or even a small v-stack (in the
sense of Scholze [47]), rather than a perfect scheme. For these analytic objects, the étale
topology gets replaced by the v-topology, and the role of unipotent perfect group schemes
is played by Banach–Colmez spaces for the local field E.

Banach–Colmez spaces were first defined, in [16], when E D Qp and S D Spa.C /,
with C a complete algebraically closed non-archimedean valued field of characteristic p,
is a geometric point: they are v-sheaves which are all “obtained” from Qp and the adic

affine line over C ], for a fixed untilt C ] of C , which is quite reminiscent of what hap-
pens for unipotent perfect group schemes and motivates our analogy. The main result
of [34] shows that the category of Banach–Colmez spaces is closely related to the category
of coherent sheaves on the Fargues–Fontaine curve. For a local field E other than Qp

and for a general perfectoid space S in characteristic p, a category of Banach–Colmez
spaces (for E) over S has not been defined and will not be needed for our purposes:
rather, we restrict our attention to the v-sheaves of E-vector spaces coming from (some)
coherent sheaves on the relative Fargues–Fontaine curve XS;E , in a sense which will be
made precise in the first part of the paper, where we discuss coherent sheaves on relative
Fargues–Fontaine curves and some of their properties. In fact, since the same dichotomy
connected/étale as for unipotent perfect group schemes persists in this new setting, it is
also necessary to switch from sheaves to stacks. We therefore define a notion of very
nice stack in E-vector spaces and a duality functor making them dualizable, and verify
that Banach–Colmez spaces attached to coherent sheaves with only positive slopes or

2A computation (see e.g. [40, proof of Lemma 2.2]) shows that the group scheme attached to
E_ D HomOS .E;OS / agrees with the cokernel of ' � 1 W Hom� .GE ;A

1
S
/! Hom� .GE ;A

1
S
/ so

that, by the Artin–Schreier sequence and Breen’s computations [12] of self-extensions of the affine
line on the perfect étale site, G_

E
Š GE_ , showing that the notions of duality indeed match.
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Banach–Colmez spaces attached to semistable vector bundles of slope zero (i.e., pro-
étale E -local systems) are examples of such. This is a non-trivial statement, which in
particular involves a computation of extensions between certain v-sheaves of E -vector
spaces, generalizing (and streamlining) the partial computations done in [34]. Continu-
ing our analogy, Banach–Colmez spaces attached to coherent sheaves with only positive
slopes and their duals take the role of connected unipotent groups, while pro-étaleE-local
systems take the role of étale unipotent groups.

We define the Fourier transform for very nice stacks in E-vector spaces. Since the
formalism of xQ`-sheaves on small (Artin) v-stacks, [20, Section VII], is more complic-
ated to work with than its classical counterpart (e.g., excision fails for solid coefficients),
we set up the definitions for étale sheaves of ƒ-modules, where ƒ is a Z=`n-algebra
for some n � 1, as developed in [47]. This Fourier transform satisfies the same formal
properties as the other ones, the most important being that it is (essentially) involutive
and therefore gives rise to an equivalence of categories commuting with Verdier duality.
However, we have nothing to say about preservation of perversity by the Fourier trans-
form – an important and useful property in the algebraic setting – since there is currently
no developed theory of perverse sheaves on diamonds or Artin v-stacks.

In the last part of the paper, we study more in depth three examples.

� The first one is the case of finite-dimensional E-vector spaces; see Section 4.1. We
prove that in this situation, the Fourier transform is, unsuprisingly, closely related to
the function-theoretic Fourier transform for locally constant functions. A variant of
this example is shown to geometrize some constructions of Bernstein–Zelevinsky [4].

� The next example is the case of the affine line over a fixed untilt of S , when S is a
geometric point; see Section 4.2. A Fourier transform had been defined already in this
setting by Ramero [42]; it coincides with ours, which can thus be seen as a generaliza-
tion of Ramero’s Fourier transform to a larger class of stacks in E-vector spaces.

� The final example we analyze is the Banach–Colmez space attached to the line
bundle O.1/; see Section 4.3. This Banach–Colmez space is an interesting geomet-
ric object: seen over k, it is the adic spectrum of the ring of integers in a positive
characteristic local field (hence, étale sheaves on it are related to representations of
the Galois group of this field), but after base change to a geometric point Spa.C /, it
becomes isomorphic to the (perfectoid) punctured open unit disk over C , a nice smooth
adic curve, up to perfection. Exploiting this together with Huber’s adic version of the
Grothendieck–Ogg–Shafarevich formula [26], we can compute explicitly the rank of
the Fourier transform. Remarkably, the result is related to formal degrees of smooth
irreducible representations of the non-split quaternion algebra over E.

Our main motivation for introducing this Fourier transform comes from our attempt
to understand some constructions of Laumon in the geometric Langlands program in the
setting of the Fargues–Fontaine curve. This is left for the future and not developed here,
but is briefly mentioned in Section 3.5 and motivates some of the computations we make,
e.g. in Sections 4.1 and 4.3. Recently, our notion of flat coherent sheaves on the relat-
ive Fargues–Fontaine curve has been used to introduce and study geometric Eisenstein
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functors in Fargues’ program [23] while the Ext-computations in Section 3.1 have been
used in [17] to establish surprising duality results for the pro-étale cohomology of analytic
curves. In [3] Lucas Mann and the first author have generalized Theorem 2.1 to v-descent
of (a slight modification of) solid quasi-coherent sheaves on perfectoid spaces.

Notations and conventions

Let p be a prime. In all this text, we fix E, which is either a finite extension of Qp with
residue field Fq , or the field of Laurent series Fq..�//, where q is a power of p. We let
OE be the ring of integers of E and � be a uniformizer of E.

The category of perfectoid spaces over a small v-stack S will be denoted PerfS . The
v-site of S is this category endowed with the v-topology and is denoted Sv . In this text,
all v-stacks will be on PerfFq .

One can attach to any S 2 PerfFq the relative Fargues–Fontaine curve XS;E . We will
always abbreviate it to XS ; in other words, all the Fargues–Fontaine curves appearing in
this text will be Fargues–Fontaine curves for the local field E.

We fix a prime `¤ p, and a Z=`n-algebraƒ, n� 1, which will serve as our coefficient
ring. We will denote by the same letter the associated condensed ring.

Whenever we write “cohomologically smooth”, we always mean “`-cohomologically
smooth”.

2. Perfect complexes on relative Fargues–Fontaine curves

In this section we prove some foundational results on perfect complexes on perfect-
oid spaces and relative Fargues–Fontaine curves, e.g., v-descent, building on work of
Andreychev [1]. As an application we introduce flat coherent sheaves on relative Fargues–
Fontaine curves, and show that they satisfy v-descent.

2.1. v-descent for perfect complexes on perfectoid spaces

Let X be a perfectoid space (not necessarily over Fp). We denote by

Perf .X/ D Perf .X;O/

the (1-)category of perfect complexes of OX -modules on X , i.e., those complexes which
locally for the analytic topology are quasi-isomorphic to a bounded complex of finite, loc-
ally free OX -modules. IfX D Spa.R;RC/ is affinoid, then by [1, Theorem 5.43, Lemmas
5.46, 5.47] the natural functor

Perf .R/! Perf .X/

is an equivalence, where the left-hand side denotes the (1-)category of perfect complexes
of R-modules.
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If a � b are two integers (or ˙1), we say that a perfect complex has Tor-amplitude
in Œa; b� if it can be locally represented by a complex whose terms in degrees outside Œa; b�
are zero. We will denote by

Perf Œa;b�.X/

the subcategory of Perf .X/ formed by perfect complexes with Tor-amplitude in Œa; b�.
LetX be a perfectoid space, mapping to a totally disconnected spaceW (for example,

W D Spa.K/, with K a non-archimedean field). Let

f W Y ! X

be a v-cover. We want to prove first that perfect complexes descend along f . More pre-
cisely, consider the Čech nerve

Y �=X

of f , i.e., the simplicial perfectoid space with n-simplices given by the .nC 1/-fold fiber
product

Y n=X WD Y �X � � � �X Y

Let us denote by fn W Y n=X ! X the natural projection.
The following theorem generalizes [49, Lemma 17.1.8] about v-descent of vector

bundles to v-descent of perfect complexes.

Theorem 2.1. With the above assumptions and notations, the canonical functor

ˆ W Perf .X/! lim
 �
�

Perf .Y �=X /

is an equivalence.

Proof. If X D
S
i2I Xi is an open covering of X by affinoid perfectoid spaces Xi , then

Perf .X/ identifies with a limit of the 1-categories Perf .U / for U a finite intersection
of some of the Xi , and similarly Perf .Y / identifies with a limit of the Perf .Y �X U/
(this does not need the results of [1] yet, but follows formally from the definition of per-
fect complexes via OX -modules). Commuting limits, we can therefore reduce to the case
where W and X D Spa.R; RC/ are affinoid perfectoid. By refining the v-cover Y ! X

we can furthermore assume Y D Spa.S; SC/ is affinoid perfectoid. In this case we can
apply [1, Theorem 1.4] which identifies perfect complexes on affinoid perfectoid spaces
with perfect complexes over the ring of global sections. We make these assumptions and
use these notations until the end of this proof.

Then, let a; b 2 Z with a � b. Pullback of perfect complexes preserves Tor-amplitude
in Œa; b� and moreover the Tor-amplitude descends along v-covers: by [25, Lemma 1.4]
each maximal ideal m of R supports a continuous valuation, and Y ! X being a v-cover
implies that S has a maximal ideal lying above m. As a finitely presented R-module, e.g.,
the top cohomology of a perfect complex, is zero if and only if it vanishes at each closed
point of Spec.R/, this implies that having Tor-amplitude in .�1; b� descends along a
v-cover. As duals of perfect complexes commute with pullbacks, and a perfect complex
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has Tor-amplitude in Œa;1/ if and only if its dual has Tor-amplitude in .�1;�a�, this
implies the v-descent of the Tor-amplitude. Therefore, we equivalently have to show the
claim with Perf .�/ replaced everywhere by its version Perf Œa;b�.�/ of perfect complexes
with amplitude in Œa; b�.

Let us first check that ˆ is fully faithful. The fiber products

Y n=X Š Spa.Sn; SCn /

are again affinoid perfectoid with

Sn WD S Ő R � � � Ő R S

the .n C 1/-fold completed tensor product of S over R. Let K1; K2 2 Perf Œa;b�.R/ be
two objects. Then we have to see that the natural morphism

RHomR.K1; K2/! lim
 �

RHomSn.Sn ˝
L
R K1; Sn ˝

L
R K2/

is an isomorphism in D.R/. Indeed, the right-hand side identifies with the spectrum (in
the topological sense) of homomorphisms from ˆ.K1/ to ˆ.K2/. If K1 D R;K2 D R,
then the claim follows from exactness of the complex

R! S0
DS
! S1 ! S2 ! � � � ;

which is proven in [47, Proposition 8.8]. By dévissage in Perf Œa;b�.R/ and passage to
direct summands we can therefore conclude the same forK1;K2 2Perf Œa;b�.R/ arbitrary.
This finishes the proof of fully-faithfulness of ˆ in the affinoid perfectoid case.

Let g W QX ! X be an open covering by rational subsets. Using analytic descent for
g and its base change to Y n=X [1, Theorem 1.4], and applying fully-faithfulness to the
constituents of the Čech nerve for g W QX!X it suffices to construct the preimage of some
given object

N � 2 lim
 �
�

Perf Œa;b�.Y �=X /

locally in the analytic topology on X .
To prove essential surjectivity of ˆ, we first assume that X D Spa.K; KC/ is the

spectrum of an affinoid perfectoid field. Because Y ! X is a v-cover the space Y is
non-empty and thus after a refinement of Y we may assume that Y D Spa.L; LC/ is the
spectrum of an affinoid field, too. In this case the canonical truncations (in D.L/) of an
object in Perf Œa;b�.Y / lie again in Perf Œa;b�.Y / and acquire canonical descent data. By
[49, Lemma 17.1.8] we can therefore conclude descent in this case.

To deal with the general case, we will need to argue integrally. In the following, we
call an “integral model” of a perfect complex

K 2 Perf .Z/ Š Perf .B/

on an affinoid perfectoid space Z D Spa.B; BC/ a pair of a perfect complex
KC 2 Perf .BC/ and an isomorphism KC ˝L

BC
B Š K.
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Back to the general case, pick a point x 2 X , and let k.x/ be the completed residue
field at x. As we saw above, it suffices to descend N � in a neighborhood of x. By the
previous case we can descend the restriction Nx of N to the fiber Yx of Y ! X over x,
i.e., the descent datum

N �x 2 lim
 �
�

Perf Œa;b�.Y �=xx /

obtained by base change of N is effective. Let M 2 Perf .k.x// be the descent of N �x .
Then we can choose an integral model MC 2 Perf Œa;b�.k.x/C/ of M . Pulling back
to Y �=xx we get a componentwise integral model

NC;�x 2 lim
 �
�

Perf Œa;b�.Y �=xx ;OC/;

of N �x . For an open neighborhood U 2 X of x set YU WD Y �X U with associated Čech
nerve

Y
�=U
U :

We denote the componentwise restriction of the descent datum N to Y �=UU by

N
�=U
U :

By Lemma 2.2, we can find for each n 2 N an open rational neighborhood U � X and
an integral model

N
C;n=U
U

of N n=U
U whose restriction to Y n=xx is NC;n=xx . As all the perfect complexes considered

have uniform amplitude contained in Œa; b�, we can choose U independently of n: indeed,
the proof of [35, Lemma 1.3.3.10] says that for any integer k � 1, the totalization of a
cosimplicial object in a k-category (such as Perf Œa;b�) only depends on the restriction
to ��k ; moreover, finite limits in Cat1 commute with filtered colimits [37, Corollary
A.2.11]. Applying again Lemma 2.2 we can after shrinking U further assume that the
descent datum on N �=UU restricts to NC;�=UU because the descent datum of N �=xx restricts
to NC;�=xx . More formally, by Lemma 2.2 and the fact that limits over � over uniformly
truncated anima/1-categories commute with filtered colimits the functor

.B;BC/ 7! lim
 �
�

Perf Œa;b�..B Ő R S�/C/ �Perf Œa;b�.B Ő RS�/
�

on complete Tate–Huber .R;RC/-algebras commutes with filtered colimits (here

� ! Perf Œa;b�.B Ő R S�/

has image the base change of N �).
After replacing X by U , Y by YU and N �=X by N �=UU we can therefore assume that

the whole descent datum N � admits an integral model NC;� inducing the chosen integral
model NC;�x (coming from the choice of MC above) at the given point x.
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Fix a pseudo-unformizer $ of R. Since

k.x/C=$ ' lim
�!
x2U

OCX .U /=$

and Perf .�/ commutes with filtered colimits on commutative rings, up to shrinking X
we can further assume that3 MC=$ extends to a perfect complex of RC=$ -modules.
The descent datum obtained by pulling it back becomes isomorphic over Yx to NC;�=$ .
We can therefore, up to shrinking X one more time, assume that this isomorphism holds
on all of X .

If .T; TC/ is a Tate–Huber pair over .R;RC/, we will write

Perf .TCa/

for the full stable1-subcategory of D.TCa/ of complexes quasi-isomorphic to .K/a for
some perfect complex K of TC-modules. The functor

ˆCa W Perf .RCa/! lim
 �
�

Perf .SCa;�=R/

is seen to be fully faithful by repeating the argument given above for fully-faithfulness in
the almost category. In particular, its essential image is stable under extensions.

Now, we claim that for each n � 1, the complex .NC;�=$n/a 2 lim
 ��

Perf .SCa;�=R/
belongs to the essential image of ˆCa. We argue by induction on n. We know it is true
when n D 1 by the devissage just performed. In general, for n > 1, consider the exact
triangle

.NC;�=$/a
��n�1

����! .NC;�=$n/a ! .NC;�=$n�1/a

in lim
 ��

Perf .SCa;�=R/. By the induction hypothesis, the outer terms can be assumed to
be in the essential image of ˆCa; hence so is the middle term by stability of this essential
image by extensions.

For each n � 1, let MCan 2 Perf .RCa/ be the (unique) descent of .NC;�=$/a. By
fully-faithfulness of ˆCa, MCan has an RCa=$n-module structure and one has

MCan ˝
L
RCa=$n

RCa=$n�1
'MCan�1

for each n. Set
MCa WD lim

 �
n

MCan 2 lim
 �
n

D.RCa=$n/:

This object is dualizable (since one can also descend the dual by the same argument). Let
m WD

S
n$

1=pnRC � RC, and consider the left adjoint

jŠ.�/ D �˝RC m W D.RC;a/! D.RC/

of the almostification functor j �, which was introduced in [21, 2.2.19]. Applying jŠ com-
ponentwise, then taking the inverse limit in D..RC; RC/�/, i.e., in the category defined

3Here and in the rest of this proof, the notation �=$ (and its variants) stands for � ˝L
RC

RC=$ .
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via [1, Theorem 3.28], and then inverting � yields a natural functor

˛R W lim
 �
n

D�.RCa=$n/! D�..R;RC/�/:

By [37, Proposition 2.12.10] (and the fact that jŠ.A˝L
RCa=$n

B/Š jŠ.A/˝
L
RC=$n

jŠ.B/

for every n� 0) this functor is monoidal, i.e., the$ -completed tensor product agrees with
the solid tensor product in this case. By [1, Corollary 5.51.1] the restriction of the func-
tor ˛R to dualizable objects has image in the full subcategory of perfect complexes overR
because by monoidality each object in the image is dualizable. The compatibility of solid
tensor products with the $ -completed tensor products appearing here also shows that
˛R is compatible with pullbacks in .R; RC/. From these considerations we can deduce
that the perfect complex ˛R.MCa/ defines the desired descent of N �=Y .

Lemma 2.2. Let .A; AC/ be a complete uniform Tate–Huber pair, and M 2 Perf .A/.
Define the functor

FM W .B;B
C/ 7! ¹NC 2 Perf .BC/ with an isomorphism NC ˝L

BC
B ŠM ˝LA Bº

on complete uniform Tate–Huber pairs over .A; AC/ with values in spaces/anima. Then
FM commutes with filtered colimits.

More formally, FM .B;BC/ is the fiber product

Perf .BC/' �Perf .B/' �

where �! Perf .B/ is the morphism determined by the objectM ˝LA B 2 Perf .B/, and
.�/' denotes the core of an1-category.

Proof of Lemma 2.2. Let .Bi ; BCi /; i 2 I; be a filtered system of complete uniform Tate–
Huber .A; AC/-algebras, let .B; BC/ be their uncompleted colimit and .C; CC/ be the
(uniform) completion of .B;BC/. By [6, Proposition 5.6 (2)] the square

Perf .BC/ //

��

Perf .B/

��

Perf .CC/ // Perf .C /

is a cartesian diagram of1-categories. This implies that

FM .C; C
C/ Š Perf .BC/' �Perf .B/' �

with � ! Perf .B/ induced by M ˝LA B . But the right-hand side is equivalent to

lim
�!
i2I

FM .Bi ; B
C

i /

as desired because the functor R 7! Perf .R/ on commutative rings commutes with
filtered colimits.
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2.2. Perfect complexes on relative Fargues–Fontaine curves

The v-descent result of Section 2.1 for perfect complexes on perfectoid spaces does
not directly apply to relative Fargues–Fontaine curves, because these are not perfectoid
spaces. However, we know that for any T 2 PerfFq , the analytic adic spaces XT ; YT are
sousperfectoid [49, Proposition 11.2.1] and adapting the argument of [49, Proposition
19.5.3] we get the following result.

Proposition 2.3. Let UT � XT or UT � YT be an open subset, and for any T 0 ! T

denote by UT 0 the pullback of UT along XT 0 ! XT or YT 0 ! YT . Then the functor

.T 0 ! T / 7! Perf .UT 0/

on PerfT satisfies v-descent.

Proof. Let zT ! T be a v-cover in Perf with associated Čech nerve zT �=T , which is
a simplicial object in PerfT . We want to show that the canonical morphism

Perf .UT /! lim
 �
�

Perf .U zT �=T /

is an equivalence. Commuting inverse limits we may assume that UT is affinoid. Fix
a uniformizer � 2 E and set

E1 WD
4
E.�1=p

1

/;

which is a perfectoid field. Set S1 WD Spa.E1/ and let S�=S1 be the Čech nerve of S1!
S WD Spa.E/, a simplicial adic space over S . We obtain the bisimplicial adic space

U zT �=T �S S
�=S
1

over S . Let us note that for m � 1 the space

Sn=S1

is not uniform (and thus in particular not sousperfectoid) because S�=S1 was defined as the
Čech nerve in all adic spaces over S (and not just the uniform ones). However, S1DS

0=S
1

is a perfectoid space living over the totally disconnected space Spa.E1/ and

U zT �=T �S S1

is a simplicial perfectoid space over E. By Theorem 2.1 we can deduce that

Perf .UT �S Sm=S1 /! lim
 �
�

Perf .U zT �=T �S S
m=S
1 /

is an equivalence for m D 0.
We claim that it is fully faithful for m � 1. Indeed, write

U zT n=T D Spa.A zT n=T ; A
C

zT n=T
/;

Sm=S1 D Spa.E1;m=S ; EC1;m=S /;



J. Anschütz, A.-C. Le Bras 3662

i.e., E1;m=S is the m C 1-fold Banach space tensor product E1 Ő E � � � Ő E E1. By
dévissage in perfect complexes it suffices to see that the natural complex

0! AT Ő E E1;m=S ! A zT Ő E E1;m=S ! .A zT Ő ATA zT / Ő E E1;m=S ! � � �

of E-Banach vector spaces is exact (here we use the fact that the fiber product of affinoid
adic spaces over E is calculated via the Banach space tensor product). But this exactness
follows from the case m D 0 (where all components are perfectoid) and the fact that
� Ő E M preserves exactness of complexes of E-Banach spaces for each Banach space
M over E. This finishes the proof of the desired fully-faithfulness.

Furthermore, we claim that for each n 2 N the canonical morphism

Perf .U zT n=T /! lim
 �
�

Perf .U zT n=T �S S
�=S
1 /

is an equivalence. To see this, let us consider the 1-derived category C of solid E -
vector spaces endowed with the (derived) solid tensor product (cf. [48]). It forms a stable
homotopy category in the sense of [38, Definition 2.1]. Since the map E ! E1 admits
an E-linear continuous splitting (by [10, Section 2.7, Proposition 4], or simply since any
Banach space over E is orthonormalizable), the commutative algebra object E1 in C

admits descent [38, Proposition 3.20 and the comment after it]. This gives descent for
solidE-vector spaces along the mapE!E1, and thus also for perfect complexes, which
are the dualizable objects in C . Since the tensor product of E-Banach spaces agrees with
the derived solid tensor product, this gives the desired claim.

Now we can finish the proof. By descent in the “vertical direction” which we proved
above we can rewrite

lim
 �
Œn�2�

Perf .U zT n=T /

as
lim
 �
Œn�2�

lim
 �
Œm�2�

Perf .U zT n=T �S S
m=S
1 /;

and thus as
lim
 �
Œm�2�

lim
 �
Œn�2�

Perf .U zT n=T �S S
m=S
1 /; (2.1)

by commuting the limits.
Using Lemma 2.4 below and the descent/resp. fully-faithfulness in the “horizontal

direction” discussed before we can therefore simplify (2.1) to

lim
 �
Œm�2�

Perf .UT �S Sm=S1 /;

which is equivalent to Perf .UT / by the same argument for U zT as above. This yields the
claim.

We used the following lemma on limits of1-categories (see [13, Lemma B.6]).
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Lemma 2.4. Let f� W C � ! D� be a morphism of two cosimplicial 1-categories such
that f0 W C 0 ! D0 is an equivalence and fi W C i ! Di is fully faithful for i � 1. Then

lim
 �
�

C � ! lim
 �
�

D�

is an equivalence.

We end this subsection with the observation that each perfect complex on a relative
Fargues–Fontaine curve is, locally in the analytic topology on the base, “strict”.

Proposition 2.5. Let T D Spa.A;AC/ 2 PerfFq be affinoid perfectoid. Then each perfect
complex K on XT is quasi-isomorphic to a bounded complex of vector bundles on XT .

Proof. Let$ 2A be a pseudo-uniformizer. As in [20, Theorem II.2.6], this yields a radius
function on the space YT and thus (using similar notation to [20, Theorem II.2.6]) we can
write

XT Š YT;Œ1;q�='

with ' coming from the identification ' W YT;Œ1;1� Š YT;Œq;q�. By analytic descent for
perfect complexes on analytic adic spaces we find that Perf .XT / identifies with the1-
categorical equalizer of the functors

Perf .YT;Œ1;q�/
res
�! Perf .YT;Œq;q�/; Perf .YT;Œ1;q�/

'ıres
���! Perf .YT;Œq;q�/

(here res denotes the respective restriction morphisms). The spaces

YT;Œ1;q�; YT;Œ1;1�; YT;Œq;q�

are affinoid perfectoid, which implies that perfect complexes on them identify with perfect
complexes over their respective coordinate rings. Thus, the proposition follows from the
general observation of Proposition 2.6 by setting R D OYT;Œ1;q� ; S D OY;Œq;q� and f; g
induced by restriction respectively restriction composed with Frobenius.

Let R; S be two (commutative) rings, and f; g W R ! S two ring homomorph-
isms. Denote by f �; g� the functors S ˝L

R;f
�, S ˝L

R;g � of (derived) base change
along f respectively g. Let C be the1-categorical equalizer of the functors Lf �;Lg� W
D.R/! D.S/ between the1-derived categories of R- and S -modules. Thus, roughly,
the objects of C are pairs .K; ˛K/ with K 2 D.R/ and ˛K W Lf �K Š Lg�K an iso-
morphism in D.S/, while the morphisms in C are morphisms in D.R/ together with
homotopies in D.S/ recording compatibility with the ˛K’s.

Let us call an object .K; ˛K/ 2 C perfect if its image K 2 D.R/ is perfect, and let
us call it strictly perfect if it can be written as a finite limit of objects .M; ˛M / 2 C

with M a finite projective R-module. Note that C is a stable1-category, and the functor
C ! D.R/ commutes with finite limits/colimits.

Now we can prove the following general observation.

Proposition 2.6. Assume .K; ˛K/ 2 C is perfect. Then .K; ˛K/ is strictly perfect.
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Proof. The proof is a slight adaptation of that of [28, Lemma 1.5.2]. We may assume that
H i .K/ D 0 for i > 0. Then represent K by a complex

� � � ! K�2 ! K�1
d�1
��! K0

d0
�! K1 ! � � �

withK0;K�1 finite freeR-modules,Ki finite projective for all i 2Z andKi D 0 for i� 0

and for i > 0. The morphism ˛K , respectively ˛�1K , is then represented by morphisms

Ai W f
�Ki ! g�Ki ; resp: Bi W g

�Ki ! f �Ki

(respecting the differential). As ˛K ı ˛�1K D IdK (equality in the homotopy category),
there exists

hi W g
�Ki ! g�Ki�1

such that
Ai ı Bi � Id D g�di�1 ı hi C hi�1 ı g�di :

In particular,
A0 ı B0 � Id D g�d�1 ı h0:

Fix an isomorphism Rn Š K0. This yields identifications

f �K0 Š S
n
Š g�K0

and we let QA0; QB0 be the matrices representing A0; B0. Set F WD K0 ˚K0 and

˛F D

�
QA0 QA0 QB0 � Id
Id QB0

�
W f �F Š Sn ˚ Sn ! Sn ˚ Sn Š g�F:

As �
QA0 QA0 QB0 � Id
Id QB0

�
D

�
Id QA0
0 Id

��
0 �Id
Id QB0

�
;

˛F is an isomorphism, and thus the pair .F; ˛F / (with F sitting in degree 0) defines an
object of C . We now want to construct a morphism

.F; ˛F /! .K; ˛K/:

On underlying complexes we take the unique morphism of complexes which in degree 0
is given by the first projection

' WD .Id; 0/ W F D K0 ˚K0 ! K0:

In order to upgrade ' to a morphism in C we need to find a homotopy between the two
compositions

f �F ! f �K
A�
��! g�K�

and
f �F

˛F
��! g�F ! g�F ! g�K:
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Unravelling the definitions, we see that the composition

f �F Š Sn ˚ Sn
.Id;0/
���! Sn Š f �K0

h0
�! g�K�1

works as
A0 ı B0 � Id D g�d�1 ı h0:

Now the proposition follows by using induction on the amplitude of K.

From the proof of Proposition 2.5 we can conclude that if K 2 Perf .XT / is a per-
fect complex of Tor-amplitude in Œa; b�, then we can represent it by a complex of vector
bundles which is concentrated in degrees Œa; b�.

2.3. The moduli stack of flat coherent sheaves

In this subsection, we define flat coherent sheaves on relative Fargues–Fontaine curves,
and show that they satisfy v-descent.

Let S 2 PerfFq . An OXS -linear map E ! E 0 between two OXS -modules is said to
be fiberwise injective if it is injective after base change along XSpa.C;CC/ ! XS for any
geometric point Spa.C; CC/! S of S . If E;E 0 are vector bundles, then equivalently it
is an injective map which remains injective after base change along XS 0 ! XS for any
map S 0! S in PerfFq . The same definition will be used when XS is replaced by an open
subset of it.

Definition 2.7. A flat coherent sheaf on XS is an OXS -module which can, locally for
the analytic topology on XS , be presented as the cokernel of a fiberwise injective map
between two vector bundles on XS .

By the remark after Proposition 2.6 we can globally represent any flat coherent sheaf
on XT by a two-term complex E�1

˛
�! E0 of vector bundles on XT . The morphism ˛ is

then automatically fiberwise injective.

Remark 2.8. To justify the terminology we adopted, recall the following result in algeb-
raic geometry:4 if S is a reduced Noetherian scheme, and X ! S is a smooth projective
relative curve, a coherent sheaf F onX is S -flat (meaning that for each point x 2X map-
ping to s 2 S , the stalk Fx is flat over the ring OS;s) if and only if its fiberwise degree and
generic rank functions are locally constant if and only if it is the cokernel of a fiberwise
injective map between vector bundles. Indeed, the equivalence of the first two conditions
is a particular case of a more general statement: if S is a reduced Noetherian scheme and
f W X ! S a projective morphism, a coherent sheaf F on X is S -flat if and only if the
fiberwise Hilbert polynomial function is locally constant (this uses the characterization
[22, Proposition 7.9.14] of S -flat coherent sheaves on X as the coherent sheaves F on X
such that there exists N � 0 such that f�.F ˝ L˝n/ is a locally free OS -module for

4We thank David Hansen for drawing our attention to this point.
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all n � N , where L is a fixed ample line bundle for f on X ). The last condition clearly
implies the second. Conversely, if F is a flat coherent sheaf onX , [27, Proposition 2.1.10]
provides a resolution

0! E�1 ! E0 ! F ! 0

of F by two vector bundles (using the fact that X ! S is smooth projective of relative
dimension 1), and the map E�1!E0 has to be fiberwise injective, by flatness of F overS .

Example 2.9. Any vector bundle on XS is a flat coherent sheaf on XS . If S] is an untilt
of S over E, defining a Cartier divisor iS] W S

] ! XS on the Fargues–Fontaine curve
[20, Propositions II.1.18, II.2.3], the “skyscraper sheaf” iS];�OS] is a flat coherent sheaf
on XS .

The next result is an easy corollary of the work done in the previous subsections.

Theorem 2.10. The functor Cohfl, sending S 2 PerfFq to the groupoid of flat coherent
sheaves on XS , is a small v-stack.

Proof. The smallness of Cohfl follows as in [20, Proposition III.1.3].
Note now that for any S 2 PerfFq , Cohfl.S/ is a full subcategory of Perf Œ�1;0�.XS /.
Let T ! S be a v-cover in PerfFq with associated Čech nerve T �=S , which is a sim-

plicial object in PerfS .
We want to show that the canonical morphism

Cohfl.S/! lim
 �
�

Cohfl.T �=S /

is an equivalence. We already know fully-faithfulness and only need to prove essential sur-
jectivity. Since we know by Proposition 2.3 that perfect complexes with Tor-amplitude in
Œ�1; 0� satisfy v-descent, all we need to check is that fiberwise injectivity can be checked
v-locally, which is clear.

We can extend the ampleness result [20, Theorem II.2.6] to flat coherent sheaves.

Lemma 2.11. Let T 2 PerfFq be affinoid perfectoid and let F 2 Cohfl.T / be a flat coher-
ent sheaf on XT . Then there exists an n0 � 0 such that for every n � n0 there exists a
presentation

0! E�1 ! OXT .�n/
m
! F ! 0

for some m � 0 with E�1 a vector bundle, and H 1.XT ;F .n// D 0.

Proof. Fix a presentation 0!F�1!F0!F ! 0with F�1;F0 two vector bundles. By
choosing n0 large enough we can ensure that H 1.XT ;F�1.n// D H

1.XT ;F0.n// D 0

and that F0.n/ is globally generated for n�n0 [20, Theorem II.2.6]. ThenH 1.XT ;F .n//

D 0 and we claim that for any surjection OX .�n/
m ! F0 the kernel E�1 of the com-

position OX .�n/
m ! F0 ! F is a vector bundle. For this it suffices to show that E�1

is a perfect complex of Tor-amplitude 0. Perfectness is clear, and the assertion on Tor-
amplitude follows because the dual of F is contained in PerfŒ0;1�.XT /. This finishes the
proof.
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Since the rank and degree functions for vector bundles are additive, we can as well
define the rank and degree functions (which are functions from jS j to respectively Z�0
and Z) for a perfect complex and thus in particular for a flat coherent sheaf. These func-
tions are locally constant and for each pair of integers .i; d/ 2 Z�0 � Z, we will denote
by

Cohfl
i;d

the open substack of Cohfl formed by flat coherent sheaves having (generic) rank i and
degree d .

2.4. Further results on flat coherent sheaves

A flat coherent sheaf can by definition be presented as the cokernel of a fiberwise inject-
ive morphism between vector bundles. We will now prove a refinement of this, under
assumptions on the slopes.

Definition 2.12. Let S 2 PerfFq and F 2 Cohfl.S/. We say that F has non-negative
slopes, resp. positive slopes, if its pullback along XSpa.C;CC/ ! XS for any geometric
point Spa.C; CC/! S has only non-negative slopes, resp. only positive slopes (by con-
vention, a torsion coherent sheaf on XSpa.C;CC/ has slopeC1).

For i � 0, d 2 Z, we will denote by

Cohfl;�0
i;d

; resp: Cohfl;>0
i;d

;

the substack of Cohfl
i;d formed by flat coherent sheaves having non-negative, resp. positive

slopes.

Proposition 2.13. Let S 2 PerfFq and let F 2 Cohfl;�0
i;d

.S/. There exists, v-locally on S ,
a short exact sequence

0! OXS .�1/
d
! OiCd

XS
! F ! 0:

Proof. Let Zi;d be the moduli stack of fiberwise injective maps

OXS .�1/
d
! E

with E a slope 0 semistable vector bundle of rank i C d . There is a natural map

f W Zi;d ! Cohfl
i;d

sending a fiberwise injective map OXS .�1/
d ! E to its cokernel F . It suffices to show

that f is a v-cover.
We claim that f is representable in smooth Artin v-stacks. Indeed, let T 2 PerfFq with

a map T ! Cohfl
i;d corresponding to a flat coherent sheaf F on XT of generic rank i and

degree d , and let
T 0 WD T �Cohfl

i;d
;f Zi;d

be the fiber product. Then T 0 is a substack of the stack Ext1XT .F ;O.�1/
d / sending U 2
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PerfT to the groupoid of extensions

0! O.�1/d ! E ! F ! 0

(which is indeed a v-stack, since Cohfl is). The condition that the extension E is a vector
bundle is an open condition, since Bun is an open substack of Cohfl. (To see this, one
can argue as follows: The locus in jXS j where a flat coherent sheaf is locally free is open
as it is a union of loci defined by the condition that a suitable minor of some matrix is
invertible. Its complement is therefore closed, and since the map jXS j ! jS j is closed
[20, Proposition II.1.21], its image in jS j is also closed. Hence its complement is open.)
Moreover, the condition that the vector bundle E is semistable of slope 0 is an open condi-
tion, by upper semicontinuity of the Harder–Narasimhan polygon [20, Theorem II.2.19].
Hence, T 0 is an open substack of Ext1XT .F ;O.�1/

d /. Therefore, to establish the claimed
cohomological smoothness, it suffices to see that Ext1XT .F ;O.�1/

d / is a smooth Artin
v-stack over T . To do so, pick a presentation

0! E�1 ! E0 ! F ! 0

with E0 Š OXT .�n/
m with n;m� 0, and E�1 a vector bundle (necessarily with slopes

� �n), as we can by Lemma 2.11. We deduce, for U 2 PerfT , a long exact sequence

0! HomXU .F ;O.�1/
d /! HomXU .E0;O.�1/

d /! HomXU .E�1;O.�1/
d /

! Ext1XU .F ;O.�1/
d /! Ext1XU .E0;O.�1/

d /:

For n� 0, the last term is zero, while HomXT .Ei ;O.�1/
d / for i D �1; 0 is the Banach–

Colmez space attached to a vector bundle with positive slopes, hence is cohomologic-
ally smooth by [20, Proposition III.3.5]. Thus, the above sequence expresses the stack
Ext1XT .F ;O.�1/

d / as the quotient of a cohomologically smooth Banach–Colmez space
by the action of another cohomologically smooth Banach–Colmez space.

As f is cohomologically smooth, it is open [47, Proposition 23.11], and thus a v-cover
onto its image. The image is determined on underlying topological spaces and hence
we may reduce to the case where T D Spa.C;OC / is a geometric point. By looking
at the slope of the last quotient of the Harder–Narasimhan filtration it is clear that the
image of f is contained in Cohfl;�0

i;d
. For the converse, assume that F is a coherent sheaf

with non-negative slopes on the Fargues–Fontaine curve XC attached to the complete
algebraically closed field C of characteristic p. As the statement of the proposition, or
at this point equivalently the surjectivity of f for geometric points, is stable under direct
sums, it suffices to treat the case of a vector bundle with non-negative slopes or F D

ix;�B
C
dR.Cx/=t

n
x for some classical point x of XC corresponding to some untilt Cx of C

and some n > 0. Here, tx 2 H 0.XC ;OXC .1// is some section with vanishing locus x.
The first case follows now from [20, Theorem II.3.1]. In the second case, choose another
section t 2 H 0.XC ;OXC .1// such that tx ; t generate OXC .1/. The pair .tx ; t / defines
a morphism ˛ W XC ! P1E of locally ringed spaces mapping x to the E-rational point
y WD Œ0 W 1� 2 P1E . Now, let G be a skyscraper sheaf on P1E supported at y, and consider
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the canonical surjection
OP1

E
˝E H

0.P1E ;G /! G :

Its kernel is a vector bundle of rank the degree of G , with only non-positive Harder–
Narasimhan slopes and without global sections, and thus isomorphic to OP1

E
.�1/. Pulling

back such a sequence (for the obvious choice of G ) along ˛ yields the desired presentation
of ix;�BCdR.Cx/=t

n
x . This finishes the proof.

Corollary 2.14. Let S 2 PerfFq and let F 2 Cohfl;>0.S/. There exists, v-locally on S ,
a short exact sequence

0! Od
XS
! E ! F ! 0;

where E is a semistable vector bundle of positive slope.

Proof. The statement being local on S , we can assume that S is affinoid perfectoid and
that F has constant rank r and degree on S . We argue as in the proof of [20, Corollary
II.3.3] to deduce the statement from Proposition 2.13. Since F has constant rank r and
only positive slopes, we see that all slopes of F at all geometric points of S are � 1=r .
Let �r be the natural map from the Fargues–Fontaine curve XS;r attached to S and the
degree r unramified extension Er of E to XS (the Fargues–Fontaine curve for S and E).
We apply Proposition 2.13 to ��r F .�1/. Locally on S , we get a short exact sequence of
OXS;r -modules

0! Od 0

XS;r
! E 0 ! ��r F ! 0

with E 0 semistable of slope 1. Applying �r;�, we get a short exact sequence

0! Ord 0

XS
! �r;�E

0
! �r;��

�
r F ! 0:

As F is a direct summand of �r;���r F , we get the desired exact sequence by pullback.

Remark 2.15. For d � 1, let Wd be the moduli stack of fiberwise injective maps

Od
XS
! E

with E a semistable vector bundle of positive slope. There is a natural map

gd W Wd ! Cohfl

sending a fiberwise injective map Od
XS
! E to its cokernel F , which is shown to be

cohomologically smooth as in the proof of Proposition 2.13. Hence the map

g W W D
G
d�1

Wd ! Cohfl;>0;

which is gd upon restriction to Wd for each d � 1, is cohomologically smooth, too. It is
also surjective by the last proposition. Moreover, for each d � 1, one has a map

Wd ! Bunss;>0

to the moduli stack of semistable vector bundles with positive slope, sending Od
XS
! E
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to E . This map is cohomologically smooth (since its fibers are open5 in positive slope
Banach–Colmez spaces) and has a cohomologically smooth target. Therefore, Wd for
each d � 1, and hence also W , is cohomologically smooth.

We have exhibited a cohomologically smooth cover of the small v-stack Cohfl;>0 by
a cohomologically smooth v-stack. Hence, if we can prove that the diagonal of the small
v-stack Cohfl;>0 is representable in locally spatial diamonds, we will have shown that
Cohfl;>0 is a cohomologically smooth Artin v-stack, in the sense of [20, Section IV].

It remains to prove the assertion about the diagonal of Cohfl;>0. Let S 2 Perf and let
F ;F 0 be two flat coherent sheaves on XS . The sheaf of isomorphisms Isom.F ;F 0/ is
relatively representable by an open subspace of the sheaf Hom.F ;F 0/ (use the fact that
the map jXT j ! jT j is closed for every T 2 Perf), so it is enough to prove that the latter
is a locally spatial diamond. Applying Lemma 2.11 to F , we see that it is even enough to
prove that Hom.F ;F 0/ is a locally spatial diamond when F is a vector bundle (as fiber
products exist in the category of locally spatial diamonds). Hence, up to replacing F 0 by
F 0 ˝ F �1, it suffices to show that the functor sending T 2 PerfS to H 0.XT ;F

0/ is a
locally spatial diamond if F 0 is a flat coherent sheaf on XS . Applying Lemma 2.11 again,
the statement is a special case of [20, Proposition II.3.5 (i)].

3. The Fourier transform

In this section, we define and study very nice stacks in E-vector spaces and their Fourier
transform. Pro-étaleE-local systems are examples of very nice stacks inE-vector spaces,
as are Banach–Colmez spaces attached to flat coherent sheaves with only positive slopes.
Proving this last fact requires some preliminary Ext-groups computations, which we
address first.

3.1. Some Ext-group computations

The main result of this subsection is Theorem 3.9 below, which describes some (local)
Ext’s in the category of v-sheaves of E -vector spaces. This generalizes and improves
on the results of [34]. In contrast to [34], which used a truncated version of the Breen–
Deligne resolution and was limited to low degrees and the case E D Qp , the main idea
here is to prove a statement about self-extensions of the sheaf Ainf (recalled below), which
implies the desired results but has the advantage of being reducible to old deep results
of Breen (see [12]).

When � is a site and „ a sheaf of rings on � , we will use the notation

RHom�;„.�;�/

to denote the derived internal Hom in the category of sheaves of „-modules on � .6

5To check openness, it is enough, by taking d th exterior powers, to argue when d D 1 and then
the claim is easy.

6When � is the v-site of a small v-stack and „ is a topological ring, we will even write
RHom�;„.�;�/ instead of RHom�;„.�;�/, to keep the notation light.
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Before starting the computation, let us recall the following general result.

Theorem 3.1. Let .T ;„/ be a ringed topos, and let P be a „-module in T . There exists
a complex M.T ;„/.P / of „-modules in T with an augmentation to P , functorial in P
and called the MacLane complex of P , with the following two properties:

� The augmentation " W M.T ;„/.P /! P is a quasi-isomorphism, i.e., M.T ;„/.P / is a
resolution of P .

� Each component M.T ;„/.P /i of the complex is of the form „Œ„s � P t �=„Œ0�, where
s; t are integers depending on the integer i .

Proof. The construction essentially due to MacLane is explained in [11, Section 3].

If R is a perfect characteristic p ring, we let RŒF˙1� be the ring of non-commutative
polynomials in one variable F over R, with multiplication given by

Fa D '.a/F

for a 2 R, where ' denotes the q-Frobenius on R (recall that q was fixed once and for
all, as the cardinality of the residue field of E). We denote by Spec.Fq/perf the algebraic
perfect v-site of Spec.Fq/.

Theorem 3.2 (Breen). The natural map, sending F to the q-Frobenius ' on Ga and Fq
to its action on the right factor,

FqŒF
˙1�! RHomSpec.Fq/perf;Fq .Ga;Ga/

is an isomorphism.

Proof. In [12, Théorème 0.1, Section 1.4], Breen has computed self-extensions of Ga

seen as a sheaf of Fp-vector spaces (not Fq-vector spaces!) on the site of all perfect
schemes over Spec.Fq/ endowed with the étale topology. The MacLane resolution from
Theorem 3.1, together with the fact that Ga is represented by the perfect affine line and
[9, Theorem 4.1], shows that these extension groups are the same when computed on the
site considered by Breen and on Spec.Fq/perf. Hence, we deduce from Breen’s result that
the natural map

FqŒF
˙1
p �! RHomSpec.Fq/perf;Fp .Ga;Ga/

is an isomorphism, where on the left FqŒF˙1p � is the ring of non-commutative polynomials
in one variable Fp over Fq , with multiplication given by

Fpa D a
pFp

for a 2 Fq . Adjunction gives an isomorphism

RHomSpec.Fq/perf;Fq .Ga ˝Fp Fq;Ga/ Š RHomSpec.Fq/perf;Fp .Ga;Ga/:
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The tensor product Ga ˝Fp Fq decomposes as a direct sum

Ga ˝Fp Fq D
f �1M
iD0

G.i/
a ;

where q D pf and G.i/
a , 0 � i < f , is the sheaf sending a perfect Fq-algebra R to the

Fq-vector obtained by twisting the Fq-action on the Fq-vector space R by the i th power
of the Frobenius on Fq . We have G.0/

a DGa. In particular, we already see that necessarily

ExtkSpec.Fq/perf;Fq
.Ga;Ga/ D 0

for all k > 0. Moreover, for each i D 0; : : : ; f � 1, right composition by F f �ip induces
an isomorphism between HomSpec.Fq/perf;Fq .G

.0/
a ;Ga/ and HomSpec.Fq/perf;Fq .G

.i/
a ;Ga/.

Hence, the decomposition

HomSpec.Fq/perf;Fp .Ga;Ga/ D

fM
iD0

HomSpec.Fq/perf;Fq .G
.i/
a ;Ga/

from above corresponds to the decomposition

FqŒF
˙1
p � D

fM
iD0

FqŒ.F
f
p /
˙1�:F ip :

Since FqŒ.F
f
p /
˙1� D FqŒF˙1�, this concludes the proof.

Remark 3.3. The interested reader can also consult [39, Appendix A] for a short recent
proof of the result of Breen used in the above proof.

We denote by OChF˙1i the v-sheaf sending Spa.R; RC/ 2 PerfFq to the $ -adic
completion of RCŒF˙1�, where $ is any pseudo-uniformizer of R. There is a natural
map

OChF˙1i ! HomSv ;Fq .O
C;OC/

which sends F to 'RC and OC to its action on the right factor of OC.

Proposition 3.4. The natural map

OChF˙1i ! RHomSpa.Fq/v ;Fq .O
C;OC/

is an almost isomorphism . for the left action of OC on OChF˙1i and the left action
of OC on RHomSpa.Fq/v ;Fq .O

C;OC/ via multiplication on the second factor/.

Proof. Fix an affinoid perfectoid space S D Spa.R; RC/ in PerfFq , and a pseudo-uni-
formizer $ of R. Recall the morphism of sites

f W Spa.Fq/v ! Spec.Fq/perf;
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from the perfectoid v-site to the algebraic v-site. The pullback of the sheaf Ga on
Spec.Fq/perf (representend by the perfect affine line over Fq) along f is the sheaf OC.
We can further pull back along the natural morphism

Sv ! Spa.Fq/v:

Since all these operations are exact, we deduce a map

RHomSpec.Fq/perf;Fq .Ga;Ga/! RHomSv ;Fq .O
C;OC/:

Since the right-hand side is an RC-module (via the second factor) and is derived $ -
adically complete, this extends to a map

.RHomSpec.Fq/perf;Fq .Ga;Ga/˝Fq R
C/^$ ! RHomSv ;Fq .O

C;OC/:

We claim that this map is an almost isomorphism. To compute both sides, we can use
the MacLane resolution from Theorem 3.1, once for the topos ESpec.Fq/perf of sheaves on
Spec.Fq/perf and the constant sheaf of rings Fq and once for the topos zSv of sheaves on
Sv and the constant sheaf of rings Fq . From the explicit shape of the MacLane complexes
and [47, Proposition 8.8], for all m � 0; n � 1; i > 0,

H i
v.Spec.FqŒT

1=p1

1 ; : : : ; T 1=p
1

n �/ � Fmq ;Ga/ D 0; H i
v.B

n
S � Fmq ;O

C/
a
D 0

(here BnS is the n-dimensional affinoid unit disk), we deduce that the above map, seen as a
map between objects of the derived category of almost RC-modules, can be rewritten as

.HomSpec.Fq/perf;Fq .M.CSpec.Fq/perf;Fq/
.Ga/;Ga/˝Fq R

C/^$

! HomSv ;Fq .M. zSv ;Fq/
.OC/;OC/:

Hence, the claim follows if for each n � 1, the natural map

.H 0
v .Spec.FqŒT

1=p1

1 ; : : : ; T 1=p
1

n �/;Ga/˝Fq R
C/^$ ! H 0

v .B
n
S ;O

C/

is an isomorphism. But this map is just the natural map

.FqŒT
1=p1

1 ; : : : ; T 1=p
1

n �˝Fq R
C/^$ ! RChT

1=p1

1 ; : : : ; T 1=p
1

n i;

so the assertion is true. Therefore, the proposition follows from Theorem 3.2.

We can get the following “honest” version. Here, we set

OhF˙1i WD O ˝OC OChF˙1i:

Corollary 3.5. The natural map

OhF˙1i ! RHomSpa.Fq/v ;Fq .O
C;O/

is an isomorphism.
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Proof. By Proposition 3.4, we only need to justify that for each affinoid perfectoid space
S D Spa.R;RC/ and each pseudo-uniformizer $ 2 R, the natural map

lim
�!
�$

RHomSv ;Fq .O
C;OC/! RHomSv ;Fq .O

C;O/

is an isomorphism. This can be checked on cohomology groups and thus it suffices to
show that OC is pseudo-coherent as a v-sheaf of Fq-vector spaces. However, for each
i � 0, the functors ExtiSv ;Fq .O

C;�/ can be computed using the MacLane complex (The-
orem 3.1) M. zSv ;Fq/

.OC/ and because of the description of the terms of this complex, to
check that ExtiSv ;Fq .O

C;�/ commutes with filtered colimits for all i , it suffices to prove
that the functors H j ..OC/s � F rq ;�/ commute with filtered colimits for all j; r; s � 0:
this is true, since .OC/s � F rq is represented by a qcqs perfectoid space.

If .R;RC/ is a perfectoid Tate algebra over Fq , we will denote

Ainf.R;R
C/ D WOE .R

C/; A.R;RC/ D WOE .R/:

By definition of Witt vectors, there are bijections

Ainf.R;R
C/ Š .RC/N ; A.R;RC/ Š RN

and we define the topology on Ainf.R; R
C/, resp. on A.R; RC/, as the product topo-

logy of the natural topology on RC, resp. R. Fix a pseudo-uniformizer $ of R. Then a
basis of neighborhoods of 0 in Ainf.R;R

C/, resp. in A.R;RC/, are the �rAinf.R;R
C/C

Œ$ s�Ainf.R; R
C/, resp. the �rA.R; RC/ C Œ$ s�Ainf.R; R

C/, r; s � 0 (on the ring
Ainf.R;R

C/, we are just considering the .�; Œ$�/-adic topology).

Definition 3.6. We define the sheaves

Ainf D WOE .O
C/; Binf D AinfŒ1=��; (3.1)

A D WOE .O/; B D AŒ1=��; (3.2)

on Spa.Fq/v . We note that for each perfectoid pair .R;RC/ over Fq , there are canonical
isomorphisms

Ainf.Spa.R;RC// Š Ainf.R;R
C/; A.Spa.R;RC// Š A.R;RC/

(see [46, Theorem 6.5]). We also define the sheaf AinfhF
˙1i by sending S D Spa.R;RC/

affinoid perfectoid in PerfFq to the ring Ainf.R; R
C/hF˙1i, which is by definition the

completion of the ring Ainf.R; R
C/ŒF˙1� of non-commutative polynomials in one vari-

able F over Ainf.R
C/, with multiplication given by

Fa D '.a/F

for a 2Ainf.R
C/, where ' denotes the Frobenius onAinf.R

C/with respect to the .�; Œ$�/-
adic topology.
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There is a natural map of left Ainf-modules

AinfhF
˙1
i ! HomSpa.Fq/v ;OE .Ainf;Ainf/

which sends F to 'Ainf and Ainf to its action on the right factor, and a natural map of left
A-modules

AŒF˙1�! HomSpa.Fq/v ;OE .Ainf;A/

(with the similar definition of the non-commutative ring AŒF˙1�) which sends F to 'A,
and A to its action on the right factor.

Proposition 3.7. The natural map

AinfhF
˙1
i ! RHomSpa.Fq/v ;OE .Ainf;Ainf/

is an almost isomorphism of left Ainf-modules.

Proof. Both sides being (derived) �-adically complete, it suffices to check the assertion
modulo � . The left-hand side becomes OChF˙1i. For the right-hand side, recall that
Ainf=� D OC. We then have

RHomSpa.Fq/v ;OE .Ainf;Ainf/˝
L
Ainf

Ainf=� Š RHomSpa.Fq/v ;OE .Ainf;Ainf=�/

Š RHomSpa.Fq/v ;Fq .Ainf ˝
L
OE

Fq;O
C/

Š RHomSpa.Fq/v ;Fq .O
C;OC/;

where the second isomorphism comes from adjunction. Hence the claim follows from
Proposition 3.4.

Corollary 3.8. The natural map

AinfhF
˙1
iŒ1=��! RHomSpa.Fq/v ;E .Binf;Binf/

is an almost isomorphism.

Proof. First, note that by adjunction

RHomSpa.Fq/v ;E .Binf;Binf/ Š RHomSpa.Fq/v ;OE .Ainf;Binf/:

Hence, by Proposition 3.7, we only need to justify that the natural map

lim
�!
��

RHomSpa.Fq/v ;OE .Ainf;Ainf/! RHomSpa.Fq/v ;OE .Ainf;Binf/

is an isomorphism. This can be checked on cohomology groups, and for this it is enough
to show that Ainf is pseudo-coherent as a v-sheaf of OE -modules. However, for each
i � 0, the functors ExtiSpa.Fq/v ;OE

.Ainf;�/ can be computed using the MacLane complex
(Theorem 3.1) M

.BSpa.Fq/v ;OE /
.Ainf/ and because of the description of the terms of this

complex, to check that ExtiSpa.Fq/v ;OE
.Ainf;�/ commutes with filtered colimits for all i , it
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suffices to prove that the functorsH j

Spa.Fq/v
.Asinf �OE

r ;�/ commute with filtered colim-
its for all j; r; s � 0: this is true, since Asinf � OE

r is represented by a qcqs perfectoid
space.

Let S 2 PerfFq be an affinoid perfectoid space. Let S] be an untilt overE of S , corres-
ponding to a primitive element � 2Ainf.S/. We will denote by O] (resp. OC]) the sheaf of
E-vector spaces on Sv sending T 2 PerfS to O.T ]/ (resp. OC.T ]/), where T ] 2 PerfS]
is the perfectoid space corresponding to T by the tilting equivalence PerfS] Š PerfS .

Theorem 3.9. Let S be as above. One has canonical identifications

RHomSv ;E .E;E/ Š E; RHomSv ;E .E;O
]/ Š O];

RHomSv ;E .O
];O]/ Š O]

˚O]Œ�1�;

RHomSv ;E .O
]; E/ Š O].�1/Œ�1�

.on the right, the symbol .�1/ denotes a Tate twist/.

Proof. The first two isomorphisms are obvious, so we only need to prove the last two.
There are exact sequences of v-sheaves of E-vector spaces:

0! E ! B
'B�1
����! B! 0

and
0! Binf

��
�! Binf

�
�! O]

! 0;

to which we will refer in the rest of this proof simply as the “first” and “second” exact
sequences.

We have a distinguished triangle

RHomSv ;E .Binf;Binf/! RHomSv ;E .Binf;Binf/! RHomSv ;E .Binf;O
]/

induced by the second exact sequence. Through the isomorphism of Corollary 3.8, it can
be rewritten in the almost category as

AinfhF
˙1
iŒ1=��

��
�! AinfhF

˙1
iŒ1=��! RHomSv ;E .Binf;O

]/;

where �� denotes multiplication on the left. Write

AinfhF
˙1
iŒ1=�� D

�M
n2Z

Ainf:F
n
�^�

Œ1=��:

We get an isomorphism

RHomSv ;E .Binf;O
]/ Š OC]hF˙1iŒ1=��;

where on the right-hand side OC]hF˙1i denotes the left OC]-module

OC]hF˙1i D
�M
n2Z

OC]:F n
�^�

:
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Using again the second exact sequence, we get an exact triangle

RHomSv ;E .O
];O]/! RHomSv ;E .Binf;O

]/! RHomSv ;E .Binf;O
]/

with the second map given by multiplication by � on Binf. Write

OC]hF˙1iŒ1=�� D
�M
n2Z

OC]:F n
�^�

Œ1=��:

Through the above isomorphism, the right map identifies with (the extension to the com-
pletion of) the map which is multiplication by the reduction modulo � of 'n.�/ in degree n
(as follows from the relation F na D 'n.a/:F , a 2 Ainf, in AinfŒF

˙1�). For each n ¤ 0,
the reduction modulo � of 'n.�/ is a unit in O] and hence the triangle is quasi-isomorphic
to

RHomSv ;E .O
];O]/! O] 0

�! O]:

In other words,
RHomSv ;E .O

];O]/ Š O]
˚O]Œ�1�;

as desired.
To prove the isomorphism

RHomSv ;E .Binf; E/ Š O].�1/ (3.3)

we will establish that if S D Spa.R;RC/ is perfectoid with untilt .R];RC;]/ overE, then
there exists a natural isomorphism

RHomSv ;E .Binf; E/ Š A.R;R
C/=WOE .R

CC/Œ1=��Œ�1�;

where RCC � R denotes the RC-submodule of topologically nilpotent elements, such
that multiplication by � on Binf is converted to left multiplication by � . Granting this
claim the assertion follows from the second exact sequence above applied in the first
variable. Indeed, RHomSv ;E .O

];E/ is isomorphic to the kernel of multiplication by � on
A.R;RC/=WOE .R

CC/Œ1=�� placed in degree 1. But this kernel is

1

�
WOE .R

CC/=WOE .R
CC/Œ1=�� Š R].�1/;

the isomorphism being induced by Fontaine’s map � .
Thus, we are left with proving (3.3). We have

RHomSv ;E .Binf; E/ Š RHomSv ;OE .Ainf;OE /Œ1=��

and

RHomSv ;OE .Ainf;OE / Š fib.RHomSv ;OE .Ainf;A/
F�1
���! RHomSv ;OE .Ainf;A//

using the integral version of the first exact sequence. The object RHomSv ;OE .Ainf;A/
is �-adically complete and concentrated in degree 0 (as follows from Corollary 3.5 via
reduction mod �). In particular, (as HomSv .Ainf;OE / D 0 by fiberwise connectedness
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of Ainf) we can conclude that RHomSv ;OE .Ainf;OE / is concentrated in degree 1. Acting
with A.R;RC/ on the natural morphism Ainf ! A yields a natural map

A.R;RC/! RHomSv ;OE .Ainf;A/;

and thus by composition with the connecting morphism of the above exact triangle a
natural morphism

ˆ W A.R;RC/! RHomSv ;OE .Ainf;OE /Œ1�:

We claim thatˆ factors over A.R;RC/=WOE .R
CC/. BecauseˆjWOE

.RCC/ factors over
the morphism

Ainf.R;R
C/!Ainf.R;R

C/hF˙1i!RHomSv ;OE .Ainf;Ainf/!RHomSv ;OE .Ainf;OE /;

this follows from Lemma 3.10 below. Having constructed the natural morphism

A.R;RC/=WOE .R
CC/! RHomSv ;OE .Ainf;OE /Œ1�

we can check that it is an isomorphism modulo � as both sides are derived �-adically
complete. Modulo � (in the derived sense) the left-hand side becomes

R=RCC;

while the right-hand side becomes

RHomSv ;OE .Ainf;Fq/Œ1� Š RHomSv ;Fq .O
C;Fq/Œ1�:

Using the exact sequence

0! Fq ! O
F�1
���! O ! 0

(with F the q-Frobenius) and Corollary 3.5 the last term simplifies to

coker.OhF˙1i
F�1
���! OhF˙1i/

(one can easily see that F � 1 is injective on OhF˙1i). Therefore we conclude the proof
of the theorem by Lemma 3.10.

Lemma 3.10. Assume S D Spa.R;RC/ is an affinoid perfectoid space over Fq . Then

coker.RhF˙1i
F�1
���! RhF˙1i/ Š R=RCC

and

coker
�
Ainf.R;R

C/hF˙1i
F�1
���! Ainf.R;R

C/hF˙1i
�
Š Ainf.R;R

CC/=WOE .R
CC/:

Proof. We first prove the first assertion. Let $ 2 R be a pseudo-uniformizer and assume
that

a D
X
i2Z

aiF
i
2 RhF˙1i
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is an element such that jai j � j$ j for all i 2 Z. We claim that a D .F � 1/.b/ for some
b 2 RhF˙1i. Let ' W R! R be the q-Frobenius. For i 2 Z, set

bi D �
X
k�0

'k.ai�k/:

The series is convergent. We claim that

bi ����!
ji j!1

0

for the natural topology on R. It is clear when i ! �1, since aj �����!
j!�1

0. Fix N > 0.

Let M > 0 be such that if

8j > M; jaj j � j$ j
qN ;

then for i > N CM we have

jbi j � max
�ˇ̌̌ X
0�k<N

'k.ai�k/
ˇ̌̌
;
ˇ̌̌X
k�N

'k.ai�k/
ˇ̌̌�
:

In the first sum, all terms have absolute value less than j$ jq
N

, by definition of M , and in
the second too, by our starting assumption on .ai /. Therefore, if i > N CM then

jbi j � j$ j
qN ;

and so bi ���!
i!1

0, as desired. The sequence .bi / therefore gives rise to an elementP
i2Z biF

i 2 RhF˙1i.
For i 2 Z, we can compute

'.bi�1/ � bi D �
X
k�0

'kC1.ai�1�k/C
X
k�0

'k.ai�k/ D ai

since aj �����!
j!�1

0. Hence a D .F � 1/b, and the claim is proved.

In particular, we see that the map

RŒF˙1�! coker.RhF˙1i
F�1
���! RhF˙1i/

is surjective, i.e., each element in the cokernel can be represented by a finite sum of
F i ’s with coefficients in R. As R is perfect, we can further assume that in this sum the
coefficients of all F i ; i ¤ 0; are zero. It is easy to see that an element r 2 R � RhF˙1i
is of the form .F � 1/.b/ for some b 2 RhF˙1i if and only if r 2 RCC. This finishes the
proof of the first assertion.

To prove the second, we note that the above argument for a 2 $RChF˙1i works
mutatis mutandis for a 2 Œ$�Ainf.R;R

C/ and shows that the natural morphism

Ainf.R;R
C/! C WD coker

�
Ainf.R;R

C/hF˙1i
F�1
���! Ainf.R;R

C/hF˙1i
�
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factors over

B WD Ainf.R;R
C/=

� [
$2R pseudo-uniformizer

Œ$�Ainf.R;R
C/
�
:

Let us note that C is derived �-adically complete, and that the derived �-adic completion
of B is Ainf.R;R

C/=WOE .R
CC/. Hence, by derived modding out � we can deduce that

B_� Š C by the first part.

Recall the morphism of sites

� W .XS /v ! Sv:

If E 2 Bun.S/ with only non-negative slopes, resp. only negative slopes, we write

BC.E/ D ��E; resp: BC.E/ D R1��E:

Corollary 3.11. Let S be a small v-stack. The functor

R�� W Perf .XS /! D.Sv; E/

is fully faithful. In particular, if E is a vector bundle onXS with either only positive slopes
or only negative slopes, then

RHomSv ;E .BC.E/; EŒ1�/ Š BC.E_/:

Proof. The question is local on S , so we can assume that S is affinoid perfectoid. Let
K; L 2 Perf .XS /. By Proposition 2.5, both K and L are strictly perfect. Considering
stupid truncations, we can assume that they are both vector bundles on XS . If E is a
vector bundle on XS , we can always, up to localizing further on S , find a presentation of
E of the form

0! OXS .�/
n
! OXS .�C 1/

m
! E ! 0

with � 2 Z (apply [20, Proposition II.3.1] to a suitable twist of E , and [20, Corollary
II.2.20]). Hence we can assume that K and L are both sums of line bundles, and this
case in turn is reduced to the case K;L 2 ¹OXS ;OXS .1/º by using analogues of twists of
the Euler sequence on P1E . Choose an untilt S] of S over E, corresponding to a Cartier
divisor (denoted by the same letter) on XS . One has a short exact sequence

0! OXS ! OXS .1/! OS] ! 0

and so we can as well assume that K;L 2 ¹OXS ;OS]º. We have

R��OXS D E

(see [20, Proposition II.2.5 (ii)]), and, with the notations of Theorem 3.9,

R��OS] D O]

because, on v-sites, OS] is the pushforward of O] along a section of � .
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We note that, after passing to a v-cover of S to trivialize the Tate twist,

R��RHomXS .OXS ;OXS / Š E;

R��RHomXS .OXS ;OS]/ Š O];

R��RHomXS .OS] ;OS]/ Š O]
˚O]Œ�1�;

R��RHomXS .OS] ;OXS / Š O]Œ�1�;

which matches with Theorem 3.9, and we have to check that certain maps O]!O] on Sv
are isomorphisms. But this can be checked after base change from S to geometric points.
If S is a geometric point, it suffices to see that the respective maps are non-zero, which
reduces to the assertion that the pushforwards of the exact sequences

0! OXS ! OXS .1/! OS] ! 0;

resp.

0! OS]
�
�! BC

dR;S]
=�2BC

dR;S]
! OS] ! 0;

via � are nonsplit. For the pushforward of the first sequence this follows because
BC.OXS .1// is connected. For the pushforward of the second, see [2, proof of Proposi-
tion 4.8].

Therefore, the first part of the corollary follows (and we have further identified gener-
ating classes in Ext1Sv ;E .O

]; E/ and Ext1Sv ;E .O
];O]/).

We turn to the last assertion. Assume first that E has only positive slopes (so that E_

has only negative slopes). By [20, Proposition II.3.4 (iii)], there is an étale cover S 0 ! S

such that for any T affinoid perfectoid over S 0,

H 1.XT ;E/ D 0 and thus H i .XT ;E/ D 0 for all i > 0.

In particular, R��E D BC.E/. Hence, by the above fully-faithfulness (applied to T ),

RHomTv ;E .BC.E/; EŒ1�/ Š RHomOXT
.E;OXT Œ1�/ Š R�.XT ;E

_/Œ1�:

But by [20, Proposition II.3.4 (i)], the rightmost term is nothing but H 1.XT ;E
_/ placed

in degree 0. This being true for all T affinoid perfectoid over S 0, we deduce the desired
claim. The proof is similar when E has negative slopes.

Remark 3.12. Let S be a small v-stack. From the corollary (applied to any T over S ),
one deduces for each K 2 Perf .XS / a natural isomorphism

R��.RHomOXS
.K;O// Š RHomSv ;E .R��K;E/;

which can be thought of as “relative Serre duality” on the Fargues–Fontaine curve.

Remark 3.13. The proof of Corollary 3.11 shows that the essential image of Perf .XS /
in D.Sv; E/ can be described as the full subcategory C of objects which v-locally on S
lie in the smallest idempotent complete triangulated subcategory spanned by E and A1

S]
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for some untilt S] of S over E and that the functor RHomSv ;E .�; E Œ1�/ defines an
autoduality of C .

Milne [40] has used a similar autoduality statement for unipotent perfect group
schemes (due to Breen) to study Poincaré duality for flat cohomology of smooth proper
surfaces in characteristic p. Analogously, one may expect the above fact to be useful to
the study of Poincaré duality for pro-étale or syntomic cohomology of smooth proper
rigid-analytic varieties over S].

3.2. Stacks in E-vector spaces

Let � be a site. A Picard groupoid, as defined in [18, Section 1.4] (cf. also [41, Defini-
tion 5.1.1]), is a symmetric monoidal category such that all the morphisms are invertible
and the semigroup of isomorphism classes of the objects is a group. Picard groupoids
form an 1-category equivalent to the category of spectra whose only non-zero homo-
topy groups are in degrees 0; 1 (for a proof at the level of homotopy categories (see
[41, Theorem 5.1.3]). The truncation of the tensor product of spectra defines a symmetric
monoidal structure on the category of spectra whose only non-zero homotopy groups are
in degrees 0; 1, and therefore, via this equivalence, on the category of Picard groupoids.
More generally, sheaves of Picard groupoids7 on � form an 1-category equivalent to
the category of sheaves of spectra on � whose sheaves of homotopy groups vanish for
i ¤ 0; 1, and therefore has a symmetric monoidal structure.

Let A be a sheaf of discrete (i.e., concentrated in degree 0) rings on � . Then A is
a commutative algebra object in the symmetric monoidal category of sheaves of Picard
groupoids on � . One can consider the category of A-module objects in the category of
sheaves of Picard groupoids on � . Since complexes of sheaves of A-modules on � are
equivalent to A-modules in the category of sheaves of spectra on � [36, Corollary 2.1.2.3],
this new category is equivalent to the category of sheaves of A-modules on � having non-
zero cohomology sheaves only in degrees �1; 0.

Taking A D Z the constant sheaf (on any site �), one recovers the category of strictly
commutative Picard stacks studied by Deligne [18, Section 1.4] and most often called by
him Picard stacks.

Definition 3.14. Let S be a small v-stack. We define a stack in E-vector spaces .over S/
to be an object in the category of E-module objects in the category of sheaves of Picard
groupoids on the site Sv .

By the considerations above, the category of stacks in E-vector spaces (over S ) is
equivalent to the category of complexes of v-sheaves ofE-vector spaces on S , having non-
zero cohomology sheaves only in degrees �1; 0. The stack in E-vector spaces attached to
such a complex K will be denoted V .K/. Conversely, the complex attached to a stack in
E-vector spaces G is denoted G�.

7We do not want to call them Picard stacks, because Deligne uses this terminology for a more
restricted class of objects.
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For example,
V .EŒ0�/ D E; V .EŒ1�/ D ŒS=E�:

A sequence
0! G 0 ! G ! G 00 ! 0

of stacks inE-vector spaces will be said to be exact when G ! G 00 is a surjection of stacks
and G 0 is equipped with an equivalence to the homotopy fiber of 0 2 G 00. Equivalently,
there exists a morphism .G 00/� ! .G 0/�Œ1� in D.Sv; E/ such that the triangle

.G 0/� ! G� ! .G 00/� ! .G 0/�Œ1�

is an exact triangle. For example, the sequence

0! E ! � ! Œ�=E�! 0

is an exact sequence of stacks in E-vector spaces.

Definition 3.15. Let S be a small v-stack. Let G be a stack in E-vector spaces over S .
We define its dual G_ to be the stack of homomorphisms of stacks in E-vector spaces
from G to ŒS=E�:

G_ WD Hom.G ; ŒS=E�/:

One says that G is dualizable if the natural morphism G ! .G_/_ is an isomorphism.

Remark 3.16. Let G be a stack in E-vector spaces over a small v-stack S . Then

.G_/� D ��0RHom.G�; EŒ1�/:

For the next examples, fix a small v-stack S .

Example 3.17. Let L be a pro-étale E-local system on Sv . Then

L_ Š ŒS=L��;

where L� is the dual of L as a pro-étale E-local system, and

ŒS=L�_ Š L�:

In particular, L and ŒS=L� are dualizable.

If E 2 Bun.S/ with only non-negative slopes, resp. only negative slopes, we write

BC.E/ D ��E; resp: BC.E/ D R1��E:

Example 3.18. Let E be a vector bundle onXS having either only positive slopes or only
negative slopes. Then

BC.E/_ D BC.E_/:

This is an immediate consequence of Corollary 3.11 and Remark 3.16. In particular, these
stacks in E-vector spaces are dualizable.
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Example 3.19. Let F 2 Cohfl;>0.S/. Then we claim that

BC.F / WD ��F

and BC.F /_ are cohomologically smooth and dualizable over S . Since this assertion is
v-local on S , we can assume that S is affinoid perfectoid. Choose a presentation

0! Om
XS
! E ! F ! 0

with E a positive slope semistable vector bundle on XS , as in Corollary 2.14. Since
R1��OXS D 0, we get a short exact sequence of pro-étale sheaves

0! Em ! BC.E/! BC.F /! 0;

which shows that BC.F / is the quotient of a cohomologically smooth v-sheaf by a locally
pro-p equivalence relation, hence is cohomologically smooth.

By Proposition 2.13, we can also find a short exact sequence

0! OXS .�1/
d
! E 0 ! F ! 0

with E 0 semistable of slope 0. This gives a short exact sequence

0! BC.E 0/! BC.F /! BC.OXS .�1/
d /! 0:

By Corollary 3.11, we know that

Ext2Sv ;E .BC.OXS .�1/
d /; E/ D 0:

Hence, applying Lemma 3.20 below, we obtain a short exact sequence of stacks in E-
vector spaces

0! BC.OXS .�1/
d /_ ! BC.F /_ ! BC.E 0/_ ! 0:

By the above two examples, the left and right terms are cohomologically smooth, hence
so is BC.F /_. Applying again Lemma 3.20, we also get a short exact sequence

0! .BC.E 0/_/_ ! .BC.F /_/_ ! .BC.OXS .�1/
d /_/_ ! 0:

Using the above two examples, we conclude that BC.F / (and hence also BC.F /_) is
dualizable.

We have already used the following lemma.

Lemma 3.20. Let
0! G 0 ! G ! G 00 ! 0

be a short exact sequence of stacks in E-vector spaces. We have an exact sequence

0! .G 00/_ ! G_ ! .G 0/_:

It is exact on the right if
R2Hom..G 00/�; E/ D 0:

Proof. The proof is easy.
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3.3. The Fourier transform for stacks in E-vector spaces and its properties

To define the Fourier transform for a stack in E-vector spaces f W G ! S , we will have
to consider (derived) pushforwards with proper supports (satisfying some of the usual
properties, cf. [47], [24, Theorems 4.1.2, 4.1.3]), and unfortunately this means that we
have to demand some condition on f . According to [24, Theorem 4.2.2], the most general
available assumption under which derived functors gŠ; gŠ are defined is that g is smooth-
locally nice. Here, a morphism g W X ! Y between v-stacks is called smooth-locally
nice if there exists a surjective, cohomologically smooth morphism h W U ! X from
a locally spatial diamond U such that g ı h is compactifiable, representable in locally
spatial diamonds of finite geometric transcendence degree [24, Definitions 4.2.1, 4.1.1].
Let us note that the property of being smooth-locally nice is stable under base change
along morphisms which are representable in Artin v-stacks. This motivates the following
definition of a nice stack in E-vector spaces.

Definition 3.21. Let S be a small v-stack. We call the stack inE-vector spaces f W G ! S

nice if f and f _ W G_ ! S are representable in Artin v-stacks and smooth-locally nice.

In the following, we fix a nice stack in E-vector spaces f W G ! S with dual f _ W
G_ ! S , and consider the diagram

G_ �S G
˛ //

�_

zz

�

%%

ŒS=E�

G_ G

of stacks over S , where ˛ is the evaluation map. Note that by our assumption that G is
nice, the morphisms �; �_ are smooth-locally nice. In particular, we can now define the
(unnormalized) Fourier transform for G . For any (non-trivial) character  W E ! ƒ�, we
let

L 2 DKet.ŒS=E�;ƒ/

be the associated rank 1 local system.

Definition 3.22. We define

F un
 WD F un

 ;Š;G!G_ W DKet.G ; ƒ/! DKet.G
_; ƒ/;

the (unnormalized/ Fourier transform associated with G and  , as the functor

A 7! �_Š .�
�.A/˝ ˛�L /:

It is formal that F un
 ;Š;G!G_

is left adjoint to the functor

F un
 �1;�

D F un
 �1;�;G_!G

W DKet.G
_; ƒ/! DKet.G ; ƒ/

defined as
A 7! ��.�

_;Š.A/˝ ˛�L �1/;
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and that
Df _ ı F un

 ;Š Š F un
 �1;�

ıDf ;

where Df _ ;Df denote the relative Verdier duality functors of f; f _.
We can also reverse directions and consider

F un
 ;Š;G_!G WD �Š.�

_;�.�/˝ ˛�L / W DKet.G
_; ƒ/! DKet.G ; ƒ/;

F un
 ;�;G!G_ WD �

_
� .�

Š.�/˝ ˛�L / W DKet.G
_; ƒ/! DKet.G ; ƒ/:

In the following we denote by

a W G ! .G_/_

the negative of the canonical biduality morphism. If G_ is again nice, it is formal (using
the proper base change theorem) to see that

a� ı F un
 ;Š;G_!.G_/_ Š F un

 �1;Š;G_!G
:

Remark 3.23. By the proper base change theorem, the formation of the Fourier transform
F un
 ;Š;G!G_

.A/ of A 2 DKet.G ; ƒ/ commutes with any base change S 0 ! S .

The following definition is motivated by [15, Definition A.4.5].

Definition 3.24. We call a nice stack G in E-vector spaces over S very nice if the follow-
ing conditions are satisfied:

(1) G is dualizable,

(2) the Fourier transform F un
 ;Š;G!G_

is an equivalence (for any choice of non-trivial char-
acter  ),

(3) after decomposing S into clopen substacks, the inverse of F un
 ;Š;G!G_

is isomorphic
to F un

 �1;Š;G_!G
, up to a shift.

In [15, Definition A.4.5] the last requirement is not taken as part of the definition,
but is satisfied in all the examples. We will give several examples of very nice stacks in
Section 3.4.

For now, let us list some abstract properties of very nice stacks inE-vector spaces and
their Fourier transform.

Lemma 3.25. Let S be a small v-stack. Let f W G ! S be a very nice stack in E-vector
spaces.

(1) The dual f _ W G_ ! S is a very nice stack in E-vector spaces.

(2) On a clopen decomposition of S , we have

F un
 ;Š;G!G_ Š F un

 ;�;G!G_ Œd � for some d 2 Z.

(3) On a clopen decomposition of S , we have

Df _ ı F un
 ;Š;G!G_ Š F un

 �1;Š;G!G_
ıDf Œd � for some d 2 Z.
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Proof. The first statement follows from the definition of a very nice stack in E-vector
spaces and the proper base change theorem. For the second statement, note that

F un
 ;Š;G!G_

is inverse to F �1;Š;G_!G (locally on a clopen decomposition of S up to a shift) because
G_ is very nice, and thus in particular right adjoint to it. But

F un
 ;�;G!G_

is formally right adjoint to F un
 �1;Š;G_!G

(up to a shift on a clopen decomposition of S )
and thus both functors are isomorphic (on a clopen decomposition of S up to some shift).
The last statement follows from .2/ and the formula

Df _ ı F un
 ;Š;G!G_ Š F un

 �1;�;G_!G
ıDf ;

mentioned after Definition 3.22.

Remark 3.26. The Fourier transform studied by Deligne and Laumon in algebraic geo-
metry also commutes with Verdier duality. In this setting, it has the following important
consequence: the Fourier transform preserves perversity. Indeed, the commutation with
Verdier duality reduces to verifying half of the inequalities defining perversity, and they
are easily checked using the fact that the morphism from the total space of a vector bundle
to the base is affine. We do not know how to make sense of the statement that “the Fourier
transform preserves perversity” and prove it in our context.

Lemma 3.27. Let S be a small v-stack. Let f W G ! S be a very nice stack in E-vector
spaces. Assume moreover that the implicit natural isomorphisms between F un

 ;Š;G!G_
ı

F un
 �1;Š;G_!G

, F un
 �1;Š;G_!G

ı F un
 ;Š;G!G_

and some shift functors are induced by mor-
phisms in DKet.G

_ �S G_; ƒ/, resp. DKet.G �S G ; ƒ/, between the kernels of the two
compositions.

(1) If S 0! S is a morphism which is representable in Artin v-stacks, then G �S S
0! S 0

is a very nice stack in E-vector spaces.

(2) If f 0 W G 0 ! S is another very nice stack in E-vector spaces, then G � G 0 ! S is a
very nice stack in E-vector spaces.

If f; f _ are cohomologically smooth or nice, then .2/ holds without the assumption
that S 0 ! S is representable in Artin v-stacks.

Proof of Lemma 3.27. For (1), note that the representability in Artin v-stacks is assumed
in order to ensure that G �S S

0 ! S 0 is again smooth-locally nice. For (2), note that
the property that F un

 ;G
; F un

 ;G 0
are equivalences (with inverses up to a shift given by

F un
 ;G_

;F un
 ;G 0;_

with respective natural transformations witnessing these inverses induced
by morphisms between the kernels) passes to F un

 ;G�G 0
as this functor is the functor with

kernel the exterior product of the kernels of F un
 ;G
;F un

 ;G 0
.
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The following criterion is an abstract version of the usual argument for proving invol-
utivity of the Fourier transform (cf. [31, Théorème 1.2.2.1]), which uses only proper base
change and the projection formula.

Lemma 3.28. Let S be a small v-stack. Let f W G ! S be a nice dualizable stack in
E-vector spaces. Assume that the unit section e W S ! G is smooth-locally nice and that
after passing to some clopen decomposition of S , �Š.˛�L / Š eŠƒŒd� for some d 2 Z.
Then the composition

F un
 �1;Š;G_!G

ı F un
 ;Š;G!G_ W DKet.G ; ƒ/! DKet.G ; ƒ/

is, after passing to some clopen decomposition of S , isomorphic to the shift func-
tor .�/Œd �.

In particular, if the unit sections e W S ! G ; e_ W S ! G_ are smooth-locally nice and
if after passing to some clopen decomposition of S ,

�Š.˛
�L / Š eŠƒŒd1�; �

_
Š .˛

�L / Š e
_
Š ƒŒd2� for some d1; d2 2 Z,

then G is very nice.

Proof. The argument is exactly as in the proof of [31, Théorème 1.2.2.1].

Definition 3.29. Let S be a small v-stack. Let f W G ! S be a nice stack in E-vector
spaces and let A 2 DKet.G ; ƒ/.

� We say that A is reflexive if the natural map A! Df .Df .A// is an isomorphism.

� We say that A is ULA if it is universally locally acyclic with respect to f in the sense
of [20, Definitions IV.2.1, IV.2.22].

� We say that A is compact if it is so as an object of the category DKet.G ; ƒ/, that is,
HomDKet.G ;ƒ/

.A;�/ commutes with all direct sums.

We denote by

Dref
Ket .G ; ƒ/; resp: DULA

Ket .G ; ƒ/; resp: D!
Ket .G ; ƒ/

the full subcategory ofDKet.G ;ƒ/ formed by reflexive, resp. ULA, resp. compact, objects.

Any ULA-object on G is reflexive [20, Corollary IV.2.25].8

Proposition 3.30. Let S be a small v-stack, and let f W G ! S be a very nice stack in
E-vector spaces. Then the Fourier transform F un

 induces equivalences

F un
 W D

ref
Ket .G ; ƒ/ Š D

ref
Ket .G

_; ƒ/; F un
 W D

!
Ket .G ; ƒ/ Š D

!
Ket .G

_; ƒ/

between reflexive objects and compact objects.

8The statement given there is for morphisms representable in locally spatial diamonds, but
extends to this setting (see [20, Section IV.2.4]).
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Proof. It suffices to prove that F un
 preserves reflexive and compact objects. The first

statement is implied by commutation with relative Verdier duality proved in Lemma 3.25.
The second statement is formal (F un

 is an equivalence, and thus has both a left and a right
adjoint).

For universally locally acyclic objects, we get the following statement.

Lemma 3.31. Assume that f W G ! S is a very nice stack in E-vector spaces, with
dual f _ W G_ ! S . Assume that f; f _ are nice, i.e., compactifiable, representable in
locally spatial diamonds and of finite geometric transcendence degree. Then the Fourier
transform F un

 induces an equivalence

F un
 W D

ULA
Ket .G ; ƒ/ Š DULA

Ket .G_; ƒ/

between ULA-objects.

Proof. By our assumption that f; f _ are nice, we see that the Fourier transform for G

lifts to an isomorphism in the 2-category CS from [20, Section IV.2.3.3]. In particular,
it preserves left adjoints. By [20, Theorem IV.2.23] these are equivalent to ULA-objects.
This finishes the proof.

The following statements are proved exactly as in [31, Théorème 1.2.2.4, Corollaire
1.2.25, Proposition 1.2.2.7, Proposition 1.2.2.8].

Proposition 3.32. Let f W G ! G 0 be a morphism of very nice stacks in E-vector spaces,
which is smooth-locally nice. Let f _ W .G 0/_! G_ be the transpose of f . Denote by F un

 ,
resp. F

un;0
 , the Fourier transform functor for G , resp. G 0.

On a clopen decomposition of S , for each A 2 DKet.G ; ƒ/ one has a functorial iso-
morphism

F
un;0
 .RfŠA/ Š .f

_/�F un
 .A/Œd � for some d 2 Z.

Corollary 3.33. Let G be a very nice stack in E-vector spaces, and let A 2 DKet.G ; ƒ/.
On a clopen decomposition of S , one has a functorial isomorphism

f _Š F un
 .A/ Š e

�AŒd� for some d 2 Z;

where e W S ! G is the unit section.

If f W G ! S is a nice stack in E-vector spaces with addition law

m W G � G ! G

(note that via the morphism G � G ! G � G ; .g; h/ 7! .g; g C h/, m is isomorphic to
the second projection, which is the base change along a representable morphism in Artin
v-stacks of a smooth-locally nice map), one defines the convolution product

� W DKet.G ; ƒ/ �DKet.G ; ƒ/! DKet.G ; ƒ/

by the formula
A � B WD mŠ.A � B/:
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Proposition 3.34. Let f W G ! S be a very nice stack in E-vector spaces. For all A;B 2
DKet.G ; ƒ/, one has a functorial isomorphism

F un
 .A � B/ Š F un

 .A/˝ F un
 .B/

and, on a clopen decomposition of S , a functorial isomorphism

f _Š .F
un
 .A/˝ F un

 .B// Š fŠ.A˝ Œ�1�
�B/Œd � for some d 2 Z

.“Plancherel formula”/, where Œ�1� denotes the “multiplication by �1” map on G .

3.4. Examples of very nice stacks in E-vector spaces

In this subsection, we present two large classes of examples of very nice stacks in E-
vector spaces. Let as before S be a small v-stack.

Proposition 3.35. Let G D BC.F / be the stack in E-vector spaces associated with some
F 2 Cohfl;>0.S/. Then G is very nice. In particular, G_ D BC.F /_ is also very nice.

Proof. The last assertion follows from Lemma 3.25, so it suffices to show that G is
very nice. We will use the criterion of Lemma 3.28. Note that G ; G_ are dualizable
and cohomologically smooth (and representable in locally spatial diamonds) over S , by
Example 3.19, and the unit sections e; e_ are proper. Let d be the dimension of G (this
makes sense by [20, IV.1.17]). First, we will construct a natural map

�Š˛
�.L /! eŠƒŒ�2d�:

By proper base change, we have

e�.�Š˛
�.L // Š f

_
Š ƒ;

with f _ W G_! S the projection map to the base. Then we have an adjunction morphism

f _Š ƒ Š f
_
Š f

_ŠƒŒ�2d�! ƒŒ�2d�

(using cohomological smoothness of G_), i.e., a natural map

e�.�Š˛
�.L //! ƒŒ�2d�;

whence by adjunction (and properness of e) a natural map

�Š˛
�.L /! eŠƒŒ�2d�:

To prove that it is an isomorphism, it suffices, since its formation is compatible with base
change in S , to do so when S D Spa.C; CC/ is a geometric point. We can even assume
that S D Spa.C;OC /. In this situation, we can assume that G is either of the form BC.E/,
where E is a vector bundle having either only positive slopes or only negative slopes, and
with jdeg.E/j D d , or of the form BC

dR;C]
=Fild for some untilt C ] of C . By excision, it
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suffices to prove that

e�.�Š˛
�.L // Š ƒŒ�2d�; �Š˛

�.L /jGn¹eº D 0:

By proper base change, we have

e�.�Š˛
�.L // D f

_
Š ƒ;

so for the first part, we want to show that

f _Š ƒ Š ƒŒ�2d�:

In the vector bundle case, see [20, proof of Proposition V.2.1]. In the torsion case, induc-
tion on d reduces to the case d D 1 and the computation of the compactly supported
cohomology of A1

C ]
. For the second part, i.e., to show that �Š˛�.L /jGn¹eº vanishes, by

checking on fibers and using proper base change again, we see that we need to show that

R�
�
E;R�c.BC.F 0/;ƒ/˝  

�
D 0

if F 0 is a non-split extension of F by O. In both cases, F 0 is the direct sum of a vector
bundle with positive slopes and a torsion sheaf, so the previous computation shows its
compactly supported cohomology has a trivial E-action (indeed, this action extends to
an action of BC.F 0/, which must be trivial since the latter is connected and ƒ is totally
disconnected). Hence these cohomology groups vanish.

The argument for �_
Š
˛�L Š e

_
Š
ƒŒ�2d� is entirely similar.

The other class of examples we consider are associated with pro-étale local systems.

Proposition 3.36. Let S be a small v-stack. Let G D L be a pro-étale E -local system
on S . Then G ;G_ are very nice stacks in E-vector spaces over S .

Proof. By Lemma 3.25, it suffices to show that G is very nice. Dualizability has been
proved in Example 3.17. We need to show that F un

 ;Š;G!G_
and F un

 �1;Š;G_!G
are equi-

valences. The functors U 7! DKet.G �S U;ƒ/ and U 7! DKet.G
_ �S U;ƒ/ are sheaves of

1-categories on the v-site of S and (Remark 3.23) F un
 ;Š;G!G_

and F un
 �1;Š;G_!G

define
morphisms of sheaves. It is therefore enough to show that they are equivalences under
the additional assumption that L is trivial. By base change, we may then reduce to the
case where S D Spa.C; CC/ is a geometric point. If S is a geometric point (and thus
L trivial), F un

 ;Š;G!G_
and F un

 �1;Š;G_!G
can be made entirely explicit and are seen to

be equivalences: we postpone the discussion of this to Proposition 4.2 and Remark 4.3
below.

It remains to check point (3) of Definition 3.24. Since we already know that the two
Fourier transforms are equivalences, it is enough to show that

F un
 �1;Š;G_!G

ı F un
 ;Š;G!G_
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is isomorphic (up to shift) to the identity functor. We apply the criterion of Lemma 3.28.
Note that f _ W G_ ! S is cohomologically smooth (of dimension 0) and e W S ! G is
proper. Therefore, as in Proposition 3.35, we get a morphism

�Š.˛
�L /! eŠƒ

and the arguments there show that it is an isomorphism if this is true when S D

Spa.C; CC/ is a geometric point. In this case, L is trivial and the assertion is easy.

Remark 3.37. Let S be a small v-stack. To bring together the last two classes of
examples, one could more generally consider stacks in E-vector spaces G admitting
v-locally on S a 2-step filtration W�G ,

W�1 D 0 � W0 � W1 � W2 D G ;

such that GrW0 Š ŒS=L� is the classifying stack of a pro-étale E -local system, GrW1 is
either BC.F / or BC.F /_ with F 2 Cohfl;>0.S/, and GrW2 D L0 is a pro-étale E-local
system.

This definition is reminiscent of the definition of Beilinson’s 1-motives (see e.g. [15,
Appendix A]; cf. also Laumon’s generalized 1-motives of [33]), with Banach–Colmez
spaces of flat coherent sheaves having positive slopes and their duals being an analogue
in this setting of abelian schemes (they behave formally similarly with respect to duality).

One can check, using Corollary 3.11, that for such a G , there is locally for the v-
topology on S , a decomposition

G Š GrW0 G � GrW1 G � GrW2 G :

However, we do not know if the property of being smooth-locally nice is v-local on target,
and therefore we do not know if any such G is very nice.

3.5. An inductive construction

Let i � 0 an integer.

Definition 3.38. Let Ci be the open substack

Ci D Cohfl;>0
i [ Bun1

i ,! Cohfl
i :

Let C 0i;ex, resp. C 0i , be the stack sending S 2 PerfFq to the groupoid of pairs

.F 2 Ci .S/; s W OXS ! F /;

where s is an OXS -linear map, resp. a fiberwise injective OXS -linear map. We denote by
ji the open embedding of C 0i in C 0i;ex and by �i W C 0i;ex ! Ci the forgetful map sending a
pair .F ; s/ to F .

Using Propositions 3.35 and 3.36, we see that the morphism �i makes C 0i;ex a very nice
stack in E-vector spaces over the small v-stack Ci . The fiber of �i over a flat coherent
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sheaf F in Ci is BC.F /. Let
�_i W C

0_
i;ex ! Ci

be the dual stack in E-vector spaces. By construction and Corollary 3.11, C 0_i;ex sends
S 2 PerfFq to the groupoid of extensions

0! OXS ! F 0 ! F ! 0:

Write C 0i;ex;0 D C 0i;ex �Ci Bun1
i and C 0i;ex;d D C 0i;ex �Ci Cohfl;>0

i;d
for d > 0. We have a

direct product decomposition

DKet.C
0
i;ex; ƒ/ Š

Y
d�0

DKet.C
0
i;ex;d; ƒ/:

We define
FC 0

i;ex; 
W DKet.C

0
i;ex; ƒ/! DKet.C

0_
i;ex; ƒ/

to be
.F un
 ;Š;C 0

i;ex!C 0_
i;ex
/jDKet.C

0
i;ex;d;ƒ/

Œd �

for d � 0.
Let

j_i W C
0_
i ! C 0_i;ex

be the open substack defined by the condition that F 0 2 CiC1. The morphism sending
.s W OXS ,! F 0/ 2 C 0iC1.S/ to

.0! OXS ! F 0 ! F ! 0/ 2 C 0_i .S/;

where F is defined to be the cokernel of s, then (tautologically) defines an isomorphism

˛i W C
0
iC1 Š C 0_i :

Definition 3.39. Let i � 0. Using the above notations, we define a functor

ˆC
Ci
W DKet.C

0
i ; ƒ/! DKet.C

0
iC1; ƒ/

by the formula
ˆC

Ci
D ˛�1i ı .j

_
i /
�
ı FC 0

i;ex; 
ı ji;Š:

We can now iterate this construction, increasing by 1 the generic rank at each step.
For n � 1, denote by Bun0n the fiber product of Bunn with C 0n over Cn, and by �n the open
embedding

�n W Bun0n ,! C 0n:

Definition 3.40. Let n � 1. We define a functor

An; W DKet.C0; ƒ/! DKet.Bun0n; ƒ/

by the formula

An; D �
�1
n ıˆ

C

Cn�1
ı � � � ıˆC

C1
ı ˛�10 ı .�0 ı j

_
0 /
�:
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The definition of An; (with different notations) is due to Laumon [30, 32], inspired
by constructions of Drinfeld [19] in the case n D 2, in the classical setting of a smooth
projective curve over a finite field, who applied it to the geometric Langlands program,
and is our main motivation for introducing the Fourier transform studied in this paper.
Analogously to what Drinfeld, Laumon and Frenkel–Gaitsgory–Vilonen did in the func-
tion field setting, we hope that it is possible, starting from a continuous irreducible rank n
representation L of WE over ƒ (assumed to be a field), to produce an object

LL 2 DKet.C0; ƒ/

such that
An; .LL/ 2 DKet.Bun0n; ƒ/

descends9 along the natural map Bun0n ! Bunn to an object AutL of DKet.Bunn; ƒ/ satis-
fying the requirements of Fargues’ geometrization conjecture.

4. Examples

In this section, we discuss various concrete examples of the Fourier transform introduced
in the first section.

4.1. The case of finite-dimensional E-vector spaces

Before starting, let us recall the following lemma.

Lemma 4.1. Let X be a locally profinite set .seen as a small v-sheaf over Spa.Fq//, and
let H be a locally pro-p group acting on X . Then

DKet.ŒX=H�;ƒ/

is equivalent to the derived category of smooth10 C1c .X; ƒ/-modules (C1c .X; ƒ/ seen
as a ring via multiplication of functions) with a semilinear, smooth H -action.

Proof. See [24, Appendix B.2].

In the next proposition, we take S D Spa.Fq/ (we could also take S D Spa.C /, withC
complete algebraically closed, if we want S to be a perfectoid space).

9This is to be understood here as saying that for each d � 0, the pullback to Bun0n of the
restriction of AutL to the degree d connected component Bundn of Bunn shifted by d is isomorphic
to the restriction in degree d of An; .LL/.

10A C1c .X; ƒ/-module M is said to be smooth if the natural map lim
�!
.1U :M/ ! M is an

isomorphism, where U runs over compact open subsets of X and the transition maps are given by
the natural inclusions.
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Proposition 4.2. Let V be a finite-dimensional E-vector space. Fix a Haar measure d Lv
on V _. Let G D V be the associated stack in E-vector spaces, and let

F WD F un
 ;Š;G!G_

be the corresponding Fourier transform. The functor

F W DKet.G ; ƒ/! DKet.G
_; ƒ/

is induced, via the identification of DKet.G ; ƒ/, resp. of DKet.G
_; ƒ/, with the derived

category of smooth .C1c .V; ƒ/;�/-modules, resp. of smooth .C1c .V
_; ƒ/; �/-modules,

coming from Lemma 4.1, resp. from the choice of d Lv and [20, Theorem V.1.1], by the
isomorphism

.C1c .V
_; ƒ/;�/ Š .C1c .V;ƒ/;�/;

given by the “naive” Fourier transform, sending f 2 C1c .V
_; ƒ/ to the element yf 2

C1c .V;ƒ/ such that

8v 2 V; yf .v/ D

Z
V_
f . Lv/ .h Lv; vi/ d Lv:

Proof. Let M be a smooth C1c .V; ƒ/-module. We would like to describe the smooth
module over the convolution algebra for V _ defined by F .M/ explicitly. Recall that if �
is a smooth representation of V _, it corresponds to a smooth module over the convolution
algebra, with module structure described the formulas

8f 2 C1c .V
_; ƒ/; 8w 2 �; f � w D

Z
V_
f . Lv/�. Lv/ � w d Lv:

Hence, it suffices to prove that the V _-action on the smooth representation of V _ corres-
ponding to F .M/ is given by M , endowed with the action of V _ defined by

8Lv 2 V _; 8m 2M; Lv �m D  .h Lv;�i/ �m:

To do so, it suffices to prove that the tensor product of the pullback of M , seen as an
object of DKet.G ; ƒ/, along the morphism

� W G_ � G ! G

with ˛�L corresponds, via Lemma 4.1, to the smooth C1c .V; ƒ/-module M together
with the semilinar action of V _ just described: indeed, the functor

�_ W G_ � G ! G_

is simply given by forgetting the C1c .V;ƒ/-module structure.
But the map

˛ W G_ � G ! Œ�=E�

is induced by the natural pairing h�;�i W V _ � V ! E. Therefore, ˛�L corresponds to
the smooth C1c .V;ƒ/-module C1c .V;ƒ/ together with the action of V _ defined above,
and this gives the description we want.
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Remark 4.3. On the one hand, by Proposition 4.2 and its proof, we see that for G as
above, F .ƒ/ corresponds to the ƒ-module C1c .V;ƒ/ endowed with the smooth action
of V _ defined by

8Lv 2 V _; 8f 2 C1c .V;ƒ/; Lv � f D  .h Lv;�i/:f:

On the other hand, the Š-pushforward along the unit section

e W � ! G_ Š Œ�=V _�

of the constant sheaf ƒ corresponds to the ƒ-module C1c .V
_; ƒ/ with its V _-action by

right translations. The “naive” Fourier transform provides a functorial identification of
one with the other. We have therefore finished the proof of Proposition 3.36.

In fact, it is interesting to take into account automorphisms in the above. More pre-
cisely, fix a finite-dimensional E-vector space V . Let

S D Œ�=GL.V /�

and consider the very nice stack in E-vector spaces

G D ŒV =GL.V /�

over S (with GL.V / acting on V via its natural action), with its associated Fourier trans-
form F . The diagram defining F is

ŒV =P.V /�
˛ //

�_

xx

�

&&

Œ�=E�

Œ�=P.V /� ŒV =GL.V /�

where
P.V / D GL.V / Ë V _

is the mirabolic group (of size dim.V / C 1), with its natural action on V , and ˛ is the
composition

ŒV =P.V /� D ŒV =GL.V / Ë V _�! Œ�=GL.V / �E�! Œ�=E�

induced by the natural pairing

V � Œ�=V _�! Œ�=E�:

Remark 4.4. Take V D Vi WD Ei . The stack G , resp. the above diagram, is nothing but
the pullback of the stack in E-vector spaces C 0i introduced in Section 3.5, resp. of the
diagram defining the Fourier transform for C 0i , along the open embedding Bun1

i ,! Ci .

As above, we can also make F and F _ explicit, using Lemma 4.1. In particular,
˛�L 2DKet.V=P.V /;ƒ/ corresponds to the smooth C1c .V;ƒ/-moduleL DC1c .V;ƒ/
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itself, endowed with the semilinear smooth action of P.V / given by

.g; Lv/:f WD .v 7!  . Lv.g�1:v//f .g�1:v//:

An étale sheaf
A 2 DKet.ŒV =GL.V /�;ƒ/

is the same thing as a smooth C1c .V; ƒ/-module M , with a semilinear smooth GL.V /-
action, and an étale sheaf

B 2 DKet.Œ�=P.V /�;ƒ/

is the same thing as a smooth P.V /-representation N on a ƒ-module. It is easy to see
that in these terms, F .A/ 2 DKet.Œ�=P.V /�;ƒ/ corresponds to the P.V /-representation

M ˝C1c .V;ƒ/ L ;

endowed with the diagonal P.V /-action (acting through the quotient GL.V / onM ). Con-
versely, F _ .B/ 2 DKet.ŒV =GL.V /�;ƒ/ corresponds to

.N ˝ƒ L /V_ :

Fix i � 0, and take V D Vi WD Ei . To remember the index i , the Fourier transform and
inverse Fourier transform will be denoted by Fi; and F _i; respectively. Let ji be the
open immersion

ji W Œ�=P.Vi�1/� Š Œ.Vin¹0º/=GL.Vi /�! ŒVi=GL.Vi /�

and let �i be its closed complement

�i W Œ�=GL.Vi /�! ŒVi=GL.Vi /�:

Define functors

ˆCi WD Fi; ı ji;Š W DKet.Œ�=P.Vi�1/�; ƒ/! DKet.Œ�=P.Vi /�; ƒ/;

ˆ�i WD j
�
i ı F _i; W DKet.Œ�=P.Vi /�; ƒ/! DKet.Œ�=P.Vi�1/�; ƒ/;

‰Ci WD Fi; ı �i;� W DKet.Œ�=GL.Vi /�; ƒ/! DKet.Œ�=P.Vi /�; ƒ/;

‰�i WD �
�
i ı F _i; W DKet.Œ�=P.Vi /�; ƒ/! DKet.Œ�=GL.Vi /�; ƒ/:

It is easy to see, using the above explicit formulas, that these functors coincide with
the Bernstein–Zelevinsky functors from [4]. Moreover, the properties of Bernstein–
Zelevinsky functors are easily recovered using this reformulation. For example, the exact
sequence of functors on DKet.Œ�=P.Vi /�; ƒ/,

0! ˆCi ıˆ
�
i ! Id! ‰Ci ı‰

�
i ! 0;

is deduced from the short exact sequence of functors on DKet.ŒVi=GL.Vi /�; ƒ/,

0! ji;Š ı j
�
i ! Id! �i;� ı �

�
i ! 0:
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Similarly, the relations
ˆ�i ı‰

C

i D 0; ‰�i ıˆ
C

i D 0;

follow from
j �i ı �i;� D 0; ��i ı ji;Š D 0

and
ˆ�i ıˆ

C

i D Id; ‰�i ı‰
C

i D Id;

since
j �i ı ji;Š D Id; ��i ı �i;� D Id:

Remark 4.5. Continuing Remark 4.4, we see that for any A 2DKet.Coh0;ƒ/ whose pull-
back to Bun1

0D¹0º is isomorphic toƒ, the pullback of An; .A/ (notations of Section 3.5)
to Bun0;1n Š Œ�=P.Vn�1/� corresponds to the smooth representation of the mirabolic of
size n,

ˆCn�1 ı � � � ıˆ
C
1 ı‰

C
0 .1/;

where 1 stands for the trivial representation. This is Gelfand–Kazhdan’s description of the
Kirillov model of an irreducible supercuspidal representation of GLn.E/.

4.2. The case of the affine line in characteristic 0

Let S D Spa.C;OC /, with C an algebraically closed perfectoid field of characteristic p.
Fix an untilt C ] of C over E, given by t 2 B'D�C and corresponding to a rigid point
x 2 XC . Let G be the very nice stack in E-vector spaces attached to the coherent
sheaf ix;�C ]. Then

G Š A1;˘
C ]

and also G_ Š A1;˘
C ]
:

Therefore, the Fourier transform

F WD F un
 ;Š;G!G_ Œ1�

defines an equivalence of categories

F W DKet.A
1;˘

C ]
; ƒ/

�
�! DKet.A

1;˘

C ]
; ƒ/:

Proposition 4.6. The Fourier transform F coincides with the functor induced on left
completions by the Fourier transform introduced and studied by Ramero [42, 44].

Recall from [47, Proposition 14.15] that if X is any locally spatial diamond, the cat-
egory DKet.X;ƒ/ is the left completion of the category D.XKet; ƒ/. Moreover, if X D Y ˘,
for an analytic adic space Y over Zp , then D.XKet; ƒ/ Š D.YKet; ƒ/ [47, Lemma 15.6].
This explains the statement of the proposition.

Proof of Proposition 4.6. Let LT be the Lubin–Tate formal group law for E (the unique
up to isomorphism 1-dimensional formal group over O ME with action of OE , such that the
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two actions of OE induced on the Lie algebra coincide). The kernel of Ramero’s Fourier
transform is defined via the logarithm exact sequence

0! E !fLTC ]
log
�! A1

C ]
! 0:

It agrees with the kernel appearing in the definition of F , which is defined via the exact
sequence

0! E
�t
�! BC.O.1//! A1;˘

C ]
! 0;

since the above two exact sequences can be identified when seen as sequences of sheaves
on PerfC (see e.g. [20, Propositions II.2.2, II.2.3]).

Remark 4.7. In this specific situation, Ramero [44, Theorem 2.3.30] was able to show
that the Fourier transform preserves “perverse sheaves with bounded ramification”,
without really defining what a perverse sheaf is in this setting though. Recently, Bhatt–
Hansen [7] defined a category of ƒ-perverse Zariski-constructible sheaves on any rigid
space over a non-archimedean field of characteristic 0, but for torsion coefficients, their
theory is limited to the case where ƒ is finite, and therefore does not seem to be directly
applicable to the study of properties of the Fourier transform.

4.3. The case G D BC.O.1//

In this subsection, we take G D BC.O.1//, so that G_ D BC.O.�1//. We set

F WD F ;Š;G!G_ Œ1�:

We will also set
j W G ı WD Gn¹0º ,! G ; i W ¹0º ,! G ;

and
j_ W G_;ı WD G_n¹0º ,! G_; i_ W ¹0º ,! G_:

The goal of this subsection is the proof of Corollary 4.20 below, using Huber’s adic
version of the Grothendieck–Ogg–Shafarevich formula. We start by establishing a finite-
ness result, Corollary 4.10, which uses crucially the fact that the small v-sheaves (actually
diamonds) G ı; G_;ı are qcqs (but recall that the morphisms G ı ! � and G_;ı ! � are
not quasi-compact, because the v-sheaf � is not quasi-separated!).

Proposition 4.8. An object in DKet.G ; ƒ/ is compact if and only if each stalk over a geo-
metric point of G is a perfect complex.

Note that this proposition is not covered by [47, Proposition 20.17] as G is not a spatial
diamond.

Proof of Proposition 4.8. We can choose an isomorphism

G Š Spd.FpŒŒt1=p
1

��/
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(see [20, Proposition II.2.2]). Via pullback along the morphism of sites

Spd.FpŒŒt1=p
1

��/Ket ! Spec.FpŒŒt ��/Ket;

one derives an equivalence

DKet.G ; ƒ/ Š D.Spec.FpŒŒt ��/Ket; ƒ/;

compatible with i�; i Š; j�; jŠ. Indeed, compatibility of the i�; i Š; j�; jŠ follows from com-
patility with i�; j � and adjunctions. Arguing on the strata ¹0º; G ı therefore yields the
equivalence. Then one can apply [8, Proposition 6.4.8] for the right-hand side.

Let us prove the analogue for G_. Here the situation is more complicated, because

G_;ı Š Spd.Fp..s1=p
1

///=H with H WD ker.O�D
Nrd
��! Z�p /

is more complicated than G ı Š Spd.Fp..t1=p
1

///.

Proposition 4.9. An object in DKet.G
_; ƒ/ is compact if and only if each stalk over a

geometric point of G_ is a perfect complex.

We note that jG_j has exactly two points (similarly to jG j).

Proof of Proposition 4.9. We first note that

G_;ı Š Spd.Fp..s1=p
1

///=H

has finite `-cohomological dimension. Indeed, we can write

G_;ı Š Spd.
5
Fp..s1=p

1
///=G

where G is a profinite group, which is an extension of H by the Galois group of
Fp..s1=p

1

//. Then we can apply (the proof of) [47, Proposition 21.16], and conclude11

cd`G � 1 D tr:c.
5
Fp..s1=p

1
//=Fp/:

Thus by [47, Proposition 20.17] we can conclude that an object B 2 DKet.G
_;ı; ƒ/ is

compact if and only if its stalk is perfect. In particular, the cohomology of G_;ı, i.e.,

R�.G_;ı;�/;

commutes with direct sums. Next we claim that the functor j_� (recall that we follow the
derived convention, i.e., we are considering Rj_� here) commutes with direct sums. For
this, it suffices to see that the functor

i_� ı j_� Š DKet.G
_;ı; ƒ/! D.ƒ/

11Note that H contains elements of finite order, and thus the extension defining G must be non-
split.
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commutes with direct sums. We claim that

i_� ı j_� Š R�.G
_;ı;�/;

which implies the assertion. For this it suffices to see that the functor R�.G_; j_Š .�//
is identically 0. This is implied by [20, Theorem IV.5.3]; cf. the proof of [20, Proposi-
tion 4.2].

Having proved that j_� commutes with direct sums, we can conclude that j_�

preserves compact objects. The same is true for i_�. Thus, a compact object B 2
DKet.G

_; ƒ/ has perfect stalks. For the converse, we already saw that the compact objects
in DKet.G

_;ı; ƒ/ are precisely the ones with perfect stalks. It is formal that j_Š preserves
compact objects. LetK 2D.ƒ/ be a perfect complex. We denote the pullback ofK to G_

again by K. Then we have an exact triangle

j_Š K ! K ! i_� K:

Thus, i_� K is compact if and only if K is compact. By perfectness, we can reduce to the
case ofK D ƒ. Then we have to see that R�.G_;�/ commutes with direct sums. This is
implied by the statement that

R�.G_;�/ Š i_�.�/;

which in turn is implied by R�.G_; j_Š .�// D 0, which we have already used above.
Now, if B 2 DKet.G

_; ƒ/ has perfect stalks, then we have an exact triangle

j_Š j
_�B ! B ! i_� i

_�B

and we have proved that the outer terms are compact. This finishes the proof.

Corollary 4.10. The functors F , F _ preserve objects with perfect stalks.

Proof. This follows from Propositions 3.30, 4.8 and 4.9.

Remark 4.11. The conclusion is non-obvious as the stalks of F over geometric points
Spd.C / ! G_ are computed as the cohomology of the space GC Š D˘C , which is the
non-quasi-compact open unit disk over C !

Our next goal is to say something about the rank of these stalks. To do so, we need
to give a short reminder on the theory of Swan conductors on adic curves, as developed
in [26]. From now on in this subsection, ƒ will be assumed to be a local ring which is a
filtered union of finite rings of order prime to p.12

Let .K; j � j/ be a valued field enjoying the following properties:

12This assumption comes from our use of results from [43] and ensures in particular thatƒ-local
systems on a qcqs adic space are trivialized by a finite étale cover.
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(1) j � j W K� � [ ¹0º is henselian and defectless in any finite separable extension L
of K (meaning that ŒL W K� is the product of the index of the value group � of j � j
in the value group of the unique extension of j � j to L by the degree of the residue
field extension).

(2) The set ¹
 2 � W 
 < 1º has a greatest element 
K such that � Š 
Z
K � �div, where

�div is the subgroup of divisible elements in � .

If 
 2 � , it can by assumption be written uniquely as


 D 
 0:
nK ;

with n 2 Z and 
 0 2 �div. We will write


] WD n; 
 [ WD 
 0:

We denote the extension of the multiplicative function .�/] W � ! Z to � ˝Z Q by the
same letter. Let V be a ƒ-linear representation of GalK , factoring through Gal.L=K/
for a certain finite Galois extension L of K. Let PK be the wild inertia subgroup of
GalK , and let Gal
K ;Gal
�K � GalK for 
 2 � ˝Z Q be the ramification groups defined
in [26, Chapter 2]. Define V.1/ D V PK and for any 
 2 � ˝Q with 
 < 1 set

V.
/ D .span¹v � �:v W v 2 V; � 2 Gal
Kº/
Gal
�
K :

We call 
 2 � ˝Q, 
 � 1, a slope of V if V.
/ ¤ 0. We set

sw.V / D
X


2�˝Q; 
�1


]:`ƒV.
/;

where `ƒM denotes the length of a finitely generated ƒ-module M . This quantity is
called the Swan conductor of V .

Any complete, discretely valued field K is an example (with �div D ¹1º/ of a valued
field satisfying assumptions (1)–(2) stated above, but for example Cp is not. For a dis-
cretely valued field, the slopes of a ƒ-representation V of GalK in the sense given above
are the elements of � ˝Q of the form q�a, where q D j$ j�1K , where $ is a uniformizer
ofK, and a is a slope of V in the usual sense given to this term (see e.g. [31, Section 2.1]).
In particular, the Swan conductor sw.V / just defined agrees with the classical definition
of the Swan conductor of V .

Another important class of examples of valued fields satisfying assumptions (1)-(2)
is provided by the henselizations of the residue fields at rank 2 points of an analytic adic
curve over a complete algebraically closed non-archimedean field C of residue character-
istic p (see [26, Section 5]). Following Huber, we will adopt the following notations:

� If a is a classical point of A1C and r 2 �C , there is a unique point p�a;r in the closed
subset ¹x W jT � ajx < rº of A1C which is not in its interior. It is a rank 2 point. The
henselization of the residue field at p�a;r is a valued field K as above. We will write
�K D �p�

0;r
, 
K D 
p�

0;r
and we will denote by

˛a;r .�/

the Swan conductor function on representations of its Galois group.
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� If a is a classical point of A1C and r 2 �C , there is a unique point pCa;r in the closure
of the open subset ¹x W jT � ajx � rº of A1C which is not in this open subspace. It is a
rank 2 point. The henselization of the residue field at pCa;r is a valued field K as above.
We will write �K D �pC

0;r

, 
K D 
pC
0;r

and we will denote by

ˇa;r .�/

the Swan conductor function on representations of its Galois group.

We now review the little bit of the theory of [43], which gives some useful information
about the variation with r of the functions ˛a;r ; ˇa;r just introduced. As above fix an
algebraically closed, non-archimedean field C whose residue field has characteristic p.
For a 2 R�0 \ jC j fix an element �a 2 K such that j�aj D a. For a; b 2 R�0 \ jC j with
a � b let

DŒa;b� WD ¹x W j�aj � jxj � j�bjº � A1;ad
C

be the associated (topologically open) annulus. Clearly, if c 2 R>0 \ jC�j, then

DŒa;b� Š DŒca;cb�

via multiplication by �c . If a > 0, then

� W DŒa;b� Š DŒ1=b;1=a�

via inversion.
Let F be a ƒ-local system on DŒa;b�. Then we obtain the functions

swF ;< W .a; b/ \ jC
�
j ! Z; r 7! ˛r .F / WD ˛0;r .F /

(denoted by sw\.F ; rC/ in [43, 4.1.10]) and

swF ;> W .a; b/ \ jC
�
j ! Z; r 7! ˇr .F / WD ˇ0;r .F /:

Let
ıF W .� log.b/;� log.a// \ .� log.jC�j//! R�0

be the discriminant function of [43, 4.1.13]. Writing ıF as a function of the radius r (and
not � log.r/) would be pleasant, but unfortunately it is the function ıF having the easier
properties as captured by Section 4.3.

We denote by @r ; @l the right resp. left derivative of a piecewise linear function
.a; b/ \ jC�j ! R (note that these derivatives make sense even if we do not require
that the piecewise linear function is defined on all of .a; b/).

Theorem 4.12 (Ramero). The map

ıF W .� log.b/;� log.a// \ .� log.jC�j//! R�0

extends uniquely to a piecewise linear, continuous, convex function .a; b/! R�0 with

@rıF .� log.r// D swF ;<.r/

for any r 2 .a; b/ \ jC�j. Moreover, the function r 7! swF ;<.r/ is non-increasing, i.e.,
swF ;<.r2/ � swF ;<.r1/ if r1 � r2.
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Proof. The first claims are in [43, Section 4.1.15] (note that [43, Proposition 3.3.26] does
not use the assumption of [43, Section 4] thatK is of characteristic 0). By convexity of ıF

we can conclude that @rıF is non-decreasing. Composing with the decreasing function
r 7! � log r shows that swF ;<.r/ is non-increasing.

As indicated in [43, Section 3.3.11] we can also relate ıF and swF ;>. Let us spell out
the details.

Corollary 4.13. Assume a > 0. Then

@lıF .� log.r// D �swF ;>.r/

for r 2 .a; b/ \ jC�j. In particular, swF ;>.r/ is non-decreasing.

Proof. Let
� W DŒa;b� Š DŒ1=b;1=a�

be the inversion and set G WD ��F . If r 2 .a; b/ set �.r/ WD 1=r 2 .1=b; 1=a/. Then

ˇr .F / D ˛�.r/.G /

as
F
p
C
r
Š .��G /

p
C
r
Š G

�.p
C
r /
D Gp�

�.r/
:

In particular,
swF ;> D swG ;< ı �:

Moreover,
ıF .s/ D ıG .�s/

as �.p[r / D p
[
�.r/

for r 2 .a; b/ \ jC�j and

� log.�.r// D �.� log.r//:

Now we calculate for s 2 .� log.b/;� log.a// \ .� log.jC�j// and x < 0 sufficiently
small,

ıF .s C x/ D ıG .�s � x/
Sec. 4.12;�x�0
D ıG .�s/C swG ;<.e

s/.�x/

esD�.e�s/
D ıF .s/C .�swF ;>.e

�s//x;

which implies the first claim. For the last we can argue as in Section 4.3.

Remark 4.14. If � log.r/ is not a breakpoint of ıF , then

swF ;<.r/ D �swF ;>.r/;

but otherwise both sides are different. Because of this discrepancy we think that [50,
Proposition 2.9] is (slightly) incorrect as stated because we think that the swF .s/ from
there agrees with swF ;>.e

�s/ in our notation.
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This formalism will be applied in the following geometric situation. Let A be a
ƒ-local system on the punctured open unit D�C . Assume that the compactly supported
cohomology H�c .D

�
C ; A/ of A is finite. Let

�c.D
�
C ; A/ WD

1X
iD0

.�1/i`ƒH
i
c .D

�
C ; A/

denote its Euler characteristic.

Proposition 4.15. With the above notations and assumption, we have

�c.D
�
C ; A/ D �˛.A/ � ˇ.A/:

Here .cf. [26, Corollary 10.6]/,

˛.A/ WD ˛0;r .A/ for r sufficiently small,

ˇ.A/ WD ˇ0;r .A/ for r sufficiently close to 1.

Proof. We first claim that there exists some s 2 Œ0; 1� \ jC�j such that

H�c .D
�
C ; A/ D H

�
c .B

�
C;r ; A/

for all r 2 Œ0; 1� \ jC�j with r � s. Indeed, for r 0 � r the canonical morphisms

H 0
c .B

�
C;r ; A/! H 0

c .B
�
C;r 0 ; A/

and
H 0.B�C;r 0 ; A/! H 0.B�C;r 0 ; A/

are injective morphisms between finite ƒ-modules. Thus, they are isomorphisms for suf-
ficiently large r; r 0. From Poincaré duality one deduces that

H 2
c .B

�
C;r ; A/! H 2

c .B
�
C;r 0 ; A/

is an isomorphism for large r; r 0, too. Moreover,

H 1
c .B

�
C;r ; A/! H 1

c .B
�
C;r 0 ; A/

is injective for all r 0 � r because A is locally constant (see [26, proof of Corollary 10.6]).
This implies the claim by our assumption on the finiteness of H�c .D

�
C ; A/: Thus, we can

apply [26, Corollary 10.6] to

X WD BC;s and Y WD B�C;s D X \D�C :

Thus,
�c.D

�
C ; A/ D �c.Y; A/ D �˛0.A/ � ˛x.j�A/;

where ¹xº D Xc nX (note that �c.Y / D 0). Now in our notation

˛.A/ D ˛0.A/ and ˇ.A/ D ˛x.j�.A//

(see [26, Lemma 8.6 (v)]). This finishes the proof.
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We now want to apply these considerations to the Fourier transform for G . Let �
be a ƒ-representation of WE , corresponding to a local system L on Div1. Let zL be the
local system on G ı obtained by pulling back L along the E�-torsor G ı ! Div1. Fix a
geometric point Spd.C /! G_ı and an identification

.G_ı � G ı/ �G_ı Spd.C / Š G ıC Š D�˘C :

Pulling back zL to G ıC , we obtain via this identification a local system on D�C , which we
denote by zLC .

Similarly, the sheaf ˛�L on G_ � G (the kernel of the Fourier transform) defines
by pullback and via the above identification a local system on D�C , which we will simply
denote by L ;C .

Corollary 4.16. We use the above notations. Assume that jŠfL_ Š Rj�fL_. The stalk of

.j_ı/�F .jŠ zL/

at the geometric point Spd.C /! G_ı is concentrated in degree 0, and its rank equals

˛.zLC ˝L ;C /C ˇ.zLC ˝L ;C /:

The assumption on zL_ is satisfied if zL_ does not contain the trivial local system.
Indeed, i�Rj�.zL/ Š R�.G ı; zL/ by the proof of Proposition 4.8 and this complex is con-
centrated in degree 0 and of Euler characteristic 0.

Proof of Corollary 4.16. First we prove concentration in degree 0. Since the Fourier
transform commutes with Verdier duality (Lemma 3.2513) and jŠ zL_ Š Rj� zL_, it suf-
fices to prove that the cohomology of zLC ˝L ;C on G ı is concentrated in degrees Œ0; 1�;
this follows as H i

c .D
�
C ;M/ D 0 for each i … Œ0; 1� and M a local system on D�C .

The formula for the rank is a direct consequence of Proposition 4.15, which one can
apply thanks to Corollary 4.10 (the change of sign is due to the shift in the definition of
the Fourier transform).

To apply Corollary 4.16 in some cases, we will compute the slopes of the local systems
L ;C and zLC .

We first focus on L ;C .

Proposition 4.17. For each r sufficiently close to 0, the .unique/ slope of L ;C

at p�0;r and pC0;r is 1. For each r sufficiently close to 1, the slope of L ;C at pC0;r is
exp.�c/r�d


p
C

0;r

for some constants c; d 2 R>0. In particular, in the notations of Pro-
position 4.15, we have

˛.L ;C / D 0; ˇ.L ;C / D 1:

13One easily sees that in this special case the shift appearing in the lemma is d D �1, and thus
disappears here since the definition of F given at the beginning of this subsection comes with a
shift by 1.
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Proof. If F is any ƒ-local system on DC , then for r > 0 sufficiently small the restric-
tion of F to the disk BC;r will be trivial because the local ring ODC ;0 of DC is strictly
henselian. In particular, the slopes of L ;C at p�0;r and pC0;r will be 1.

From the proof of Proposition 3.35, we know that

H�c .DC ;L ;C / D 0:

This implies that
H�c .BC;r ;L ;C / D 0

for each sufficiently large 0 < r < 1. By [26, Corollary 10.4] this implies (because
�c.BC;r ; ƒ/ D 1) that

ˇ0;r .LC; / D 1 for sufficiently large 0 < r < 1.

By Section 4.3 and Corollary 4.13 we conclude that the discriminant function

ıL ;C W .0;1/ \ .� log.jC�j//! R�0

has the slopes �1; 0 and therefore a unique break point c0 2 .0;1/. As ıL ;C .s/ D 0 for
s > c0 we conclude that

ıL ;C .s/ D �s C c
0 for 0 < s � c0.

By [43, Section 3.3.2] it follows that if 
 D 
 [ � 
] is the (unique) slope of LC; , then

c0 C log.r/ D ıL ;C .� log.r// D �d � log.
 [/

for some constant d 2 Z>0. This implies


 [ D exp.�c0=d/r�d if 0 < � log.r/ � c0.

As 
] is determined by the Swan conductor, we get


 D exp.�c0=d/r�d

p
C

0;r

as desired by taking c D c0=d .

Next, we turn to the computation of the slopes of zLC . Let F Š Fq..t// be the field
of norms (in the sense of Fontaine–Wintenberger [51]) attached to the Lubin–Tate exten-
sion E1 of E. We choose the identification

G ı Š D�˘
Fp

induced by the isomorphism between the completion of the perfection of F and E1. In
this way, zL corresponds to a representation V of the Weil group of F .

If � is of dimension n D 1, then V is trivial, by local class field theory, and thus its
Swan conductor is zero. In general, we have the following result.
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Proposition 4.18. With the above notations, assume moreover that ƒ is an algebraically
closed field, � is irreducible of dimension n and its Swan conductor .with respect to E/
cannot be lowered by twisting by a character. The slope of V .with respect to F / is then

sl.V / D qbsl.�/c.q � 1/.sl.�/ � bsl.�/c/C qbsl.�/c
� 1

and its Swan conductor .with respect to F / is

sw.V / D n.qbsl.�/c.q � 1/.sl.�/ � bsl.�/c/C qbsl.�/c
� 1/:

Here bac denotes the lower Gauß bracket.

Proof. As � is irreducible we see that V has a unique slope. We want to compute

sl.V / D inf ¹u 2 RC W GaluF � ker.V /º:

First, we claim that

inf ¹u 2 RC W GaluE \ GalE1 � ker.�jGalE1 /º D sl.�/:

It is clear that the left-hand side is smaller than the right-hand side. If it were strictly
smaller, since E1 is the maximal totally ramified abelian extension of E, it would mean
we could twist � by a character to lower its slope, contradicting our hypothesis.

We know from [51, Corollaire 3.3.6] that for each u,

GaluE \ GalE1 D Gal E1=E .u/F ;

where  E1=E denotes the inverse Herbrand function of the extension E1=E (i.e., the
limit as m ! 1 of the inverse Herbrand functions  Em=E of the extensions Em=E,
whose values stabilize as will be shown by the explicit formulas below).

Therefore, we conclude that

sl.V / D  E1=E .sl.�//:

Let m � 1. The inverse Herbrand function  Em=E can be computed as follows: it sends
x � 0 to x, x 2 Œ0;m � 1� to

qbxc.q � 1/.x � bxc/C qbxc � 1;

and x � m � 1 to
qm�1.q � 1/.x � .m � 1//C qm�1 � 1:

In particular, its value at x � m � 1 is independent of m, and is the value  E1=E .x/.
Hence, we obtain

sl.V / D qbsl.�/c.q � 1/.sl.�/ � bsl.�/c/C qbsl.�/c
� 1:

The final assertion of the proposition is [29, Proposition 3.4] and the fact that all irredu-
cible constituents of V have the same slope.
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Lemma 4.19. Let 0 < r < 1, r 2 �C . If V has only one slope, then the slope of zLC at
p�0;r , resp. at pC0;r , is r sl.V /


sl.V /
p�
0;r

, resp. r sl.V /

�sl.V /

p
C

0;r

. In particular, using the notations of
Proposition 4.15, we have

˛.zLC / D sw.V /; ˇ.zLC / D �sw.V /:

Proof. Under the morphism Fp..t//! k.p˙0;r / the element t 2 Fp..t// is mapped to an
element of valuation r
�

p˙
0;r

. Unraveling the definitions implies the claim.

In particular, we see that the discrimant function for zLC recalled above is the line

.0;1/! R; s 7! sw.V / � s:

Corollary 4.20. Let ƒ be an algebraically closed field of characteristic `. Let � be an
irreducible ƒ-representation of WE of dimension n > 1, with corresponding local sys-
tem L on Div1, and assume that the Swan conductor of � cannot be lowered by twisting
by a character. Then the stalk of

.j_ı/�F .jŠ zL/

at any geometric point Spd.C /! G_ı is concentrated in degree 0 and has rank

nC n
�
qbsl.�/c.q � 1/.sl.�/ � bsl.�/c/C qbsl.�/c

� 1
�
:

Proof. We already proved concentration in degree 0 in Corollary 4.16.
When r is close to 0, L ;C becomes trivial and thus

˛.L ;C ˝
zLC / D rk.L ;C / � ˛.zLC / D sw.V /

by Lemma 4.19. When r is close to 1, the slope of L ;C at pC0;r is exp.�c/r�d

p
C

0;r

for some constants c; d 2 R>0 (by Proposition 4.17), whereas the slope of zLC at pC0;r is

r sl.V /:

�sl.V /

p
C

0;r

(Lemma 4.19). Since

exp.�c/r�d ���!
r!1

exp.�c/ < 1; r sl.V /
���!
r!1

1;

the slope of L ;C is strictly smaller for r close to 1, and thus

ˇ.L ;C ˝
zLC / D rk.zLC / � ˇ.L ;C / D n:

This gives the desired result, by applying Corollary 4.16 and Proposition 4.18.

Remark 4.21. When n D 2, the above formula for the rank takes the following simple
form. First of all, sw.�/ D 2sl.�/. If sw.�/ is even, then bsl.�/c D sw.�/=2, and thus
Proposition 4.18 implies that the rank is

2qsw.�/=2:

If sw.�/ is odd, then bsl.�/c D .sw.�/ � 1/=2, and Proposition 4.18 shows that the rank
is

.q C 1/qsw.�/=2�1=2:



J. Anschütz, A.-C. Le Bras 3710

Let D� be the group of E-points of the group of units of the unique non-split quaternion
algebra over E. Let � be the smooth irreducible (hence finite-dimensional) representation
of D� attached to � by composing the local Langlands correspondence for GL2 over E
with the local Jacquet–Langlands correspondence. Carayol [14, Proposition 6.5] has com-
puted the dimension of � in terms of � :

dim.�/ D

´
2qsw.�/=2 if sw.�/ is even;

.q C 1/qsw.�/=2�1=2 if sw.�/ is odd:

We therefore recover the same formulas as above. This should not be a coincidence.
Indeed, using the notations introduced at the very end of Section 3.5, we expect the pull-
back of

˛�10 ı .�0 ı j
_
0 /
�.LL/

to Div1 � C 01 to be isomorphic to LŒ1�. Therefore

.j_ı/�F .jŠ zL/ 2 DKet.G
_;ı; ƒ/

should be isomorphic to the pullback of A2; .LL/Œ�1� along

G_;ı ! Bun02 �Bun2 Bun12 Š ŒG
_;ı=E��! Bun02:

In particular (see again Section 3.5), .j_ı/�F .jŠ zL/ should be the pullback along the
map

G_;ı Š .BC.O.1=2/n¹0º//=SL1.D/! ŒSpa.k/=D��

of the sheaf associated to the smooth irreducible representation � of D�.
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