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Abstract. We consider conservative cross-diffusion systems for two species where individual mo-
tion rates depend linearly on the local density of the other species. We develop duality estimates and
obtain stability and approximation results. We first control the time evolution of the gap between two
bounded solutions by means of its initial value. As a by-product, we obtain a uniqueness result for
bounded solutions valid for any space dimension, under a non-perturbative smallness assumption.
Using a discrete counterpart of our duality estimates, we prove the convergence of random walks
with local repulsion in one-dimensional discrete space to cross-diffusion systems. More precisely,
we prove quantitative estimates for the gap between the stochastic process and the cross-diffusion
system. We first give rough but general estimates; then we use the duality approach to obtain fine
estimates under less general conditions.
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1. Introduction and notation

Approximations of interacting large populations is motivated by physics, chemistry, biol-
ogy and ecology. A famous macroscopic model was introduced by Shigesada, Kawasaki
and Teramoto in [34] to describe competing species which diffuse with local repulsion.
In the case of two species, it can be written as´

@tu ��.d1uC a11u
2
C a12uv/ D u.r1 � s11u � s12v/;

@tv ��.d2v C a22v
2
C a21uv/ D v.r2 � s21u � s22v/;
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where u and v are the densities of the two species and di , ri , aij and sij are non-
negative real numbers. Completed by initial and boundary conditions, this system (that
we simply refer to as the SKT system) offers a model for the spreading of two interacting
species which mutually influence their propensity to diffuse through the cross-diffusion
terms aij . The other coefficients represent either natural diffusion (di coefficients), repro-
duction (ri coefficients) or competition (sij coefficients). The main motivation of [34]
was to propose a population dynamics model able to detect segregation, that is the exis-
tence of non-constant steady states xu and xv having disjoint superlevel sets of low thresh-
old value. As a consequence of this motivation, the first mathematical results dealing
with this system focused on sufficient conditions for the coefficients to ensure the exis-
tence of non-constant steady states, with a careful study of the stability of the latter.
This study of possible segregation states is still active and we refer to the introduc-
tion of [6] for a nice state of the art. It is a striking fact that during its first years of
existence within the mathematical community, the SKT system has not been studied
through the prism of its Cauchy problem. As a matter of fact, the existence of solu-
tions has been tackled only a few years later: the first paper dealing with this issue
is [26] and it explores the system under very restrictive conditions. Several attempts fol-
lowed, but only with partial results. A substantial progress was achieved by Amann [3,4],
who proposed a rather abstract approach to study generic quasilinear parabolic systems.
The scope of this technology goes far beyond the sole case of cross-diffusion systems.
In the specific case of the SKT system, it offers the existence of local (regular) solu-
tions, together with a criteria of explosion to decide if the existence is global or not.
This fundamental result of Amann has been then used by several authors to establish
existence of global solutions for particular forms of the SKT system. This is done, in
general, under a strong constraint on the coefficients. For instance, [28] treats the case
of equal diffusion rates in low dimension and [21] settles the one of triangular sys-
tems (that is, for two species, when a12a21 D 0). However, the general question of the
existence of global solution for the complete system remains open, even in low dimen-
sion.

Another way to produce a global solution is to sacrifice the regularity of the solutions,
and deal with only weak ones. This strategy relies on the so-called entropic structure of
the system: SKT systems, as the one previously introduced, admit Lyapunov functionals
which decay along time and whose dissipation allows us to control the gradient of the
solution. This method has been used successfully in [10] to prove, for the first time, exis-
tence of global weak solutions for the SKT system, without restrictive assumptions on
its coefficients. After its first discovery in [19], this entropic structure has been explored
and generalized to several systems, allowing for the construction of global weak solutions
for variants of the original SKT system (see [15, 24] and the references therein). With
this low level of regularity for the solutions, uniqueness becomes an issue in itself. It has
been studied either under simplifying assumptions on the system like in [11, 31] or in the
weak-strong setting thanks to the use of a relative entropy (see [12]).
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1.1. Objectives and state of the art

This work is initially motivated by yet another mathematical challenge offered by the SKT
system: its rigorous derivation. The diffusion operator used in the SKT system is specific.
We focus in this paper on the main difficulty raised by this operator, which is the non-
linearity of diffusion term. The initial goal of the work is to approximate the conservative
SKT system, without self-diffusion, that is, the following one:´

@tu ��.d1uC a12uv/ D 0;

@tv ��.d2v C a21uv/ D 0;
(1.1)

where all the coefficients di and aij are assumed to be positive. Whereas (possibly hetero-
geneous) diffusion of lifeless matter (e.g., ink or any type of chemical substance) uses the
Fick diffusion operator �div.�r�/ to express the spread, SKT systems rely on the (more
singular) operator ��.� �/. As it was already explained in [34], this choice of diffusion
operator is at the core of the repulsive mechanism allowing the segregation to appear.
However, the justification proposed in [34] was rather formal, leaving open the question
of the rigorous justification of SKT systems. As far as our knowledge goes, there exist
mainly three approaches for the derivation of SKT systems:

(i) The first path was proposed in [22], where an SKT model is obtained as an asymp-
totic limit of a family of reaction-diffusion systems. In this approach, the idea is that one
of the two species exists in two states (stressed or not), and switches from one to the
other with a reaction rate which diverges. This was used in [22] to obtain formally a tri-
angular cross-diffusion system. This strategy has been followed with a rigorous analysis,
mainly to produce triangular systems (see [36] and references therein) and more recently
for a family of “full” systems in [14] which, however, do not include the SKT one.

(ii) Another strategy was proposed by Fontbona and Méléard in [18]. The idea is
to start from a stochastic population model in continuous space where the individuals’
displacements depend on the presence of concurrents. Then, the large population limit
(under adequate scaling) leads to a non-local cross-diffusion model. In comparison with
system (1.1), the limit model rigorously derived in [18] is a lot less singular, because of
several convolution kernels. It was explicitly asked in [18], whether letting the convolu-
tion kernels vanish to the Dirac mass was handleable limit or not. A first partial answer
was given in [30], but applied for only specific triangular systems. More recently, it was
discovered in [17] that even for the non-local systems, it is possible to ensure the persis-
tence of the entropy structure, allowing to answer fully to the question of Fontbona and
Méléard, at least for the standard SKT system. A little bit before [17] appeared, Chen et al.
proposed another strategy in [8] (see also [9] which deals with a slightly different family
of systems). It also starts from a stochastic model and makes use of an intermediate non-
local one. The main difference with [17,18,30] is that in [8] the two asymptotics are done
simultaneously (the size of population goes to infinity and the parameter of regularization
goes to 0). This direct approach amounts to “commute” the asymptotic diagram from the
stochastic model to the final PDE; this is a common feature with the current work that we
will comment later on.
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(iii) The third path was proposed in [13] and justifies the SKT model through a semi-
discrete one. The latter is itself derived from a stochastic population model in discrete
space where individuals are assumed to move by pair, in order to ensure reversibility of the
process and the existence of an entropy for the limit model. In [13], the link to the stochas-
tic was done formally whereas the asymptotic analysis linking the semi-discrete model
to the SKT system was proved rigorously, relying on a compactness argument which is
allowed thanks to the existence of the Lyapunov functional for the semi-discrete system.

In this paper, we are interested in connections between microscopic random indi-
vidual-based models (or particle system) and such macroscopic deterministic dynamics,
in the spirit of strategies (ii) and (iii) described above. We do not use any non-local approx-
imated system as in [8,18], being inspired instead by the semi-discrete approach proposed
in [13]. We also consider a discrete space and that each species moves randomly and is
only sensitive to the local size of the other species. Let us comment on the main dif-
ferences and novelties of this work compared to [13]. First, we prove rigorously that
the suitably scaled stochastic process converges in law in Skorokhod space to SKT sys-
tem (1.1) and we perform this space and time scaling limit at once. Besides, individuals of
each species move independently with a rate proportional to the number of individuals of
the other species, on the same site. We do not need to make them move by pair, which may
be hard to justify regarding phenomenon at stake. Indeed, we do not need a reversibility
property and do not use the entropic structure. The main difficulty in proving convergence
of the stochastic process at once lies in the control of the cumulative quadratic rates due
to local interactions when the number of sites becomes large. As far as we have seen,
the entropy structure does not provide the suitable control of these non-linear terms and
a way to get tightness and identification in general. We use a different approach based
on generalized duality. This provides quantitative estimates in terms of space discretiza-
tion and size of population. Moreover, at the level of the PDE system, it implies a local
uniqueness result for bounded solutions of the SKT system. The duality approach allows
us to compare locally the stochastic process with its semi-discrete deterministic approxi-
mation. It is optimal in the sense that it provides the good time-space scaling for such an
approximation.

Let us describe now the stochastic individual-based model. The population is spatially
distributed amongM sites. The process under consideration is a continuous time Markov
chain .U .t/;V .t//t�0 taking values in NM �NM . The two coordinates count the number
of individuals of each species at each site, for each time t � 0. Each individual of each
species follows a random walk, and its jumps rate increases linearly with respect to the
number of individuals of the other species. The dynamic is defined by the jump rates as
follows. For any vector of configurations .u; v/ 2 NM �NM , the transitions are

u 7! uC .eiC� � ei / at rate 2ui .d1 C a12vi /;

v 7! vC .eiC� � ei / at rate 2vi .d2 C a21ui /;

where .ej /1�j�M is the canonical basis of RM , e0D eM , eMC1D e1 and � 2 ¹�1;1ºwith
both values equally likely. Let us mention that hydrodynamic limits of other stochastic
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models with repulsive species have been considered, in particular in the context of exclu-
sion processes, see, e.g., [33]. In that case, local densities are bounded, so difficulties and
limits are different. In an other direction, stochastic versions of the limiting SKT systems
have been considered, see, e.g., [16]. We also mention [20] for hydrodynamic limit to fast
diffusion, where the non-linearity is also in the motion component. The model is differ-
ent, and we are interested here in the interaction of two species, without self-diffusion.
Besides, our techniques are different since we do not rely on and do not need an entropic
structure, and the control of the approximation involves a different distance.

This work contains two main results, which at first sight can appear unrelated in
their formulation. The first result is a quantitative stability estimate on the SKT system
which bounds the distance between two solutions in terms of their initial distance. This
result is based on a new duality lemma and applies for bounded solutions, only if one of
them is small enough. As a by-product of this stability estimate, we prove the unique-
ness of bounded solutions of the conservative SKT system under a smallness condition
which does not imply ellipticity for the system (later on, we will comment on this non-
perturbative smallness condition). This result is valid in arbitrary dimension and is, as far
as our knowledge goes, new. Uniqueness theorems for (only) bounded solutions of the
full SKT system are missing in the current literature [11, 12, 31].

The second main result is the convergence of the properly scaled sequence of pro-
cesses .UM;N ;V M;N /M;N2N to the SKT system. We obtain quantitative estimates of the
gap between the trajectories of this process extended to the continuous space and the solu-
tion of SKT system, in a large population and diffusive regime. This analysis is performed
in a one-dimensional setting for the space variable. The strategy is to insert the semi-
discrete model proposed in [13] and estimate separately the gap between our stochastic
process and this semi-discrete system and then, estimate (with enough uniformity) the
distance between the semi-discrete system and the continuous SKT limit. Following this
plan, we first propose a general estimate, which relies on naive bounds of the quadratic
diffusion term. Roughly, we first locally bound the size of the population by the (constant)
total number of individuals. These bounds allow for convergence with a fixed number of
sites but lead to an unreasonable assumption of a superexponential number of individuals
per site when the number of sites increases. When we faced this difficulty, we tried to
obtain an estimate as sharp as possible to capture the good scales and compare on each
site the different objects. It is during this step that we discovered the stability estimate
described above, which is interesting for its own sake. A nice feature of this stability esti-
mate is that we can transfer it onto the semi-discrete and stochastic setting. We obtain
then the convergence of the stochastic model towards the SKT system, with sharp esti-
mates and relevant size scales. This asymptotic study shares a similar limitation as the
previous paragraph: it holds only under the assumption of small regular solution of the
SKT system, which is ensured by Amann’s theorem [3, 4].

The paper is organized as follows. In the end of this section, we collect several nota-
tions which will be used throughout the paper. In Section 2, we define the sequence of
stochastic processes we consider and we recover the semi-discrete system introduced
in [13]. We also state our two main results and comment on some potential extensions.
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In Section 3, we show the convergence in law of the stochastic process in path space
towards the semi-discrete system when the number of individuals goes to infinity but the
number of sites remains fixed. We provide a quantification of this convergence. It implies
the general (no restriction on the limiting SKT system) but naive (in terms of scales)
convergence discussed above. Then, Section 4 is dedicated to the duality estimates with
source terms and their consequences. These duality estimates account for the interacting
system when one of the population is seen as an exogenous environment, which amounts
to decouple the two species. In the first short paragraph (Section 4.1), we state and prove
the generalized duality lemma and its application to the stability estimate of the SKT sys-
tem in the continuous setting. This paragraph is the only one of the study in which we
work in arbitrary dimension for the space variable. Then, the rest of Section 4 focuses on
the translation of these estimates in the semi-discrete setting. This includes the definition
of reconstruction operators, the study of the discrete Laplacian matrix and the translation
of classical function spaces into the discrete setting. Eventually in Section 5, we apply
the previous machinery to the difference between the stochastic process and the approxi-
mated system that solutions of (1.1) solve when looked at a semi-discrete level. We then
deduce our main asymptotic theorem by controlling the martingales and approximation
terms. In a short appendix, we also give a dictionary which gives the correspondence of
different objects in the discrete and continuous settings.

1.2. Notation

Finite-dimensional vectors. Throughout the article, vectors will always be written in bold
letters. The canonical basis of RM will be denoted by .ej /1�j�M . Due to the periodic
boundary condition that we will use, we will frequently use the convention e0 D eM and
eMC1 D e1.

Given M 2 N and p 2 Œ1;1/, we introduce a rescaled norm k � kp;M defined for
x 2 RM by kxkp;M WD M�1=pkxkp , where k � kp denotes the usual `p-norm on RM .
Similarly, we define the rescaled Euclidean inner product .�j�/M of RM for x;y 2 RM by
.xjy/M DM

�1.xjy/, where .�j�/ is the usual inner product of RM such that kxk22;M D
.xjx/M .

The symbol ˇ is the internal Hadamard product on RM , that is, .x ˇ y/i D xiyi .
We will also often use (when it makes sense) the operator x ˛ y defined by .x ˛ y/i D
xi=yi and the “vectorial” square root x1=2 whose components are .

p
xi /1�i�M .

The arithmetic average of all the components of a vector x will be denoted Œx�M WD
M�1

PM
iD1 xi .

The vector of RM for which every component equals 1 is denoted by 1M . The orthog-
onal projection onto SpanR.1M /? is denoted with a tilde, that is, zx D x � Œx�M1M .

Finally, for x;y 2 RM we write x � y whenever x � y 2 RMC .

Functions. We will manipulate random and deterministic functions which may depend on
the time variable t 2 RC and the space variable x 2 Td , where T WD R=Z is the flat peri-
odic torus. We will rely on the following convention for functions: uppercase letters will
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be reserved for random elements whereas lowercase letters will represent deterministic
functions. Accordingly to the previous paragraph, vector-valued functions will be denoted
in bold whereas scalar-valued functions will be denoted in the normal font.

Quite often results will be stated on a fixed time interval Œ0; T �. For this reason,
we introduce the periodic cylinder QT WD Œ0; T � � Td . For any function space E defined
on Td or QT , the corresponding norm will be denoted by k � kE , e.g., k � kL2.Td /. In the
case of a Hilbert structure, the inner product will be denoted by .�j�/E , e.g., .�j�/L2.Td /.
We will frequently use the H s.Td / Sobolev space and their homogeneous subspace
PH s.Td / constituted of those elements having a vanishing average on Td .

For random functions ZW� �QT ! R, we will frequently use the norm

jjjZjjjT WD
�

sup
t2Œ0;T �

E.kZ.t/k2
H�1.Td /

/C E.kZk2
L2.QT /

/
�1=2

: (1.2)

Note that in the case of a deterministic function z, the previous norm becomes simply

jjjzjjjT WD .kzk
2
L1.Œ0;T �IH�1.Td //

C kzk2
L2.QT /

/1=2: (1.3)

Finally, for any metric space X , D.Œ0; T �; X/ denotes the space of càdlàg functions
from Œ0; T � to X endowed with the Skorokhod topology.

2. Main objects and results

Before stating our main results, we need to define precisely the objects that we aim to
consider.

2.1. Repulsive random walks and scaling

Let us define the stochastic process by means of a trajectorial representation using Pois-
son random measures. We consider a probability space .�;F ;P / and introduce a family
of independent Poisson random measures .N j /j2N on RC � RC � ¹�1; 1º with com-
mon intensity ds˝ d�˝ ˇ.d�/, where ˇ is the law of a Bernoulli .1=2/ random variable.
We refer to [23, Chapter 1, Definition 8.1] for the definition of Poisson random mea-
sure. Moreover, the initial data .U .0/; V .0// almost surely belongs to NM � NM . The
corresponding process .U .t/; V .t//t�0 is then defined as the unique strong solution in
D.Œ0;1/;N2M / of the following system of stochastic differential equations (SDEs)
driven by the aforementioned measures:8̂̂̂̂
<̂̂
ˆ̂̂̂:
U .t/DU .0/C

Z t

0

Z
RC�¹�1;1º

MX
jD1

1��2Uj .s
�/.d1Ca12Vj .s

�//.ejC�� ej /N j.ds; d�; d�/;

V .t/DV .0/C

Z t

0

Z
RC�¹�1;1º

MX
jD1

1��2Vj .s
�/.d2Ca21Uj .s

�//.ejC�� ej /N j.ds; d�; d�/;
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where the jump rates d1, d2, a12 and a21 are the one of (1.1). Let us first explain roughly
the terms of these SDEs. The measures N produce the sources of randomness for the
jumps; the indicator functions 1 select the jumps which actually occur depending on the
number of individuals of each species; the jump of one individual from j to its neighbor
j C � induces the variation ejC� � ej on the vector counting the population size of site
(resp. U and V ). The existence and uniqueness of this system of SDEs can be proved
by induction using the fact that the process is constant between two jumps and the total
jump rate is bounded. Indeed, the total population size of each species is constant along
time: kU .t/k1;M D kU .0/k1;M , kV .t/k1;M D kV .0/k1;M . Therefore, conditionally on
the initial value .U .0/;V .0//, the process .U .t/;V .t//t�0 is a pure jump Markov process
on a finite state space with bounded rates. The strong uniqueness and existence of this
system of SDEs are actually also a consequence of more general statements for SDEs
with jumps, see in particular [23, Chapter 4, Theorem 9.1].

We are interested in the approximation (hydrodynamic limit) when the population size
and the number of sites tend to infinity. Informally, we consider

.UM;N .t/;V M;N .t//t�0 D
�U .M 2t /

N
;
V .M 2t /

N

�
t�0

but now interaction occurs through the local density of individuals. The scaling parameter
N 2N� yields the normalization of the population per site and provides a limiting density
when N goes to infinity. The initial population per site has the order of magnitude N and
each species’ motion rate is an affine function of the density of the other species on the
same site. The motion of each individual is centered and we consider the diffusive regime,
which leads the time acceleration term by a factorM 2. This time acceleration is equivalent
to multiply the jump rates by the same factor.

More precisely, for i; j D 1; 2 and t � 0, we set

�
M;N
1;j .t/ WD 2M 2NU

M;N
j .t/.d1 C a12V

M;N
j .t//;

�
M;N
2;j .t/ WD 2M 2NV

M;N
j .t/.d2 C a21U

M;N
j .t//:

For an initial data .UM;N .0/;V M;N .0//, the normalized process .UM;N .t/;V M;N .t//t�0
is defined as the unique strong solution in D.Œ0;1/; R2MC / of the following system
of SDEs:8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

UM;N .t/ D UM;N .0/

C

Z t

0

Z
RC�¹�1;1º

MX
jD1

1
���

M;N
1;j

.s�/

ejC� � ej
N

N j .ds; d�; d�/;

V M;N .t/ D V M;N .0/

C

Z t

0

Z
RC�¹�1;1º

MX
jD1

1
���

M;N
2;j

.s�/

ejC� � ej
N

N j .ds; d�; d�/:

(2.1)
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2.2. The intermediate (semi-discrete) system

To estimate the gap between the discrete stochastic process (2.1) and the SKT system
(1.1), we are going to use a third system on which our asymptotic analysis will pivot8̂̂<̂

:̂
d
dt
uM .t/ ��M .d1u

M .t/C a12u
M .t/ˇ vM .t// D 0;

d
dt
vM .t/ ��M .d2v

M .t/C a21u
M .t/ˇ vM .t// D 0;

(2.2)

where the unknowns are the vector-valued curves uM;vM WRC!RM , and the matrix�M
is the periodic Laplacian matrix, that is,

�M WDM
2

0BBBBB@
�2 1 0 � � � 1

1 �2 1 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � 1 �2 1

1 � � � 0 1 �2

1CCCCCA 2 MM .R/: (2.3)

This semi-discrete system corresponds to a large population approximation but fixed
number of sites M . The existence and uniqueness of solution for system (2.2) can be
proven using the standard Picard–Lindelöf theorem, as this is done in [13] where this
semi-discrete system has been introduced.

2.3. Statements

Our first main result is a stability estimate for the conservative SKT system (1.1). As far
as our knowledge goes, this result is new in the context of weak solutions for the SKT
system. To measure the distance between two solutions on a time interval Œ0; T �, we use
the norm defined in (1.3) in the deterministic setting, see Section 1.2. We define also the
affine functions �i WR! R for i D 1; 2, by �i .x/ WD di C aijx with ¹i; j º D ¹1; 2º.

Theorem 2.1. Let T >0 and consider a couple .u;v/2L1.QT /2 and .xu;xv/2L1.QT /2

of non-negative bounded weak solutions of the SKT system (1.1), initialized by .u0; v0/ 2
L1.Td /2 and .xu0; xv0/ 2 L1.Td /2, respectively. If the following condition

kukL1.QT /kvkL1.QT / <
d1d2

a12a21
(2.4)

is satisfied, then we have the stability estimate

jjju � xujjj2T C jjjv � xvjjj
2
T

. ku0 � xu0k2H�1.Td /
C kv0 � xv0k

2
H�1.Td /

C T .Œu0 � xu0�
2
Td k�1.xv0/kL1.Td / C Œv0 � xv0�

2
Td k�2.xu0/kL1.Td //;

where the constant behind . depends only on aij , di , kukL1.QT /, kvkL1.QT /, and
jjj � jjjT is defined by (1.3). In particular, if a bounded non-negative solution satisfies (2.4),
then there is no other bounded non-negative solution sharing the same initial data.
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Remark 2.2. In the case of equality in the smallness condition (2.4), uniqueness remains
but the stability estimate controls only the H�1 part of the jjj � jjjT -norm.

The proof of Theorem 2.1 relies on a generalized duality lemma presented in Sec-
tion 4.1 and on the concept of dual solutions developed in [30], for the Kolmogorov
equation. The uniqueness result contained in Theorem 2.1 is conditional: if there exists
a bounded (non-negative) solution .xu; xv/ satisfying (2.4), then it is unique in the class of
bounded weak solutions. The existence of global bounded solutions for the SKT system
is a long-standing challenge in the context of cross-diffusion systems. Partial results are
known, in the wake of the quest for even more regular solutions (which are in particu-
lar bounded), like [21] or [28] that we already cited. In the weak solutions setting, the
paper [25] gives sufficient – yet restrictive – conditions on the coefficients of the SKT
system to ensure boundedness. Since the previous results are rather constraining on the
coefficients, we prefer to rely on Amann’s theory [3, 4] and understand Theorem 2.1 as
a local result which holds for initial data satisfying (2.4). However, we emphasize that
condition (2.4) is considerably less restrictive than the standard perturbative assumptions
considered for cross-diffusion systems and we call it for this reason a non-perturbative
smallness condition. This condition does not apply to both species but only to the product
of the densities: one of the two functions u and v can be huge. Besides, the stability and
uniqueness result contained in Theorem 2.1 is not of a “weak-strong” type: both solu-
tions are weak (only bounded, no a priori assumptions on the spatial derivatives) which
is, as far as our knowledge goes, a substantial step in the analysis of cross-diffusion sys-
tems. Indeed, because of the stiffness of those systems, a common strategy to recover
a well-posedness result is to impose on the coefficients or the solution itself a constraint
ensuring that the total system is uniformly elliptic in the sense that it can be written as
@tU � div.A.U /rU/ D 0 with a diffusion matrix A.U / uniformly positive, that is, sat-
isfying hA.U /X;Xi & kXk22 pointwisely for X 2 R2. In our case, a direct computation
shows that the matrix A.U / D A.u; v/ is

A.u; v/ D

�
d1 C a12v a21u

a12v d2 C a21u

�
:

For non-negative densities u and v, the trace of the previous matrix field is positive, so
its positiveness (as a quadratic form) is equivalent to det.A.U / C A.U /T/ > 0, that is,
4.d1 C a12v/.d2 C a21u/ � .a21u C a12v/

2. Since this inequality is trivially true for
.u; v/ D 0, the previous computation paves the way to well-posedness results for small
enough densities or strong enough self-diffusion with respect to the cross-diffusion coef-
ficients (see, e.g., [5, 12, 31]). In all these results, the setting in which the solutions are
built is in fact strongly elliptic, and in the best case, a weak-strong uniqueness result
is obtained (see, e.g., [5]). In our case, condition (2.4) does not ensure strong elliptic-
ity for the system: v could be very small and u could be very large and still we could
have 4.d1 C a12v/.d2 C a21u/ < .a21uC a12v/2. In particular, our stability result is of
“weak-weak” type. As the proof of Theorem 2.1 (which is done in Section 4.1) is totally
insensitive to the dimension d , it is here stated in full generality. However, the remaining
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part of the paper is sensitive to the dimension and will focus on the case d D 1. It deals
with the approximation of the SKT system by stochastic processes.

Before stating our second main result, let us comment briefly Section 3 in which we
propose a first estimates of the gap between the stochastic process defined by (2.1) and
the semi-discrete system (2.2) on a fixed interval Œ0; T �. The methodology at stake in this
paragraph, which is quite rough, allows for asymptotic quadratic closeness between these
two objects, provided that, as N;M !C1, we have the following:

N �M 4 exp.cM 4T /; (2.5)

where c is some constant which will become more explicit in the next section. Combining
this fact with the compactness result [13, Theorem 8], we obtain convergence (up to a sub-
sequence) of our stochastic process towards a weak solution of the SKT system. These
estimates and convergence yield first results which are general in terms of parameters
and form of the solution. However, the limitations of this approach are twofold. First, the
scaling condition (2.5) involves a superexponential and time-dependent number of indi-
viduals per site in order to be able to sum local estimates. As we will see and as we can
guess from the form of quadratic variations, this scaling is too restrictive for convergence.
Second, this approach necessitates a self-diffusion term in the limiting system in order
to use the compactness result of [13]. Indeed, self-diffusion term tends to regularize the
solution.

Then we develop a different approach, based on the discrete translation of Theo-
rem 2.1. This alternative method does not rely on [13], so that self-diffusion is not needed
in the system. The convergence result is obtained by means of a quantitative estimate
which bounds the expectation of the jjj � jjjT -norm of the gap between the stochastic pro-
cesses and the solution of the SKT system. In particular, there are no compactness tools
used and the entropy of the system is not needed. Convergence is then guaranteed only
with a quadratic number of individuals per site. This corresponds to the expected scal-
ing for having local control of the stochastic process by its semi-discrete approximation,
since beyond this scaling quadratic variations do not vanish. The main disadvantage of
this new method is that, like for Theorem 2.1, it needs the existence of a bounded solution
satisfying condition (2.4).

In order to state the following result, we need to introduce, for any integerM � 1, the
discretization of the flat (one-dimensional) torus T

TM WD ¹x1; x2; : : : ; xM º with xk D
k

M
for 1 � k �M: (2.6)

Given a vector u 2 RM , classically there exists exactly one continuous piecewise lin-
ear function defined on T for which its value on each point xk of TM is given by uk ;
we denote this function by �M .u/. We adapt the same notation if instead of u one consid-
ers a vector-valued map U (which could depend on the event ! or the time t for instance),
so that �M .U / becomes a real-valued map.

This time, to measure the distance between those random functions, we use the prob-
abilistic version of the distance introduced in Section 1.2, that is, (1.2).
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Theorem 2.3. Let T > 0. In the one-dimensional case d D 1, assume the existence of
a non-negative solution .u; v/ belonging to L1.QT /\L2.0; T IH 3.T // of system (1.1),
initialized by u0, v0 in L1 \ H 3.T / and satisfying assumption (2.4). Consider the
stochastic processes .UM;N ; V M;N / defined by (2.1) and assume the existence of C0
such that for all M;N 2 N,

kUM;N .0/k1;M C kV
M;N .0/k1;M � C0 almost surely. (2.7)

Then, there exist a sequence .ıM /M 2 RN
>0 converging to 0 and a constant D > 0 such

that for any .M;N / 2 N2 satisfying N �M 2D, there holds

jjj�M .U
M;N / � ujjj

2

T C jjj�M .V
M;N / � vjjj

2

T

. EŒk�M .U
M;N .0// � u0k

2
H�1.T/ C k�M .V

M;N .0// � v0k
2
H�1.T/�C ıM C

M 2

N
;

where jjj � jjjT is defined by (1.2) and the symbol . and the constant D depend (only) on
C0, T , di , aij , kukL1.QT /, kvkL1.QT /, while the sequence .ıM /M depends only on the
solution u, v.

Remark 2.4. If the solution u, v is assumed to be more regular, the convergence
of .ıM /M can be estimated more accurately. See Remark 5.4 for more details. Also,
L2.0; T IH 3.T // is not optimal and could be replaced by L2.0; T IH 2Cs.T // for any
s > 1=2.

This immediately implies the following convergence for the jjj � jjjT -norm.

Corollary 2.5. Let T > 0. Under the assumptions of Theorem 2.3, consider an extraction
function �WN ! N such that M 2 D o.�.M//. If the initial positions of the individuals
are well prepared in the sense that

EŒk�M .U
M;�.M/.0// � u0k

2
H�1.T/ C k�M .V

M;�.M/.0// � v0k
2
H�1.T/� �!M!C1

0;

then we have

lim
M!1

jjj�M .U
M;�.M// � ujjj

2

T C jjj�M .V
M;�.M// � vjjj

2

T D 0;

where jjj � jjjT is defined by (1.2).

Let us end up with other perspectives and extensions we have in mind.
In this work, we considered periodic boundary conditions since the domain of study

is the flat torus (be it in dimension 1 or more). For Theorem 2.1, our method of proof
relies on fine energy estimates involving negative Sobolev and quadratic norms. There
is no doubt that the method of proof we introduce can be adapted without much diffi-
culty to boundary conditions that are more frequently used in the population dynamics
(as homogeneous Dirichlet or Neumann, for instance). For the description of the stochas-
tic individual-based model and Theorem 2.3, it amounts to killing the individuals hitting
the boundary (for homogeneous Dirichlet boundary condition) or reflecting the motion by
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authorizing only jumps that remain inside the domain (in the case of Neumann boundary
condition). This would be an interesting extension of our work. It would lead to additional
technical difficulties, but we do not see any major issues in the application of our method.

The approach we have developed in this work differs from more classical techniques
relying on reversibility property or the existence of suitable Lyapunov functional. This
point of view allows to get convergence in a strong sense. This ensures that the number of
individuals of the stochastic process on a given site is well approximated by the limiting
SKT system. Moreover, we expect that this approach can be extended in several directions
and could be use for more sophisticated models. An extension for which we are rather
confident is the generalization of our asymptotic analysis to higher dimension. An upper
limit is fixed by the avatar of the Bramble–Hilbert lemma, which is Lemma 4.6. This latter
demands a Sobolev embedding H 2.Td / ,! C0.Td /, which holds only for d D 1; 2; 3.
On the other hand, keeping in mind that solutions of the system of PDEs represent a pop-
ulation density in an environment, the exploration of such system in dimensions greater
than 4 loses some interest. We thus believe that the analysis that we develop is adaptable
to dimensions 2 and 3. However, this seems to imply a technical cost.

Besides, we believe that birth or death of individuals can be included in our frame-
work. This is relevant for modeling purposes and would add a reaction term in the limiting
system. Originally the SKT system was introduced because of its ability to produce
segregated states. But these particular equilibria result from the interaction of the cross-
diffusion rates and the reaction rates (that we have chosen to neglect here) terms.

Finally, we expect that our proofs can be also extended to more general cross-diffusion
terms or self-diffusion. In a nutshell, we believe that the main lines of our approach should
work for various extensions and could lead to interesting future works.

3. A first approach

The trajectorial representation (2.1) yields for each coordinate of UM;N ,

U
M;N
i .t/ D U

M;N
i .0/ �

1

N

Z t

0

Z
RC�¹�1;1º

1
���

M;N
1;i

.s�/
N i .ds; d�; d�/

C
1

N

Z t

0

Z
RC�¹�1;1º

1
���

M;N
1;i�1

.s�/
1�D1N

i�1.ds; d�; d�/

C
1

N

Z t

0

Z
RC�¹�1;1º

1
���

M;N
1;iC1

.s�/
1�D�1N

iC1.ds; d�; d�/:

By compensating the Poisson random measure, we obtain the following semimartin-
gale decomposition (see [23, Chapter 2, Definition 4.1]):

UM;N .t/ D AM;N .t/CMM;N .t/; (3.1)

where AM;N D .AM;Ni /1�i�M is a continuous process defined by

AM;N .t/DUM;N .0/C

Z t

0

d1�MU
M;N .s/dsC

Z t

0

a12�M .U
M;N .s/ˇV M;N .s//ds;
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with �M defined as in (2.3), and MM;N
D .M

M;N
i /1�i�M is a martingale. More pre-

cisely, for any 1 � i � M , M
M;N
i is a square integrable martingale whose predictable

quadratic variation is given, for t � 0, by

hM
M;N
i i.t/ D

M 2

N

Z t

0

d1.2U
M;N
i .s/C U

M;N
iC1 .s/C U

M;N
i�1 .s// ds

C
M 2

N

Z t

0

a12
�
2U

M;N
i .s/V

M;N
i .s/C U

M;N
iC1 .s/V

M;N
iC1 .s/

C U
M;N
i�1 .s/V

M;N
i�1 .s/

�
ds: (3.2)

Then, there exists a constant C , which only depends on the diffusion coefficients, such
that

MX
iD1

hM
M;N
i i.t/ � C

M 2

N

Z t

0

.kUM;N .s/k1 C kU
M;N .s/k22 C kV

M;N .s/k22/ ds: (3.3)

We refer to [23, Chapter 1.6] for the definitions of martingales and to [23, Chapter 2.2]
for the more specific form of martingales appearing here. The analogous decomposition
holds for the coordinates of .V M;N .t//t�0, the second species.

Let us give first estimates of the gap between the stochastic process and its approxi-
mation in large population for a fixed number of sites. Let

UM;N .t/ D UM;N .t/ � uM .t/; VM;N .t/ D V M;N .t/ � vM .t/:

Proposition 3.1. We assume that there exists C0 > 0 such that almost surely, for any
M;N � 1,

kUM;N .0/k1;M C kV
M;N .0/k1;M C ku

M .0/k1;M C kv
M .0/k1;M � C0:

Then, for any T � 0, there exist c1; c2 > 0 such that for any M;N � 1,

E
�

sup
t2Œ0;T �

kUM;N .t/k22;M C sup
t2Œ0;T �

kVM;N .t/k22;M
�

�

�
E.kUM;N .0/k22;M C kV

M;N .0/k22;M /C c1

�M 2

p
N
C T

M 3

N

��
ec2M

4T ;

where c1 and c2 only depend on the diffusion parameters and the initial bounds.

In particular, this estimate guarantees that the normalized stochastic process converges
to the semi-discrete SKT system when the population size becomes large and the number
of sites is fixed. This constitutes an alternative approach for the rigorous derivation of the
SKT system of [8], starting from discrete space. Both results seem to involve the same
scales, with a number of individuals exponentially large compared to the inverse of the
spatial scaling parameter. Our approach, in where the interaction is restricted to the same
site, seems to relax the condition of small cross-diffusion parameters in [8]. Nevertheless,
our main motivation in the rest of the paper is to go beyond this exponential scale and
provide sharper estimates.
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Proof of Proposition 3.1. First, using the fact that the total number of individuals is con-
stant over time, we observe that under our assumptions

max.kUM;N .t/k1;M ; kV M;N .t/k1;M /

D max.kUM;N .0/k1;M ; kV M;N .0/k1;M / � C0 (3.4)

almost surely for any M;N � 1, and

max.kuM .t/k1;M ; kvM .t/k1;M / D max.kuM .0/k1;M ; kvM .0/k1;M / � C0 (3.5)

for any M � 1. Combining (3.1) and (2.2), we can notice that the process UM;N .t/ D

UM;N .t/ � uM .t/ has finite variations and satisfies

UM;N .t/ DUM;N .0/C

Z t

0

d1�MUM;N .s/ ds

C

Z t

0

a12�M .U
M;N .s/ˇ V M;N .s/ � uM .s/ˇ vM .s// ds CMM;N .t/:

Consider now the square of its coordinates

U
M;N
i .t/2 D U

M;N
i .0/2 C

Z t

0

2U
M;N
i .s�/ dU

M;N
i .s/CR

M;N
i .t/

for i D 1; : : : ;M , where

R
M;N
i .t/ D

X
0<s�t

¹U
M;N
i .s/2 �U

M;N
i .s�/2 � 2U

M;N
i .s�/.U

M;N
i .s/ �U

M;N
i .s�//º:

Putting the two last expressions together yields

U
M;N
i .t/2 D U

M;N
i .0/2 C 2d1

Z t

0

U
M;N
i .s/.�MUM;N .s//i ds

C 2a12

Z t

0

U
M;N
i .s/.�M .U

M;N .s/ˇ V M;N .s/ � uM .s/ˇ vM .s///i ds

C 2

Z t

0

U
M;N
i .s�/ dM

M;N
i .s/CR

M;N
i .t/:

Given u 2 RM , introduce the discrete gradient vector rCMu D .M.uiC1 � ui //1�i�M
(recalling the periodic convention). Summing over all the sites i 2 ¹1; : : : ;M º and using
discrete integration by parts in the second and third terms of the right-hand side yields

kUM;N .t/k22 D kU
M;N .0/k22 � 2d1

Z t

0

kr
C

MUM;N .s/k22 ds

� 2a12

Z t

0

MX
iD1

.rCMUM;N .s//i

� .rCM .U
M;N .s/ˇ V M;N .s/ � uM .s/ˇ vM .s///i ds

C 2

MX
iD1

Z t

0

U
M;N
i .s�/ dM

M;N
i .s/C kRM;N .t/k1:
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Dropping the second term which is negative, taking absolute value in the third term and
using 2jabj � jaj2 C jbj2 ensures that

kUM;N .t/k22 � kU
M;N .0/k22 C a12

Z t

0

kr
C

MUM;N .s/k22 ds

C a12

Z t

0

kr
C

M .U
M;N .s/ˇ V M;N .s/ � uM .s/ˇ vM .s//k22 ds

C 2

MX
iD1

Z t

0

U
M;N
i .s�/ dM

M;N
i .s/C kRM;N .t/k1:

Moreover,

R
M;N
i .t/ D

X
0<s�t

.U
M;N
i .s/ �U

M;N
i .s�//2

D

� 1
N

�2 X
0<s�t

1
U

M;N
i

.s/¤U
M;N
i

.s�/
;

since the jumps of U
M;N
i and UM;Ni coincide and are of size 1=N . Then kRM;N .t/k1 is

given by the number of jumps before time t

E.kRM;N .t/k1/ D 2N
�2E.#¹t � 0 W UM;N .s/ ¤ UM;N .s�/º/:

Moreover, the total jump rate in the scaled process UM;N , when the number of individuals
of each species in site i is equal to .ui ; vi /, is

2M 2

MX
iD1

ui

�
d1 C a12

vi

N

�
� 2M 2

kuk1

�
d1 C a12

kvk1

N

�
� C 00M

3N.1CM/;

where C 00 D 2.d1 C a12/C0, by (3.4). Then we get

E.kRM;N .t/k1/ � 2C
0
0t
M 3

N
.1CM/:

Lets us now deal with the third and fourth terms. We notice that

.rCMUM;N .s//2i DM
2.U

M;N
iC1 .s/ �U

M;N
i .s//2 � 2M 2.U

M;N
iC1 .s/

2
CU

M;N
i .s/2/:

Similarly, using also jab � cd j � ja � cjbC cjb � d j to deal with the difference of prod-
ucts of positive terms and recalling (3.4) and (3.5), we get

.rCM .U
M;N .s/ˇ V M;N .s/ � uM .s/ˇ vM .s///2i

� 4M 2.kuM .0/k21V
M;N
iC1 .s/

2
C kuM .0/k21V

M;N
i .s/2

C kV M;N .0/k21U
M;N
iC1 .s/

2
C kV M;N .0/k21U

M;N
i .s/2/

� 4C20M
4.V

M;N
iC1 .s/

2
C V

M;N
i .s/2 CU

M;N
iC1 .s/

2
CU

M;N
i .s/2/:
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Gathering these bounds, taking supremum and then expectation gives us

E
�

sup
s2Œ0;t�

kUM;N .s/k22
�

� E.kUM;N .0/k22/C 4a12M
2

Z t

0

E.kUM;N .s/k22/ ds

C 8C20a12M
4

�Z t

0

E.kVM;N .s/k22/ ds C
Z t

0

E.kUM;N .s/k22/ ds
�

C 2

MX
iD1

E

�
sup
s2Œ0;t�

Z s

0

U
M;N
i .r�/ dM

M;N
i .r/

�
C 2C 00T

M 3

N
.1CM/;

for some constant C 00. For the martingale part, we use Cauchy–Schwarz and Burkholder–
Davis–Gundy inequalities, which together with (3.2) and (3.4) yield

E

�
sup
s2Œ0;t�

Z s

0

U
M;N
i .r�/ dM

M;N
i .r/

�2
� E

�
sup
s2Œ0;t�

ˇ̌̌̌ Z s

0

U
M;N
i .r�/ dM

M;N
i .r/

ˇ̌̌̌2�
� E

�Z t

0

U
M;N
i .r�/2 dhMM;N

i i.r/

�
� 2

M 2

N
E

�
kUM;N .0/k1.d1 C a12kV

M;N .0/k1/

Z t

0

U
M;N
i .s/2 ds

�
� C 000

M 3

N
.1CM/

Z t

0

E.UM;N
i .s/2/ ds

for some constant C 000 . Using that
p
x � 1C x for all x � 0, we obtain

E

�
sup
s2Œ0;t�

Z s

0

U
M;N
i .r�/ dM

M;N
i .r/

�
�

q
2C 000

M 2

p
N

�
1C

Z t

0

E.UM;N
i .s/2/ ds

�
:

Putting everything together and using again (3.4) yields

E
�

sup
s2Œ0;t�

kUM;N .s/k22
�

� E.kUM;N .0/k22/C 2

q
2C 000

M 3

p
N
C 2C 00T

M 4

N

C

�
8C0a12M 4

C 2

q
2C 000

M 2

p
N

� Z t

0

E
�

sup
r2Œ0;s�

kUM;N .r/k22
�

ds

C 8C0a12M 4

Z t

0

E
�

sup
r2Œ0;s�

kVM;N .r/k22
�

ds:

In a similar way, we can obtain analogous bounds for V M;N . Adding the two inequalities
and then applying Gronwall’s lemma leads us to the desired conclusion.
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To go beyond the previous estimates, we will rely on a stability property for the SKT
system that we will prove in the next section. This will allow us to compare the terms
involved in the stochastic process to those of the targeted SKT system so that the former
will appear as a stable perturbation of the latter.

4. Duality estimates

4.1. The continuous setting

The duality lemma is a tool first introduced by Martin, Pierre and Schmitt [29, 32], in
the context of reaction-diffusion systems. We propose below a small generalization of
the duality lemma, which was suggested in [30, Remark 7]. As a matter of fact, we will
not directly use the duality lemma presented in this paragraph, but rather translate it in
a discrete setting (see Section 4.4 below).

Lemma 4.1. Consider � 2 L1.QT / such that ˛ WD infQT
� > 0, z0 2 H�1.Td / and

f 2 L2.QT /. Then there exists a unique z 2 L2.QT / that weakly solves the Kolmogorov
equation ´

@tz ��.�z/ D �f;

z.0; �/ D z0:
(4.1)

Furthermore, this solution z belongs to C.Œ0; T �IH�1.Td // and satisfies the duality esti-
mate

kz.T /k2
H�1.Td /

C

Z
QT

�z2 � kz0k
2
H�1.Td /

C Œz0�
2
Td

Z
QT

�C
1

˛

Z
QT

f 2: (4.2)

Remark 4.2. This duality estimate is stronger than the one stated in [30]: it contains
a (singular) source term and allows a uniform-in-time control of the H�1.Td /-norm.
The proof that we follow via negative Sobolev energy estimate was used in [27, Lem-
ma 22] in a different context, but only at the formal level (in a smooth setting). Here
we include a singular right-hand side and give a well-posedness result in this rather non-
smooth setting to justify all the computations.

Proof of Lemma 4.1. The proof of existence and uniqueness is exactly the same as [30,
Theorem 3]: following the naming of this article, z is the unique dual solution of (4.1).
For this z, the regularity C.Œ0; T �IH�1.Td // is obtained classically. We can thus focus
here on the duality estimate which needs to be proven only in the case when every func-
tion involved in (4.2) is smooth, in the sense that they are C1. For any t 2 Œ0; T �, there
exists a unique �.t/ of vanishing mean such that ���.t/ D z.t/� Œz.t/�Td . Besides, by
integrating the Kolmogorov equation we get

d
dt
Œz.t/�Td D 0;

so that Œz.t/�Td D Œz0�Td and �@t�� D @tz.
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In particular, we have by integration by partsZ
Td

�.t/@tz.t/ D
1

2

d
dt

Z
Td

jr�.t/j2:

Therefore, multiplying equation (4.1) by � and using integration by parts given us

1

2

d
dt

Z
Td

jr�.t/j2 C

Z
Td

�z.z � Œz0�Td / D �

Z
Td

.z � Œz0�Td /f:

Integrating in time and using Young’s inequality for the right-hand side, we get

1

2

Z
Td

jr�.T /j2 C

Z
QT

�z2

�

Z
QT

�zŒz0�Td C
1

2

Z
Td

jr�.0/j2 C
1

2

Z
QT

.z � Œz0�Td /2�C
1

2

Z
QT

f 2

�
;

and thus, using � � ˛ > 0,Z
Td

jr�.T /j2 C

Z
QT

�z2 �

Z
Td

jr�.0/j2 C Œz0�
2
Td

Z
QT

�C
1

˛

Z
QT

f 2:

Noticing that

kz.t/k PH�1.Td / D kz.t/ � Œz0�Td kH�1.Td / D kr�.t/k2;

once we add Œz0�Td to each side of the inequality to get the full H�1.Td /-norms, the
proof is over.

In Section 4.4, we will give (in the discrete setting) variants of the previous duality
lemma which include in the right-hand side some error term, which is possibly singular
in the time variable. Being able to take into account those error terms will be crucial in
the final asymptotic limit studied in Section 5. However, already in its current form, the
previous duality lemma is a valuable piece of information. We highlight this with an appli-
cation of this lemma: the proof of Theorem 2.1, which applies to the conservative SKT
system (1.1) that we consider here with .u0; v0/ as initial data. We recall the definition of
the affine functions �i .x/ WD di C aijx for i; j D 1; 2, so that (1.1) rewrites as´

@tu ��.�1.v/u/ D 0;

@tv ��.�2.u/v/ D 0:

In particular, we recover the framework of Lemma 4.1, as soon as v and u are bounded
and non-negative.

Proof of Theorem 2.1. Let us introduce z WD xu�u andw WD xv� v, so that, by subtraction,

@tz ��.�1.xv/z/ D �f;

@tw ��.�2.xu/w/ D �g;
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where f WD a12u.xv � v/ and g WD a21v.xu � u/. Since u and v are bounded and non-
negative, we recover the structure of Lemma 4.1 and we get

kz.T /k2
H�1.Td /

C d1

Z
QT

z2

� kz0k
2
H�1.Td /

C Œz0�
2
Td

Z
QT

�1.xv/C
a212
d1
kuk2L1.QT /

Z
QT

w2;

kw.T /k2
H�1.Td /

C d2

Z
QT

w2

� kw0k
2
H�1.Td /

C Œw0�
2
Td

Z
QT

�2.xu/C
a221
d2
kvk2L1.QT /

Z
QT

z2;

since infQT
�i � di , jf j � a12jwjkxukL1.QT / and jgj � a21jzjkxvkL1.QT /. By combin-

ing the two inequalities, we infer

kz.T /k2
H�1.Td /

C d1

Z
QT

z2

� kz0k
2
H�1.Td /

C Œz0�
2
Td

Z
QT

�1.xv/

C
a212
d1d2

kuk2L1.QT /

�
kw0k

2
H�1.Td /

C Œw0�
2
Td

Z
QT

�2.xu/
�

C d1

�a12a21
d1d2

�2
kuk2L1.QT /

kvk2L1.QT /

Z
QT

z2:

In particular, if we want to absorb the last term of the right-hand side in the left-hand
side, the inequality that we need is exactly the smallness condition (2.4). If the latter is
satisfied, and if we allow the symbol . to depend on di , aij , kukL1.QT / and kvkL1.QT /,
we have established

kz.T /k2
H�1.Td /

C

Z
QT

z2

. kz0k2H�1.Td /
C kw0k

2
H�1.Td /

C Œz0�
2
Td

Z
QT

�1.xv/C Œw0�
2
Td

Z
QT

�2.xu/:

Since the previous computation is still valid replacing T by any t 2 Œ0; T �, we have in fact

jjjzjjj2T . kz0k2H�1.Td /
C kw0k

2
H�1.Td /

C Œz0�
2
Td

Z
QT

�1.xv/C Œw0�
2
Td

Z
QT

�2.xu/:

Exchanging the roles .z; xu; xv;u; v/$ .w; xv; xu;v;u/, the previous right-hand side remains
unchanged: we have exactly the same estimate for jjjwjjj2T on the left-hand side. The proof
is over once we notice thatZ

QT

�1.xv/ D T

Z
Td

�1.xv0/ and
Z
QT

�2.xu/ D T

Z
Td

�2.xu0/;

since the space integrals of u and v are conserved through time.
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4.2. Reconstruction operators

We now transfer the previous estimates into a discrete setting. We will have to manipulate
several norms on RM , reminiscent of classical function spaces of the continuous variable.
As the number of pointsM of the discretization will be sent to infinity, it will be crucial to
have estimates which do not depend on this parameter. In particular, the following notion
of uniform equivalence will be relevant.

Definition 4.3. Given norms P1;M and P2;M on RM , we say that P1;M and P2;M are
uniformly equivalent if there exist ˛; ˇ > 0 such that

8M 2 N; 8u 2 RM ; ˛P1;M .u/ � P2;M .u/ � ˇP1;M .u/:

If this is satisfied, we write P1;M � P2;M .

Given a discretization like (2.6), we will use two interpolation methods to build a func-
tion defined on the whole torus T .

Definition 4.4. For u 2 RM , the function defined for x 2 T by

�M .u/.x/ WD

MX
kD1

1Œ�1;0�.M.x � xk//uk

is a step function, and the function

�M .u/.x/ WD

MX
kD1

�.M.x � xk//uk ; where �.z/ WD .1 � jzj/C;

is a piecewise linear function. The corresponding vector space of functions (step and
continuous piecewise linear functions, respectively) are denoted by

sM WD ¹�M .u/ W u 2 RM º and pM WD ¹�M .u/ W u 2 RM º:

If t 7! u.t/ is a map from Œ0; T � to RM , we simply denote by �M .u/ and �M .u/ the maps
from Œ0; T � to sM and pM , respectively.

Proposition 4.5. For u 2 RM , we have kuk1 D k�M .u/kL1.T/ D k�M .u/kL1.T/ and
for 1 � p <1, we have kukp;M D k�M .u/kLp.T/ � k�M .u/kLp.T/. Furthermore, the
equivalence k�M .�/kLp.T/ � k�M .�/kLp.T/ holds on the positive cone RMC .

Proof. The equalities are obvious. For the inequality and the uniform equivalence, we re-
fer to [13, Lemma 11].

We end this paragraph with an estimate that belongs to the folklore of the finite ele-
ment method and omit the proof. It is usually proved using the Bramble–Hilbert lemma,
but since here we focus on the one-dimensional case, it is also possible to give a direct,
elementary proof (see, for instance, [2, Lemma 6.2.10]).
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Lemma 4.6. For ' 2 H 2.T / and M 2 N�, there exists a unique �M .'/ 2 pM matching
the values of ' on the grid .xk/1�k�M . It satisfies

k' � �M .'/k PH�1.T/ . M�2k'k PH2.T/;

k' � �M .'/kL2.T/ . M�2k'k PH2.T/;

k' � �M .'/k PH1.T/ . M�1k'k PH2.T/;

where the symbol . means that the inequality holds up to a constant independent of '
and M .

4.3. A discrete negative Sobolev norm

In this paragraph, we introduce a norm on RM analogous to the H�1.Td /-norm for
functions. First, we summarize the main (standard) properties of the Laplacian matrix�M
introduced in (2.3) in the following proposition (for a proof see, for instance, [35]).

Proposition 4.7. Recalling definition (2.3), the spectrum of the matrix ��M is given by°
4M 2 sin2

��k
M

�
W 0 � k �M � 1

±
� RC:

We have thus
��M 2 SCM .R/;

and this matrix admits therefore a unique symmetric non-negative square root. One has
furthermore

Ker.�M / D SpanR.1M /;

and ��M satisfies a uniform (in M ) spectral gap: all non-zero eigenvalues of ��M are
lower bounded by 16, independently of the dimension M .

Using this, we fix the following notations.

Definition 4.8. For u 2 Ran.�M /, the unique ˆ 2 Ran.�M / such that u D �Mˆ is
denoted (with a small abuse of notation) by ˆ D ��1M u. The square root of the non-
negative matrix ��M is denoted by

p
��M .

The uniform spectral gap for the discrete Laplacian (see Proposition 4.7) implies in
particular the following estimate for any ˆ 2 RM :

kˆ � Œˆ�Mk2;M � k�Mˆk2;M : (4.3)

On the torus, the Poincaré–Wirtinger inequality implies the estimate

k' � Œ'�TkL2.T/ . k�'kL2.T/;

from which the previous inequality is somehow reminiscent.
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A standard computation when dealing with the Lagrange finite element methods in di-
mension 1 shows that, up to a factor 1=M , the stiffness matrix is precisely given by ��M
whereas the mass matrix is given by (see [2, Section 6.2.1 and Exercise 7.4.1])

BM WD

0BBBBBBBBBBBB@

2

3

1

6
0 � � �

1

6

1

6

2

3

1

6
� � � 0

:::
: : :

: : :
: : :

:::

0 � � �
1

6

2

3

1

6

1

6
� � � 0

1

6

2

3

1CCCCCCCCCCCCA
: (4.4)

More precisely, recalling that 'k;M .x/ WD '.M.x � xk//, where '.x/ WD .1 � jxj/C,
we have

.��M /k;j DM

Z
T
r'k;M � r'j;M ; .BM /k;j D

1

M

Z
T
'k;M'j;M

for any 1� k; j �M . As pM is the vector space spanned by the functions .'k;M /1�k�M ,
by expanding elements of this space on that basis, we recover the following standard
result.

Proposition 4.9. For w 2 RM , we have

�.wj�Mw/M D

Z
T
jr�M .w/.x/j

2 dx;

where we recall that .�j�/M denotes the rescaled inner product on RM (see Section 1.2).
Furthermore, for any u 2 RM we have

BMu D ��Mw , 8 2 pM ;

Z
T
 .x/�M .u/.x/ dx D

Z
T
r .x/ � r�M .w/.x/ dx:

Recalling zu D u � Œu�M1M and Definition 4.8, we infer from Proposition 4.7 that

�.zuj��1M zu/M � 0:

This enables us to introduce the following norm k � k�1;M , which is a discrete counterpart
of the H�1.T /-norm.

Definition 4.10. For u 2 RM , we define

kuk�1;M WD

q
�.zuj��1M zu/M C Œu�

2
M :

This is a Hilbertian norm on RM , whose associated inner product is given by the following
formula, for u; v 2 RM :

.ujv/�1;M WD .zuj�
�1
M zv/M C Œu�M Œv�M :



V. Bansaye, A. Moussa, F. Muñoz-Hernández 3912

Proposition 4.11. We have the uniform equivalence

Mk�M .�/kH�1.T/ C k�M .�/kL2.T/ �Mk � k�1;M C k�M .�/kL2.T/: (4.5)

Moreover, for any u 2 RM ,

kuk�1;M � kuk2;M : (4.6)

Proof. We first observe the uniform equivalences

k�M .u/kL2.T/ � k�M .zu/kL2.T/ C jŒu�M j;

k�M .u/kH�1.T/ � k�M .zu/kH�1.T/ C jŒu�M j;

kuk�1;M � kzuk�1;M C jŒu�M j:

Without loss of generality, we can therefore establish the uniform equivalence (4.5) under
the assumption Œu�M D 0.

We have kuk2
�1;M D �.uj�

�1
M u/M D �.�Mˆ;ˆ/M , where ˆ WD ���1M u. Thanks

to Proposition 4.9, we have therefore

kuk2�1;M D kr�M .ˆ/k
2
L2.T/: (4.7)

The matrix BM defined by (4.4) satisfies 6BM D M�2�M C 6IM , so it commutes
with �M . In particular, the equation u D ��Mˆ is strictly equivalent to

BMu D ��Mw;

where w WD BMˆ. We obtain from Proposition 4.9 that this last equation is equivalent to

8 2 pM ;

Z
T
 .x/�M .u/.x/ dx D

Z
T
r .x/ � r�M .w/.x/ dx:

Since we assumed Œu�M D 0, we have also Œ�M .u/�T D 0 and we can therefore solve
��'M D �M .u/, for a unique 'M 2 PH 2.T /. We have then, by integration by parts,

8 2 pM ;

Z
T
 .x/�M .u/.x/ dx D

Z
T
r .x/ � r'M .x/ dx:

In particular, we have established

8 2 pM ;

Z
T
r .x/ � .r�M .w/.x/ � r'M .x// dx D 0;

and this equality holds in particular for  D �M .w/. We deduce that for each  2 pM ,Z
T
jr�M .w/.x/ � r'M .x/j

2 dx

D

Z
T
.r�M .w/.x/ � r'M .x/Cr .x/ � r�M .w/.x//

� .r�M .w/.x/ � r'M .x// dx

D

Z
T
.r .x/ � r'M .x// � .r�M .w/.x/ � r'M .x// dx;
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and we get by the Cauchy–Schwarz inequality

kr�M .w/ � r'MkL2.T/ � inf
 2pM

kr � r'MkL2.T/:

Taking  D �M .'/ and using successively krf kL2.T/ D 2�kf k PH1.T/ for f D �M .'/�
'M 2 PH

1.T / and the third estimate of Lemma 4.6, we get

kr�M .w/ � r'MkL2.T/ . kr�M .'/ � r'MkL2.T/ . k�M .'/ � 'Mk PH1.T/

.
1

M
k'Mk PH2.T/:

Recalling that ��'M D �M .u/, we have

k�M .u/k PH�1.T/D kr'MkL2.T/ and k'Mk PH2.T/D k�'MkL2.T/ D k�M .u/kL2.T/:

All in all, using the reversed triangular inequality, we have established

jkr�M .w/kL2.T/ � k�M .u/k PH�1.T/j .
1

M
k�M .u/kL2.T/:

To conclude, due to (4.7), it is thus sufficient to prove that

kr�M .w/kL2.T/ � kr�M .ˆ/kL2.T/;

where we recall w D BMˆ. This last equality implies in particular

�M .w/ D
2

3
�M .ˆ/C

1

6
�1=M�M .ˆ/C

1

6
��1=M�M .ˆ/;

where we recall the translation operator �a defined by �af .x/ D f .x C a/. We have
therefore

r�M .w/ D
2

3
r�M .ˆ/C

1

6
�1=Mr�M .ˆ/C

1

6
��1=Mr�M .ˆ/: (4.8)

Both r�M .w/ and r�M .ˆ/ belong to sM .T /, i.e., are respectively equal to some func-
tions �M .�/ and �M .
/, for some �;
 2 RM .

A classical computation shows (see [2, Exercise 7.4.1], for instance) that the spectrum
of BM lies within Œ1=3; 1�. In particular, the spectral radiuses of both BM and B�1M are
bounded independently ofM . Identity (4.8) shows that � D BM
 , and we have just con-
trolled the Euclidean subordinate norms ofBM andB�1M : we have k
k2;M �kBM
k2;M ,
and therefore kr�M .w/kL2.T/ � kr�M .ˆ/kL2.T/, thanks to Proposition 4.5, conclud-
ing the proof of (4.5).

Let us turn to the proof of (4.6). Using (4.3), k��1M zuk2;M � kzuk2;M and the Cauchy–
Schwarz inequality entails that �.zuj��1M zu/M � kzuk

2
2;M . By Pythagore’s identity, we ob-

tain (4.6), since u D zuC Œu�M1M and kŒu�M1Mk22;M D Œu�
2
M .

Proposition 4.12. For w 2 C1.Œ0; T �IRan.�M //, we have

�.��1M w.t/jw
0.t//M D

1

2

d
dt
kw.t/k2�1;M :
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Proof. If v.t/ WD ���1M w.t/, we have �Mv.t/ D �w.t/ and hence �Mv0.t/ D �w0.t/,
with still Œv0.t/�M D 0. Then we have v0.t/ D ���1M w

0.t/. We infer, by symmetry
of
p
��M ,

�.��1M w.t/jw
0.t//M D �.v.t/j�Mv

0.t//M

D .
p
��Mv.t/j

p
��Mv

0.t//M

D
1

2

d
dt
.
p
��Mv.t/j

p
��Mv.t//M

D �
1

2

d
dt
.v.t/j�Mv.t//M D

1

2

d
dt
kw.t/k2�1;M :

4.4. The discrete duality lemma

We are now all set to state and prove two discrete duality lemmas. They are counterparts
of Lemma 4.1 in a semi-discrete setting and they are to be applied to an ODE. At the same
time, they generalize Lemma 4.1 since they include an additional source term. We first
considering the case when this source term is regular (Lemma 4.13) and then the case
when it is not (Lemma 4.14). The second case amounts to consider an ODE with sev-
eral Dirac masses in the right-hand side. Being able to handle this singular setting will
be of crucial importance in order to use these results for stochastic jump processes (see
Proposition 5.3 below).

Lemma 4.13. Consider � 2 C.Œ0; T �IRM>0/ so that each component is uniformly (with
respect to time and index) lower bounded by a positive constant ˛ > 0. Consider f ; r 2
C.Œ0; T �IRM /. There exists a unique function z 2 C1.Œ0; T �IRM / solving, for some fixed
z0 2 RM ,

z0.t/ D �M Œz.t/ˇ �.t/C f .t/�C r.t/;

z.0/ D z0:

This function satisfies furthermore

sup
t2Œ0;T �

kz.t/k2�1;M C

Z
QT

�M .zˇ �
1=2/.s; x/2 ds dx

� kz0k
2
�1;M C

Z T

0

Œz.s/�2M Œ�.s/�M ds C
1

˛

Z
QT

�M .f /.s; x/
2 ds dx

C 2

Z T

0

.z.s/jr.s//�1;M ds; (4.9)

where the Hadamard productˇ and the square root �1=2 are defined in Section 1.2.

Proof. The existence and uniqueness of z are straightforward, the ODE is linear with
continuous coefficients. To get the estimate, we first notice

Œz.t/�0M D Œr.t/�M ; (4.10)
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and therefore, recalling the notation zz.t/ WD z.t/ � Œz.t/�M ,

z0.t/ D zz0.t/C Œr.t/�M :

Now, taking the inner product of the ODE with the vector ��1M zz.t/, we get, using the
symmetry of �M and the fact that ��1M zz.t/ 2 SpanR.1M /? (see Section 4.3),

�.��1M zz.t/jzz
0.t//M C .zz.t/jz.t/ˇ �.t//M D �.zz.t/jf .t//M � .zz.t/j�

�1
M zr.t//M :

We use Proposition 4.12 to identify the first term of the left-hand side and get

1

2

d
dt
kzz.t/k2�1;M C .zz.t/jz.t/ˇ�.t//M D �.zz.t/jf .t//M � .zz.t/j�

�1
M zr.t//M : (4.11)

Using the Cauchy–Schwarz inequality and that the entries of �.t/ are all lower bounded
by ˛ > 0, we have the following inequality, for any vector g 2 RM (using the inequality
2ab � a2 C b2):

j.zz.t/jg/M j D kzz.t/k2;Mkgk2;M �
1

2
.zz.t/jzz.t/ˇ �.t//M C

1

2˛
kgk22;M :

Using this estimate in (4.11) with g WD f .t/ and the definition zz.t/ WD z.t/� Œz.t/�M ,
we get

1

2

d
dt
kzz.t/k2�1;M C .z.t/jz.t/ˇ �.t//M

� Œz.t/�M Œz.t/ˇ �.t/�M C
1

2
.zz.t/jzz.t/ˇ �.t//M C

1

2˛
kf .t/k22;M

� .zz.t/j��1M zr.t//M :

Using once more the definition zz.t/ WD z.t/ � Œz.t/�M , we get eventually

d
dt
kzz.t/k2�1;M C .z.t/jz.t/ˇ �.t//M

�
1

˛
kf .t/k22;M C Œz.t/�

2
M Œ�.t/�M � 2.zz.t/j�

�1
M zr.t//M :

Now, note on the one hand that zz.t/? 1M , for the .�j�/�1;M inner product and on the other
hand, because of (4.10),

1

2

d
dt
Œz.t/�2M D Œz.t/�M Œr.t/�M :

Adding this last quantity to both sides of the estimate and integrating in time, we re-
cover (4.9), since for any vector u 2 RM , kuk2;M D k�M .u/kL2.T/.

For the next lemma, we introduce 0 < t0 < t1 < � � � < tm < T some (fixed) jump
times and the intervals Ik WD �tk ; tkC1Œ. We fix also a function xW Œ0; T �! RM which is
càdlàg (continuous right and limited left) and C1 inside each of the intervals Ik and has
jump discontinuities ak WD x.tk/ � x.t�k / at each tk . Note that such a function x can be
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decomposed as x D xR C xJ , where xR 2 C1.Œ0; T �IRM / is the regular part and xJ is
the jump part, explicitly given by

xJ .t/ WD

mX
kD1

ak1t�tk :

Lemma 4.14. Consider � 2 C.Œ0; T �IRM>0/ so that each component is uniformly (with
respect to time and index) lower bounded by a positive constant ˛ > 0. Consider f 2
C.Œ0; T �IRM / and x a càdlàg piecewise C1 function just as above, vanishing at 0. There
exists a unique piecewise C1 function z with values in RM solving, for some fixed
z0 2 RM ,

z.t/ D z0 C

Z t

0

�M Œz.s/ˇ �.s/C f .s/� ds C x.t/:

This function satisfies furthermore, for any t 2 Œ0; T �,

kz.t/k2�1;M C

Z
Qt

�M .zˇ �
1=2/.s; x/2 ds dx

� kz0k
2
�1;M C

1

˛

Z
Qt

�M .f /.s; x/
2 ds dx C

Z t

0

Œz.s/�2M Œ�.s/�M ds

C

X
tk�t

kakk
2
�1;M C 2

X
tk�t

.z.t�k /jak/�1;M C 2

Z t

0

.z.s/jx0R.s//�1;M ds: (4.12)

Remark 4.15. Note that the two last terms of the right-hand side in (4.12) are of the same
“nature” in the sense that replacing xR by xJ in the integral, one formally recovers the
corresponding discrete summation.

Remark 4.16. Note also that Œz.t/�2M . kz0k22;M C kx.t/k
2
2;M .

Proof of Lemma 4.14. Given z0, x and f , the uniqueness of such a function z is straight-
forward because taking the difference of two hypothetical solutions, one gets a linear
homogeneous differential equation with continuous coefficients and 0 as initial data. For
the existence, we first note that if xJ D 0, the equations rewrites (after differentiation)
as a simple linear ODE with continuous coefficients. Then, since the equation is linear,
we only need to treat the case when z0 D f D xR D 0 and m D 1 for which a solution
is given explicitly by z.t/ D z11t�t1 , where z1 is the (unique) solution in the case when
x D f D 0 and z0 D a1. Using Lemma 4.13, we claim, for 0 � k � m � 1, that the
function z satisfies

8t 2 Ik ; kz.t/k
2
�1;M C

Z t

tk

Z
T
�M .zˇ �

1=2/.s; x/2 ds dx

� kz.tk/k
2
�1;M C

Z t

tk

Œz.s/�2M Œ�.s/�M ds

C
1

˛

Z t

tk

Z
T
�M .f /.s; x/

2 ds dx C 2
Z t

tk

.z.s/jx0R.s//�1;M ds:
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In particular, if k � 1, we have at t D t�
k

kz.t�k /k
2
�1;M C

Z tk

tk�1

Z
T
�M .zˇ �

1=2/.s; x/2 ds dx

� kz.tk�1/k
2
�1;M C

Z tk

tk�1

Œz.s/�2M Œ�.s/�M ds C
1

˛

Z tk

tk�1

Z
T
�M .f /.s; x/

2 ds dx

C 2

Z tk

tk�1

.z.s/jx0R.s//�1;M ds:

Adding all these estimates down to k D 1, we recover

8t 2 Ik ; kz.t/k
2
�1;M C

Z t

0

Z
T
�M .zˇ �

1=2/.s; x/2 ds dx

� kz0k
2
�1;M C

kX
jD1

.kz.tj /k
2
�1;M � kz.t

�
j /k

2
�1;M /C

Z t

0

Œz.s/�2M Œ�.s/�M ds

C
1

˛

Z t

0

Z
T
�M .f /.s; x/

2 ds dx C 2
Z t

0

.z.s/jx0R.s//�1;M ds:

At this point, it is important to note that the jumps of z are exactly the ones of x, so that
z.tj / D aj C z.t

�
j /. Thus, kz.tj /k2�1;M � kz.t

�
j /k

2
�1;M D 2.z.tj /jaj /�1;M C kaj k

2
�1;M

and the proof is over.

5. Quantitative estimates and proof of Theorem 2.3

For a function f defined on Œ0; T � � T , recalling definition (2.6) of the discretized
torus TM , we denote by yf W Œ0; T �! RM the function whose value at time t is the list of
values of f at the points xk 2 TM , for 1 � k �M . We have then the following proposi-
tion.

Proposition 5.1. Let u, v be two elements of L2.0; T IH 3.T //, solution of system (1.1).
We have

@t yu
M .t/ D �M Œd1yu

M .t/C a12yu
M .t/ˇ yvM .t/�C rM .t/;

@t yv
M .t/ D �M Œd1yv

M .t/C a21yv
M .t/ˇ yuM .t/�C sM .t/;

where the error terms rM ; sM W .0; T /! RM satisfy

.krMk1/M and .ksMk1/M �!
M!C1

0 in L1.0; T /: (5.1)

Proof. For a smooth function f defined on T , we have, by Taylor expansion, for any
h ¤ 0,

�hf C ��hf � 2f

h2
D f 00 CO.h2/ as h! 0:
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A short computation shows that the operator h�2.�hC ��h � 2Id/ coincides with D�hDh,
where Dh is the difference quotient operator defined in Appendix A.2. In particular, using
Proposition A.4, we infer the following weakened equality if f is only assumed to belong
to H 3.T /:

�hf C ��hf � 2f

h2
D f 00 C o.1/ as h! 0;

where the topology is still uniform but the rate of convergence is not a priori controlled.
Still thanks to Proposition A.4, in the previous equality f can be replaced by the product
of any pair of H 3.T / functions. In particular here, using this remark on u, v and uv,
we infer

@tu DM
2.�1=M C ��1=M � 2Id/Œd1uC a12uv�C rM ;

@tv DM
2.�1=M C ��1=M � 2Id/Œd2v C a21uv�C sM ;

where the error terms satisfy

.rM /M and .sM /M �!
M!C1

0 in L1.0; T IL1.T //;

from which one deduces directly (5.1).

On the other hand, we recall (see (3.1)) that our stochastic process satisfies

UM;N .t/ D UM;N .0/C

Z t

0

�M .d1U
M;N .s/C a12U

M;N .s/ˇ V M;N .s// ds

CMM;N .t/;

V M;N .t/ D V M;N .0/C

Z t

0

�M .d2V
M;N .s/C a21U

M;N .s/ˇ V M;N .s// ds

CN M;N .t/;

where MM;N is square integrable martingale whose quadratic variation is given by (3.2)
and N M;N satisfies similar properties. By symmetry, we can focus on the first species
UM;N . For compactness of notation, we introduce a new Poisson random measure N

and its associated Poisson point process ¹.Tk ; Yk/ W k � 1º on RC � EM . It consists in
collecting the Poisson random measures N j on the different sites, and the intensity of the
new Poisson point process is ds ˝ �M .dy/, where EM D RC � ¹�1; 1º � ¹1; : : : ; M º,
�M .d�; d�; di/ D d� ˝ ˇ.d�/ ˝ nM .di/, and nM .di/ D

P
1�j�M ıj is the counting

measure on the sites ¹1; : : : ;M º. The martingale MM;N can now be written as

MM;N.t/ D
X
k�1

H.UM;N .T �k /;V
M;N .T �k /; Yk/1t�Tk

�

Z t

0

�.UM;N .s/;V M;N .s// ds;

where H yields the jumps and � the compensation

H.u; v; �; �; i/ D 1��2M2Nui .d1Ca12vi /

eiC� � ei
N

;

�.u; v/ D �M .d1uC a12uˇ v/: (5.2)
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Denoting

ZM;N .t/ D yuM .t/ � UM;N .t/; XM;N .t/ D

Z t

0

rM .s/ ds �MM;N .t/;

we have yet another system satisfied by these quantities

ZM;N .t/ D ZM;N .0/C

Z t

0

�M .Z
M;N .s/ˇƒM;N .s/C FM;N .s// ds CXM;N .t/;

where

ƒM;N .t/ D d11M C a12V M;N .t/; (5.3)

W M;N .t/ D yvM .t/ � V M;N .t/; (5.4)

FM;N .t/ D a12yu
M
ˇW M;N .t/: (5.5)

Let us provide a useful estimate, which allows us to control the martingale terms.

Lemma 5.2. For any T > 0,

E
�

sup
t2Œ0;T �

kMM;N .t/k2�1;M C sup
t2Œ0;T �

kN M;N .t/k2�1;M
�

.
M 2

N
jjjZM;N jjj

2

T;M C
M 2

N
jjjW M;N

jjj
2

T;M C T
M 2

N
:

Proof. Without loss of generality we can focus on MM;N . The Doob inequality for square
integrable martingales (see [23, Chapter 1.6, Corollary 6.2]) ensures

E
�

sup
t2Œ0;T �

kMM;N .t/k22;M
�

. E.ŒhMM;N
i.T /�M /:

Owing to (4.6), it is sufficient to bound the right-hand side of the previous inequality. For
this purpose, we use (3.3) and get

E.ŒhMM;N
i.T /�M / D

1

M

MX
iD1

E.hMM;N
i i

2.T //

.
1

M

M 2

N

Z T

0

E.kUM;N .s/k1 C kU
M;N .s/k22 C kV

M;N .s/k22/ ds:

Moreover, kUM;N .s/k1 D kUM;N .0/k1 almost surely, and we recall that

UM;N .t/ D yuM .t/ �ZM;N .t/ and V M;N .t/ D yvM .t/ �W M;N .t/

for any s � 0. Adding that boundedness assumption on the solution of the SKT system
and (2.7) (which guarantees (3.4)) ensure that

T
M 2

N
kUM;N .0/k1;M C

M 2

N

Z
QT

�M .yu
M /2 C �M .yv

M /2 D TO
�M 2

N

�
:
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Finally, we obtain

E.ŒhMM;N
i.T /�M / .

M

N

Z T

0

E.kZM;N .s/k22 C kW
M;N .s/k22/ ds C T

M 2

N

.
M 2

N

Z
QT

E.�M .Z
M;N /.s; x/2 C �M .W

M;N /.s; x/2/ ds dx

C T
M 2

N
;

where we recall that kuk22DMkuk
2
2;M DMk�M .u/k

2
L2.Œ0;T �/

. It ends the proof recalling
definition (5.6).

We can now apply the discrete duality lemma obtained in the previous section to
control the gap ZM;N . This is the core of the next result and yields Theorem 2.3. Given
a process Z W� � Œ0; T �! RM defined on a probability space .�;F ; P /, we consider
the discrete analog of the norm jjj � jjjT introduced in (1.2), that is,

jjjZ jjjT;M WD
�

sup
t2Œ0;T �

E.kZ .t/k2�1;M /C E.k�M .Z /k
2
L2.QT /

/
�1=2

: (5.6)

Proposition 5.3. Let u, v be a bounded L2.0; T IH 3.T // non-negative solution of sys-
tem (1.1) satisfying (2.4). There exist constants C;D > 0 depending only on the diffu-
sion parameters and kukL1.QT /kvkL1.QT / such that for any .M; N / 2 N2 satisfying
N �M 2D, there holds

jjjZM;N jjj
2

T;M C jjjW
M;N
jjj
2

T;M � C
�
E.AT;M;N .0//C T

M 2

N
C ıM

�
;

where jjj � jjjT;M is defined by (5.6), .ıM /M ! 0 and

AT;M;N .0/ WD kZ
M;N .0/k2�1;M C T ŒZ

M;N .0/�2M Œƒ
M;N .0/�M

C kW M;N .0/k2�1;M C T ŒW
M;N .0/�2M Œ�

M;N .0/�M : (5.7)

Remark 5.4. The sequence ıM is directly linked to the error terms rM and sM intro-
duced in Proposition 5.1. From the proof of this very proposition, it is therefore clear that
assuming more regularity for u, v, one can give an explicit rate of convergence for ıM .
For instance, if u, v is assumed to be L2.0; T IC4.T //, one could take ıM D O.1=M 2/.

Proof of Proposition 5.3. We apply Lemma 4.14 with z WD ZM;N and x D xR C xJ WD
XM;N and f WDFM;N and� WDƒM;N recalling definitions (5.3)–(5.5). More explicitly,
recalling (5.2), we have here

xR.t/ D

Z t

0

rM .s/ ds C
Z t

0

�.UM;N .s/;V M;N .s// ds;

xJ .t/ D �
X
k�1

H.UM;N .T �k /;V
M;N .T �k /; Yk/1t�Tk

;
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where we recall that ¹.Tk ; Yk/ W k � 0º is a Poisson point process on RC � EM with
intensity ds ˝ �M .dy/. Besides, using that t 7! ŒƒM;N .t/�M and t 7! ŒZM;N .t/�M are
constant functions, we observeZ t

0

Œz.s/�2M Œ�.s/�M ds D T ŒZM;N .0/�2M Œƒ
M;N .0/�M :

We obtain from Lemma 4.14 that for any t � T ,

kZM;N .t/k2�1;M C

Z
Qt

�M .Z
M;N
ˇ .ƒM;N /1=2/.s; x/2 ds dx

� kZM;N .0/k2�1;M C
1

d1

Z
Qt

�M .F
M;N /.s; x/2 ds dx CT ŒZM;N .0/�2M Œƒ

M;N .0/�M

C 2

Z t

0

.ZM;N .s/jrM .s//�1;M ds CRM;N .t/; (5.8)

where RM;N .t/ is given by

RM;N .t/ D
X
Tk�t

kH.UM;N .T �k /;V
M;N .T �k /; Yk/k

2
�1;M

� 2
X
Tk�t

.ZM;N .T �k /jH.U
M;N .T �k /;V

M;N .T �k /; y//�1;M

C 2

Z t

0

.ZM;N .s/j�.UM;N .s/;V M;N .s///�1;M ds: (5.9)

Some cancellations will happen for the error term RM;N .t/ when taking the expecta-
tion, thanks to the martingale structure. For the moment, we keep it as it is and focus on
the other terms. Besides, recalling (4.6), we have kuk�1;M � kuk2;M � kuk1 and the
Cauchy–Schwarz inequality entails for any s � 0,

j.ZM;N .s/jrM .s//�1;M j � kZ
M;N .s/k�1;Mkr

M .s/k1:

We plug this estimate in (5.8). We also use that ƒM;Ni � d1 and that

j�M .F
M;N /.s; x/j � a12kukL1.QT /j�M .W

M;N /.s; x/j;

as yuM takes the values of u in the grid. We obtain

kZM;N .t/k2�1;M C d1

Z
Qt

�M .Z
M;N /.s; x/2 ds dx

� kZM;N .0/k2�1;M C T ŒZ
M;N .0/�2M Œƒ

M;N .0/�M

C
.a12kukL1.QT //

2

d1

Z
Qt

�M .W
M;N /.s; x/2 ds dx

C 2

Z t

0

kZM;N .s/k�1;Mkr
M .s/k1 ds CRM;N .t/:
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As the roles of ZM;N and W M;N are symmetric in the previous inequality, we have
a similar estimate forW M;N . Thus, by setting

�M;N .t/ D d2 C a21U
M;N .t/;

and defining �M;N .t/ as RM;N .t/ (exchanging UM;N and V M;N and replacing ZM;N

byW M;N in (5.9)), we get

kW M;N .t/k2�1;M C d2

Z
Qt

�M .W
M;N /.s; x/2 ds dx

� kW M;N .0/k2�1;M C T ŒW
M;N .0/�2M Œ�

M;N .0/�M

C
.a21kvkL1.QT //

2

d2

Z
Qt

�M .Z
M;N /.s; x/2 ds dx

C 2

Z t

0

kW M;N .s/k�1;Mks
M .s/k1 ds C �M;N .t/:

Plugging now this inequality in the estimate for ZM;N gives us

kZM;N .t/k2�1;M C d1

Z
Qt

�M .Z
M;N /.s; x/2 ds dx

�

�
1C

.a12kukL1.QT //
2

d1d2

�
AT;M;N .0/

C
1

d1

�a12a21kukL1.QT /kvkL1.QT /

d2

�2 Z
Qt

�M .Z
M;N /.s; x/2 ds dx

C
.a12kukL1.QT //

2

d1d2

�
2

Z t

0

kW M;N .s/k�1;Mks
M .s/k1 ds C �M;N .t/

�
C 2

Z t

0

kZM;N .s/k�1;Mkr
M .s/k1 ds CRM;N .t/:

By using our bound (2.4) on kukL1.QT /kvkL1.QT /, we can absorb the term of the third
line in the left-hand side of the inequality. Thus, letting . to depend on these (determin-
istic and fixed) parameters, this yields

kZM;N .t/k2�1;M C d1

Z
Qt

�M .Z
M;N /.s; x/2 ds dx

. AT;M;N .0/CRM;N .t/C �M;N .t/

C

Z t

0

kZM;N .s/k�1;Mkr
M .s/k1 ds

C

Z t

0

kW M;N .s/k�1;Mks
M .s/k1 ds; (5.10)

where AT;M;N;.0/ is defined in (5.7). As before, the right-hand side of (5.10) is invariant
under exchangingZM;N andW M;N so that the same estimate holds forW M;N in the left-
hand side (with d2 instead of d1). We will now sum both inequalities and take expectation.
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For the sake of clarity, we therefore introduce

 .t/ WD E.kZM;N .t/k2�1;M /C E.kW M;N .t/k2�1;M /;

�.t/ WD E
� Z

Qt

�M .Z
M;N /2

�
C E

� Z
Qt

�M .W
M;N /2

�
;

and we thus infer

 .t/C �.t/ . E.AT;M;N .0//C E.RM;N .t/C �M;N .t//

C

Z t

0

E.kZM;N .s/k�1;M /kr
M .s/k1 ds

C

Z t

0

E.kW M;N .s/k�1;M /ks
M .s/k1 ds: (5.11)

Now, on the one hand, thanks to the Cauchy–Schwarz inequality we have

E.kZM;N .s/k�1;M / � .E.kZ
M;N .s/k2�1;M //

1=2;

and a similar majoration replacing ZM;N byW M;N , so that

E.kZM;N .s/k�1;M /C E.kW M;N .s/k�1;M / .  .s/1=2:

On the other hand, going back to definition (5.9) of RM;N , one checks that the two last
terms on the right-hand side form a martingale starting from 0. Then taking expectation
in (5.9), the two last terms disappear and we recover

E.RM;N .t// D E
� X
Tk�t

kH.UM;N .T �k /;V
M;N .T �k /; Yk/k

2
�1;M

�
D E.kMM;N .t/k2�1;M /;

where the last identity can be directly obtained from the semimartingale decomposition
of kMM;N .t/k2

�1;M (as for the classical proof with canonical Euclidean inner product).
The same bound applying for �M;N .t/ only replacing the martingale MM;N by N M;N .
All in all, we infer from (5.11) the following estimate for any t � T :

 .t/C �.t/ . C0 C

Z t

0

 .s/1=2.krM .s/k1 C ks
M .s/k1/ ds;

where

C0 D E.AT;M;N .0//C sup
t2Œ0;T �

E.kMM;N.t/k2�1;M /C sup
t2Œ0;T �

E.kN M;N.t/k2�1;M /: (5.12)

Using the non-linear Gronwall Lemma A.1, we infer

sup
t2Œ0;T �

. .t/C �.t// . C0 C

�Z T

0

.krM .s/k1 C ks
M .s/k1/ ds

�2
: (5.13)



V. Bansaye, A. Moussa, F. Muñoz-Hernández 3924

Since .krMk1/M and .ksMk1/M both converge to 0 inL1.0;T / (see (5.1)), the squared
integral in the third line is a sequence .ıM /M ! 0. We are left with controlling the two
martingale terms that appear in definition (5.12) of C0. This is achieved by Lemma 5.2
and (5.13) finally yields

jjjZM;N jjj
2

T;M C jjjW
M;N
jjj
2

T;M

. E.AT;M;N .0//C T
M 2

N
C ıM C

M 2

N
ŒjjjZM;N jjj

2

T;M C jjjW
M;N
jjj
2

T;M �:

The previous inequality can be rewritten replacing . by � D=2 for some D > 2. If indeed
N �M 2D, then 1 � .DM 2/=.2N / � 1=2 and the terms in the last line can be absorbed
in the left-hand side.

Now we can prove the remaining main result.

Proof of Theorem 2.3. We have

�M;N WD �M .U
M;N / � u D �M .U

M;N
� yuM /C �M .yu

M / � u

D �M .Z
M;N /C �M .u/ � u;

where the interpolation operator �M is the one used in Lemma 4.6. Using the triangular
inequality, we infer

sup
t2Œ0;T �

E.k�M;N .t/k2
H�1.T//C E.k�M;N k2

L2.QT /
/

� sup
t2Œ0;T �

E.k�M .Z
M;N /.t/k2

H�1.T//C E.k�M .Z
M;N /k2

L2.QT /
/

C sup
t2Œ0;T �

k�M .u/ � uk
2
H�1.T/ C k�M .u/ � uk

2
L2.QT /

: (5.14)

Now, using Proposition 4.5 we have that k�M .ZM;N /kL2.QT /
� k�M .Z

M;N /kL2.QT /
,

and using equivalence (4.5) of Proposition 4.11, we get for all t 2 Œ0; T �

k�M .Z
M;N /.t/kH�1.T/ . kZM;N .t/k�1;M CM�1k�M .ZM;N .t//kL2.T/

. kZM;N .t/k�1;M CM�1k�M .ZM;N .t//kL2.T/:

Then the expectation terms in the right-hand side of (5.14) satisfy the following bound for
M � 1

sup
t2Œ0;T �

E.k�M .Z
M;N /.t/k2

H�1.T//C E.k�M .Z
M;N /k2

L2.QT /
/ .T jjjZM;N jjj

2

T;M ;

where jjj � jjjT;M is defined in (5.6). Using Proposition 5.3, we infer

sup
t2Œ0;T �

E.k�M .Z
M;N /.t/k2

H�1.T//C E.k�M .Z
M;N /k2

L2.QT /
/

. E.AT;M;N .0//C T
M 2

N
C ıM ;
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where .ıM /M ! 0. Recalling definition (5.7) of AT;M;N .0/, we use ŒZM;N .0/�2M �
kZM;N .0/k2

�1;M and that ŒƒM;N .0/�M D d1 C a12ŒV M;N .0/�M is uniformly bounded
almost surely thanks to (2.7) (with similar estimates for the second species) to infer

sup
t2Œ0;T �

E.k�M .Z
M;N /.t/k2

H�1.T//C E.k�M .Z
M;N /k2

L2.QT /
/

. E.k�M .Z
M;N /.0/k2

H�1.T//C E.k�M .W
M;N /.0/k2

H�1.T//C
M 2

N
C ıM :

Of course, we can replace ZM;N .0/ by �M;N .0/ but with an extra cost of k�M .u0/ �
u0k

2
H�1.T/

that we somehow already had looking at the right-hand side of (5.14). For this,
we invoke Lemma 4.6 which allows us to write

sup
t2Œ0;T �

k�M .u/ � uk
2
H�1.T/ C k�M .u/ � uk

2
L2.QT /

. M�4kuk2
L1\L2.Œ0;T �IH2.T//;

what can be added to the sequence .ıM /M going to 0. Proceeding similarly to get the
control onW M;N and gathering all the terms leads to the conclusion.

Appendix A. Functional spaces, norms and estimates

A.1. Non-linear Gronwall lemma

Lemma A.1. Assume 0 �  ; � 2 C0.RC/ satisfy, for some constant C0 � 0 and 0 � c 2
L1loc.RC/,

 .t/C �.t/ � C0 C 2

Z t

0

c.s/ .s/1=2 ds:

Then there holds

 .t/C �.t/ �

�
C
1=2
0 C

Z t

0

c.s/ ds
�2
:

Proof. Without loss of generality, we can assume C0 > 0 (or replace it by C0 C " and let
"! 0). In that case, the function

a.t/ WD C0 C 2

Z t

0

c.s/ .s/1=2 ds

satisfies
a0.t/ D 2c.t/ .t/1=2 � 2c.t/a.t/1=2

which integrates as

a.t/1=2 � C
1=2
0 �

Z t

0

c.s/ ds;

since a.t/ � a.0/ D C0 > 0. The conclusion follows using  .t/C �.t/ � a.t/.
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A.2. Difference quotient and Sobolev spaces

For a real number h ¤ 0, we consider the difference quotient operator

DhW L1.T /! L1.T /; f 7!
�hf � f

h
:

We recall the following standard result for Sobolev spaces.

Proposition A.2. For f 2 H 1.T /, one has for any h ¤ 0, kDhf k2 � kf 0k2. In partic-
ular, .Dhf /h ! f 0 in L2.T /, as h! 0.

The estimate is (for instance) proven in [7, Proposition 9.3] and the convergence is
obtained by a straightforward density argument. From the previous result, we recover the
following one.

Proposition A.3. For f 2 H 2.T /, we have .D�hDhf /h ! f 00 in L2.T / as h! 0.

Proof. We use Proposition A.2 for both functions f and f 0, writing D�hDhf � f 00 D
D�h.Dhf � f 0/C .D�hf 0 � f 00/, and the conclusion follows since the family of oper-
ators .Dh/h¤0 is uniformly bounded from H 1.T / to L2.T /.

With the previous, one gets eventually the following result.

Proposition A.4. For f; g 2 H 3.T /, we have .D�hDhf /h ! f 00 in L1.T / as well as
.D�hDhfg/h ! .fg/00 in L1.T /, as h! 0.

Proof. For the first convergence, one just note that differentiation commutes with dif-
ference quotients, so that from Proposition A.3 one directly infers .D�hDhf /h ! f 00

in H 1.T / ,! C0.T / and the uniform limit follows. For the product, we simply use that
H 3.T / is an algebra (see, e.g., [1, Theorem 4.39] for a proof).

A.3. Discrete–continuous dictionary

Discrete Continuous

�M �

k � kp;M k � kLp.T/

.�j�/M .�j�/L2.T/

k � k�1;M k � kH�1.T/

jjj � jjjT;M jjj � jjjT

Œ��M Œ��T
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