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Abstract. In this work, we establish the optimal regularity for solutions to the fully nonlinear thin
obstacle problem. In particular, we show the existence of an optimal exponent ˛F such that u
is C 1;˛F on either side of the obstacle. In order to do that, we prove the uniqueness of blow-ups
at regular points, as well as an expansion for the solution there. Finally, we also prove that if the
operator is rotationally invariant, then ˛F � 1

2 and the solution is always C 1;1=2.
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1. Introduction

The aim of this work is to study the optimal regularity and homogeneity of blow-ups at
regular points for solutions to the Signorini problem or thin obstacle problem for fully
nonlinear operators.

Monotonicity formulas have been an essential tool in the study of free boundary
problems (and minimal surfaces). They are extremely useful to control the solution at
increasingly smaller scales and allow to perform a blow-up study. Nonetheless, monoton-
icity formulas usually lack flexibility in their application, and as soon as one considers
small perturbations of the operators, they are often no longer available. This is one of the
reasons why, in the last years, the study of free boundary problems for fully nonlinear
operators has arisen as a way to study the properties of solutions and contact sets in gen-
eral contexts where no monotonicity formulas are available; see [6,9,11,19,21,22,25,31,
33, 34, 37].
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In particular, the study of the optimal regularity and homogeneity of blow-ups for the
classical Signorini problem is possible thanks to specific monotonicity formulas [3, 4].
In the context of fully nonlinear operators, however, the lack of monotonicity formulas
makes it harder to understand the optimal regularity of solutions.

1.1. The setting

Given a domain D � Rn, the thin obstacle problem involves a function u 2 C.D/,
an obstacle ' 2C.S/ defined on an .n� 1/-dimensional manifold S , a Dirichlet boundary
condition given by gW @D ! R, and an elliptic operator L,8̂̂̂̂

<̂
ˆ̂̂:
Lu D 0 in D n ¹x 2 S W u.x/ D '.x/º;

Lu � 0 in D;

u � ' on S;

u D g on @D:

(1.1)

Intuitively, one can think of it as finding the shape of a membrane with prescribed
boundary conditions considering that there is a thin obstacle from below.

The first results on the regularity of solutions to thin obstacle problems were estab-
lished in the seventies by Lewy [24], Frehse [17], Caffarelli [7], and Kinderlehrer [20].
In particular, when L D �, Caffarelli showed in 1979 the C 1;˛ regularity of solutions in
either side of the obstacle for some ˛ > 0.

However, while for the (thick) obstacle problem the optimal C 1;1 regularity of solu-
tions is a simple consequence of maximum principle arguments, for the thin obstacle
problem it took 25 years to obtain the optimal Hölder regularity. In 2004, Athanasopoulos
and Caffarelli [3] showed that solutions to the thin obstacle problem (1.1) with LD� are
always C 1;1=2 in either side of the obstacle, and this is optimal. In order to do so, they had
to rely on monotonicity formulas specific to the Laplacian, which do not have analogies
to other more general elliptic operators. We refer to [29] or [12] for more details on the
thin obstacle problem and its monotonicity formulas.

In this work, we study the fully nonlinear version of problem (1.1). More precisely,
we study (1.1) with Lu D F.D2u/, a convex fully nonlinear uniformly elliptic operator,
and for simplicity, we consider S to be flat, and ' D 0. Since all of our estimates are of
local character, we consider the problem in B1,8̂<̂

:
F.D2u/ D 0 in B1 n ¹xn D 0; u D 0º;

F .D2u/ � 0 in B1;

u � 0 on B1 \ ¹xn D 0º;

(1.2)

and we are interested in the study of the regularity of solutions on either side of the
obstacle. As recently observed in [16, 34], this is the problem that appears, for example,
when studying the singular points for the (thick) obstacle problem.
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We denote by Mn the space of matrices Rn�n and by MS
n the space of symmetric

matrices. We assume that F WMn ! R satisfies the following conditions:

F is convex, uniformly elliptic

with ellipticity constants 0 < � � ƒ and with F.0/ D 0: (1.3)

1.2. Known results

A one-sided version of problem (1.2) was first studied by Milakis and Silvestre in [25],
where the authors proved C 1;"ı regularity of solutions under further assumptions on F
and the boundary datum. The second author in [11] then showed the C 1;"ı regularity of
solutions for the two-sided problem (1.2) with general operators (1.3). In particular, by
the results in [11], a solution u to (1.2) satisfies

kuk
C1;"ı .B

C

1=2
/
C kukC1;"ı .B�

1=2
/ � CkukL1.B1/

for some C and "ı > 0 depending only on n, � and ƒ, and where we have denoted
B˙r WD Br \ ¹˙xn > 0º. This is the analogue of the result of Caffarelli [7] for general
convex fully nonlinear operators, leaving open the optimal regularity issue.

Later on, the third author and Serra in [31] started the study of the contact set ¹xn D 0;
u D 0º for solutions to (1.2). In particular, they established the following dichotomy for
any point xı on the free boundary, xı 2 @¹uD 0º \B1=2 \ ¹xn D 0º with jru.xı/j D 0.

There exists "ı > 0 depending only on � and ƒ such that

(1) (Regular points) either

cr2�"ı � sup
Br .xı/

u � Cr1C"ı (1.4)

with c > 0, and all r 2 .0; 1
4
/,

(2) (Degenerate points) or
0 � sup

Br .xı/

u � C"r
2�"

for all " > 0, and r 2 .0; 1
4
/.

This dichotomy is analogous to the case of the Laplacian in [4], where "ı D 1
2

and
free boundary points have frequency either � D 3

2
or � � 2.

Moreover, continuing with the results in [31], points satisfying (1.4) were defined to
be regular points, and they are an open subset of the free boundary locally contained
in a C 1 .n � 2/-dimensional manifold. More recently, by means of the recent boundary
Harnack principle in [10,32] one can actually upgrade the regularity of the regular part of
the free boundary to C 1;˛ for some ˛ > 0.

In order to establish the classification of free boundary points, it is proved in [31] that
if a point is regular, then one can do a partial classification of blow-ups. More precisely,
let us suppose that 0 is a regular free boundary point, and let us consider the rescalings

ur .x/ WD
u.rx/

kukL1.Br /
:



M. Colombo, X. Fernández-Real, X. Ros-Oton 3796

Then, from the results in [31], ur converges locally uniformly, up to a subsequence,
to some global solution u0 to a two-dimensional fully nonlinear thin obstacle problem,
monotone in the direction parallel to the thin space. This information is enough to estab-
lish that the free boundary is Lipschitz (and C 1) around regular points, without needing
a full classification or uniqueness of blow-ups u0.

1.3. Uniqueness of blow-ups

If u is a solution to (1.2) and 0 is a regular free boundary point with jru.0/j D 0, then
by [31] for every sequence rk # 0 there is a subsequence rkj # 0 such that

urkj
.x/! u0.x/ in C 1;˛loc .R

n
C/ \ C

1;˛
loc .R

n
�/;

where u0.x/ D U0.x
0 � e; xn/, U0 2 C 1;˛.R2C/ \ C

1;˛.R2�/, and e 2 Sn�2 is the unit
outward normal vector to the contact set in the thin space. We are denoting x D .x0; xn/ 2
Rn�1 �R, and Rn

˙
WD Rn \ ¹˙xn > 0º. Moreover (see Lemma 2.2 below), U0 is mono-

tone in the first coordinate and satisfies a global thin obstacle problem in R2 with a homo-
geneous operator G,8̂̂̂̂

<̂
ˆ̂̂:
G.D2U0/ � 0 in R2;

G.D2U0/ D 0 in R2 n .¹x2 D 0º \ ¹x1 � 0º/;

U0 � 0 on ¹x2 D 0º;

U0 D 0 on ¹x2 D 0º \ ¹x1 � 0º;

(1.5)

satisfying
U0.0/ D jrU0.0/j D 0; jU0.x/j � 1C jxj

2�" in R2: (1.6)

In particular, the operator G in (1.5) is given by G WD F.e/, where F.e/WR2�2 ! R
satisfies (1.3) and is defined by

F.e/.D
2w/ WD F �.D2w.x0 � e; xn//; (1.7)

with F � the recession function or blow-down of F , i.e., F � D limt!0 tF .t
�1 � /. When

F ¤ � and more in general when it is not rotationally invariant, the previous operators
are expected to substantially depend on the choice of e.

The questions that were left open in [31] are the following:

Are all solutions to (1.5)–(1.6) homogeneous? Are they unique?

This type of questions for fully nonlinear operators is usually very difficult. For ex-
ample, the same question without obstacle in R3 is a very important open problem. It is
known, for instance, that there are singular 2-homogeneous solutions for n � 5 [26, 28],
but they do not exist in R3 or R4 [27]. Hence, the regularity for fully nonlinear equations
is related to understanding whether blow-ups are always homogeneous, which remains an
open problem due to the lack of monotonicity formulas.
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Even for Lipschitz and convex F in R2, the homogeneity and classification of global
solutions with sub-cubic growth is open. In this work, we tackle these issues, in the context
of the thin obstacle problem.

Our first result in this paper is the uniqueness of such blow-ups. Notice that, as a con-
sequence, it follows that blow-ups are homogeneous. For the Signorini problem, this is
accomplished by means of a monotonicity formula; in our case, we need to proceed dif-
ferently. Notice, also, that in this context the monotonicity in one direction is equivalent
to the subquadratic growth in (1.6).

Theorem 1.1. Let GWM2 ! R be a 1-homogeneous fully nonlinear operator satisfy-
ing (1.3). Then, there exists a unique viscosity solution to (1.5), U0 2 C.R2/, such that
@1U0 2 C.R2/, @1U0 � 0, and jrU0.0/j D 0. Moreover, it is homogeneous of degree
1C ˛G 2 .1; 2/.

Remark 1.2. The function U0 divides S1 into three different sectors (see Figure 1),
according to its sign. In particular, when G D �, U0 corresponds to the third eigenfunc-
tion on S1 n ¹.�1; 0/º, which has eigenvalue 3

2
. For more general operators G, it does

not make sense to refer to an eigenvalue problem, but still U0 corresponds to the third
homogeneity of homogeneous solutions to G.D2u/ D 0 with zero Dirichlet condition on
.�1; 0/ � ¹0º.

Hence, thanks to Theorem 1.1, for a G of form (1.7), we have a unique blow-up
u
.e/
0 at a regular point with normal to the free boundary e 2 Sn�2, with homogeneity
1C ˛F .e/ WD 1C ˛G D 1C ˛F.e/ .

Corollary 1.3. Let u be a solution to (1.2) with F satisfying (1.3), and let 0 be a reg-
ular (see Definition 2.1) free boundary point such that jru.0/j D 0. Let us denote by
e 2 Sn�2 the unit outward normal to the contact set in the thin space at 0 and by u.e/0
the .1C ˛F .e//-homogeneous solution of Theorem 1.1 applied to F.e/ in (1.7). Then, we
have

ur .x/ WD
u.rx/

kukL1.Br /
! u

.e/
0 .x/ in C 1;˛loc .R

n
C/ \ C

1;˛
loc .R

n
�/ as r # 0:

Notice that, without loss of generality, after subtracting a linear function if necessary,
we can always assume that if 0 is a free boundary point for a solution u to a thin obstacle
problem, then jru.0/j D 0.

1.4. Optimal regularity

As a consequence of Corollary 1.3, since regular points are those with lowest decay,
and C 2;˛ estimates hold outside of the contact set, we can guess the optimal regularity of
solutions.

Let us define, for ˛F .e/ given by Corollary 1.3,

.0; 1/ 3 ˛F WD min
e2Sn�2

˛F .e/: (1.8)
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For instance, ˛� D 1
2

since ˛�.e/ D 1
2

for all e 2 Sn�2. The value of ˛F is the expec-
ted optimal regularity of solutions. Observe, though, that this is not an immediate con-
sequence of the classification of blow-ups (contrary to the almost optimal regularity in
Proposition 1.9 below), and instead will require a very delicate blow-up analysis to obtain
an expansion around regular points

In the case of the Laplacian, in [3] optimal regularity is obtained without classifying
blow-ups first, but by means of monotonicity formulas specific to that problem. Unfor-
tunately, monotonicity formulas are not available for general fully nonlinear operators,
so we have to develop other methods.

This is the main result of this paper, and it reads as follows.

Theorem 1.4. Let u be a solution to the thin obstacle problem (1.2) with F satisfy-
ing (1.3) and 1-homogeneous. Let ˛F be defined by (1.8) and Corollary 1.3. Then, u 2
C 1;˛F .BC1 / \ C

1;˛F .B�1 / and

kuk
C1;˛F .B

C

1=2
/
C kukC1;˛F .B�

1=2
/ � CkukL1.B1/;

where C is a constant depending only on F .
Furthermore, if 02 @¹uD 0º\¹xnD 0º is a regular free boundary point, and e2Sn�2

is the unit outward normal vector to the contact set at 0, then we have the expansion

u.x/ D cnxn C c0u
.e/
0 .x/C o.jxj

1C˛F .e/C� / (1.9)

with cn 2 R, c0 > 0 and for some � > 0 depending only on F , where u.e/0 and ˛F .e/ are
given by Corollary 1.3.

In particular, if jru.0/j D 0, the growth in (1.4) becomes by (1.9), for some c > 0,

cr1C˛F .e/ � sup
Br .xı/

u � Cr1C˛F .e/ for all r 2
�
0;
1

4

�
:

Even in the linear case F D �, where one can obtain the optimal regularity through
easier arguments, our proof is new and it is the first one that does not use monotonicity
formulas.

1.5. The rotationally invariant case

In Corollary 1.3, we have observed that blow-ups at regular points and their homogeneities
depend on the orientation of the free boundary around them. Thus, expansions like the
ones in Theorem 1.4 and the corresponding optimal regularity given by ˛F , in practice
depend in a fine way on the set of directions that the free boundary can take for a given
solution. This type of anisotropy does not appear if one considers, instead, rotationally
invariant operators, in which all directions e 2 Sn�2 will have the same ˛F .e/.

Therefore, let us consider Hessian equations (see, e.g., [35, 36]), which can be equi-
valently defined as those rotationally invariant or those for which F.M/ depends only on
the eigenvalues of M . As a consequence, if F is rotationally invariant, the blow-up u.e/0
and ˛F .e/ as defined in Corollary 1.3 are independent of e.
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In this case, solutions to fully nonlinear thin obstacle problems with a rotationally
invariant operator are always C 1;1=2, with equality ˛F D 1

2
if and only if ¹F � 0º D

¹tr.�/ � 0º (that is, the solution satisfies the Signorini problem with the Laplacian as well).

Theorem 1.5. Let F satisfying (1.3) be rotationally invariant, and let ˛F be defined
in (1.8). Then

˛F �
1

2
;

with equality if and only if ¹F � 0º D ¹tr.�/ � 0º.
Moreover, if u is a solution to the thin obstacle problem (1.2) with operator F , then

u 2 C 1;1=2.BC1 / \ C
1;1=2.B�1 / and

kuk
C1;1=2.B

C

1=2
/
C kukC1;1=2.B�

1
/ � CkukL1.B1/

for some C depending only on F .

It is unclear whether the property ˛F � 1
2

holds for more general operators as well.

1.5.1. Pucci operators. In order to establish Theorem 1.5, and in particular, to get that
˛F �

1
2

for rotationally invariant operators, we need to understand first the fully nonlinear
thin obstacle problem for Pucci operators; see Section 2.1 for the definition and properties.

Pucci operators have the advantage that computations can be made rather explicit.
When dealing with the thin obstacle problem for Pucci operators, we obtain a more
detailed analysis.

Proposition 1.6. Let u be a solution to (1.2) with a Pucci operator F D PC
�;ƒ

. Let ˛
P
C

�;ƒ

be defined as in (1.8) and Corollary 1.3, the homogeneity of blow-ups at regular points.
Then ˛

P
C

�;ƒ

D ˛.!/, where ! D ƒ
�

, ˛ D ˛.!/W Œ1;1�! Œ1
2
; 1/ is strictly increasing in !,

and ˛1 WD ˛.1/ is the unique solution to

2
p
˛1 D .1 � ˛1/.� C 2 arctan

p
˛1/;

that is, ˛1 � 0:64306995 : : :

1.6. Non-homogeneous operators

After obtaining the optimal regularity in Theorem 1.4, the next natural question is to
understand what is the role of the 1-homogeneity assumption on the operator. In the
next theorem, we show that it is crucial: perhaps surprisingly, we obtain that we cannot
expect solutions to be always C 1;˛F . This behaviour is distinctive of nonlinear operators
of form (1.3), and it is not observed, for example, when F is the Laplacian.

Theorem 1.7. There exists a solution u to (1.2) with some F of form (1.3), such that
u … C 1;˛F .BC

1=2
/, where ˛F is given by (1.8).

Remark 1.8. In fact, one can build such a counterexample in R2, for any ˛F > 1
2

admiss-
ible and for F rotationally invariant.
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Intuitively, the behaviour of the counterexample in Theorem 1.7 arises because blow-
downs of F can converge to a limit very slowly, slower than any power.

This slow convergence is essential in order to find a counterexample: as shown in
Theorem 7.3, a modification of the proof of Theorem 1.4 also yields the same result if
one assumes that, instead of F being 1-homogeneous, we have

kFt � F
�
k � Ct� as t # 0

for Ft D tF .t�1 � / and some � > 0 (being � D 1 the 1-homogeneous situation, where
Ft D F

� D F for all t > 0).1

On the other hand, observe that, in general, thanks to Corollary 1.3 and by com-
pactness, the regularity of the solution is always (almost) the one given by the worst
homogeneity of the blow-ups at regular points, see (1.8).

Proposition 1.9. Let F satisfy (1.3) and ˛F be given by (1.8). Let u be a solution to (1.2).
Then, u 2 C 1;˛F�".BC1 / \ C

1;˛F�".B�1 / and

kuk
C1;˛F�".B

C

1=2
/
C kukC1;˛F�".B�

1=2
/ � C"kukL1.B1/

for any " > 0, for some C" depending only on " and F .

Remark 1.10. Here, the dependence of the constant C" on F is in fact a dependence on
the modulus of continuity of blow-downs !, jtF .t�1�/ � F �j D !.t/ when t # 0.

In particular, thanks to Theorem 1.7, the regularity of solutions obtained by Pro-
position 1.9 is optimal (in the Hölder class), and can only be improved under further
assumptions on the operator (see Sections 1.4 and 1.5).

1.7. Sketches of the proofs

Let us give some of the main ideas in the proofs of our results.

1.7.1. Uniqueness of blow-ups. A recurrent idea in our proofs is the following observa-
tion: If w 2 C 2 satisfies a uniformly elliptic equation in non-divergence form in R2,

a11.x/@11w C a12.x/@12w C a22.x/@22w D 0;

then a simple computation gives that derivatives of w satisfy an equation in divergence
form,

div. zA.x/r.@1w// D 0;

for some uniformly elliptic matrix zA.x/ (see [18, Section 12.2] or [13, Section 4.2]).

1Notice that this is the same type of behaviour that arises in other situations. For example,
for equations in non-divergence form, the rate of convergence of the operator towards its blow-up
limit needs to be algebraic (that is, we need Hölder coefficients) in order to gain two derivatives of
regularity. Merely continuous coefficients do not imply, in general, that solutions are C 2.
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Regular points for the thin obstacle problem collapse all variables in the thin space
into one, in the blow-up limit, thus giving a two-dimensional solution. The uniqueness in
Theorem 1.1 then follows by observing that if u and v are both solutions to (1.5), then
˛u � ˇv is a solution to an equation in non-divergence form outside of the thin space,
for any ˛; ˇ > 0 (we are also using that G is 1-homogeneous here). Even if the equation
satisfied by ˛u � ˇv depends on ˛ and ˇ, it is enough to deduce that u and v satisfy
a boundary Harnack inequality and are comparable up to the boundary (see Appendix A).
From here, combining it with the interior Harnack inequality, the uniqueness of blow-ups
follows by a standard argument.

The existence (and homogeneity) then follows by constructing an explicit example
taking advantage of the recent work on homogeneous solutions in cones, see [2].

1.7.2. Optimal regularity. In order to prove the optimal regularity, Theorem 1.4, we prove
that if 0 is a regular point with jru.0/j D 0 with blow-up u.e/0 , then we can do an expan-
sion

u.x/ D c0u
.e/
0 .x/C o.jxj

1C˛F .e/C� /

with � depending only on F .
This is done by contradiction and a very delicate compactness argument. We assume

that the previous does not hold for a sequence uk with blow-ups u.k/0 . In particular, we can
always subtract the best approximation in L2 of uk in terms of u.k/0 , uk �Mku

.k/
0 , and

assume by contradiction that it is not lower order. Then, we blow up as

wk WD
uk �Mku

.k/
0

kuk �Mku
.k/
0 kL1.B1/

! v1

to obtain first a weak limit v1. Observe that uk and u.k/0 satisfy the same equation outside
of the thin space (since F is 1-homogeneous), and thus their difference satisfies an equa-
tion in non-divergence form. On the other hand, on the thin space they satisfy the same
equation almost on the same domain (the same up to lower order terms, since we assume 0
is a regular point and the domain is therefore C 1;˛). This is enough for us to prove a uni-
form convergence, since equations in non-divergence form have bounded C ˇ norm for
some ˇ > 0. Thus, the previous sequence wk has a strong uniform limit. Moreover, such
limit satisfies an equation in non-divergence form outside of a half-space in the thin space
(where it is zero), and has a growth rate in BR bounded by R1C˛F .e/C� < R2 for R > 1
and some � > 0.

At this point, we would like to get a contradiction by classifying these solutions.
In particular, we would like to show that v1 needs to be a non-trivial multiple of u.1/0 ,
the limit of the blow-ups u.k/0 , which would contradict the fact that we were subtracting
the best approximation in L2. In order to do that, we need more information on the limit.

The first observation is that the limit v1 is two-dimensional. This holds because we
are assuming that 0 is a regular point (so the free boundary is smooth around it) so we can
use the boundary Harnack principle for slit domains [10, 32].
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This is, however, not enough. Even if the operator is the Laplacian, there are global
two-dimensional solutions to the Laplace equation, vanishing on a half-line and with
strictly subquadratic growth at infinity, that are not blow-ups at regular points (for exam-
ple, the function r1=2 cos.1

2
�/ in radial coordinates for the Laplacian). In order to discard

this type of solution, we need a stronger (C 1) convergence of our sequence wk , at least in
the directions parallel to the thin space.

We consider then @ewk , that is, derivatives in the directions perpendicular to the con-
tact set at the origin. From the observation in the proof of the uniqueness of blow-ups
above, we can show that the restriction of @ewk to the plane spanned by the vectors e
and en satisfies a problem of the type´

div.A.x/rw/ D @x1f .x/ in B1 n ¹x2 D 0; x1 � 0º;

w D 0 on B1 \ ¹x2 D 0; x1 � 0º

for some f depending on wk itself. We then show, on the one hand, that f belongs to Lp

uniformly for some p > 2, and on the other hand, that solutions to the previous problem
are C ı for some ı > 0 – for this the condition p > 2 is crucial. Hence, wk is converging
in C 1 in the direction e parallel to the thin space given by the normal to the regular point.
The limit @ev1 is then continuous (also at 0), and satisfies an equation in divergence
form outside of a half-line. By means of a boundary Harnack principle again, we compare
it to @eu

.1/
0 to show that they are equal, up to a non-zero multiple. Hence, we reach

a contradiction with the fact that we were subtracting the best multiple along the sequence.

1.7.3. Non-homogeneous operators. The almost optimal regularity in Proposition 1.9,
as stated above, follows by a compactness argument after the classification of blow-ups.

We construct then the counterexample of Theorem 1.7 in two dimensions, for rotation-
ally invariant operators, and take advantage of Proposition 1.6. In particular, we consider
a regular point at the origin for a solution to a thin obstacle problem with operator

F.A/ D max
i2N
¹PC1;ƒi � ciº;

where ƒ1 D 1, c1 D 0, and ƒi " 2, ci " C1. Observe that the constant ci is fixing the
scale at which the solution behaves like a solution with the Pucci operator PC1;ƒi . Since
the homogeneity for the Pucci operators is increasing, the homogeneity of the blow-up
limit should be the one for PC1;2. However, by choosing ci appropriately we can make
sure that the optimal regularity associated to PC1;2 is not achieved.

1.8. Structure of the paper

The paper is organized as follows.
In Section 2, we introduce the notation and preliminaries of our problem. In Section 3,

we prove the existence, uniqueness, and homogeneity of blow-ups, in particular showing
Theorem 1.1, Corollary 1.3, and Proposition 1.9. In Section 4, we start our proof of the
optimal regularity by showing an expansion of the solution around regular points, which is
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then used in Section 5 to prove our main result, Theorem 1.4. In Section 6, we then study
rotationally invariant operators, in particular proving Proposition 1.6 first to show The-
orem 1.5. Finally, in Section 7 we focus on non-homogeneous operators and construct the
counterexample in Theorem 1.7, as well as prove a version of Theorem 1.4 with operators
that have a quantified rate of convergence to the recession function, Theorem 7.3.

In Appendix A, we prove a boundary Harnack principle that is used in Section 3,
Theorem A.1.

2. Preliminaries

2.1. Notation

We denote by Mn;�;ƒ and MS
n;�;ƒ

the corresponding spaces consisting of uniformly
elliptic matrices with ellipticity constants 0 < � � ƒ <1. That is,

A 2Mn;�;ƒ , A 2Mn and � Id � A � ƒ Id:

In particular, we are considering fully nonlinear operators F WMn!R satisfying (1.3)
that can be written (using Einstein’s notation) as

F.A/ D sup

2�

.Lij
 Aij C c
 / D sup

2�

.tr.L
A/C c
 /;

where .L
 /
2� �MS
n;�;ƒ

and sup
2� c
 D 0. Being uniformly elliptic implies that for
all M;N 2MS

n with N � 0, we have

cn�kN k � F.M CN/ � F.M/ � c�1n ƒkN k (2.1)

for some dimensional constant cn > 0 (see [8, 13]).
On the other hand, for fixed ellipticity constants � and ƒ, Pucci operators are the

extremal operators in the class of fully nonlinear uniformly elliptic operators with such
ellipticity constants. Namely, we define

PC
�;ƒ

.M/ WD sup
A2Mn;�;ƒ

tr.AM/ D ƒ
X

�i .M/>0

�i .M/C �
X

�i .M/<0

�i .M/;

P��;ƒ.M/ WD inf
A2Mn;�;ƒ

tr.AM/ D �
X

�i .M/>0

�i .M/Cƒ
X

�i .M/<0

�i .M/

(see, for example, [8] or [13, Chapter 4]), where we have denoted by �i .M/ the i -th
eigenvalue of M . Observe that only PC

�;ƒ
satisfies (1.3) since it is convex, whereas P�

�;ƒ

is concave. We call them extremal operators because for any fully nonlinear operator F
with ellipticity constants � � ƒ, we have

P��;ƒ.M/ � F.M/ � PC
�;ƒ

.M/ for all M 2MS
n :

We say that F is rotationally invariant (and F.D2u/ D 0 is a Hessian equation) if

F.OTMO/ D F.M/ for all M 2MS
n and for all O 2 O.n/:
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2.2. Preliminary results

Let us assume that 0 2 �.u/ is a free boundary point such that, after subtracting a hyper-
plane if necessary, jru.0/j D 0. Let us start defining what it means for 0 to be a regular
free boundary point.

Definition 2.1. Let u solve (1.2), and let us assume that 0 is a free boundary point such
that jru.0/j D 0. We say that 0 is a regular free boundary point if

lim sup
r#0

kukL1.Br /

r2�"
D1

for some " > 0.

By the results in [31], we know that there exists a constant "ı > 0 depending only
on � and ƒ such that

cr2�"ı � sup
Br

u �
1

c
r1C"ı

for some c > 0 and for r small enough. In particular, by [31, Proposition 5.2] there exists
some global function u0 2 C

1;˛
loc .R

2/ such that for some sequence rk # 0,

uk.x/ D
u.rkx/

kukL1.Brk /
! u0.x

0
� e; xn/ locally uniformly; (2.2)

where e 2 Sn�2 and .e; 0/ 2 Sn�1 denotes the outward normal vector to the contact set.

Lemma 2.2. The blow-up limit u0 2 C
1;˛
loc .R

2
C/ \ C

1;˛
loc .R

2
�/ appearing in (2.2) satisfies

u0.0/ D jru0.0/j D 0 and8̂̂̂̂
<̂
ˆ̂̂:
G.D2u0/ � 0 in R2;

G.D2u0/ D 0 in R2 n .¹x2 D 0º \ ¹x1 � 0º/;

u0 � 0 on ¹x2 D 0º;

u0 D 0 on ¹x2 D 0º \ ¹x1 � 0º

(2.3)

for some (positively) 1-homogeneous fully nonlinear operatorGWMS
2!R satisfying (1.3)

with ellipticity constants � andƒ, and depending on the normal vector to the free bound-
ary, e 2 Sn�2. Moreover,

@x1u0 � 0 in R2; (2.4)

and @x1x1u0 � 0; that is, u0 is monotone non-decreasing and convex in the x1-direction.

Proof. Let us denote v0.x/ D u0.e � x0; xn/, where e denotes the outward normal vector
to the contact set in the thin space. By [31, Theorem 4.1 and Proposition 5.2], we know
that uk converges (in C 1 norm) to a global subquadratic solution to a thin obstacle
problem that is two-dimensional and convex in the x0-variables, v0. It also satisfies
v0.x

0; 0/ D 0 in ¹e � x0 � 0º. Let us derive the operator of the thin obstacle problem in the
limit.
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Each uk satisfies a thin obstacle problem (1.2) in B1=rk with operator Frk , where2

Frk .A/ WD
r2
k

kukL1.Brk /
F
�kukL1.Brk /

r2
k

A
�
:

In particular, in the limit k !1, since rk # 0 and since, by assumption, 0 is a reg-
ular point (and thus u is strictly superquadratic at the origin), we have that the limit v0
satisfies a global thin obstacle problem with operator given by the recession function F �

of F
F �.A/ D lim

�!1
��1F.�A/:

Observe that F � is positively 1-homogeneous.
Moreover, since u0 is two-dimensional, from the fact that v0 satisfies a global (in Rn)

thin obstacle problem with operator F �, we deduce that u0 satisfies a global (in R2) thin
obstacle problem with operator F.e/ given by

F.e/.D
2u0/ WD F

�.D2u0.x
0
� e; xn//:

It is easy to check that F.e/WMS
2 ! R is a 1-homogeneous and convex fully nonlinear

uniformly elliptic operator with ellipticity constants � and ƒ.
The global convexity in (2.4) holds since v0 is convex in the x0-directions, and so u0 is

convex in the x1-direction. For the monotonicity, observe that since u0 D 0 in ¹x2 D 0º \
¹x1 � 0º it immediately holds on ¹x2 D 0º by convexity. In ¹x2 ¤ 0º it also holds,
being @x1u0 the extension of a positive sublinear function that satisfies an equation in
bounded measurable coefficients outside of the thin space. (See [31].)

We will also use the following equivalent characterization of regular points.

Lemma 2.3. Let u be a solution to (1.2), and let us assume that 0 is a free boundary point
with u.0/ D jru.0/j D 0. Then, the following are equivalent:

(i) 0 is a regular free boundary point, in the sense of Definition 2.1.

(ii) There exist some " > 0 and e 2 Sn�1 \ ¹xnD 0º such that @eu� 0 inB" and @eu 6� 0.

Proof. The proof of the result is essentially contained in [31], we sketch it for complete-
ness. The fact that (i) implies (ii) appears in the proof of the regularity of the free boundary
(see [31, Proposition 6.1]).

For the reverse implication, we notice that @eu satisfies an equation with bounded
measurable coefficients in non-divergence form, in ¹xn ¤ 0º. Thus, since it is non-zero,
by the Harnack inequality (or strong maximum principle) we have that @eu � c0 > 0

2Observe that we can alternatively write

Frk .A/ WD
r2
k

kukL1.Brk /
F
�kukL1.Brk /

r2
k

A
�
D sup

2�

�
L
ij

 Aij C

r2
k
c


kukL1.Brk /

�
:
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in B"=2 \ ¹jxnj � "
2
º. In particular, the same holds for a small cone of directions around e

(by C 1;˛ regularity of the solution on either side). Hence, the free boundary in B"=2 is
Lipschitz (proceeding as in [31, Proposition 6.1]). Thus, a standard application of the
boundary Harnack inequality in this context (see [32, Theorem 1.8] and the proof of [32,
Corollary 1.9]) gives us that the free boundary is C 1;˛ in B"=2.

Once the free boundary is C 1;˛ , using a barrier from below (in the same argument
as [31, Proposition 7.1, Lemma 7.2]), we have that

kukL1.Br / � cr
2�"ı

for some small "ı>0, and for all r small enough. In particular, 0 is a regular free boundary
point according to Definition 2.1.

The following is a well-known lemma that shows that, in dimension two, differences
of partial derivatives of solutions to a fully nonlinear equation satisfy an equation in diver-
gence elliptic form with bounded measurable coefficients. We refer the reader to [18,
Section 12.2] or [13, Section 4.2].

Lemma 2.4 ([13, 18]). Let u; v 2 C 2;˛.B1/ with B1 � R2 such that

zF .D2u/ D zF .D2v/ D 0 in B1

for some zF of form (1.3) and (positively) 1-homogeneous, with ellipticity constants 0 <
z� � zƒ <1. Given a fixed e 2 S1, let us define, for any ˛; ˇ � 0,

w˛ˇ WD ˛@eu � ˇ@ev:

Then w˛ˇ satisfies
div.A˛ˇ .x/rw˛ˇ .x// D 0 in B1 (2.5)

in the weak sense, with A˛ˇ WB1 !M2 such that

z�

zƒ
Id � A˛ˇ .x/ �

zƒ

z�
Id

for all x 2 B1.

3. Uniqueness of blow-ups at regular points

In this section, we prove the existence of homogeneous blow-ups and their uniqueness, to
conclude with the proofs of Theorem 1.1, Corollary 1.3, and Proposition 1.9.

3.1. Existence of homogeneous solutions

Let us begin by showing that we can always construct a homogeneous solution to our
global Signorini problem.
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v D 0

G.D2v/ D 0 v < 0
†1

v > 0
†2

v < 0
†3

x2

x1

�1

z�2.�1/

Fig. 1. The structure of the .1C ˛G/-homogeneous solutions to the fully nonlinear thin obstacle
problem. The unit circle is divided into three sectors according to the sign of v.

Lemma 3.1. There exists a homogeneous function v satisfying (2.3)–(2.4) (up to a multi-
plicative constant) with homogeneity .1C ˛G/ 2 .1; 2/ depending only on G.

Moreover, such a solution divides S1 into three sectors according to its sign,†1 (neg-
ative), †2 (positive), and †3 (negative), where the angle of each sector is strictly less
than � . (See Figure 1.)

Proof. We are going to build a homogeneous v by dividing S1 into three sectors according
to the sign of v.

Step 1: The three sectors. Let us denote by†.�0;�1/ the sector within the angles �0 <�1
with respect to ¹x2 D 0º \ ¹x1 � 0º, that is,

†.�0; �1/ WD ¹.x1; x2/ W �0 < arg.�x1 C ix2/ < �1º:

Let us denote by �i the ending angle of the i -th sector †i with respect to ¹x2 D
0º \ ¹x1 � 0º, namely

†i WD †.�i�1; �i /;

where we define �0 D 0 and assume �3 D 2� .
Let us now denote by ˛C.�0; �1/ > 0 the homogeneity of the unique function u such

thatG.D2u/D 0 in†.�0; �1/, uD 0 on @†.�0; �1/ and u > 0 in†.�0; �1/. Notice that
˛C.�0; �1/ is well defined by [2, Theorems 1.1 and 1.2] and ˛C.�0; �1/ is continuous
in �0 and �1 by the stability of solutions to fully nonlinear equations.

Moreover,
.�0; �1/ ¨ .�00; �

0
1/ ) ˛C.�0; �1/ > ˛C.�

0
0; �
0
1/ (3.1)
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(see [2, Section 3]). We similarly define ˛�.�0; �1/ > 0 as the homogeneity of the unique
function u such that G.�D2u/ D 0 in †.�0; �1/, u D 0 on @†.�0; �1/ and u > 0

in †.�0; �1/.
Observe, also, that

˛C.�; � C �/ D ˛�.�; � C �/ D 1 (3.2)

since G.0/ D 0 and we can choose a hyperplane as the homogeneous solution.

Step 2: Finding the homogeneity. Given 0 < z�1 < � , choose the unique z�2 D z�2.z�1/ > �
such that ˛�.0; z�1/ D ˛�.z�2; 2�/. Notice that we can always do that by continuity and
monotonicity (3.1), since ˛�.0; z�1/; ˛�.z�2; 2�/ # 1 when z�1 " � and z�2 # � , and we also
have that ˛�.0; z�1/; ˛�.z�2; 2�/ " 1 when z�1 # 0 and z�2 " 2� . Furthermore, z�2.z�1/ is
decreasing (and continuous) in z�1.

Now observe that ˛�.0; z�1/ is decreasing in z�1, and that ˛C.z�1; z�2/ is increasing
(again, by (3.1)). By continuity, there is a unique z�1 D �1 such that they are equal, which
is going to be the one determining our solution (see Figure 1).

Thus, let �1 be the unique angle such that

1C ˛G WD ˛�.0; �1/ D ˛C.�1; z�2.�1// D ˛�.z�2.�1/; 2�/:

Since we are dividing S1 into three sectors, at least one of the sectors is (strictly) con-
tained in a half-space, so that ˛G >0. Then, from (3.2) we get that the other two sectors are
also strictly contained in a half-space, so that �1 < � , z�2.�1/ > � , and z�2.�1/ � �1 < � .
Let us now show that ˛G < 1.

In order to do that, consider the quadratic function

q�.x1; x2/ D x2.x1 C �x2/

dividing the plane into four sectors†.0;��/,†.�� ;�/,†.�;� C ��/, and†.� C �� ; 2�/,
according to the sign of q� , where �� is such that tan.��/ D ��1. Moreover,

D2q�.x1; x2/ D

�
0 1

1 �

�
:

Then, by continuity and ellipticity (2.1) there is a unique x� 2 R such that

G.D2qx�/ D 0:

Now, if x� � �1, then †1 � †.0; x�/, which implies (by (3.1)) 1C ˛G � 2; and †2 �
†.x�; �/ (since z�2.�1/ > �), which implies 1C ˛G < 2, reaching a contradiction. Hence
x� < �1 and therefore, again by (3.1), 1C ˛G < 2, as we wanted to see.

Step 3: Conclusion. We now consider for each sector †1, †2, and †3 the corresponding
homogeneous functions described above. Namely, let

'1W †1 7! R�; '2W †2 7! RC; '3W †3 7! R�;
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which are .1C˛G/-homogeneous, and we consider them to be defined in R2 by extending
them by zero. Let us also assume that k'ikL1.B1/ D 1 for i D 1; 2; 3 (since they are
defined up to a positive constant). Notice that by the Hopf lemma and using that 'i all
have the same homogeneity, there exists a unique choice of c1; c3 > 0 such that

v D c1'1 C '2 C c3'3

is C 1 across the sectors†1 to†2, and†2 to†3. In particular, as v satisfies G.D2v/ D 0

in each sector, and is C 1 across sectors, it satisfies G.D2v/ D 0 in R2 n .¹x2 D 0º \

¹x1 � 0º/ and is the candidate that we were looking for. Finally, since v is monotone
increasing on ¹x2 D 0º, (2.4) holds (see [31]).

3.2. Uniqueness of blow-ups

In fact, the previous solution is the only one, as we show in the following proposition.

Proposition 3.2. There exists a unique function u0 2 C 1.R2C/ \ C
1.R2�/ which satis-

fies (2.3)–(2.4) with jru0.0/j D 0, up to a multiplicative constant.

Proof. Let us argue by contradiction, and let us suppose that there are two functions u
and v satisfying (2.3)–(2.4) with jru.0/j D jrv.0/j D 0 (existence being given already
by Lemma 3.1). Observe that we can apply Lemma 2.4 to obtain that for ˛; ˇ � 0,

w˛ˇ WD ˛ux1 � ˇvx1

all satisfy (outside of the contact set, ¹x2 D 0º \ ¹x1 � 0º) an elliptic equation in diver-
gence form with bounded measurable coefficients in the weak sense (that is, (2.5)), with
ellipticity constants independent of ˛ and ˇ. In particular, the same is true for both ux1
and vx1 .

Let us assume without loss of generality (recallG is 1-homogeneous and ux1 ; vx1�0)
that

ux1..1; 0// D vx1..1; 0// D 1:

Let us now consider the annulus B3=2 n B1=2. By the interior Harnack inequality
for operators in divergence form (see [18, Theorem 8.20]) applied to both ux1 and vx1 ,
we have that they are also comparable in

.B3=2 n B1=2/ \
�°
jx2j �

1

8

±
[ ¹x1 � 0º

�
;

namely, there exists a constant C depending only on z� and zƒ such that

1

C
�
ux1
vx1
� C (3.3)

in .B3=2 n B1=2/ \ .¹8jx2j � 1º [ ¹x1 � 0º/.
Now observe that ux1 and vx1 vanish on ¹x2 D 0º \ ¹x1 � 0º and they are non-

negative (and continuous) everywhere, so that together with the first observation we can
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apply the boundary Harnack inequality from Theorem A.1 in the half balls B1..�1; 0//\
¹˙x2 � 0º. In all, we have that ux1 and vx1 are comparable (they satisfy (3.3)) in the
whole annulusB3=2 nB1=2, for some constantC depending only on z� and zƒ. In particular,

ux1 �
1

C
vx1 � 0 in B3=2 n B1=2:

Since by assumption ux1 �
1
C
vx1 also satisfies an equation in divergence form and van-

ishes on ¹x2 D 0º \ ¹x1 � 0º, we deduce by maximum principle that ux1 �
1
C
vx1 � 0

in B3=2. The same argument with the other inequality yields that (3.3) actually holds in
the whole ball B3=2.

We now observe that they are in fact comparable in all of R2. Indeed, up to a rescal-
ing constant CR D

ux1 ..R;0//

vx1 ..R;0//
for R � 1 we can repeat the previous arguments to obtain

that ux1 and CRvx1 are comparable in B3R=2, that is, they satisfy (3.3) for some C that
depends only on z� and zƒ. Using now that ux1..1; 0// D vx1..1; 0// D 1, we deduce
that CR is in fact comparable to 1, and ux1 and vx1 are comparable everywhere. That is,
(3.3) holds in R2.

Let us now define c� as follows:

c� WD sup¹c � 0 W ux1 � cvx1 � 0 in R2º:

Notice that this set is non-empty since it contains the value 0, and it is clearly bounded
above. Moreover, the function ux1 � c�vx1 is again a non-negative solution to an equation
in divergence form (2.5) vanishing on the contact set. In particular, if we define

� WD ux1..1; 0// � c�vx1..1; 0//;

we have that � > 0 by the Harnack inequality, and we can compare the functions

1

�
.ux1 � c�vx1/ and vx1 :

These two functions satisfy the same properties as before, so repeating the previous pro-
cedure, we obtain that they are comparable everywhere. In particular, there exists some
constant c > 0 such that

.ux1 � c�vx1/

�vx1
� c > 0:

That is, ux1 � .c�C �/vx1 � 0, and we get a contradiction with the definition of c�, unless
ux1 D c�vx1 everywhere. In particular, since they coincide at .1; 0/, we deduce

ux1 � vx1 in R2:

That is, u.x1; x2/ D v.x1; x2/ C f .x2/. Finally, since both u and v satisfy the same
fully nonlinear equation outside the contact set and are C 1;˛ , we deduce that f needs
to be C 1;˛ and satisfy a bounded measurable coefficient equation in R2. In particular, it
must be a hyperplane. Since u.0/D v.0/D jru.0/j D jrv.0/j D 0, we have that f2 � 0
and u � v. That is, there exists at most one solution to (2.3)–(2.4) with jru0.0/j D 0.

The existence of a solution now follows from Lemma 3.1.
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3.3. Proofs of Theorem 1.1, Corollary 1.3, and Proposition 1.9

Proof of Theorem 1.1. The proof is an immediate consequence of Lemma 3.1 and Pro-
position 3.2.

Proof of Corollary 1.3. Observe that for any sequence rk # 0, we can find a subsequence
converging to a blow-up. Then, thanks to Proposition 3.2 and Lemma 3.1, such blow-up
is unique given by the construction in Lemma 3.1.

Once blow-ups at regular points are classified, by compactness we also obtain the
regularity of the solution (losing an arbitrarily small power).

Proof of Proposition 1.9. Let us rescale and assume kukL1.B1/ D 1.
We will show that, given " > 0 fixed, if 0 is a free boundary point, then

kukL1.Br / � C"r
1C˛F�" (3.4)

for some C depending only on " and F .
Indeed, let us suppose it is not true. That is, there exists a sequence uk of solutions

to (1.2) with operator F , with 0 a free boundary point for each uk , and such that

�.r/ D sup
k2N

sup
�>r

��1�˛FC"kukkL1.B�/ !1 as r # 0;

where �.r/ is a monotone function of r . Take sequences rm # 0 and km 2 N such that

�m WD r
�1�˛FC"
m kukmkL1.Brm / �

�.rm/

2
!C1 as m!1;

and define

vm.x/ WD
ukm.rmx/

kukmkL1.Brm /
:

Observe now that

kvmkL1.B1/ D 1 and D2
x0vm � �Cq

�1
m in B1=.2rm/

with

qm WD r
2
mkukmk

�1
L1.Brm /

� r�1C˛F�"m �.rm/!C1 as m!1;

and we are using that solutions to the fully nonlinear thin obstacle problem are semicon-
vex in the directions parallel to the thin space, [11, Proposition 2.2]. Moreover, we have
that vm satisfies Fm.D2vm/ D 0 in ¹xn ¤ 0º and ¹xn D 0º \ ¹ukm.rm � / > 0º, where
Fm.A/ D q

�1
m F.qmA/.

In all, vm satisfy a thin obstacle problem in B1=rm with operator Fm such that
˛Fm D ˛F . Now, since

kvmkL1.BR/ D
kukmkL1.BRrm /

kukmkL1.Brm /
� 2R1C˛F�"

�.Rrm/

�.rm/
� 2R1C˛F�"
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for all 1
rm
� R � 1, by the regularity estimates for the thin obstacle problem we can let

m ! 1 and converge to some global solution v1 to the fully nonlinear thin obstacle
problem, with the 1-homogeneous operator F � (the blow-down of F ), such that

kv1kL1.BR/ � R
1C˛F�" for all R � 1 and D2

x0v1 � 0 in Rn:

However, from the existence and uniqueness of blow-ups at regular free boundary
points Lemma 2.2, Proposition 3.2 and Lemma 3.1, v1 is either 0 or ˛-homogeneous,
with ˛ � 1C ˛F . From the growth condition, we obtain

v1 � 0;

contradicting kvmkL1.B1/ D 1 for all m 2 N.
Hence, (3.4) holds. From here, now, obtaining the estimates is standard, combin-

ing (3.4) with interior C 2;˛ estimates for fully nonlinear convex operators.

4. Expansion around regular points

The goal of this section is to prove the following result, saying that the solution has an
expansion around regular points.

Theorem 4.1. Let u be a solution to the fully nonlinear thin obstacle problem (1.2).
Assume, moreover, that F is 1-homogeneous and of form (1.3), and that 0 is a regular
free boundary point satisfying jru.0/j D 0, and such that � 2 Sn�1 is the unit outward
normal to the contact set on the thin space at 0. Let u�0 denote the unique blow-up at zero
(given by Lemma 3.1, in the direction �) with homogeneity 1 C ˛� . Then, we have the
expansion

u.x/ D c0u
�
0.x/C o.jxj

1C˛�C� /

for some c0 > 0 and � > 0. The constant � depends only on F .

We begin by proving the following regularity result for equations in divergence form
in slit domains.

Lemma 4.2. Let u 2 W 1;p.B1/ \ C
0.B1/ for B1 � R2 and p > 2, f 2 Lp.B1/, and

let us assume that u satisfies´
div. zA.x/ru/ D @x1f .x/ in B1 n ¹x2 D 0; x1 � 0º;

u D 0 on B1 \ ¹x2 D 0; x1 � 0º;

where zA.x/ is uniformly elliptic with ellipticity constants � and ƒ. Then u 2 C ı.B1/ for
some ı > 0 depending only on �, ƒ, and p, and

Œu�C ı.B1=2/ � C.kukL1.B1/ C kf kLp.B1//

for some C depending only on �, ƒ, and p.
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Proof. Let us start by dividing u by kukL1.B1/ C
1
�ı
kf kLp.B1/ so that we can assume

kukL1.B1/ � 1 and kf kLp.B1/ � �ı, for some �ı small enough to be chosen, depending
only on p, � and ƒ.

By standard results for divergence-type equations, this type of equation has interior
and boundary Hölder regularity estimates (see [18, Theorems 8.24 and 8.31]). Thus, the
only problem occurs at the origin. That is, if we show that any such solution u is Hölder
continuous at the origin (quantitatively, i.e., by putting a barrier from above and below),
then by a standard application of interior and boundary regularity estimates we are done.

Let us define v˙ 2 W 1;2.B1/ to be the unique solution to8̂<̂
:

div. zA.x/rv˙/ D @x1f .x/ in B1 n ¹x2 D 0; x1 � 0º;

v˙ D 0 on B1 \ ¹x2 D 0; x1 � 0º;

v˙ D ˙1 on @B1:

In particular, by maximum principle vC � u in B1. Let us show that vC is Hölder
continuous, quantitatively, at the origin.

Let us write vC D v1 C v2, where v1; v2 2 W 1;2.B1/ satisfy8̂<̂
:

div. zA.x/rv1/ D 0 in B1 n ¹x2 D 0; x1 � 0º;

v1 D 0 on B1 \ ¹x2 D 0; x1 � 0º;

v1 D 1 on @B1

and 8̂<̂
:

div. zA.x/rv2/ D @x1f .x/ in B1 n ¹x2 D 0; x1 � 0º;

v2 D 0 on B1 \ ¹x2 D 0; x1 � 0º;

v2 D 0 on @B1:

By maximum principle (see, for example, [18, Theorem 8.15]), since p > 2 and we
are in R2, we have that

kv2kL1.B1/ � Ckf kLp.B1/ � C�ı

for some C depending only on p, � and ƒ.
On the other hand, by boundary regularity estimates we know that v1 (which is non-

negative) is close to zero near .�1
2
; 0/. Combined with a sequence of applications of the

interior Harnack inequality (for the function 1 � v1) along balls covering @B1=2, we get
that v1 is bounded on @B1=2 by 1 � �1, for some �1 small enough depending only on �
and ƒ. Hence, by maximum principle

kv1kL1.B1=2/ � 1 � �1:

In all, we have that if �ı is small enough depending only on p, �, and ƒ, then

kvCkL1.B1=2/ � 1 �
z�
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for some z� > 0 depending only on p, �, andƒ. We can now iterate the process and repeat
the argument, since p > 2 and assuming z� smaller if necessary depending on p, to get

kvCkL1.Br / � Cr
�

for some C and � > 0 depending only on p, � and ƒ. Repeating the process from
below, we obtain the same result for v�, thus having constructed barriers from above
and below for u. By means of interior and boundary regularity estimates, this concludes
the proof.

The next assertion follows from [30, Lemma 5.3] and will be useful below.

Lemma 4.3. Let u0 with ku0kL1.B1/ D 1 be of the form u0.x/D v.x
0 � e1; xn/, where v

is one of the blow-ups constructed in Lemma 3.1 coming from some operator G satisfy-
ing (1.3), z̨-homogeneous with z̨ 2 .1; 2/, and let u 2 C.B1/ with kukL1.B1/ D 1. Let us
define

�r .x/ WD L�.r/xn CQ�.r/u0.x/;

where
.L�.r/;Q�.r// WD arg min

.L;Q/2R2

Z
Br

.u.x/ � Lxn �Qu0.x//
2 dx:

Assume that, for all r 2 .0; 1/, we have

ku � �rkL1.Br / � C0r
ˇ

with ˇ > z̨ > 1 and C0 � 1. Then, there are L;Q 2 R with L;Q � CC0 such that

ku � Lxn �Qu0kL1.Br / � CC0r
ˇ for all r 2 .0; 1/

for some constant C depending only on ˇ, z̨, and G.

Proof. Since both u0 and xn are two-dimensional functions, let us assume that we are
in R2 (the same argument is valid in Rn). We consider polar coordinates and write
u0.x/ D �

z̨zu0.�/ and xn D � sin � for some zu0WS1 ! R coming from Lemma 3.1.
Observe now that

jQ�.2r/ �Q�.r/jr
z̨
� Ck�2r � �rkL1.Br /

since for � D � , �2r .x/ � �r .x/ D � z̨.Q�.2r/ � Q�.r//zu0.�/ (where � D jxj), and
zu0.�/ > 0 by construction (again, see Lemma 3.1). On the other hand, we also have

jL�.2r/ � L�.r/jr � Ck�2r � �rkL1.Br /

since there exists some z� 2 .0; �/ such that zu0.z�/ D 0. In particular, for such angle (that
depends onG) we have �2r .x/� �r .x/D �.L�.2r/�L�.r// sin z� . In all, we have shown
that

max¹jQ�.2r/�Q�.r/jr z̨; jL�.2r/�L�.r/jrº �Ck�2r � �rkL1.Br / �CC0r
ˇ (4.1)

for some C that depends on G.
Now the proof is exactly the same as [30, Lemma 5.3], using (4.1).
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Proposition 4.4. Let u be a solution to (1.2) with 1-homogeneous F and of form (1.3).
Let us suppose that kukL1.B1/ D 1, 0 is a regular free boundary point with jru.0/j D 0,
and that if u0 is the unique blow-up (2.2) at 0 with homogeneity 1C ˛0 (as constructed
in Lemma 3.1), then


 u.rx/

kukL1.Br /
� u0.x/





L1.B1/

� � for all r < 1: (4.2)

Let us assume, moreover, that ¹u D 0º \ ¹xn D 0º \ B1 DW �
0 is a C 1;˛ domain in

¹xn D 0º, with C 1;˛ bounded by � > 0. Then, there exist a constant Q > 0 with Q � C
and �ı > 0 depending only on F and ˛, such that if � < �ı, then

ju.x/ �Qu0.x/j � C jxj
1C˛0C� in B1

for some constants C and � > 0 depending only on F and ˛.

Proof. We will show that there exist constantsQ > 0 and L withQ; jLj � C and �ı > 0
such that if � < �ı, then

ju.x/ � Lxn �Qu0.x/j � C jxj
1C˛0C� in B1

for some � > 0 and C . In particular, a posteriori, using that ru.0/D 0, we deduceLD 0.
Notice also that, if such Q exists, we necessarily have that Q � 0. Moreover, arguing

as in the proof of claim (7.1), we actually have that Q > 0.
We divide the proof into 7 steps.

Step 1: The setting. Let us argue by contradiction, and let us suppose that there are
sequences �k , uk , �k 2 Sn�2 such that

� uk is a solution to (1.2) with operator F , such that 0 is a regular free boundary point,
jruk.0/j D 0 and kukkL1.B1/ D 1,

� the blow-up at 0 of uk is u.k/0 with homogeneity 1C ˛k 2 .1;2/, and (4.2) holds for uk
and u.k/0 , and for some � to be chosen,

� the set ¹uk D 0º \ ¹xn D 0º \ B1 D �0
k

is a C 1;˛ domain in ¹xn D 0º with C 1;˛

norm bounded by �,

� the outward normal to the contact set �0
k

at 0 is given by �k , so that in particular
u
.k/
0 .x0; xn/ D zu

.k/
0 .x0 � �k ; xn/ for some zu.k/0 WR

2 ! R,

but they are such that for all C there exists some k 2N such that there are no constants L
and Q satisfying

juk.x/ � Lxn �Qu
.k/
0 .x/j � C jxj1C˛kC� in B1:

In particular, there are no L and Q such that

juk.x/ � Lxn �Qu
.k/
0 .x/j � C jxj1C… � C jxj1C˛kC� in B1;

where … WD 1 C ˛1 C 2� . We are assuming that, up to taking a subsequence, ˛k !
˛1 2 .0; 1/, and we are taking k large enough. The constant � will be chosen later in
terms of F and ˛.
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Step 2: General properties. Let us denote

�k;r .x/ WD Lk.r/xn CQk.r/u
.k/
0 .x/;

where

.Lk.r/;Qk.r// WD arg min
.L;Q/2R2

Z
Br

.uk.x/ � Lxn �Qu
.k/
0 .x//2 dx:

In particular, a simple computation yields that

Lk.r/ D
hu
.k/
0 ; u

.k/
0 irhxn; ukir � hu

.k/
0 ; ukirhu

.k/
0 ; xnir

hu
.k/
0 ; u

.k/
0 irhxn; xnir � hu

.k/
0 ; xni2r

and

Qk.r/ D
hu
.k/
0 ; ukirhxn; xnir � huk ; xnirhu

.k/
0 ; xnir

hu
.k/
0 ; u

.k/
0 irhxn; xnir � hu

.k/
0 ; xni2r

;

where for the sake of readability, we have denoted

hf; gir WD

Z
Br

f .x/g.x/ dx:

Since u.k/0 and xn are linearly independent and homogeneous, we can assume that
there exists some small constant c0 > 0 depending only on F such that

hxn; xnirhu
.k/
0 ; u

.k/
0 ir � hu

.k/
0 ; xni

2
r � c0r

2.2C˛kCn/ > 0: (4.3)

Notice that Qk.r/ > 0 if and only ifZ
B1

x2n dx

Z
B1

u
.k/
0 .x/

uk.rx/

kukkL1.Br /
dx �

Z
B1

uk.rx/

kukkL1.Br /
xn dx

Z
B1

u
.k/
0 .x/xn dx > 0:

From (4.2) and (4.3) with r D 1, we deduce that the previous holds if � is small enough
(depending on F ), and thus we get that

Qk.r/ > 0: (4.4)

Step 3: The blow-up sequence. On the other hand, from Lemma 4.3, we have

sup
k2N

sup
r>0

¹r�…kuk � �k;rkL1.Br /º D C1:

We now claim that there exist subsequences km !1 and rm # 0 such that

�m WD r
�…
m kukm � �km;rmkL1.Brm / !C1; (4.5)

and if we denote �m WD �km;rm , and

vm.x/ WD
ukm.rmx/ � �m.rmx/

kukm � �mkL1.Brm /
;
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then we have a bound on the growth control of vm given by

kvmkL1.BR/ � CR
… for all

1

2rm
� R � 1 (4.6)

and a bound for Lkm.rm/ and Qkm.rm/ given by

Lkm.rm/ � C�m; Qkm.rm/ � C�m: (4.7)

Observe that by definition of �m (and homogeneity of u.km/0 ), we have the orthogon-
ality condition Z

B1

vm.x/u
.km/
0 .x/ dx D 0 and

Z
B1

vm.x/xn dx D 0; (4.8)

and simply by definition, we have

kvmkL1.B1/ D 1: (4.9)

Let us show (4.5)–(4.7). We start by defining the monotone function

�.r/ WD sup
k2N

sup
�>r
¹��…kuk � �k;�kL1.B�/º;

so that, for r > 0, �.r/ <1, and �.r/ " 1 as r # 0. Take now subsequences rm and km
such that

r�…m kukm � �km;rmkL1.Brm / DW �m �
�.rm/

2
!1

as rm # 0.
From the definition of �k;r , we have that

�k;2r � �k;r D .Qk.2r/ �Qk.r//u
.k/
0 C .Lk.2r/ � Lk.r//xn;

where we recall that u.k/0 is .1C ˛k/-homogeneous, and thus arguing as in (4.1), we have

max¹jQk.2r/ �Qk.r/jr1C˛k ; jLk.2r/ � Lk.r/jrº

� Ck�2r � �rkL1.Br /

� Ck�k;2r � ukkL1.B2r / C Ck�k;r � ukkL1.Br /

� Cr…�.r/:

Proceeding inductively, if R D 2N , then

r1C˛k�…jQk.Rr/ �Qk.r/j

�.r/

� C

N�1X
jD0

2j.…�1�˛k/
.2j r/

1C˛k�…
jQk.2

jC1r/ �Qk.2
j r/j

�.r/

� C

N�1X
jD0

2j.…�1�˛k/
�.2j r/

�.r/
� C2N.…�1�˛k/ D CR…�1�˛k : (4.10)
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Similarly with the terms Lk.Rr/, we have

r1�…

�.r/
jLk.Rr/ � Lk.r/j � CR

…�1:

Thus, we obtain a bound on the growth control of vm given by (4.6). Indeed,

kvmkL1.BR/ D
kukm � Lkm.rm/xn �Qkm.rm/u

.km/
0 kL1.Rrm/

kukm � �km;rmkL1.Brm /

�
2

�.rm/r…m
kuk � Lkm.Rrm/xn �Qkm.Rrm/u

.km/
0 kL1.Rrm/

C
2

�.rm/r…m
jLkm.Rrm/ � Lkm.rm/jRrm

C
2

�.rm/r…m
jQkm.Rrm/ �Qkm.rm/j.Rrm/

1C˛k

� 2
R…�.Rrm/

�.rm/
C CR…;

and now (4.6) follows from the monotonicity of � .
Notice also that the previous computation in (4.10) also gives a bound for Lk.r/

and Qk.r/ given by
Lk.r/ � C�.r/; Qk.r/ � C�.r/;

which follows by putting R D r�1. This gives (4.7).

Step 4: Convergence of the blow-up sequence. We have that (sinceQkm.rm/> 0, by (4.4)),
for any ˇ � 0,

P��;ƒ.D
2.vm � ˇu

.km/
0 // � 0 � PC

�;ƒ
.D2.vm � ˇu

.km/
0 // (4.11)

in B1 n .�0km [ ¹x � �km � 0; xn D 0º/ and also

vm � ˇu
.km/
0 D 0 on �0km \ ¹x � �km � 0; xn D 0º:

Let us define UCm WD �0
km
[ ¹x � �km � 0; xn D 0º. Observe that, from C 1;z̨ regu-

larity of solutions to fully nonlinear equations and the fact that �0
km

is C 1;˛ , we have
that jrx0ukm j � Cr

z̨.1C˛/ in Br \ UCm . Similarly, using (4.7) we have that jrx0�mj �
C�mr

z̨.1C˛/ in Br \ UCm . Combining the previous considerations, we get that

krx0ukm � rx0�mkL1.Br\UCm /
� C�mr

z̨.1C˛/ for all r <
1

4
;

and
Œrx0ukm � rx0�m�C z̨.Br\UCm /

� C�m for all r <
1

4
:

Observe that by the almost optimal regularity of solutions (Proposition 1.9) and by tak-
ing �ı small (so that the domain is almost flat), we can assume that z̨ is arbitrarily close
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to ˛k . In particular, if k is large enough, we can choose also � small enough so that
… � 1 < z̨.1C ˛/ in B1=4.

In all, interpolating the previous two inequalities and using that … � 1 < z̨.1C ˛/
in B1=4, we obtain that

Œrx0ukm � rx0�m�C
 .Br\UCm /
� C�mr

…�1 for all r <
1

4

for some 
 > 0.
In particular, taking r D rm, we get

Œrvm�C
 .B1\r�1m U
C
m /
� C:

Repeating the same argument for any R � 1 with rmR < 1
4

, we obtain

Œrvm�C
 .BR\r�1m U
C
m /
� C.R/:

Together with (4.11) for ˇ D 0, we have that vm (which is continuous) is C 1;
 in
BR \ r

�1
m UCm and satisfies an equation in non-divergence form outside. A barrier argu-

ment combined with interior estimates gives

Œvm�C
 .BR/ � C.R/

for some possibly smaller 
 > 0, for C.R/ independent of m.
In all, we can takem!1 and vm converges, up to subsequences, locally uniformly to

some v1 2C


loc.R

n/. Moreover, up to taking a further subsequence, we also assume u.km/0

converges locally uniformly to u10 , and �k to �1, so that @eu10 D 0 for all e 2 Sn�2 with
e � �1 D 0. Taking (4.11) to the limit, we get that, for all ˇ � 0,

P��;ƒ.D
2.v1 � ˇu

1
0 // � 0 � PC

�;ƒ
.D2.v1 � ˇu

1
0 // (4.12)

in B1 n ¹x � �1 � 0; xn D 0º, and v1 D 0 in ¹x � �1 � 0; xn D 0º. Finally, from (4.6),

kv1kL1.BR/ � CR
… for all R � 1:

Step 5: Two-dimensional solution. From the regularity in Proposition 1.9, we know that
for any " > 0, there exist m large enough and C depending only on F , ˛, and " such that

j@�kmukm j � C jxj
˛km�" in Brm :

We are using here that, for m large enough, the normal to �0
km

in Brm does not vary too
much, thus the corresponding regularity does not vary too much either.

On the other hand, by the boundary Harnack inequality in slit domains for equations
in non-divergence form ([10] or [32, Theorem 1.2]) we know that there exists some ˇ > 0
depending only on ˛ and F such that

wm WD
@eukm
@�kmukm

2 C ˇ .B1=2/ for all e 2 Sn�2 W e � �km D 0;
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with estimates. In particular, since the normal at the free boundary at 0 is �km , wm.0/D 0
and together with the almost optimal regularity in Proposition 1.9, we obtain

j@eukm j �C jxj
˛km�"Cˇ �C jxj˛kmCˇ=2 in Brm for all e 2 Sn�2 W e � �km D 0; (4.13)

by choosing " > 0 small enough, and for some C that now depends only on ˛ and F .
Thus

k@evmkL1.B1/ �
r
1�…C˛kmCˇ=2
m

�m
�
r
ˇ=8
m

�m
� rˇ=8m (4.14)

if we choose � � ˇ
8

and we let m large enough (recall ˛km ! ˛1). In particular, taking
m!1, the limiting function v1 is two-dimensional, and

v1.x/ D zv1.�1 � x
0; xn/

for some zv1WR2 ! R.

Step 6: Higher order estimates. Let us fix some m 2 N, and let us assume without loss
of generality that �km D e1.

Notice that vm is locally C 2;˛ outside ofUCm D�
0
km
[ ¹xnD 0;x1 � 0º, in particular,

it satisfies an equation with bounded measurable coefficients,

nX
i;jD1

amij .x/@ij vm.x/ D 0 in B1 n UCm ;

where Am.x/ D .amij .x//
n
i;jD1 2 MS

n is uniformly elliptic with ellipticity constants �
andƒ. Proceeding as in the proof of Lemma 2.4 (see [13, Chapter 4]), we can differentiate
with respect to e1 and rewrite it as

div1;n. zAm.x/r1;n@1vm/D �@1

² n�1X
jD2

� nX
iD1

amij .x/

amnn.x/
@i

�
@j vm.x/

³
in B1 nUCm ; (4.15)

where

zAm.x/ D

 
am
11
.x/

amnn.x/

2am
1n
.x/

amnn.x/

0 1

!
2M2

is uniformly elliptic, and where we can divide by amnn.x/ since Am.x/ is uniformly
elliptic. We have denoted here div1;nw D @1wC @nw and r1;nw D .@1w; @nw/. Notice,
also, that all coefficients am

ij
.x/

amnn.x/
are uniformly bounded.

If we fix x2 D � � � D xn�1 D 0 in (4.15) and denote

zvm.x1; xn/ WD vm.x1; 0; : : : ; 0; xn/;

then
div. zAmr@1zvm/ D @1 zfm.x/ in B1 n ¹xn D 0; x1 � 0º � R2 (4.16)

for some zfm. We will show that zfm 2 Lp for some p > 2, independently of m.
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Let xı 2 ¹x2 D � � � D xn�1 D 0º n ¹xn D 0; x1 � 0º, and let � WD jxıj; we want to
bound jr@jukm j.xı/ in terms of �, for j 2 ¹2; : : : ; n � 1º. Notice that, on the one hand,
we know that

�k@jukmkL1.B�=8.xı// � C�
1C˛kmCˇ=2 in Brm (4.17)

from (4.13).
On the other hand, if � is small enough, we can either assume that B�=4.xı/ �

B1 n�
0
km

or that xı 2 B�=4.x0ı/ with x0ı D ..xı/1; 0; : : : ; 0/ and B�=2.x0ı/\ @�
0
km
D ¿.

If the first case holds, then by interior estimates for convex fully nonlinear equations
on ukm [8], we obtain that

�2Cz
 Œr@jukm �C z
 .B�=8.xı// � CkukmkL1.B�.xı// � C�
1C˛km�" (4.18)

for some C and any z
 > 0 small enough depending only on F and ", and where we are
also using the almost optimal regularity for ukm , see Proposition 1.9.

We can now interpolate (4.17) and (4.18) (see, for example, [18, Section 6.8]) and fix
" D ˇ z


4
to obtain

jr@jukm j.xı/ � kr@jukmkL1.B�=8.xı// � C jxıj
˛km�1Cˇ z
=.4.1Cz
// (4.19)

for any j 2 ¹2; : : : ; n� 1º. On the other hand, if the second case holds (i.e., xı 2B�=4.x0ı/
with x0ıD ..xı/1; 0; : : : ; 0/ andB�=2.x0ı/\ @�

0
km
D¿), the same result (4.19) is obtained

by means of boundary regularity estimates instead of interior estimates for convex fully
nonlinear equations.

Applying the previous bound (4.19) to vm, we obtain that given a point xxı 2 ¹x2 D
� � � D xn�1 D 0º and j 2 ¹2; : : : ; n � 1º (recall @ju

.km/
0 � 0)

jr@j vmj.xxı/ � r
ž=4
m jxxıj

˛km�1C
ž

if � is small enough depending on ˇ and z
 , and where ž is small (again depending on ˇ
and z
 ). In particular, we have

jr@j vmj.x1; 0; : : : ; 0; xn/ 2 L
p.B1/; B1 � R2; j 2 ¹2; : : : ; n � 1º;

for some p > 2. Hence, after recalling (4.15), we get that in (4.16) zfm 2 L
p
loc.R

2/ and

k zfmkLp.B1/ � Cr
ž=4
m

for some C independent of m, and some p > 2.
On the other hand, since vm is the difference of two solutions to a thin obstacle

problem, it has interior C 2;˛ regularity (that may depend on m). Proceeding as before
(to get (4.19)), we have that

jr@1ukm j.xı/ � kr@jukmkL1.B�=8.xı// � C jxıj
˛km�"�1

and by homogeneity the same holds for �m, for a constant C that depends on m. In par-
ticular,

kr@1zvmkLp.B1/ � Cm
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for some Cm " 1 as m!1. Thus, r@1zvm 2 L
p
loc.R

2/ for some p > 2, and we can
apply Lemma 4.2.

That is, by the regularity estimates from Lemma 4.2 we get that @1zvm 2 C ı.B1/ for
some ı > 0 with estimates of the form

Œ@1zvm�C ı.B1=2/ � C.k@1zvmkL1.B1/ C 1/

for some C depending only on F and ˛. Using interpolation (see [18]) and a standard
covering argument to reabsorb the right-hand side (see, for example, [13, Lemma 2.26]),
we now get that

Œ@1zvm�C ı.B1=2/ � C.kzvmkL1.B1/ C 1/ � C:

Recall that zvm.0/D jrzvm.0/j D 0. In particular, vm is uniformly C 1;ı for some ı > 0 on
¹x2 D � � � D xn�1 D xn D 0º. That is, the limiting function v1 is C 1;ı on ¹x2 D � � � D
xn�1 D xn D 0º.

Since v1 satisfies equation (4.12) with ˇ D 0 and is two-dimensional, boundary reg-
ularity estimates imply that v1 is C 1;ı in each part ¹˙x1 > 0º, by taking ı smaller if
necessary.

Step 7: Conclusion. Notice that, in the previous step, (4.16) also holds exchanging zvm by
zvm � ˇzu

.km/
0 for any fixed ˇ > 0, and for any ball BR with R � 1

2rm
,

div. zAm;ˇr.@1zvm � ˇ@1zu
.km/
0 // D @1 zfm.x/ in BR n ¹xn D 0; x1 � 0º;

where k zfmkLp.BR/ � C.R/r
ž=4
m , and zAm;ˇ is uniformly elliptic with ellipticity constants

depending on � and ƒ.
In particular, we can take the limit m ! 1 and observe that fm # 0 and that, by

homogenization theory, there exists uniformly elliptic A�
ˇ
.x/ with ellipticity constants

depending only on � and ƒ such that zAm;ˇ H -converges to A�
ˇ

up to subsequences
(see [1, Theorem 1.2.16 and Proposition 1.2.19]). That is, the limit @1zv1 � ˇ@1zu

.1/
0

satisfies
div.A�ˇ .@1zv1 � ˇ@1zu

.1/
0 // D 0 in BR n ¹xn D 0; x1 � 0º:

Since this is true for any ˇ > 0, we can proceed exactly as in the proof of Proposition 3.2
to deduce that @1zv1 D x̌@1zu

.1/
0 everywhere for some x̌ � 0 (by means of the boundary

Harnack principle, Theorem A.1). That is, zv1 � x̌zu
.1/
0 D g.xn/. Recalling that, outside

of the contact set, zv1 � x̌zu
.1/
0 satisfies an equation in non-divergence form with meas-

urable coefficients, we deduce that g.xn/ D �xn for some � 2 R.
In all, we have zv1.x1; xn/D x̌zu

.1/
0 .x1; xn/C �xn. Passing to limit (4.8), we deduce

x̌ D � D 0 (we also use (4.3), so that this is the only solution), and hence zv1.x1; xn/� 0,
contradicting (4.9) in the limit.

As a consequence of the previous proposition, we directly have that there is always an
expansion around regular points, where the first term is the (unique) blow-up at the point.

Proof of Theorem 4.1. We just directly apply Proposition 4.4 at a sufficiently small scale,
where (4.2) holds by uniqueness of blow-ups.
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5. Optimal regularity

The ideas of this section are based on those developed in [15] (see also [14, Section 4.5]).
Let us start by proving the following lemma, that will be crucial in the proof of the

optimal regularity.

Lemma 5.1. Let F satisfy (1.3). For every " > 0, there exists ı > 0 depending only on "
and F such that the following statement holds.

Let u solve a fully nonlinear thin obstacle problem in B1=ı with operator F , and let
us assume that 0 is a free boundary point with ru.0/ D 0. Namely,8̂<̂

:
F.D2u/ D 0 in B1=ı n ¹xn D 0; u D 0º;

F .D2u/ � 0 in B1=ı ;

u � 0 on B1=ı \ ¹xn D 0º:

(5.1)

Let us also suppose

jF.A/ � F �.A/j � ı.1C kAk/ for all A 2MS
n ;

where F � is the recession function of F , and

D2
x0u � �ı Id in B1=ı and kukL1.BR/ � R

2�"ı for all 1 � R �
1

ı
; (5.2)

where "ı is small depending only on F (as defined in (1.4)).
Then we have

ku � kukL1.B1/u0kC1.BC
1
[B�

1
/
� "; (5.3)

where u0 is a regular blow-up for the operator F with ku0kL1 D 1 (as constructed in
Lemma 3.1, with G of form (1.7) for F ).

Proof. Arguing by contradiction, suppose that uk satisfy the hypotheses with ı D 1
k

but
the thesis fails for some " > 0. Then uk converges to some u1 convex in the directions
parallel to the thin space and satisfying a fully nonlinear thin obstacle problem globally
with some 1-homogeneous operator F1. We then get a contradiction by the classification
of global subquadratic and convex solutions [31, Theorem 4.1] and the uniqueness of
blow-ups.

The following is a continuation of the previous lemma, where we further assume
a non-degenerate blow-up.

Lemma 5.2. Let F satisfy (1.3) and be 1-homogeneous. There exists a universal ıı de-
pending only on F such that if u satisfies (5.1)–(5.2) with ı � ıı, and kukL1.B1/ �

1
2

,
then

ju.x/j � C jxj1C˛F for all x 2 B1; (5.4)

for some C depending only on F , and where ˛F is given by (1.8).
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Proof. Let " > 0 to be chosen, and let ıı WD ı."/ given by Lemma 5.1, which will become
universal once " > 0 is fixed.

Then, since kukL1.B1/ �
1
2

, we will show that 0 is a regular free boundary point, the
free boundary is C 1;˛ in B1=2 with C 1;˛ norm bounded by C", and


 u.rx/

kukL1.Br /
� u0.x/





L1.B1/

� " for all r < 1; (5.5)

where u0 is a unit norm blow-up at 0 given by Corollary 1.3. We now fix " small enough
(depending only on F ), such that the hypotheses of Proposition 4.4 hold. In particular,
we have an expansion of the form

ju.x/ �Qu
.�/
0 .x/j � C jxj1C˛�C�=2 in B1

for some Q bounded depending only on F . Since ˛F � ˛� by definition and u.�/0 is
.1C ˛�/-homogeneous and has norm 1, bound (5.4) directly holds.

Let us then show that indeed 0 is a regular free boundary point, the free boundary
is C 1;˛ in B1=2 with C 1;˛ norm bounded by C", and (5.5) holds.

From (5.3), the fact that 0 is a regular point and the free boundary regularity around
it are standard once we have a boundary Harnack principle for slit domains (cf. [12,
Section 5]). Indeed, suppose that u0 D u0.x1; xn/ (hence the normal vector to the free
boundary is � D e1). Then, if " is small enough, a standard argument gives that @1u � 0
in B1=2 (for example, using [4, Lemma 5]). The same holds for directions in a cone
around e1, so that in fact the free boundary is Lipschitz, with Lipschitz constant arbitrar-
ily small (depending on " > 0), cf. [32, Proposition 5.1].

On the other hand, let e 2 Sn�1 \ ¹xn D 0º be such that e � e1 D 0. Then @eu0 D 0
and therefore, by assumption,

k@eukL1.B1/ � ":

By applying now the boundary Harnack principle for slit domains for equations in non-
divergence form [32, Theorem 4.2], we get that


@eu

@1u





C˛.B1=2/

� C":

This gives that the free boundary is C 1;˛ with norm bounded by " (as in [12, The-
orem 5.3]). Observe, also, that we can choose u0 to be arbitrarily close (depending on ")
to the blow-up at 0, u.�/0 , where � is the unit outward normal at the contact set at the
origin, and u.�/0 is defined as in the proof of Corollary 1.3.

Thus, there only remains to show (5.5). Let us define

u�.x/ WD
u.�x/

kukL1.B�/
for � < 1:

Observe that u� also satisfies a fully nonlinear thin obstacle problem with the same F
(since it is 1-homogeneous), has norm 1, and in a uniform ball around the origin the free
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boundary is formed exclusively of regular points. Proceeding by a barrier argument from
below (as in [31, Proposition 7.1] to get a non-degeneracy condition), we deduce that

kukL1.B�xr /

kukL1.B�/
D ku�kL1.Bxr / � Cxr

2�ˇı for all xr < 1; (5.6)

for some ˇı > 0 depending only on F .
Let us now consider ur for r < 1. Notice that ur satisfies (5.1). Moreover,

D2
x0ur D

r2

kukL1.Br /
.D2u/.rx/ � �ı Id in B1=ı ;

where we are using (5.6) with � D 1. On the other hand, if Rr � 1,

kurkL1.BR/ D
kukL1.BrR/

kukL1.Br /
�
CR2�"ır2�"ı

kukL1.Br /
� CR2�"ırˇı�"ı � R2�"ı ;

where we are taking "ı smaller if necessary (depending only on F ), and we are using
again (5.6) with � D 1. And if Rr < 1 with R > 1,

kurkL1.BR/ D
kukL1.BrR/

kukL1.Br /
� CR2�ˇı � R2�"ı ;

where we are using (5.6) with xr D 1
R

and � D Rr . In all, ur satisfies the hypotheses of
Lemma 5.1, and so (since ur has norm 1) we have, for all r < 1,

kur � u0kL1.B1/ � ":

By taking " smaller if necessary, we can assume, as before, that u0 D u
.�/
0 is the same

for all r < 1, where u.�/0 is the unique blow-up at zero, with homogeneity 1C ˛� . Thus,
(5.5) holds.

We can now prove the optimal regularity in the 1-homogeneous case.

Theorem 5.3. Let u be a solution to the fully nonlinear obstacle problem (1.2) with oper-
ator F given by (1.3) and 1-homogeneous, and let us assume that 0 is a free boundary
point. Let ˛F 2 .0; 1/ be given by (1.8). Then, u 2 C 1;˛F .BC1 / \ C

1;˛F .B�1 / and

kuk
C1C˛F .B

C

1=2
/
C kukC1C˛F .B�

1=2
/ � CkukL1.B1/

for some C depending only on F .

Proof. Let us assume that kukL1.B1/ D 1. By the semiconvexity in the directions parallel
to the thin space (see [11, Proposition 2.2]), we have

D2
x0u � �C Id

for some C depending only on F . In particular, if ıı is given by Lemma 5.2, there exists
a rescaling r0 � ıı (depending only on F ) such that the function u.r0 � / satisfies (5.1)–
(5.2) with ı D ıı.
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We claim now that, for C0 WD max¹C; r�1�˛F0 º,

ju.x/j � C0jxj
1C˛F for all x 2 Br0 : (5.7)

To prove this, consider the set of r < r0 such that the following inequality fails:

kukL1.Br / �
� r
r0

�1C˛F
: (5.8)

If this set is empty, (5.7) holds. Otherwise, take its supremum r1 and observe that we have
kukL1.Br1 / D r1

1C˛F r0
�1�˛F : Hence we can apply Lemma 5.2 to

ur1.x/ WD
u.r1x/

kukL1.Br1 /
D
u.r1x/r0

1C˛F

r11C˛F
:

We observe that kur1kL1.B1/ D 1 and that assumption (5.2) is satisfied since u.r0 � /
satisfies it and (5.8) holds for r1 < r < r0. By Lemma 5.2, we deduce that jur1.x/j �
C0jxj

1C˛F for every x 2 B1 and hence (5.7) holds.
Combining (5.7) with interior (and boundary) C 2;˛ estimates for the convex fully

nonlinear operator F , we get the desired result.

We can now give the proof of Theorem 1.4.

Proof of Theorem 1.4. It is a consequence of Theorems 4.1 and 5.3. The growth at regular
points is a consequence of the homogeneity of blow-ups.

6. Rotationally invariant operators

In this section, we will prove Proposition 1.6 first, and then use it to prove Theorem 1.5.
Let us consider the thin obstacle problem for a Pucci operator PC

�;ƒ
,8̂̂<̂

:̂
PC
�;ƒ

.D2u/ D 0 in B1 n ¹xn D 0; u D 0º;

PC
�;ƒ

.D2u/ � 0 in B1;

u � 0 on B1 \ ¹xn D 0º:

We want to classify blow-ups at regular points for this problem. In order to do that,
we will use the results in [23], where the author gives explicit solutions and homogeneities
for positive (and negative) solutions in planar cones.

More precisely, given a cone in R2 with aperture � 2 .0; �/, C� � R2, the unique
positive and negative homogeneous solutions u˙ to the problem8̂̂<̂

:̂
PC
�;ƒ

.D2u˙/ D 0 in C� ;

u˙ D 0 on @C� ;

˙u˙ � 0 in C�
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have homogeneity 1C ˛˙ � 1 given by the implicit equations

g.˛�; !/ D
�

2
; h.˛C; !/ D

�

2
; ! D

ƒ

�
:

The functions g D g.˛; !/, h D h.˛; !/W Œ1;1/ � Œ1;1/ 7! Œ0; �
2
� are defined as

g.˛; !/ D arctan
p
w C

1 � ˛q
.˛ C 1

!
/.˛ C !/

arctan

s
!.˛ C 1

!
/

˛ C !

and

h.˛; !/ D arctan
1
p
w
C

1 � ˛q
.˛ C 1

!
/.˛ C !/

arctan

s
˛ C !

!.˛ C 1
!
/
:

(See [23, Section 2].) Furthermore, for every fixed ! the functions g.�; !/ and h.�; !/ are
decreasing in ˛; and for every fixed ˛, the functions g.˛; �/, �h.˛; �/ are increasing in !.

With these definitions and the construction in Lemma 3.1, we can now give the proof
of Proposition 1.6.

Proof of Proposition 1.6. By the construction in Lemma 3.1 (and using the definitions
of g and h above, from [23]), our desired solution satisfies

2g.˛; !/C h.˛; !/ D �: (6.1)

That is,

�

2
D arctan

p
w C

1 � ˛q
.˛ C 1

!
/.˛ C !/

�
�

2
C arctan

s
!.˛ C 1

!
/

˛ C !

�
D g.˛; !/C

�.1 � ˛/

2

q
.˛ C 1

!
/.˛ C !/

:

In particular, for each fixed ! � 1, it is the sum of two strictly decreasing functions
in ˛, and so there is at most one solution (which we know exists for ˛ 2 .0; 1/).

In order to simplify the previous expressions, let us define x WD 1p
!
2 Œ0; 1�. Equa-

tion (6.1) then translates into

F.x; ˛/ WD
.1 � ˛/xp

.˛ C x2/.˛x2 C 1/

h�
2
C arctan

s
˛ C x2

˛x2 C 1

i
� arctan x D 0:

That is, for each x 2 Œ0; 1� we are looking for an ˛ 2 .0; 1/ such that F.x; ˛/ D 0.
As before, F.x; ˛/ is strictly decreasing in ˛ 2 .0; 1/ for each fixed x 2 Œ0; 1�. Moreover,
F.�; ˛/ is a smooth function with

F.0; ˛/ D 0 and F.1; ˛/ D
�

2

1 � 2˛

1C ˛
:
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Let us now define

G.x; ˛/ WD

p
.˛ C x2/.˛x2 C 1/

.1 � ˛/x
F.x; ˛/;

so that G.0; ˛/ D �
2
C arctan

p
˛ �

p
˛

1�˛
and G.1; ˛/ D �

2
1�2˛
1�˛

. Notice that G.x; ˛/ is
smooth for .x; ˛/ 2 Œ0; 1� � Œ0; 1/.

A direct computation yields

@

@x
G.x; ˛/ D

˛.1C x2/.�x C arctan.x/.1 � x2//

.1 � ˛/x2
p
.˛ C x2/.˛x2 C 1/

:

In particular, since arctan x < x
1�x2

for x 2 .0; 1/, we have that

@

@x
G.x; ˛/ < 0 for .x; ˛/ 2 .0; 1/ � .0; 1/:

On the other hand, we can also compute

@

@˛
G.x; ˛/ D

.1 � x2/.1 � ˛/2x � arctan.x/.x2 C 1/2.˛ C 1/2

2.˛ C 1/
p
.˛ C x2/.˛x2 C 1/.1 � ˛/2x

:

That is, for ˛ 2 .0; 1/ and x 2 .0; 1/,

@

@˛
G.x; ˛/ < 0 ,

.1 � ˛/2

.1C ˛/2
<

arctan .x/
x

.x2 C 1/2

1 � x2
:

In particular, notice that

.1 � ˛/2

.1C ˛/2
< 1 < .1C x2/2

arctan .x/

x � x3

3

.1 � x2

3
/

.1 � x2/
D

arctan .x/
x

.x2 C 1/2

1 � x2

for all .x; ˛/ 2 .0; 1/ � .0; 1/. Thus, @
@˛
G.x; ˛/ < 0 for .x; ˛/ 2 .0; 1/ � .0; 1/ as well.

Hence, G.x; ˛/ is (strictly) decreasing in both x and ˛ (recall that v is ˛-homoge-
neous if and only if G.x; ˛/ D 0, where x D

q
�
ƒ

).
We know that for each x 2 .0; 1�, there is a unique ˛ 2 .0; 1/ such that G.x; a/ D 0.

In particular, there exists some function hD h.x/W.0;1/ 7! .0;1/ such thatG.x; h.x//D0.
Using thatG is strictly decreasing in both variables (alternatively, by the implicit function
theorem), we have that h is strictly decreasing.

That is, if ˛ D ˛.!/ denotes the homogeneity (1+˛) of v, then ˛ is strictly increasing.
In particular, since ˛.1/ D 1

2
, we reach the desired result.

Finally, when x # 0, G.x; ˛/ vanishes when ˛ approaches the unique solution to the
equation G.0; ˛/ D �

2
C arctan

p
˛ �

p
˛

1�˛
D 0.

Before proving Theorem 1.5, let us show the following two-dimensional lemma, stat-
ing that rotationally invariant, 1-homogeneous, and convex operators are equivalent (for
solutions to thin obstacle problems) to some Pucci operator PC

�;ƒ
.
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Lemma 6.1. Let F WM2 ! F be a fully nonlinear operator with ellipticity constants
0 < ��ƒ<1 and such that it is rotationally invariant. Suppose, also, that F is 1-homo-
geneous and convex. Then, there exists some 1� z! � ƒ

�
such that ¹F � 0º D ¹PC

1;z!
� 0º.

In particular, if uWR2 ! R is a two-dimensional solution to8̂<̂
:
F.D2u/ D 0 in B1 n ¹x2 D 0; u D 0º;

F .D2u/ � 0 in B1;

u � 0 on B1 \ ¹x2 D 0º;

then there exists some 1 � z! � ƒ
�

such that u satisfies´
PC
1;z!
.D2u/ D 0 in B1 n ¹x2 D 0; u D 0º;

PC
1;z!
.D2u/ � 0 in B1;

that is, u solves a thin obstacle problem with the Pucci operator PC
1;z!

.

Proof. Since F depends only on the eigenvalues (or alternatively, it is rotation invariant),
we can write F.D2u/ D f .�1.u/; �2.u//, where �1.u/ � �2.u/ denote the two eigen-
values ofD2u. Since F is elliptic, whenever F.D2u/D 0, we have that �1.u/�2.u/ � 0,
so we can assume f to be defined in D WD Œ0;1/ � .�1; 0� � R2.

The fact that F is uniformly elliptic implies that f is strictly increasing in both com-
ponents �1 and �2; and since F is 1-homogeneous, we have that f is 1-homogeneous as
well. In particular, the zero level set of f in D is a cone. From the fact that f is strictly
increasing in both coordinates, the zero level set of f is either empty inD or a line passing
through the origin, namely, ¹f D 0º \D D ¹.�1;�z!�1/º for some z! � 0.

Now observe that, if it is non-empty, the zero (and sub-zero) level set for f coincides
with the zero (and sub-zero) level set of a Pucci operator PC

1;z!
if z! � 1 or P�

z!;1
if z! < 1.

Hence, if we show the right inequalities (and existence) for z!, we will be done.
We have

c tr.A/ � F.A/ � PC
�;ƒ

.A/ for all A 2MS
2 (6.2)

for some c > 0. The second inequality holds by definition of the Pucci operator, while the
first inequality is a consequence of the fact that F is rotation invariant and convex. Indeed,
since F is convex, there exists some linear operator L.A/ WD tr.zLA/ for some zL 2MS

2

such that L.A/ � F.A/, and since it is rotation invariant

tr.zLO�1AO/ D tr.O zLO�1A/ � F.A/ for all A 2MS
2 ;

and for all rotations O 2 O.2/. In particular, it holds for O 0 D
�

0 1
�1 0

�
, and thus we also

have
1

2
tr.L/ tr.A/ D

1

2
tr..LCO 0L.O 0/T/A/ � F.A/

for all A 2MS
2 and hence (6.2) holds.

Finally, from (6.2) we immediately deduce that z! exists and 1� z! � ƒ
�

, as we wanted
to see.
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The following proposition will now directly give the proof of Theorem 1.5.

Proposition 6.2. Let F be a rotationally invariant operator of form (1.3). Then, either
¹F � 0º D ¹tr.�/ � 0º or ¹F � � 0º � ¹PC1;ƒF � 0º for some ƒF > 1.

Proof. We first remark that, by convexity, ¹F � 0ºD ¹tr.�/� 0º if and only if ¹F � � 0ºD
¹tr.�/ � 0º. Since F � gives a convex Hessian equation, we can write

F �.A/ D f �.`1.A/; : : : ; `n.A// for A 2MS
n ;

where `1.A/ � � � � � `n.A/ denote the ordered eigenvalues of A, and f �WRn ! R is
invariant under permutations of the coordinates, convex and elliptic, in the sense that for
a dimensional constant Cn, and for any i 2 ¹1; : : : ; nº, � > 0,

�

Cn
� � f �.`1; : : : ; `i C �; : : : ; `n/ � f

�.`1; : : : ; `i ; : : : ; `n/ � ƒCn�:

(See [5, 28] for more details.) If F �.A/ is a function of the trace of A, then ¹F � � 0º D
¹tr.�/ � 0º by ellipticity and the fact that F �.0/ D 0, and the proposition is proved. Let
us assume otherwise that f �.`1; : : : ; `n/ is not a convex function of `1 C � � � C `n. Then,
there exists some p0 2Rn such that rf �.p0/D .L1; : : : ;Ln/ exists and is not a multiple
of the vector .1; : : : ; 1/. By the rearrangement inequality and ellipticity, we can assume,
up to changing the point p0 into one of its coordinate permutations,

0 <
�

Cn
� L1 � � � � � Ln � ƒCn:

We now claim that, for ƒF D 1C 1
n
.
q
Ln
L1
� 1/ > 1,

¹F � � 0º � ¹PC1;ƒF � 0º:

Indeed, let A 2MS
n with eigenvalues `1 � � � � � `n such that F �.A/ � 0, `1 � 0, `n > 0,

and let
j WD sup¹j 2 ¹1; : : : ; nº W j̀ � 0º:

Since f � is 1-homogeneous, .L1; : : : ; Ln/ belongs to its subdifferential at 0. Hence

F �.A/D f �.`1; : : : ; `n/�

nX
iD1

Li`i �Lj

� nX
iD1

`i C
L1 � Lj

Lj
`1C

Ln � Lj

Lj
`n

�
: (6.3)

Notice that the last two contributions are non-negative. We bound F �.A/ from below
by PC1;ƒF .A/, up to a constant, by studying two cases separately. If Lj �

p
L1Ln, neg-

lecting the second to last contribution in (6.3), we have

F �.A/

Lj
�

nX
iD1

`i C
�sLn

L1
� 1

�
`n �

jX
iD1

`i C
�
1C

1

n

�sLn

L1
� 1

�� nX
iDjC1

`i

D PC1;ƒF .A/:
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If Lj �
p
L1Ln, neglecting the last contribution in (6.3), we have

F �.A/

Lj
�

nX
iD1

`i C
�sL1

Ln
� 1

�
`1 �

�
1C

1

n

�sL1

Ln
� 1

�� jX
iD1

`i C

nX
iDjC1

`i

�

�
1C

1

n

�sL1

Ln
� 1

��
PC1;ƒF .A/:

In both cases, we have proved that PC1;ƒF .A/ � 0.

And thanks to the previous proposition, we can now give the proof of Theorem 1.5.

Proof of Theorem 1.5. If ¹F � 0º D ¹tr.�/ � 0º, we are done by the results for the Sig-
norini problem [3]. Let us suppose then that ¹F � 0º ¤ ¹tr.�/ � 0º.

We compute ˛F according to definition (1.8),

˛F WD min
e2Sn�2

˛F.e/ 2 .0; 1/;

where F.e/ is the two-dimensional blow-down in the direction e. Observe that, since F is
rotationally invariant, blow-ups at regular points satisfy a two-dimensional fully nonlinear
thin obstacle problem with operator PC

1;z!
by Lemma 6.1. Moreover, arguing as in the

proof of Lemma 6.1, since we have ¹F � � 0º � ¹PC1;ƒF � 0º by Proposition 6.2, up to
a dimensional constant, we have that z! � 1 > cn.ƒF � 1/.

Hence, by Proposition 1.6, ˛F.e/ >
1
2

for all e 2 Sn�1 \ ¹xn D 0º, and ˛F > 1
2

. From
the regularity result in Proposition 1.9, we are done.

7. Non-homogeneous operators

In this section, we deal with the more general case of non-homogeneous operators. In the
first part, we show that in general we do not expect the C 1;˛F regularity to hold for a non-
homogeneous operator. In the second part, we show that we can relax the 1-homogeneity
condition to some algebraic control of the convergence of the operator to its blow-down
(in analogy to the control given by Hölder coefficients for linear equations in non-diver-
gence form).

7.1. A counterexample

Let us start with the proof of Theorem 1.7, saying that in general solutions are not C 1;˛F

by constructing such a solution for a particular F .

Proof of Theorem 1.7. Let us construct such a solution. We will do so in R2 and for
some F that will be, moreover, rotationally invariant. Here, ˛F is given by (1.8).



M. Colombo, X. Fernández-Real, X. Ros-Oton 3832

Let us consider, without loss of generality, the domain Q1 D Œ�1; 1� � Œ�1; 1� � R2,
and the thin obstacle problem in this domain. In particular, the thin space is given by
¹x2 D 0º.

We will construct a sequence of solutions ui to a thin obstacle problem in Q1 with
operators Fi of form (1.3), all with the same boundary datum given by

ui D ˙1 on ¹x1 D ˙1º; ui D �1 on ¹x2 D ˙1º for all i 2 N:

In particular, notice that @x1ui either satisfies an equation with bounded measurable
coefficients or vanishes. Moreover, on the boundary we have @x1ui � 0, hence by the
maximum principle @x1ui � 0 everywhere. On the other hand, sinceFi will be rotationally
invariant, ui is even with respect to ¹x2 D 0º. Thus, if we letQC WD Œ�1; 1� � Œ0; 1�, then
@2ui � 0 on @QC and again by maximum principle @2ui � 0 in QC (and by symmetry,
@2ui � 0 in Q�).

In particular, for each ui there exists some zi 2 .�1; 1/ such that ui D 0 on ¹x2 D 0;
x1 � ziº and ui > 0 on ¹x2 D 0; x1 > ziº. That is, .zi ; 0/ is (the unique) free boundary
point for ui (and from the monotonicity of the solution around it, it is a regular free
boundary point).

Let us now suppose F0.D2w/ WD �w. We will construct a sequence with Fi having
ellipticity constants 1 and 2, so that the corresponding ui will converge to some u1
satisfying a fully nonlinear thin obstacle problem, with some operator F1 with ellipticity
constants 1 and 2 (all up to subsequences if necessary).

Let ƒi D 2 � 1
iC1

, and let us define

Fi .A/ D max
0�j�i

¹PC1;ƒj .A/ � zcj º D max¹Fi�1.A/;PC1;ƒi .A/ � zciº

for some sequence zci � 0 to be chosen. In particular,

kuikC1;˛.ƒi /.B1=2\¹x2D0º/
� Ci

for some Ci , where we recall ˛.ƒi / is the optimal homogeneity associated to PC1;ƒj (the
homogeneity of any blow-up). In particular, from Proposition 1.6, ˛i WD ˛.ƒi / is strictly
increasing, converging to ˛1 WD ˛.2/ 2 .0; 1/ as i !1.

On the other hand, recall that the solution to the fully nonlinear thin obstacle problem
can be defined as the minimal supersolution above the thin obstacle. In particular, since
any supersolution with operator Fi above the thin obstacle is also a supersolution with
operator Fi�1 above the thin obstacle, this implies that ui � ui�1 for all i 2 N and the
sequence ui is pointwise non-decreasing.

On the other hand, we claim (and prove later) that for "i D 1
2.iC1/

,

lim sup
r>0

kuikL1..zi ;ziCr/�¹0º/

r1C˛iC"i
D C1: (7.1)

Let us suppose that we have already constructed ui , let us show how to construct uiC1.
Observe that, once Fi is fixed and hence ui is fixed, we only need to fix zciC1 to determ-
ine uiC1. Observe, also, that as zciC1 !1, uiC1 # ui converges locally uniformly. Not
only that, but also from interior estimates ziC1 " zi .
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y1y2y3

z3 z2 z1 z0 z0 C y1
x1

u3 u2 u1 u0

Fig. 2. The sequence of solutions to fully nonlinear thin obstacle problems ui with free boundary
points at zi on the thin space, x2 D 0.

Let us denote yiC1 WD zi � ziC1, so that zi C y1 C y2 C � � � C yi D z0 (see Figure 2
for a sketch). Since yiC1 # 0 as zciC1 " 1, in order to determine zciC1 it is enough to say
how small yiC1 needs to be.

Notice that from (7.1), there exists some sequence rj # 0 such that

ui .zi C rj ; 0/

r
1C˛iC"i
j

� 1:

Let us now fix xr 2 .rj /j2N small enough such that

r
1C˛iC"i
j � ir

1C˛1
j ;

which always exists, since ˛i C "i < ˛1. Let us also suppose that xr < yi
2

, and fix
yiC1 D xr . In particular, this determines zciC1, and we have constructed uiC1 as the solu-
tion to the fully nonlinear thin obstacle problem with operator FiC1.

Let us check that u1 …C 1;˛1 , thus giving our counterexample. To do so, let us denote
by .z1; 0/ the free boundary point of u1 (in particular, z0D z1C y1C y2C � � �), so that
zi # z1 as i !1. Notice now that

u1.zi C yiC1; 0/ � ui .zi C yiC1; 0/ � y
1C˛iC"i
iC1 � iy

1C˛1
iC1 :

On the other hand, zi � z1D yiC1C yiC2C � � �. From the recursive condition yiC1 �
yi
2

,
we get zi � z1 � 2yiC1, so that, since u1 is monotone in the e1 direction, we have

u1.zi C yiC1; 0/ � u1.z1; 0/

.zi C yiC1 � z1/1C˛1
�

1

31C˛1

u1.zi C yiC1; 0/

y
1C˛1
iC1

�
1

31C˛1
i !1

as i !1. This, together with the fact that ru1.z1/.0/ D 0, yields that u1 … C 1;˛1 ,
as we wanted to see.

Proof of claim (7.1). Let us finish by proving the claim (7.1). By translating if necessary,
let us assume zi D 0.

Recall that, by uniqueness of blow-ups (Proposition 3.2 or Corollary 1.3), we have
that

ui .rx/

kuikL1.Br /
! zui .x/
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as r # 0, locally uniformly in B1, where the function zui .x/ is the blow-up solution: it
satisfies kzuikL1.B1/ D 1 and it is .1 C ˛i /-homogeneous. In particular, for any ı > 0

there exists some r0 > 0 such that


 ui .rx/

kuikL1.Br /
� zui .x/





L1.B1=2/

� ı for all r < r0:

By triangular inequality and recalling that zui .x/ is .1C ˛i /-homogeneous, we have that

kuikL1.Br=2/

kuikL1.Br /
� 2�1�˛i � ı � 2�1�˛i�"i=2

if ı > 0 is small enough depending only on ˛i and "i . Now, since kuikL1.B1/ D 1, and
applying it iteratively, we have that

kuikL1.B
2�k

/ � 2
�.1C˛iC"i=2/k :

In particular, (7.1) holds, and this completes the proof of Theorem 1.7.

7.2. Optimal regularity for operators with quantified convergence to the recession
function

Suppose now that the operator F we are dealing with, which satisfies (1.3), is not 1-homo-
geneous, but we have some control on its convergence towards the recession function F �.
In particular, let us define the monotone modulus of continuity !F W Œ0; 1� ! Œ0; Cƒ�

given by3

!F .�/ WD sup
0����

sup
kAk�1

j�F.��1A/ � F �.A/j; (7.2)

so that, in particular,

jF.M/ � F �.M/j � kMk!F .kMk
�1/

for all M 2MS
n with kMk � 1. Observe that !F is indeed a modulus of continuity, by

the definition of F �.
We are now interested in the case where there exists some power � > 0 such that

!F .�/ � C��
� for all � 2 .0; 1/ (7.3)

for some fixed C� > 0.
We have the analogous results in this case. We start with the analogue to Proposi-

tion 4.4, where the proof follows exactly as before and we highlight the main differences.

Proposition 7.1. Proposition 4.4 also holds when F satisfies (1.3) and (7.2)–(7.3) for
some � > 0 and C� > 0.

3This is equivalent to asking that, up to constants, d.F� ; F �/ � !F .�/, where F� WD �F.��1�/
and d.F;G/ WD sup

M2MS
n

jF.M/�G.M/j
1CkMk

.
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Proof. The proof follows along the lines of the proof of Proposition 4.4, and so we use
the same notation as in there; the dependence on F will now also include a dependence
on � and C� from (7.2)–(7.3). The only difference is that the functions in the sequence
ukm.rmx/ satisfy a different equation outside of the thin space (still, they are solutions
to a fully nonlinear thin obstacle problem), and consequently expression (4.11) becomes,
in this case,

P��;ƒ.D
2.vm � ˇu

.km/
0 // � Gm;ˇ .x/ � PC

�;ƒ
.D2.vm � ˇu

.km/
0 // (7.4)

for some function Gm;ˇ .x/. We remark that u.km/0 is a solution to the fully nonlinear thin
obstacle problem with operator F �, which is different from F .

Let us find an expression and a bound for Gm;ˇ .x/. We know that

P��;ƒ.D
2.vm � ˇu

.km/
0 //

� Fm

� r2m
qm
.D2ukm/.rmx/

�
� Fm..Qkm.rm/q

�1
m C ˇ/r

2
m.D

2u
.km/
0 /.rmx//;

where

Fm.A/ WD
r2m
qm
F
�qm
r2m
A
�
; qm WD kukm � �mkL1.Brm /;

so that, in particular,

P��;ƒ.D
2.vm � ˇu

.km/
0 // � �

r2m
qm
F..Qkm.rm/C qmˇ/.D

2u
.km/
0 /.rmx//:

The analogous inequality holds for PC
�;ƒ

. Thus, in (7.4) we define

Gm;ˇ .x/ WD �
r2m
qm
F..Qkm.rm/C qmˇ/.D

2u
.km/
0 /.rmx//;

and let us now find bounds for Gm;ˇ .x/. Observe that, by homogeneity, and after a rota-
tion assuming that �km D e1,

jD2u
.km/
0 .rmx/j D Cr

˛km�1
m j.x1; xn/j

˛km�1:

Therefore, from (7.3), using that F �.D2u
.km/
0 /D 0 and F � is 1-homogeneous, we obtain

jGm;ˇ .x/j �
C.Qkm.rm/C qmˇ/

r
…�1�˛km
m �mj.x1; xn/j

1�˛km

!F

�r1�˛kmm j.x1; xn/j
1�˛km

C.Qkm.rm/C qmˇ/

�
:

Now, from (4.7) and the monotonicity of !F , we have

jGm;ˇ .x/j �
C.1C ˇr…m /

r
…�1�˛km
m j.x1; xn/j

1�˛km

!F .C r
1�˛km
m /

� C�Cr
�.1�˛km /�…C1C˛km
m

1C ˇr…m
j.x1; xn/j

1�˛km
; (7.5)
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where we are also using thatQkm.rm/!1. We choose � small enough (depending on F
and �) so that �.1� ˛km/�…C 1C ˛km > 0, and (7.5) goes to zero asm!1. In par-
ticular, observe that Gm;ˇ is locally bounded in the domain where it is defined in (7.4),
so that the expression makes sense, and it belongs to Lploc for some p > 2. Specifically,
we have obtained an analogy to (4.11). Combined with barriers from above and below
(similarly to the ones constructed in [31, Lemma 7.2]) together with the interior Hölder
regularity for equations in non-divergence form with Lp right-hand side (for p � n,
see [8, Proposition 4.10]), we obtain by analogy with step 4 of the proof of Proposition 4.4
the uniform convergence of the blow-up sequence.

On the other hand, as in step 5 of the proof of Proposition 4.4, vm converges to a two-
dimensional functional (see (4.14)).

Let us fix some m 2 N, and assume �km D e1. Notice that vm is locally C 2;˛ outside
of UCm D �0

km
[ ¹xn D 0; x1 � 0º, in particular, it satisfies an equation with bounded

measurable coefficients,
nX

i;jD1

amij .x/@ij vm.x/ D Gm;0.x/ in B1 n UCm ;

where Am.x/ D .amij .x//
n
i;jD1 2 MS

n is uniformly elliptic with ellipticity constants �
and ƒ, and Gm;0 has bounds given by (7.5).

Since we have that for some p > 2

Gm;ˇ .x1; 0; : : : ; 0; xn/ 2 L
p.B1/ with B1 � R2

uniformly in m, arguing as in step 6 of the proof of Proposition 4.4, we get that vm (and
vm � ˇu

.km/
0 ) converges on the two-dimensional slice .x1; 0; : : : ; 0; xn/. By also using

the fact that kGm;ˇ .x1; 0; : : : ; 0; xn/kLp.B1/! 0 as m!1, for B1 � R2, we finish the
proof as the one in Proposition 4.4.

Remark 7.2. Once we have Proposition 7.1, then Theorem 4.1 also holds in this case.
Furthermore, Lemma 5.2 and Theorem 5.3 also hold for F satisfying (7.2)–(7.3),

using Proposition 7.1 instead of Proposition 4.4. Observe that Lemma 5.1 is already stated
for general operators, so the results follow in the same way.

We can now prove the analogue to Theorem 1.4 in this case.

Theorem 7.3. Theorem 1.4 also holds when F satisfies (1.3) and (7.2)–(7.3) for some
� > 0 and C� > 0.

Proof. The proof follows exactly the same as Theorem 1.4, thanks to the observation in
Remark 7.2.

Appendix A. The boundary Harnack principle

The following is the boundary Harnack comparison principle but for functions that do not
necessarily satisfy an equation with the same operator.
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We denote by BC1 D B1 \ ¹x1 � 0º, and we consider operators of the form

Lw.x/ WD div.A.x/rw.x//; 0 < � Id � A.x/ � ƒ Id; (A.1)

that is, uniformly elliptic operators in divergence form with bounded measurable coeffi-
cients.

Theorem A.1 (The boundary Harnack principle). Let 0<�ı�ƒı and let u;v 2C.BC1 /\

H 1.BC1 / such that v � 0 and they satisfy8̂̂̂<̂
ˆ̂:

L˛ˇ .˛u � ˇv/ D 0 in BC1 ;

u D v D 0 on B1 \ ¹x1 D 0º;

u
�1
2

e1

�
� 1; v

�1
2

e1

�
� 1;

in the weak sense, for any ˛;ˇ � 0, and for some elliptic operator in divergence form with
bounded measurable coefficients L˛ˇ as in (A.1), with ellipticity constants �˛ˇ and ƒ˛ˇ
such that 0 < �ı � �˛ˇ � ƒ˛ˇ � ƒı <1. Then, c�u � v in BC

1=2
for some constant c�

depending only on n, �ı, and ƒı.
In particular, if u � 0 and u.1

2
e1/ D v.

1
2
e1/ D 1,

c� �
u

v
�
1

c�
in BC

1=2
(A.2)

for some constant c� depending only on n, �ı, and ƒı.

In order to show Theorem A.1, we will follow the boundary Harnack principle proof
of De Silva and Savin [10], and more precisely, we will follow its adaptations in [13,
Appendix B] and [32]. Let us start by stating the two following lemmas.

In the first one, we have a global bound on the L1 norm of the solution, up to the
boundary. It corresponds to [32, Lemma 3.7] (see also [13, Lemma B.6]).

Lemma A.2 ([32]). Let u2C.BC1 / such that LuD 0 inBC1 for an operator of form (A.1)
with ellipticity constants � and ƒ, and u D 0 on ¹x1 D 0º. Assume, moreover, that
u.1
2
e1/ D 1. Then

kukL1.B1=2/ � C

for some C depending only on n, �, and ƒ.

In the second one, we have that if the solution is very positive away from the boundary,
and not too negative near the boundary, it is in fact positive up to the boundary.

Lemma A.3. Let L be of form (A.1) with ellipticity constants � andƒ. Then, there exists
a ı > 0 depending only on n, �, and ƒ such that if w 2 C.BC1 / satisfies´

Lw D 0 in BC1 ;

w D 0 on B1 \ ¹x1 D 0º
and

´
w � 1 in BC1 \ ¹x1 � ıº;

w � �ı in BC1

in the weak sense, then w � 0 in BC
1=2

.
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Proof. The proof is identical to the proof of [32, Proposition 3.10], where the modulus of
continuity of the operator is only used to deal with the right-hand side (which here is just
zero). Alternatively, we refer the reader to the proof of [13, Proposition B.8].

We can now give the proof of Theorem A.1.

Proof of Theorem A.1. We proceed as in the proof of [10, Theorem 1.1] (see also the
proof of [13, Theorem B.1]).

By Lemma A.2, we can assume that u is bounded inBC
3=4

by some constantC depend-
ing only on n, �ı, and ƒı. We consider

wM" DMv � "u

for some constantsM > 0 (large) and " > 0 (small) to be chosen. Observe that, since u is
bounded and v � 0, wM" � �"C in BC1 . In particular, given the ı from Lemma A.3 with
ellipticity constants �ı and ƒı, we can choose " small enough (depending only on n, �ı,
and ƒı) such that

wM" � �ı in BC1 :

On the other hand, by the interior Harnack inequality for operators in divergence form
[18, Theorem 8.20], we can choose M large enough (depending only on n, �ı, and ƒı)
such that Mv � 1C ı in B3=4 \ ¹x1 � ıº.

Thus,

wM" � 1 in B3=4 \ ¹x1 � ıº:

Since wM" D 0 on ¹x1 D 0º and LM"wM" D 0 in BC1 by assumption, we can apply
Lemma A.3 to deduce that wM" � 0 in BC

1=2
(up to a covering argument and taking ı

smaller if necessary).
That is, we deduce

v �
"

M
u in BC

1=2
:

Since M and " depend only on n, �ı, and ƒı, we deduce one inequality in the desired
result.

Finally, if u � 0 and u.1
2
e1/ D v.1

2
e1/ D 1, by exchanging the roles of u and v,

we get (A.2).
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[28] Nadirashvili, N., Vlăduţ, S.: Singular solutions of Hessian elliptic equations in five dimen-
sions. J. Math. Pures Appl. (9) 100, 769–784 (2013) Zbl 1283.35040 MR 3125267

[29] Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of free boundaries in obstacle-type
problems. Grad. Stud. Math. 136, American Mathematical Society, Providence, RI (2012)
Zbl 1254.35001 MR 2962060

[30] Ros-Oton, X., Serra, J.: Regularity theory for general stable operators. J. Differential Equa-
tions 260, 8675–8715 (2016) Zbl 1346.35220 MR 3482695

[31] Ros-Oton, X., Serra, J.: The structure of the free boundary in the fully nonlinear thin obstacle
problem. Adv. Math. 316, 710–747 (2017) Zbl 1371.35365 MR 3672918

[32] Ros-Oton, X., Torres-Latorre, C.: New boundary Harnack inequalities with right hand side.
J. Differential Equations 288, 204–249 (2021) Zbl 1465.35080 MR 4246154

[33] Savin, O., Yu, H.: On the fine regularity of the singular set in the nonlinear obstacle problem.
Nonlinear Anal. 218, article no. 112770 (2022) Zbl 1485.35133 MR 4365011

[34] Savin, O., Yu, H.: Regularity of the singular set in the fully nonlinear obstacle problem. J. Eur.
Math. Soc. (JEMS) 25, 571–610 (2023) Zbl 1510.35405 MR 4556790

[35] Trudinger, N. S.: On the Dirichlet problem for Hessian equations. Acta Math. 175, 151–164
(1995) Zbl 0887.35061 MR 1368245

[36] Trudinger, N. S.: Weak solutions of Hessian equations. Comm. Partial Differential Equations
22, 1251–1261 (1997) Zbl 0883.35035 MR 1466315

[37] Wu, Y., Yu, H.: On the fully nonlinear Alt–Phillips equation. Int. Math. Res. Not. IMRN 2022,
8540–8570 (2022) Zbl 1494.35059 MR 4425844

https://doi.org/10.1016/j.jde.2017.03.004
https://zbmath.org/?q=an:1378.35123
https://mathscinet.ams.org/mathscinet-getitem?mr=3632206
https://zbmath.org/?q=an:0153.43303
https://mathscinet.ams.org/mathscinet-getitem?mr=222734
https://doi.org/10.1016/j.aim.2007.08.009
https://zbmath.org/?q=an:1132.35025
https://mathscinet.ams.org/mathscinet-getitem?mr=2383900
https://doi.org/10.1016/j.aim.2012.07.005
https://doi.org/10.1016/j.aim.2012.07.005
https://zbmath.org/?q=an:1257.35092
https://mathscinet.ams.org/mathscinet-getitem?mr=2964616
https://doi.org/10.1002/cpa.21456
https://doi.org/10.1002/cpa.21456
https://zbmath.org/?q=an:1284.35178
https://mathscinet.ams.org/mathscinet-getitem?mr=3084701
https://doi.org/10.1016/j.matpur.2013.03.001
https://doi.org/10.1016/j.matpur.2013.03.001
https://zbmath.org/?q=an:1283.35040
https://mathscinet.ams.org/mathscinet-getitem?mr=3125267
https://doi.org/10.1090/gsm/136
https://doi.org/10.1090/gsm/136
https://zbmath.org/?q=an:1254.35001
https://mathscinet.ams.org/mathscinet-getitem?mr=2962060
https://doi.org/10.1016/j.jde.2016.02.033
https://zbmath.org/?q=an:1346.35220
https://mathscinet.ams.org/mathscinet-getitem?mr=3482695
https://doi.org/10.1016/j.aim.2017.06.032
https://doi.org/10.1016/j.aim.2017.06.032
https://zbmath.org/?q=an:1371.35365
https://mathscinet.ams.org/mathscinet-getitem?mr=3672918
https://doi.org/10.1016/j.jde.2021.04.012
https://zbmath.org/?q=an:1465.35080
https://mathscinet.ams.org/mathscinet-getitem?mr=4246154
https://doi.org/10.1016/j.na.2021.112770
https://zbmath.org/?q=an:1485.35133
https://mathscinet.ams.org/mathscinet-getitem?mr=4365011
https://doi.org/10.4171/jems/1182
https://zbmath.org/?q=an:1510.35405
https://mathscinet.ams.org/mathscinet-getitem?mr=4556790
https://doi.org/10.1007/BF02393303
https://zbmath.org/?q=an:0887.35061
https://mathscinet.ams.org/mathscinet-getitem?mr=1368245
https://doi.org/10.1080/03605309708821299
https://zbmath.org/?q=an:0883.35035
https://mathscinet.ams.org/mathscinet-getitem?mr=1466315
https://doi.org/10.1093/imrn/rnaa359
https://zbmath.org/?q=an:1494.35059
https://mathscinet.ams.org/mathscinet-getitem?mr=4425844

	1. Introduction
	1.1. The setting
	1.2. Known results
	1.3. Uniqueness of blow-ups
	1.4. Optimal regularity
	1.5. The rotationally invariant case
	1.6. Non-homogeneous operators
	1.7. Sketches of the proofs
	1.8. Structure of the paper

	2. Preliminaries
	2.1. Notation
	2.2. Preliminary results

	3. Uniqueness of blow-ups at regular points
	3.1. Existence of homogeneous solutions
	3.2. Uniqueness of blow-ups
	3.3. Proofs of Theorem 1.1, Corollary 1.3, and Proposition 1.9

	4. Expansion around regular points
	5. Optimal regularity
	6. Rotationally invariant operators
	7. Non-homogeneous operators
	7.1. A counterexample
	7.2. Optimal regularity for operators with quantified convergence to the recession function

	A. The boundary Harnack principle
	References

