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Abstract. We give conditions for the existence of regular optimal partitions, with an arbitrary num-
ber ` � 2 of components, for the Yamabe equation on a closed Riemannian manifold .M; g/.

To this aim, we study a weakly coupled competitive elliptic system of ` equations, related to the
Yamabe equation. We show that this system has a least energy solution with nontrivial components if
dimM � 10, .M;g/ is not locally conformally flat, and satisfies an additional geometric assumption
whenever dimM D 10. Moreover, we show that the limit profiles of the components of the solution
separate spatially as the competition parameter goes to �1, giving rise to an optimal partition.
We show that this partition exhausts the whole manifold, and we prove the regularity of both the
interfaces and the limit profiles, together with a free boundary condition.

For ` D 2 the optimal partition obtained yields a least energy sign-changing solution to the
Yamabe equation with precisely two nodal domains.

Keywords: competitive elliptic system, Riemannian manifold, critical nonlinearity, optimal
partition, free boundary problem, regularity, Yamabe equation, sign-changing solution.

Contents

1. Introduction and statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3714
2. Compactness for the Yamabe system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3718
3. The choice of the test function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3724
4. Phase separation and optimal partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3728
A. Some estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3737
B. Uniform bounds in Hölder spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3744

B.1. Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3746
B.2. A contradiction argument and a blow-up analysis . . . . . . . . . . . . . . . . . . . . . . . 3748
B.3. The domain variation formula: end of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 3753

Mónica Clapp: Instituto de Matemáticas, Universidad Nacional Autónoma de México,
76230 Querétaro, Mexico; monica.clapp@im.unam.mx

Angela Pistoia: Dipartimento Scienze di Base e Applicate per l’Ingegneria, Università di Roma
“La Sapienza”, 00161 Roma, Italy; angela.pistoia@uniroma1.it

Hugo Tavares: Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisboa, Portugal; hugo.n.tavares@tecnico.ulisboa.pt

Mathematics Subject Classification 2020: 35J20 (primary); 35B38, 35J47, 35J60, 35R35, 49K20,
49Q10, 58J05 (secondary).

https://creativecommons.org/licenses/by/4.0/
mailto:monica.clapp@im.unam.mx
mailto:angela.pistoia@uniroma1.it
mailto:hugo.n.tavares@tecnico.ulisboa.pt


M. Clapp, A. Pistoia, H. Tavares 3714

C. Lipschitz continuity of the limiting profiles and regularity of the free boundaries . . . . . . 3755
C.1. Almgren’s monotonicity formula: the case A.0/ D Id . . . . . . . . . . . . . . . . . . . . 3756
C.2. Almgren’s monotonicity formula: the general case . . . . . . . . . . . . . . . . . . . . . . 3764
C.3. Proof of the regularity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3766

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3767

1. Introduction and statement of results

Consider the Yamabe equation

Lgu WD ��guC �mSgu D juj
2��2u on M; (1.1)

where .M; g/ is a closed Riemannian manifold of dimension m � 3, Sg is its scalar
curvature, �g WD divgrg is the Laplace–Beltrami operator, �m WD m�2

4.m�1/
, and 2� WD

2m
m�2

is the critical Sobolev exponent. We assume that the quadratic form induced by the
conformal Laplacian Lg is coercive.

If � is an open subset of M , we consider the Dirichlet problem´
Lgu D juj

2��2u in �;

u D 0 on @�:
(1.2)

LetH 1
g .M/ be the Sobolev space of square integrable functions onM having square inte-

grable first weak derivatives, and let H 1
g;0.�/ be the closure of C1c .�/ in H 1

g .M/. The
(weak) solutions of (1.2) are the critical points of the C2-functional J� W H 1

g;0.�/! R
given by

J�.u/ WD
1

2

Z
�

.jrguj
2
g C �mSgu

2/ d�g �
1

2�

Z
�

juj2
�

d�g :

The nontrivial ones belong to the Nehari manifold

N� WD ¹u 2 H
1
g;0.�/ W u ¤ 0 and J 0�.u/u D 0º;

which is a natural constraint for J�. So, a minimizer for J� over N� is a nontrivial
solution of (1.2), called a least energy solution. Such a solution does not always exist.
If � is the whole manifold M , it provides a solution to the celebrated Yamabe problem.
In this case its existence was established thanks to the combined efforts of Yamabe [64],
Trudinger [62], Aubin [4] and Schoen [46]. A detailed account is given in [41].

Set
c� WD inf

u2N�

J�.u/:

In this paper, given ` � 2, we consider the optimal `-partition problem

inf
¹�1;:::;�`º2P`

X̀
iD1

c�i ; (1.3)
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where P` WD ¹¹�1; : : : ;�`º W �i ¤; is open in M and �i \�j D; if i ¤ j º. A solution
to (1.3) is an `-tuple ¹�1; : : : ; �`º 2 P` such that c�i is attained for every i D 1; : : : ; `,
and X̀

iD1

c�i D inf
¹‚1;:::;‚`º2P`

X̀
iD1

c‚i :

We call it an optimal `-partition for the Yamabe equation on .M; g/.
Optimal partitions do not always exist. In fact, there is no optimal `-partition for the

Yamabe equation on the standard sphere Sm for any ` � 2. This is because c� is not
attained in any open subset � of Sm whose complement has nonempty interior. Indeed,
by means of the stereographic projection † W Sm X ¹qº ! Rm from a point q 2 Sm X x�,
problem (1.2) translates into

��u D juj2
��2u in †.�/; u D 0 on @Œ†.�/�:

It is well known that this problem does not have a least energy solution; see, e.g., [54,
Theorem III.1.2].

Our aim is to give conditions on .M; g/ which guarantee the existence of an optimal
`-partition for every `. To this end, we follow the approach introduced by Conti, Terracini
and Verzini [21,22] and Chang, Lin, Lin and Lin [14] relating optimal partition problems
to variational elliptic systems having large competitive interaction.

We consider the competitive elliptic system

Lgui D jui j
2��2ui C

X̀
jD1

j¤i

�ijˇij juj j
˛ij jui j

ˇij�2ui on M; i D 1; : : : ; `; (1.4)

where �ij D �j i < 0, ˛ij ; ˇij > 1, ˛ij D ǰ i , and ˛ij C ˇij D 2�. Firstly, we provide
sufficient conditions for (1.4) to have a least energy solution with nontrivial components;
secondly, in the case ˛ij D ˇij and �ij � �, we study the asymptotic profiles of such
solutions as �! �1. As a byproduct, we obtain the existence of a regular optimal `-
partition of (1.3), and the existence of a sign-changing solution of (1.1) with two nodal
domains. Our results read as follows.

Theorem 1.1. Assume that one of the following two conditions holds true:

(A1) dimM D 3, .M; g/ is not conformal to the standard 3-sphere and 2 < ˛ij < 4 for
all i; j D 1; : : : ; `.

(A2) .M;g/ is not locally conformally flat, dimM � 9, and 8
m�2

< ˛ij <
2.m�4/
m�2

for all
i; j D 1; : : : ; ` if m WD dimM D 9.

Then the system (1.4) has a least energy fully nontrivial solution .u1; : : : ; u`/ such that
ui 2 C2.M/ and ui � 0 for every i D 1; : : : ; `. If dimM D 3, then ui > 0 for every
i D 1; : : : ; `.

Note that, as ˛ij 2 .1; 2� � 1/, it satisfies 8
m�2

< ˛ij <
2.m�4/
m�2

when m > 9. By a
least energy fully nontrivial solution we mean a minimizer of the variational functional
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for the system (1.4) on a suitable constraint that contains only solutions with nonzero
components; see Section 2 below.

Theorem 1.2. Assume that

(A3) .M; g/ is not locally conformally flat and dimM � 10. If dimM D 10 then

jSg.q/j
2 < 5

28
jWg.q/j

2
g 8q 2M;

where Wg.q/ is the Weyl tensor of .M; g/ at q.

Let �n < 0 with �n!�1 and set ˇ WD 2�

2
D

m
m�2

. For each n 2 N, let .un;1; : : : ; un;`/
be a least energy fully nontrivial solution to the system

Lgui D jui j
2��2ui C

X̀
jD1
j¤i

�nˇjuj j
ˇ
jui j

ˇ�2ui on M; i D 1; : : : ; `; (1.5)

such that un;i 2 C2.M/ and un;i � 0 for all n 2N. Then, after passing to a subsequence,
we have:

(i) un;i ! u1;i strongly in H 1
g .M/ \ C0;˛.M/ for every ˛ 2 .0; 1/, where u1;i � 0,

u1;i ¤ 0, and u1;i j�i is a least energy solution to the problem (1.2) in�i WD ¹p 2
M W u1;i .p/ > 0º for each i D 1; : : : ; `. Moreover,Z

M

�nu
ˇ
n;iu

ˇ
n;j ! 0 as n!1 whenever i ¤ j:

(ii) u1;i 2 C0;1.M/ for each i D 1; : : : ; `.

(iii) ¹�1; : : : ; �`º 2 P` and it is an optimal `-partition for the Yamabe equation on
.M; g/. In particular, each �i is connected.

(iv) � WD M X
S`
iD1�i D R [S , where R \S D ;, R is an .m � 1/-dimensional

C1;˛-submanifold of M and S is a closed subset of M with Hausdorff measure
� m � 2. In particular, M D

S`
iD1
x�i . Moreover,

– given p0 2 R there exist i ¤ j such that

lim
p!p

C

0

jrgui .p/j
2
D lim
p!p�

0

jrguj .p/j
2
¤ 0;

where p ! p˙0 are the limits taken from opposite sides of R,

– for p0 2 S we have

lim
p!p0

jrgui .p/j
2
D 0 for every i D 1; : : : ; `:

(v) If ` D 2, then u1;1 � u1;2 is a least energy sign-changing solution to the Yamabe
equation (1.1).

From Theorems 1.1 and 1.2 we immediately obtain the following results.
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Theorem 1.3. Assume (A3). Then for every ` � 2 there exists an optimal `-partition
¹�1; : : : ; �`º for the Yamabe equation on .M; g/ such that each �i is connected and
M X

S`
iD1 �i is the union of an .m � 1/-dimensional C1;˛-submanifold of M and a

closed subset whose Hausdorff measure is at most m � 2.

Theorem 1.4. Assume (A3). Then there exists a least energy sign-changing solution to
the Yamabe equation (1.1) having precisely two nodal domains.

The main difficulty in proving Theorem 1.1 lies in the lack of compactness of the
variational functional for the system (1.4). Least energy fully nontrivial solutions are given
by minimization on a suitable constraint, but minimizing sequences may blow up, as
it happens for instance when .M; g/ is the standard sphere. To prove Theorem 1.1 we
establish a compactness criterion (Proposition 2.8) that generalizes the condition given
by Aubin for the Yamabe equation [3, Théorème 1]. To verify this criterion we introduce
a test function and we make use of fine estimates established in [29] to show that, under
assumptions (A1) and (A2), a minimizer exists.

The components of least energy fully nontrivial solutions to the system (1.4) may also
blow up as the parameters �ij go to �1. The standard sphere is again an example of
this behavior. So, to prove Theorem 1.2, we establish a condition that prevents blow-up
(see Lemma 4.2). To verify this condition we need to estimate the energy of suitable test
functions. Rather delicate estimates are required, particularly in dimension 10 – where not
only the exponents but also the coefficients of the energy expansion play a role – leading
to the geometric inequality stated in assumption (A3). These estimates are derived in
Appendix A.

But the occurrence of blow-up is not the only delicate issue in proving Theorem 1.2.
To obtain an optimal `-partition we need the limit profiles of the components of the solu-
tions to (1.5) to be continuous. To this end, we show that the components .un;i / are
uniformly bounded in the ˛-Hölder norm. This requires subtle regularity arguments which
are well known in the flat case; see e.g. [11,43,49,54]. We adapt some of these arguments
(for instance, a priori bounds, blow-up arguments and monotonicity formulas) to obtain
uniform Hölder bounds for general systems involving an anisotropic differential operator.
This result (Theorem B.2) is interesting in itself.

In order to prove the optimal regularity of the limiting profiles ui , the regularity of the
free boundariesM X

S`
iD1�i and the free boundary condition, we use local coordinates.

This reduces the problem to the study of segregated profiles satisfying a system involving
divergence-type operators with variable coefficients. Using information arising from the
variational system (1.5), we deduce limiting compatibility conditions between the ui ’s
which allow us to prove an Almgren-type monotonicity formula and to perform a blow-
up analysis, combining what is known in the case of the pure Laplacian [11, 49, 57] with
some ideas from papers dealing with variable coefficient operators [32, 33, 39, 52]. This
result (which we collect in a more general setting in Theorem C.1) is also interesting in
its own right.

As mentioned before, optimal `-partitions on the standard sphere Sm do not exist.
However, if one considers partitions with the additional property that every set �i is
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invariant under the action of a suitable group of isometries, then optimal `-partitions of
this kind do exist and they give rise to sign-changing solutions to the Yamabe equation
(1.1) with precisely `-nodal domains for every ` � 2, as shown in [19].

Already in 1986, W. Y. Ding [26] established the existence of infinitely many sign-
changing solutions to (1.1) on Sm, and quite recently Fernández and Petean [30] showed
that there is a solution with precisely ` nodal domains for each ` � 2. These results,
like those in [19], make use of the fact that there are groups of isometries of Sm that
do not have finite orbits. Looking for solutions which are invariant under such isometries
allows avoiding blow-up. On the other hand, sign-changing solutions to (1.1) which blow-
up along some special minimal submanifolds of the sphere Sm have been found by Del
Pino, Musso, Pacard and Pistoia [23, 24]. The existence of a prescribed number of nodal
solutions on some manifolds .M; g/ with symmetries having finite orbits is established
in [18].

However, the existence of nodal solutions to the Yamabe equation (1.1) on an arbitrary
manifold .M;g/ is largely an open problem. In [2] Ammann and Humbert established the
existence of a least energy sign-changing solution when .M;g/ is not locally conformally
flat and dimM � 11. Theorem 1.4 recovers and extends this result (see Remark 4.11).
We also note that an optimal `-partition ¹�1; : : : ; �`º gives rise to what in [2] is called a
generalized metric Ng WD Nu2

��2g conformal to g by taking Nu WD u1 C � � � C u` with ui a
positive solution to (1.1) in �i . So Theorem 1.3 may be seen as an extension of the main
result in [2].

We close this introduction with references to related problems. The study of elliptic
systems like (1.4) with critical exponents in Euclidean spaces has been the subject of
intensive research in the past two decades, starting from [15–17]; without being exhaus-
tive, we refer to the recent contributions [27, 58, 59] for a state of the art and further
references. For the use of Almgren’s monotonicity formula in the classification of entire
solutions to elliptic systems with competition terms, we refer for instance to [5,50]. On the
other hand, optimal partition problems is another active field of research: see for instance
the book [8] for an overview of a general theory using quasi-open sets and other relaxed
formulations. Particular interest has been shown when the cost involves Dirichlet eigen-
values (leading to spectral optimal partitions) both in Euclidean spaces (see for instance
the survey [7, 35] or the recent [1, 44, 60] and references therein), and in the context of
metric graphs (see e.g. [36, 38] and references).

2. Compactness for the Yamabe system

We write h � ; � i and j � j for the Riemannian metric and the norm in .M; g/ and for
v;w 2 H 1

g .M/ we define

hv;wig WD

Z
M

.hrgv;rgwi C �mSgvw/ d�g and kvkg WD

q
hv; vig ;

where rg denotes the weak gradient. Since we are assuming that the conformal Laplacian
Lg is coercive, k � kg is a norm inH 1

g .M/, equivalent to the standard one, and the Yamabe
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invariant

Yg WD inf
u2H1g .M/X¹0º

kuk2g

juj2g;2�

of .M; g/ is positive. We write jujg;r WD .
R
M
jujr d�g/1=r for the norm in Lrg.M/ with

r 2 Œ1;1/.
Set H WD .H 1

g .M//` and let J W H ! R be given by

J.u1; : : : ; u`/ WD
1

2

X̀
iD1

kuik
2
g �

1

2�

X̀
iD1

jui j
2�

g;2�

�
1

2�

X̀
i;jD1

j¤i

Z
M

�ij juj j
˛ij jui j

ˇij d�g :

This functional is of class C1 and its partial derivatives are

@iJ.u1; : : : ; u`/v Dhui ; vig �

Z
M

jui j
2��2uiv d�g

�

X̀
jD1

j¤i

Z
M

�ijˇij juj j
˛ij jui j

ˇij�2uiv d�g ; v 2 H 1
g .M/:

Hence, the critical points of J are the solutions to the system (1.4).
Note that every solution u to the Yamabe equation (1.1) gives rise to a solution of the

system (1.4) whose i -th component is u and all other components are 0. We are interested
in fully nontrivial solutions, i.e., solutions .u1; : : : ; u`/ such that every ui is nontrivial.
They belong to the Nehari-type set

N WD ¹.u1; : : : ; u`/ 2 H W ui ¤ 0; @iJ.u1; : : : ; u`/ui D 0; 8i D 1; : : : ; `º:

Define

yc WD inf
.u1;:::;u`/2N

J.u1; : : : ; u`/ D inf
.u1;:::;u`/2N

1

m

X̀
iD1

kuik
2
g :

A fully nontrivial solution u to (1.4) is called a least energy fully nontrivial solution if
J.u/ D yc.

Remark 2.1. Since �ij < 0, it is not hard to check that minimization of J on the classical
Nehari manifold ¹.u1; : : : ; u`/ 2 H X ¹.0; : : : ; 0/º W

P
i @iJ.u1; : : : ; u`/ui D 0º leads

necessarily to solutions with only one nonzero component.

Proposition 2.2. If .u1; : : : ; u`/ 2 N , then

0 < Y m=2g � kuik
2
g � jui j

2�

g;2� 8i D 1; : : : ; `;

where Yg is the Yamabe invariant of .M; g/. Hence, N is a closed subset of H .
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Proof. Since ui ¤ 0, @iJ.u1; : : : ; u`/ui D 0 and �ij < 0, we have

kuik
2
g D jui j

2�

g;2� C

X
j¤i

Z
M

�ijˇij juj j
˛ij jui j

ˇij d�g � jui j2
�

g;2� � Y
�m=.m�2/
g kuik

2�

g :

Hence, Y m=2g � kuik
2
g � jui j

2�

g;2� , as claimed.

For u D .u1; : : : ; u`/ 2 H and s D .s1; : : : ; s`/ 2 .0;1/`, we write

su WD .s1u1; : : : ; s`u`/:

Proposition 2.3. Let u D .u1; : : : ; u`/ 2 H .

(i) If

jui j
2�

g;2� > �
X
j¤i

Z
M

�ijˇij juj j
˛ij jui j

ˇij d�g 8i D 1; : : : ; `;

then there exists su 2 .0;1/` such that suu 2 N .

(ii) If there exists su 2 .0;1/` such that suu 2 N , then su is unique and

J.suu/ D max
s2.0;1/`

J.su/:

Moreover, su depends only on the values

au;i WD kuik
2
g ; bu;i WD jui j

2�

g;2� ; du;ij WD

Z
M

�ijˇij juj j
˛ij jui j

ˇij d�g ;

i D 1; : : : ; `; and it depends continuously on them.

Proof. Define Ju W .0;1/` ! R by

Ju.s/ WD J.su/ D
X̀
iD1

1

2
au;is

2
i �

X̀
iD1

1

2�
bu;is

2�

i �

X
i¤j

1

2
du;ij s

˛ij
j s

ˇij
i :

If ui ¤ 0 for all i D 1; : : : ; `, then, as

si@iJu.s/ D @iJ.su/Œsiui �; i D 1; : : : ; `;

we see that su 2N iff s is a critical point of Ju. Statements (i) and (ii) follow immediately
from [20, Lemmas 2.1–2.3].

Remark 2.4. If ` D 1, then N D ¹u 2 H 1
g .M/ W u ¤ 0; kuk2g D juj

2�

g;2�º is the usual
Nehari manifold for the Yamabe problem (1.1) and su 2 R is explicitly given by s2

��2
u D

kuk2g=juj
2�

g;2� . Hence, for every 0 ¤ u 2 H 1
g .M/,

1

m

�
kuk2g

juj2g;2�

�m=2
D J.suu/ D max

s2.0;1/
J.su/;

and yc D 1
m
Y
m=2
g .
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Set T WD ¹u 2 H W kuikg D 1 8i D 1; : : : ; `º, and let

U WD ¹u 2 T W su 2 N for some s 2 .0;1/`º:

Following [20, Proposition 3.1], it is easy to see that U is a nonempty open subset of T .
Define ‰ W U! R by

‰.u/ WD J.suu/;

with su as in Proposition 2.3. This function has the following properties.

Proposition 2.5. (i) ‰ 2 C1.U;R/.

(ii) Let un 2 U. If .un/ is a Palais–Smale sequence for ‰, then .sunun/ is a Palais–
Smale sequence for J. Conversely, if .un/ is a Palais–Smale sequence for J and
un 2 N for all n 2 N, then .un=kunkg/ is a Palais–Smale sequence for ‰.

(iii) Let u 2 U. Then u is a critical point of ‰ if and only if suu is a fully nontrivial
critical point of J.

(iv) If .un/ is a sequence in U such that un ! u 2 @U, then ‰.un/!1.

Proof. The proof is identical to that of [20, Theorem 3.3].

Corollary 2.6. If u 2 N and J.u/ D yc, then u is a fully nontrivial solution to the sys-
tem (1.4).

Proof. Since ‰.u=kukg/ D infU‰ and U is an open subset of the smooth Hilbert man-
ifold T , we know that u=kukg is a critical point of ‰. By Proposition 2.5, u is a critical
point of J.

Recall that the operator Lg is conformally invariant, i.e., if zg D '2
��2g, ' > 0, is a

metric conformal to g, then

Lzg.'
�1u/ D '�.2

��1/Lg.u/ 8u 2 H
1
g .M/:

Since d�zg D '2
�

d�g , we have

k'�1ukzg D kukg and j'�1ujzg;2� D jujg;2� 8u 2 H 1
g .M/:

So, changing the metric within the conformal class of g does not affect our problem.
Let Sm be the standard m-sphere and p 2 Sm. Since the stereographic projection

Sm X ¹pº ! Rm is a conformal diffeomorphism, the Yamabe invariant of Sm is the best
constant for the Sobolev embedding D1;2.Rm/ ,! L2

�

.Rm/,

�m WD inf
w2D1;2.Rm/X¹0º

kwk2

jwj22�
;

whereD1;2.Rm/ WD ¹w 2L2
�

.Rm/ W ru 2 ŒL2.Rm/�mº equipped with the norm kwk WD
.
R

Rm jrwj
2/1=2, and jwj2� is the norm of w in L2

�

.Rm/. It is well known that

�m D
m.m � 2/

4
!2=mm ;

where !m denotes the volume of Sm [4, 55].



M. Clapp, A. Pistoia, H. Tavares 3722

It is shown in [20, Proposition 4.6] that yc D infN J is not attained ifM DRm. There-
fore, from the previous paragraph, yc is also not attained if M is the standard sphere Sm.
Our aim is to investigate whether this infimum is attained in some other cases, at least for
some values of ˛ij and ˇij .

To this end, we establish a compactness criterion for the system (1.4) that extends a
similar well known criterion for the Yamabe equation [41, Theorem A]. The key ingredi-
ent is the following result of T. Aubin.

Theorem 2.7 (Aubin, 1976). For every " > 0 there exists C" > 0 such that

�mjuj
2
g;2� � .1C "/

Z
M

jrguj
2 d�g C C"

Z
M

u2 d�g 8u 2 H 1
g .M/:

Proof. See [4, Théorème 9] or [41, Theorem 2.3].

For each Z � ¹1; : : : ; `º, let .SZ/ be the system of ` � jZj equations

.SZ/

8<:Lgui D jui j
2��2ui C

P
j¤i

�ijˇij juj j
˛ij jui j

ˇij�2ui on M;

i; j 2 ¹1; : : : ; `º XZ;

where jZj denotes the cardinality of Z. The fully nontrivial solutions of .SZ/ are the
solutions .u1; : : : ; u`/ of (1.4) which satisfy ui D 0 iff i 2 Z. We write JZ and NZ for
the functional and the Nehari set associated to .SZ/, and define

ycZ WD inf
u2NZ

JZ.u/: (2.1)

The following compactness criterion is inspired by [20, Lemma 4.10] (see also [58, The-
orem 3.7] and [59, Theorem 2.6]).

Proposition 2.8. Assume that

yc < min
²
ycZ C

jZj

m
�m=2m W ; ¤ Z � ¹1; : : : ; `º

³
:

Then yc is attained by J on N .

Proof. By Ekeland’s variational principle and Proposition 2.5 there is a sequence .un/
in N such that J.un/! yc and J0.un/! 0. Then .un/ is bounded in H and, after pass-
ing to a subsequence, un;i * Nui weakly in H 1

g .M/, un;i ! Nui strongly in L2g.M/ and
un;i ! Nui a.e. on M , where un D .un;1; : : : ; un;`/. A standard argument shows that
Nu D . Nu1; : : : ; Nu`/ is a solution of the system (1.4).

To prove that Nu is fully nontrivial, set Z WD ¹i 2 ¹1; : : : ; `º W Nui D 0º. As un 2 N

and �ij < 0, we have kun;ik2g � jun;i j
2�

g;2� , and as un;i ! 0 strongly in L2g.M/ for each
i 2 Z, Theorem 2.7 and Proposition 2.2 yield, for each " > 0,

�m �
.1C "/

R
M
jrgun;i j

2 d�g C o.1/
jun;i j

2
g;2�

D
.1C "/kun;ik

2
g C o.1/

jun;i j
2
g;2�

� .1C "/.kun;ik
2
g/
2=m
C o.1/:
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So, after passing to a subsequence, limn!1.1C "/
m=2kun;ik

2
g � �

m=2
m for every " > 0

and every i 2 Z, and hence

lim
n!1

kun;ik
2
g � �

m=2
m 8i 2 Z: (2.2)

Therefore,

yc D lim
n!1

J.un/ D lim
n!1

1

m

X̀
iD1

kun;ik
2
g D lim

n!1

1

m

�X
i 62Z

kun;ik
2
g C

X
i2Z

kun;ik
2
g

�
�
1

m

X
i 62Z

k Nuik
2
g C
jZj

m
�m=2m � ycZ C

jZj

m
�m=2m :

But then our assumption implies that Z D ;, i.e., Nu is fully nontrivial. Hence, Nu 2 N and
J. Nu/ D yc.

The proof of the following regularity result is standard; see, e.g., [54, Appendix B].
We include it here for the sake of completeness.

Proposition 2.9. Let u D .u1; : : : ; u`/ 2 H be a solution to the system (1.4). Then ui 2
C2;
 .M/ for any 
 2 .0; 1/ such that 
 < ˇij � 1 for all i; j D 1; : : : ; `.

Proof. Let s > 0 and assume that ui 2 L
2.sC1/
g .M/. Note that this is true if 2.1 C s/

D 2�. Fix " > 0. For each L > 0, define  iL WD min ¹usi ; Lº. Then rg.ui iL/ D
.1 C s1¹us

i
�Lº/  iLrgui and rg.ui 2iL/ D .1 C 2s1¹us

i
�Lº/  

2
iLrgui . So, since

@iJ.u/Œui iL� D 0 and �ij < 0, for any K > 0 we have

.1C s/�1
Z
M

jrg.ui iL/j
2 d�g �

Z
M

 2iLjrgui j
2 d�g �

Z
M

hrgui ;rg.ui 
2
iL/i d�g

�

Z
M

jui j
2��2.ui iL/

2 d�g �
Z
M

�mSg.ui iL/
2 d�g

� K

Z
M

jui iLj
2 d�g C

Z
jui j

2��2�K

jui j
2��2
jui iLj

2 d�g C C
Z
M

jui iLj
2 d�g

� .K C C1/

Z
M

u
2.sC1/
i d�g C

�Z
jui j

2��2�K

jui j
2� d�g

�2=m
jui iLj

2
g;2�

� .K C C2/

Z
M

u
2.sC1/
i d�g C �.K/.1C "/��1m

Z
M

jrg.ui iL/j
2 d�g ;

where the last inequality is given by Theorem 2.7 and C1; C2 are positive constants inde-
pendent of L and K. Since

�.K/ WD

�Z
jui j

2��2�K

jui j
2� d�g

�2=m
! 0 as K !1;

we may fix K such that .1 C s/�.K/.1 C "/��1m D
1
2

. Then, as ui 2 L
2.sC1/
g .M/, the
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inequality above yieldsZ
M

jrg.ui iL/j
2 d�g � .1C s/�.K/.1C "/��1m

Z
M

jrg.ui iL/j
2
C zC

�
1

2

Z
M

jrg.ui iL/j
2
C zC ;

with zC > 0 independent of L. Letting L!1 we see that
R
M
jrg.u

sC1
i /j2 d�g � 2 zC .

Hence, ui 2 L
2�.sC1/
g .M/. Now, starting with s such that 2.1C s/D 2� and iterating this

argument, we conclude that ui 2 Lrg.M/ for every r � 1. Since ui is a weak solution of
the equation

��gui D ��mSgui C jui j
2��1

C

X
j¤i

�ijˇij juj j
˛ij jui j

ˇij�1 DW fi ;

from elliptic regularity [41, Theorem 2.5] and the Sobolev embedding theorem [41, The-
orem 2.2] we get ui 2 C0;
 .M/ for any 
 2 .0; 1/. Then fi 2 C0;
 .M/ for any 
 2 .0; 1/
such that 
 < ˇij � 1 for all j ¤ i , and, by elliptic regularity again, we conclude that
ui 2 C2;
 .M/ for any such 
 .

3. The choice of the test function

To prove the strict inequality in Proposition 2.8 we need a suitable test function. We follow
the approach of Lee and Parker [41].

Fix N > m. Given p 2M , there is a metric zg on M conformal to g such that

det zgij D 1CO.jxjN /

in zg-normal coordinates at p; see [41, Theorem 5.1]. These coordinates are called con-
formal normal coordinates at p.

Since the Yamabe invariant Yg is positive, the Green function Gp for the conformal
Laplacian Lg exists at every p 2 M and is strictly positive. Fix p 2 M and define the
metric yg WD G2

��2
p g on yM WDM X ¹pº. This metric is asymptotically flat of some order

� > 0which depends onM . IfmD 3;4; 5, or .M;g/ is locally conformally flat, the Green
function has the asymptotic expansion

Gp.x/ D b
�1
m jxj

2�m
C A.p/CO.jxj/

in conformal normal coordinates .xi / at p, where bm D .m � 2/!m�1 and !m�1 is the
volume of Sm�1. The constant A.p/ is related to the mass of the manifold . yM; yg/. It
follows from the positive mass theorems of Schoen and Yau [47, 48] that A.p/ > 0 if the
manifold .M; g/ is not conformal to the standard sphere Sm and either m < 6 or .M; g/
is locally conformally flat. In the other cases the expansion of the Green function Gp
involves the Weyl tensor Wg.p/ of .M; g/ at p; see [41, Section 6] for details.
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For ı > 0, let

Uı.x/ WD Œm.m � 2/�
.m�2/=4

�
ı

ı2 C jxj2

�.m�2/=2
;

written in conformal normal coordinates .xi / at p, and for suitably small r > 0 define

yVı;p.x/ WD

´
bmjxj

m�2Uı.x/ if jxj � r;

bmr
m�2Uı.rx=jxj/ otherwise:

Note that U1=ı.x=jxj2/ D jxjm�2Uı.x/. So, up to a constant, yVı;p is the test function
defined in [41, Section 7]. Now set

Vı;p WD Gp yVı;p: (3.1)

The following estimates were proved by Esposito, Pistoia and Vétois [29, proof of
Lemma 1].

If m D 3; 4; 5, or .M; g/ is locally conformally flat, then

kVı;pk
2
g D �

m=2
m C .m � 2/ xcmA.p/ı

m�2
CO.ım�1/; (3.2)

jVı;pj
2�

g;2� D �
m=2
m Cm2 xcmA.p/ı

m�2
CO.ım�1/:

If .M; g/ is not locally conformally flat and m D 6, then

kVı;pk
2
g D �

3
6 C xc6jWg.p/j

2
g ı

4
jln ıj CO.ı4/; (3.3)

jVı;pj
2�

g;2� D �
3
6 C 9 xc6jWg.p/j

2
g ı

4
jln ıj CO.ı4/:

If .M; g/ is not locally conformally flat and m � 7, then

kVı;pk
2
g D �

m=2
m C

.m � 2/2

mC 2
xcm!m�1jWg.p/j

2
g ı

4
CO.ı5/; (3.4)

jVı;pj
2�

g;2� D �
m=2
m C

m2

m � 4
xcm!m�1jWg.p/j

2
g ı

4
CO.ı5/:

Here xcm is a positive constant depending only on m. In particular,

xcm D
1

192

.mC 2/Œm.m � 2/�.m�2/=2

2m�1.m � 6/.m � 1/

!m

!m�1
if m � 7: (3.5)

From these estimates we derive the following result.

Lemma 3.1. Assume that .M; g/ is not conformal to the standard sphere Sm. Then there
exist p 2M and C0 > 0 such that

1

m

�
kVı;pk

2
g

jVı;pj
2
g;2�

�m=2
�
1

m
�m=2m � C0R.ı/C o.R.ı//

for all ı > 0 sufficiently small, where

R.ı/ D

8̂̂<̂
:̂
ım�2 if either m < 6 or .M; g/ is l.c.f.;

ı4jln ıj if m D 6 and .M; g/ is not l.c.f.;

ı4 if m > 6 and .M; g/ is not l.c.f.
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Proof. By Remark 2.4,

1

m

�
kVı;pk

2
g

jVı;pj
2
g;2�

�m=2
D
1

2
ksıVı;pk

2
g �

1

2�
jsıVı;pj

2�

g;2� ;

where s2
��2
ı

D kVı;pk
2
g=jVı;pj

2�

g;2� .
IfmD 3; 4; 5, or .M;g/ is locally conformally flat, the positive mass theorem ensures

that A.p/ > 0 for any p 2M , and from (3.2) we find

1

m

�
kVı;pk

2
g

jVı;pj
2
g;2�

�m=2
D

�
s2
ı

2
�
s2
�

ı

2�

�
�m=2m C C

�
s2
ı

2
.m � 2/ �

s2
�

ı

2�
m2
�
ım�2

C o.ım�2/

�
1

m
�m=2m C

s2
ı

2
C.m � 2/.1 �ms2

��2
ı /ım�2 C o.ım�2/;

where C is a positive constant.
If .M; g/ is not locally conformally flat and m � 6, we choose p 2 M such that

jWg.p/j
2
g > 0. Then if m D 6, estimates (3.3) yield

1

6

�
kVı;pk

2
g

jVı;pj
2
g;3

�3
�
1

6
�36 C

s2
ı

2
C.1 � 3sı/ ı

4
jln ıj C o.ı4jln ıj/;

and if m > 6, from (3.4) we derive

1

m

�
kVı;pk

2
g

jVı;pj
2
g;2�

�m=2
�
1

m
�m=2m C

s2
ı

2
.m � 2/C

�
m � 2

mC 2
� s2

��2
ı

m

m � 4

�
ı4 C o.ı4/;

for some positive constant C . Since sı ! 1 as ı ! 0, our claim is proved.

Lemma 3.2. Let R.ı/ be as in Lemma 3.1 and ˛ 2 Œ1;1/. ThenZ
M

jVı;pj
˛ d�g D o.R.ı//

if and only if either

� m D 3, .M; g/ is not conformal to S3 and 2 < ˛ < 4, or

� .M; g/ is not locally conformally flat, m � 9, and 8
m�2

< ˛ < 2.m�4/
m�2

.

Proof. Set 
 WD m�2
2
˛. From (3.1) we deduce

I˛ WD

Z
M

jVı;pj
˛ d�g D

8̂̂<̂
:̂
O.ı
 / if 
 < m=2;

O.ım=2jln ıj/ if 
 D m=2;

O.ım�
 / if 
 > m=2:

Therefore,

I˛ D o.ı
m�2/ ” m � 2 < 
 < 2” m D 3 and 2 < ˛ < 4;

I˛ D o.ı
4/ ” 4 < 
 < m � 4” m � 9 and 8

m�2
< ˛ < 2.m�4/

m�2
;

and our claim is proved.
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Proposition 3.3. If either assumption (A1) or (A2) of Theorem 1.1 holds true, then

yc < min
²
ycZ C

jZj

m
�m=2m W ; ¤ Z � ¹1; : : : ; `º

³
: (3.6)

Proof. We prove this statement by induction on `.
If ` D 1 the system reduces to the Yamabe equation (1.1), and (3.6) is equivalent to

Yg < �m. This inequality follows from Lemma 3.1 if we take ı small enough.
Assume that the statement is true for every system .SZ/ with jZj � 1 (i.e., for every

system of less than ` equations). Then the proof of (3.6) reduces to showing that

yc < min
²
ycZ C

1

m
�m=2m W jZj D 1

³
:

Without loss of generality, we may assume that Z D ¹`º. By Proposition 2.8 and the
induction hypothesis, there exists .u1; : : : ; u`�1/ 2NZ such that JZ.u1; : : : ; u`�1/D ycZ .
By Proposition 2.9, each ui is in C0.M/.

Let Vı;p be as in Lemma 3.1. Since ˛ij 2 .1; mC2m�2
/, we haveZ

M

jVı;pj
˛ij jui j

ˇij d�g � max
q2M
jui .q/j

ˇij

Z
M

jVı;pj
˛ij d�g ! 0 as ı ! 0:

Hence, there exists ı0 > 0 such that, for every ı 2 .0; ı0/,

jui j
2�

g;2� C

X
j¤i

ˇij �ij

Z
M

juj j
˛ij jui j

ˇij d�g C ˇi` �i`

Z
M

jVı;pj
˛i` jui j

ˇi` d�g

D kuik
2
g C ˇi` �i`

Z
M

jVı;pj
˛i` jui j

ˇi` d�g > 0; i; j D 1; : : : ; ` � 1;

and

jVı;pj
2�

g;2� C

`�1X
jD1

ˇ j̀ � j̀

Z
M

juj j
˛ j̀ jVı;pj

ˇ j̀ d�g > 0:

Then, Proposition 2.3 asserts that there are 0 < r < R <1 and sı;1; : : : ; sı;` 2 Œr;R� such
that

uı D .sı;1u1; : : : ; sı;`�1u`�1; sı;`Vı;p/ 2 N 8ı 2 .0; ı0/:

By Proposition 2.3 and Lemmas 3.1 and 3.2,

yc � J.uı/ D JZ.sı;1u1; : : : ; sı;`�1u`�1/C
1

2
s2ı;`kVı;pk

2
g �

1

2�
s2
�

ı;`jVı;pj
2�

g;2�

�

`�1X
iD1

s
˛i`
ı;`
s
ˇi`
ı;i
�i`

Z
M

jVı;pj
˛i` jui j

ˇi` d�g

� ycZ C
1

m

�
kVı;pk

2
g

jVı;pj
2
g;2�

�m=2
C

`�1X
iD1

R2
�

j�i`jmax
q2M
jui .q/j

ˇi`

Z
M

jVı;pj
˛i` d�g

� ycZ C
1

m
�m=2m � C0R.ı/C o.R.ı// < ycZ C

1

m
�m=2m

for ı small enough, as claimed.
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Proof of Theorem 1.1. By Propositions 3.3 and 2.8, there is u D .u1; : : : ; u`/ 2 N such
that J.u/ D yc. Then Nu D .ju1j; : : : ; ju`j/ 2 N and J. Nu/ D yc, and the result follows from
Corollary 2.6 and Proposition 2.9. If dimM D 3, then since ˛ij > 2, each jui j is positive
by the strong maximum principle [41, Theorem 2.6].

4. Phase separation and optimal partitions

In this section we restrict to the case �ij D � and ˛ij D ǰ i D 2
�=2 DW ˇ. Our aim is to

study the behavior of least energy fully nontrivial solutions to the system (1.5) as �!�1
and to derive the existence and regularity of an optimal partition.

Let � be an open subset of M . As mentioned in the introduction, the nontrivial solu-
tions of (1.2) are the critical points of the restriction of the functional

J�.u/ WD
1

2
kuk2g �

1

2�
juj2

�

g;2�

to the Nehari manifold

N� WD ¹u 2 H
1
g;0.�/ W u ¤ 0 and kuk2g D juj

2�

g;2�º:

So, a minimizer for J� on N� is a solution of (1.2). Note that J�.u/ WD 1
m
kuk2g if u2N�.

Therefore,

c� WD inf
N�

J� D inf
u2N�

1

m
kuk2g :

Define

M` WD¹.u1; : : : ; u`/ 2 H W ui ¤ 0; kuik
2
g D jui j

2�

g;2� ; uiuj D 0 on M if i ¤ j º;

c�` WD inf
.u1;:::;u`/2M`

1

m

X̀
iD1

kuik
2
g :

Lemma 4.1. Assume there exists .u1; : : : ; u`/ 2M` such that ui 2 C0.M/ and

1

m

X̀
iD1

kuik
2
g D c

�
` :

Set �i WD ¹p 2 M W ui .p/ ¤ 0º. Then ¹�1; : : : ; �`º is an optimal `-partition for the
Yamabe problem on .M;g/, each�i is connected and J�i .ui /D c�i for all i D 1; : : : ; `.

Proof. As ui is continuous and nontrivial, we see that �i is an open nonempty subset
of M and ui 2 N�i . Moreover, �i \�j D ; for i ¤ j because uiuj D 0. Therefore,
¹�1; : : : ; �`º 2 P`.

To prove the last two statements of the lemma we argue by contradiction. If, say, �1
were the disjoint union of two nonempty open sets ‚1 and ‚2, then, setting Nu1.p/ WD
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u1.p/ if p 2 ‚1 and Nu1.p/ WD 0 if p 2 ‚2, we would have . Nu1; : : : ; u`/ 2M` and

1

m

�
k Nu1k

2
g C

X̀
iD2

kuik
2
g

�
< c�` ;

contradicting the definition of c�
`

.
Similarly, if J�i .ui / > c�i for some i , then there would exist vi 2 N�i with c�i <

J�i .vi / < J�i .ui /. But then

1

m

X
j¤i

kuj k
2
g C

1

m
kuik

2
g < c

�
` ;

which is again a contradiction. Hence, J�i .ui / D c�i for all i D 1; : : : ; ` and

inf
¹‚1;:::;‚`º2P`

X̀
iD1

c‚i �
1

m

X̀
iD1

kuik
2
g D c

�
` � inf

¹‚1;:::;‚`º2P`

X̀
iD1

c‚i :

This shows that ¹�1; : : : ; �`º is an optimal `-partition and concludes the proof.

Lemma 4.2. Let �n < 0 and un D .un;1; : : : ; un;`/ be a least energy fully nontrivial
solution to the system (1.5). Assume that �n ! �1 as n ! 1 and un;i � 0 for all
n 2 N. Assume further that

c�` < min
²
c�k C

` � k

m
�m=2m W 1 � k < `

³
: (4.1)

Then there exists .u1;1; : : : ; u1;`/ 2 M` such that, after passing to a subsequence,
un;i ! u1;i strongly in H 1

g .M/, u1;i � 0, and

c�` D
1

m

X̀
iD1

ku1;ik
2
g :

Moreover, Z
M

�nu
ˇ
n;ju

ˇ
n;i ! 0 as n!1 whenever i ¤ j: (4.2)

Proof. To highlight the role of �n, we write Jn and Nn for the functional and the Nehari
set associated to the system (1.5) and we define

ycn WD inf
Nn

Jn:

Note that M` � Nn for each n 2 N. Therefore,

1

m

X̀
iD1

kun;ik
2
g D ycn � c

�
` <1 8n 2 N:
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So, after passing to a subsequence, we deduce that un;i * u1;i weakly in H 1
g .M/,

un;i ! u1;i strongly in L2g.M/ and un;i ! u1;i a.e. on M , for each i D 1; : : : ; `.
Hence, u1;i � 0. Moreover, as @iJn.un/Œun;i � D 0, we have, for each j ¤ i ,

0 �

Z
M

ˇ jun;j j
ˇ
jun;i j

ˇ d�g �
jun;i j

2�

g;2�

��n
�

C

��n
:

Fatou’s lemma then yields

0 �

Z
M

ju1;j j
ˇ
ju1;i j

ˇ d�g � lim inf
n!1

Z
M

jun;j j
ˇ
jun;i j

ˇ d�g D 0:

Hence, u1;ju1;i D 0 a.e. on M whenever i ¤ j . On the other hand, as
@iJn.un/Œu1;i � D 0 and un;i � 0, u1;i � 0, we have

hun;i ; u1;i ig �

Z
M

u2
��1
n;i u1;i d�g :

So, passing to the limit as n!1 we obtain

ku1;ik
2
g � ju1;i j

2�

g;2� 8i D 1; : : : ; `: (4.3)

We claim that
u1;i ¤ 0 8i D 1; : : : ; `: (4.4)

To prove this claim, letZ WD ¹i 2 ¹1; : : : ; `º W u1;i D 0º. After reordering, we may assume
that either Z D ; or Z D ¹k C 1; : : : ; `º for some 0 � k < `. Then, arguing as we did to
prove (2.2), we get

lim
n!1

kun;ik
2
g � �

m=2
m 8i 2 Z:

On the other hand, if i 62 Z, there exists ti 2 .0;1/ such that ktiu1;ik2g D jtiu1;i j
2�

g;2� .
So .t1u1;1; : : : ; tku1;k/ 2Mk . Inequality (4.3) implies that ti 2 .0; 1�. Therefore,

c�k C
` � k

m
�m=2m �

1

m

kX
iD1

ktiu1;ik
2
g C

` � k

m
�m=2m

�
1

m

kX
iD1

ku1;ik
2
g C

` � k

m
�m=2m �

1

m
lim
n!1

X̀
iD1

kun;ik
2
g D lim

n!1
ycn � c

�
` : (4.5)

But then assumption (4.1) implies that k D `, i.e., Z D ; and claim (4.4) is proved.
Moreover, (4.5) becomes

c�` �
1

m

X̀
iD1

ktiu1;ik
2
g �

1

m

X̀
iD1

ku1;ik
2
g �

1

m
lim
n!1

X̀
iD1

kun;ik
2
g � c

�
` :

Hence, ti D 1, and so .u1;1; : : : ; u1;`/ 2M`, and

1

m

X̀
iD1

ku1;ik
2
g D lim

n!1

1

m

X̀
iD1

kun;ik
2
g D c

�
` : (4.6)

Consequently, un;i ! u1;i strongly in H 1
g .M/. Finally, since
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X̀
iD1

ku1;ik
2
g D

X̀
iD1

ju1;i j
2�

g;2� ;

X̀
iD1

kun;ik
2
g D

X̀
iD1

jun;i j
2�

g;2� C

X̀
i;jD1

j¤i

Z
M

�nˇjun;j j
˛ij jun;i j

ˇij ;

and un;i ! u1;i strongly in H 1
g .M/ and L2

�

g .M/, we obtain (4.2).

Lemma 4.3. Let �n < 0 and .un;1; : : : ; un;`/ be a solution to the system (1.5) such
that un;i � 0 and un;i ! u1;i strongly in H 1

g .M/ as n!1. Then .un;i / is uniformly
bounded in L1.M/ for all i D 1; : : : ; `.

Proof. We write again Jn for the functional associated to the system (1.5). Note that, by
Proposition 2.9, un;i 2 L1.M/ for all n 2 N, i D 1; : : : ; `. Fix i 2 ¹1; : : : ; `º.

Let s � 0 and set wn;i WD u1Csn;i . Since @iJn.un/Œu1C2sn;i � D 0 and �ij;n < 0, we getZ
M

jrgwn;i j
2 d�g D .1C s/2

Z
M

u2sn;i jrgun;i j
2 d�g

� .1C s/2
Z
M

hrgun;i ;rgu
1C2s
n;i i d�g

� .1C s/2
Z
M

jun;i j
2��2w2n;i d�g � .1C s/2

Z
M

�mSgw
2
n;i d�g : (4.7)

Now, for any K > 0, we haveZ
M

jun;i j
2��2w2n;i d�g � K2

��2

Z
M

w2n;i d�g

C

Z
ju1;i j�K

ju1;i j
2��2w2n;i d�g C

Z
M

.jun;i j
2��2

� ju1;i j
2��2/w2n;i d�g

� K2
��2
jwn;i j

2
g;2 C �.K; n/jwn;i j

2
g;2� ; (4.8)

where

�.K; n/ WD

�Z
ju1;i j�K

ju1;i j
2� d�g

� 2��2
2�

C

ˇ̌̌
jun;i j

2��2
� ju1;i j

2��2
ˇ̌̌
g; 2�

2��2

:

Since un;i ! u1;i in H 1
g .M/, we have jun;i j2

��2 ! ju1;i j
2��2 in L

2�

2��2
g .M/. Fix

" > 0, and choose Ks; ns such that 1C"
�m
.1 C s/2 �.Ks; n/ <

1
2

for every n � ns . From
Theorem 2.7 and inequalities (4.7) and (4.8) we obtain

jwn;i j
2
g;2� �

1C "

�m

Z
M

jrgwn;i j
2 d�g C C jwn;i j2g;2

�
1C "

�m
.1C s/2 �.Ks; n/jwn;i j

2
g;2� C Csjwn;i j

2
g;2

�
1

2
jwn;i j

2
g;2� C Csjwn;i j

2
g;2 8n � ns :
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Therefore,

jun;i j
2.1Cs/

g;2�.1Cs/
D jwn;i j

2
g;2� �

zCsjwn;i j
2
g;2 D

zCsjun;i j
2.1Cs/

g;2.1Cs/
8n 2 N;

whence
jun;i jg;2�.1Cs/ � zC

0
sjun;i jg;2.1Cs/ 8n 2 N;

where Cs , zCs and zC 0s are positive constants depending on s but not on n. Iterating this
inequality, starting with s D 0, we conclude that, for any r 2 Œ2;1/,

jun;i j
2
g;r �

NCr 8n 2 N;

where NCr is a positive constant independent of n. Now, we fix 2R > 0 smaller than
the injectivity radius of M . Since M is covered by a finite number of geodesic balls
of radius R and un;i satisfies

Lgun;i � jun;i j
2��2un;i on M;

we deduce from [34, Theorem 8.17] that .un;i / is uniformly bounded in L1.M/, as
claimed.

Lemma 4.4. For �n < 0 such that �n ! �1 let .un;1; : : : ; un;`/ be a solution to the
system (1.5) such that un;i � 0 and .un;i / is uniformly bounded in L1.M/ for each
i D 1; : : : ; `. Then for any ˛ 2 .0; 1/ there exists C˛ > 0 such that

kun;ikC0;˛.M/ � C˛ 8n 2 N; 8i D 1; : : : ; `:

Proof. This is a particular case of Theorem B.1.

Lemma 4.5. Assume that .M; g/ is not locally conformally flat, m � 10, and there exists
.u1; : : : ; u`�1/ 2M`�1 such that ui 2 C0.M/, ui � 0 and

1

m

`�1X
iD1

kuik
2
g D c

�
`�1:

If m D 10, assume further that there exists p 2M such that

0 < u1.p/ <
5
567
jWg.p/j

2
g : (4.9)

Then

c�` < min
²
c�k C

` � k

m
�m=2m W 1 � k < `

³
:

Proof. It suffices to show that

c�` < c
�
`�1 C

1

m
�m=2m : (4.10)

Set�i WD ¹q 2M W ui .q/ > 0º. Then�i is open and�i \�j D ; if i ¤ j . Since .M;g/
is not locally conformally flat and m � 4, there exists p 2 M such that the Weyl tensor
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Wg.p/ at p does not vanish. After reordering, we may assume that either p 2 �1, or
p 2M X

S`�1
iD1
x�i .

First, we consider the case where p 2 �1. If m D 10 we take p satisfying (4.9). Fix
r > 0 suitably small so that the closed geodesic ball centered at p is contained in �1 and
let � W Œ0;1/! R be a smooth cut-off function such that 0 � � � 1, � � 1 in Œ0; r=2�
and � � 0 in Œr;1/. Define zVı;p on M by

zVı;p.x/ D �.jxj/Vı;p.x/ if jxj � r; zVı;p.x/ D 0 otherwise;

written in conformal normal coordinates around p, where Vı;p is the function in (3.1). If
.M; g/ is not locally conformally flat and m � 7, estimates (3.4) yield

k zVı;pk
2
g D �

m=2
m C

.m � 2/2

mC 2
xcm!m�1jWg.p/j

2
g ı

4
C o.ı4/;

j zVı;pj
2�

g;2� D �
m=2
m C

m2

m � 4
xcm!m�1jWg.p/j

2
g ı

4
C o.ı4/;

(4.11)

with Ncm as in (3.5). Now, set

v1 WD .u1 � zVı;p/
C and v` WD .u1 � zVı;p/

�:

Note that vi ¤ 0 and v1v` D 0 on M , and v1 D 0 D v` in M X�1. Let si > 0 be such
that ksivik2g D jsivi j

2�

g;2� . Then .s1v1; u2; : : : ; u`�1; s`v`/ 2M` and

ksivik
2
g D

�
kvik

2
g

jvi j
2
g;2�

�m=2
for i D 1; `: (4.12)

For m � 10 from Remark 2.4 and Lemma A.1 we derive

1

m

�
kv1k

2
g

jv1j
2
g;2�

�m=2
D
1

2
ks1v1k

2
g �

1

2�
js1v1j

2�

g;2�

D
s21
2
ku1k

2
g �

s2
�

1

2�
ju1j

2�

g;2� � .s
2
1 � s

2�

1 /amu1.p/ı
m�2
2 C o.ı4/

�
1

m
ku1k

2
g C o.ı

4/; (4.13)

because ku1k2g D ju1j
2�

g;2� and s2
��2
1 D kv1k

2
g=jv1j

2�

g;2� ! 1 as ı ! 0. Similarly, using
(4.11), we obtain

1

m

�
kv`k

2
g

jv`j
2
g;2�

�m=2
D
1

2
ks`v`k

2
g �

1

2�
js`v`j

2�

g;2�

�
1

m
�m=2m C

�
s2
`

2

.m � 2/2

mC 2
�
s2
�

`

2�
m2

m � 4

�
xcm!m�1jWg.p/j

2
g ı

4

C .s2` .am C bm/ � s
2�

` bm/u1.p/ı
.m�2/=2

C o.ı4/;
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where am and bm are defined in (A.7). Since s2
��2
`

D kv`k
2
g=jv`j

2�

g;2� ! 1 as ı! 0, and
1
2
.m�2/2

mC2
< 1

2�
m2

m�4
and m�2

2
> 4 when m � 11, we find that, for ı small enough,

1

m

�
kv`k

2
g

jv`j
2
g;2�

�m=2
�
1

m
�m=2m � Cı4 C o.ı4/ if m � 11; (4.14)

with C > 0. On the other hand, ifmD 10, then m�2
2
D 4. Recalling that !m is the volume

of the standard m-sphere Sm and using (3.5) we obtain

amu1.p/C

�
1

2

.m � 2/2

mC 2
�
1

2�
m2

m � 4

�
xcm!m�1jWg.p/j

2
g

D am

�
u1.p/C

1

2

�
m � 2

mC 2
�

m

m � 4

�
1

192

.mC 2/Œm.m � 2/�
m�2
4

2m�1.m � 6/.m � 1/

!m

!m�1
jWg.p/j

2
g

�
D a10

�
u1.p/ �

5

567
jWg.p/j

2
g

�
< 0

by assumption (4.9). Hence, for ı small enough,

1

m

�
kv`k

2
g

jv`j
2
g;2�

�m=2
�
1

m
�m=2m � Cı4 C o.ı4/ if m D 10; (4.15)

with C > 0. From (4.12)–(4.15) we derive

c�` �
1

m
.kt1v1k

2
g C ku2k

2
g C � � � C ku`�1k

2
g C kt`v`k

2
g/

D
1

m

��
kv1k

2
g

jv1j
2
g;2�

�m=2
C ku2k

2
g C � � � C ku`�1k

2
g C

�
kv`k

2
g

jv`j
2
g;2�

�m=2�
�
1

m
.ku1k

2
g C ku2k

2
g C � � � C ku`�1k

2
g/C

1

m
�m=2m � Cı4 C o.ı4/

< c�`�1 C
1

m
�m=2m

for ı small enough. This proves (4.10) when p 2 �1.
If p 2 M X

S`�1
iD1
x�i , we fix r > 0 small enough that the closed geodesic ball of

radius r centered at p is contained in M X
S`�1
iD1
x�i and define u` WD t` zVı;p with zVı;p

as above and t` > 0 such that ku`k2g D ju`j
2�

g;2� . Then .u1; : : : ; u`/ 2M` and estimates
(4.11) yield

c�` �
1

m

X̀
iD1

kuik
2
g < c

�
`�1 C

1

m
�m=2m ;

as claimed.

Remark 4.6. The argument given above does not carry over to m < 10 or to the case
where .M; g/ is locally conformally flat. Indeed, as can be seen from identities (3.2)–
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(3.4) and Lemma A.1, in these cases

1

m

�
kv1k

2
g

jv1j
2
g;2�

�m=2
�
1

m
ku1k

2
g C o.ı

.m�2/=2/;

1

m

�
kv`k

2
g

jv`j
2
g;2�

�m=2
�
1

m
�m=2m C Cu1.p/ı

.m�2/=2
C o.ı.m�2/=2/;

with Cu1.p/ > 0, for ı small enough.

Remark 4.7. If m D 10, then the following geometric conditions suffice to guarantee
(4.9):

� For ` � 3, inequality (4.9) holds true if jWg.q/jg ¤ 0 for every q 2 M , because for
p 2 �1 WD ¹q 2M W u1.q/ > 0º close enough to @�1 one has

u1.p/ <
5
567

min
q2M
jWg.q/j

2
g :

� For ` D 2, inequality (4.9) holds true if

jSg.q/j
2 < 5

28
jWg.q/j

2
g 8q 2M:

Indeed, choosing p to be a minimum point of u1, since u1 is a positive solution to
the Yamabe equation (1.1) we have �mSg.p/u1 D u2

��1
1 C �gu1 � u

2��1
1 . Setting

m D 10 we get u1.p/ � 4
81
jSg.p/j

2 < 5
567
jWg.p/j

2
g .

Lemma 4.8. Assume that .M; g/ satisfies the following conditions:

(A4) .M; g/ is not locally conformally flat and dimM � 10. If dimM D 10, then there
exist a positive least energy fully nontrivial solution Nu to the Yamabe equation (1.1)
and a point p 2M such that Nu.p/ < 5

567
jWg.p/j

2
g , and in addition jWg.q/jg ¤ 0

for every q 2M if ` � 3.

Let �n < 0 and un D .un;1; : : : ; un;`/ be a least energy fully nontrivial solution to the
system (1.5). Assume that �n ! �1 as n!1 and un;i � 0 for all n 2 N. Then there
exists .u1;1; : : : ; u1;`/ 2M` with u1;i 2 C0;˛.M/ for every ˛ 2 .0; 1/ such that, after
passing to a subsequence, un;i ! u1;i strongly in H 1

g .M/ \ C0;˛.M/, u1;i � 0, and

c�` D
1

m

X̀
iD1

ku1;ik
2
g :

Moreover, Z
M

�nu
ˇ
i;nu

ˇ
j;n ! 0 as n!1 whenever i ¤ j:

Proof. The proof is by induction on `.
Let ` D 2. Then we take u1 to be a positive least energy solution to the Yam-

abe equation (if m D 10, take u1 WD Nu given by (A4)). It satisfies the hypotheses of
Lemma 4.5. Therefore, inequality (4.1) holds true and Lemma 4.2 yields the existence of
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.u1;1; : : : ; u1;`/ 2M` such that, after passing to a subsequence, un;i ! u1;i strongly
in H 1

g .M/, u1;i � 0, and

c�` D
1

m

X̀
iD1

ku1;ik
2
g :

From Lemmas 4.3 and 4.4 we know that .un;i / is uniformly bounded in C0;˛.M/. There-
fore, the family ¹un;iº is equicontinuous and, as un;i!u1;i a.e. onM , the Arzelà–Ascoli
theorem yields un;i ! u1;i in C0.M/.

Now, let ` � 3 and assume that the statement holds true for ` � 1. Then, by
Remark 4.7, the hypotheses of Lemma 4.5 are satisfied, and consequently (4.1) holds
true for `. The same argument we gave for ` D 2 yields the result for `.

Remark 4.9. Observe that to prove the previous lemma for `, we need it to be true for
` � 1, because inequality (4.1) must hold true in order to apply Lemma 4.2. Therefore,
the inequality Nu.p/ < 5

567
jWg.p/j

2
g is required for every ` � 2.

Proof of Theorem 1.2. As pointed out in Remark 4.7, assumption (A3) implies (A4).
Statements (i) and (iii) follow immediately from Lemmas 4.8 and 4.1.

Proofs of (ii) and (iv) W These statements have a local nature. In local coordinates the
system (1.5) becomes

� div.A.x/rui / D fi .x; ui /C a.x/
X̀
jD1
j¤i

�njun;j j
ˇ
jun;i j

ˇ�2un;i ; x 2 �;

where � is an open bounded subset of Rm, a.x/ D
p
jg.x/j, A.x/ D

p
jg.x/j.gkl .x//,

and fi .x; s/ WD a.x/.jsj2
��2s � �mSg.x/s/. As usual, .gkl / is the metric g in local coor-

dinates, .gkl / is its inverse and jgj its determinant. This system satisfies assumptions
(H10), (H2) and (H3) of Theorem C.1 in Appendix C. Statements (i) and (iii), which are
already proved, yield assumptions (H4), (H5) and (H6). From Theorem C.1 we deduce
that (ii) and (iv) hold true locally on M , hence also globally.

Proof of .v/: If u 2H 1
g .M/ is a sign-changing solution of the Yamabe equation (1.1),

then uC WD max ¹u; 0º ¤ 0, u� WD min ¹u; 0º ¤ 0 and J 0M .u/Œu
˙�D 0. Hence, u belongs

to the set
EM WD ¹u 2 NM W u

C
2 NM and u� 2 NM º:

Moreover, as shown in [13, Lemma 2.6], any minimizer of JM on EM is a sign-
changing solution of (1.1). For every u 2 EM , we have .uC; u�/ 2 M2 and JM .u/ D
1
m
.kuCk2g C ku

�k2g/. Therefore,

inf
EM

JM � c
�
2 D

1

m
.ku1;1k

2
g C ku1;2k

2
g/:

As u1;1 � u1;2 2 EM , it is a minimizer of JM on EM . Hence, it is a sign-changing
solution of (1.1), as claimed.
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Remark 4.10. As can be seen from its proof, Theorem 1.2 is true under assumption (A4),
and consequently so are Theorems 1.3 and 1.4. As noted in Remark 4.7, (A4) is weaker
than (A3), but it requires some knowledge on the least energy solution to the Yamabe
equation (1.1) having precisely two nodal domains.

Remark 4.11. In [2], Ammann and Humbert defined the second Yamabe invariant of
.M; g/ as

�2.M; g/ WD inf
zg2Œg�

�2.zg/Vol.M; zg/2=m;

where �2.zg/ is the second eigenvalue of the operator ��1m Lzg and Œg� is the conformal
class of g. Using the variational characterization in [2, Proposition 2.1] one can easily
verify that

inf
EM

JM D
1

m
.�m �2.M; g//

m=2:

The invariant �2.M; g/ is not attained at a metric, but it is shown in [2] that if .M; g/ is
not locally conformally flat andm� 11, this invariant is attained at the generalized metric
conformal to g which is given by a minimizer of JM in EM . So Theorem 1.4 recovers and
extends this result.

Remark 4.12. It is interesting to compare our result with that proved by Robert and
Vétois [45] under assumptions which are complementary to ours. In fact, they establish
the existence of a sign-changing solution to the subcritical perturbation of the Yamabe
equation

��guC �mSgu D juj
2��2�"u on M;

which looks like the difference between a positive solution u0 to the Yamabe equation
and a bubble. Their result holds true either in the locally conformally flat case, or in low
dimensions 3 � m � 9, or if m D 10 provided u0.p/ > 5

567
jWg.p/j

2
g for any p 2M:

An interesting open problem would be to show that under these assumptions a least
energy sign-changing solution to the Yamabe problem (1.1) does not exist, as suggested
by Remark 4.6.

Appendix A. Some estimates

Fix p 2 M and r > 0 suitably small. Let � W Œ0;1/! R be a smooth cut-off function
such that 0 � � � 1, � � 1 in Œ0; r=2� and � � 0 in Œr;1/, and let zVı;p be the function
on M given by

zVı;p.x/ D �.jxj/Vı;p.x/ if jxj � r; zVı;p.x/ D 0 otherwise; (A.1)

in conformal normal coordinates at p, where Vı;p is the function defined in (3.1). Then,
for some positive constant c0,

0 < zVı;p.x/ � c0

�
ı

ı2 C jxj2

�.m�2/=2
if jxj � r: (A.2)
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Let u 2 H 1
g .M/ \ C0.M/ be such that u � 0 and u.x/ > 0 if jxj � r . Then there are

positive constants c1; c2 such that

0 < c1 � u.x/ � c2 if jxj � r: (A.3)

Set
v1 WD .u � zVı;p/

C and v` WD .u � zVı;p/
�:

Observe that

v1 D

8̂̂<̂
:̂
u1 if jxj � r;

0 if jxj � r and u1 � zVı;p;

u1 � zVı;p if jxj � r and u1 � zVı;p;

(A.4)

and

v` D

8̂̂<̂
:̂
0 if jxj � r;
zVı;p � u1 if jxj � r and u1 � zVı;p;

0 if jxj � r and u1 � zVı;p:

(A.5)

By (A.1)–(A.3), there are positive constants c1; c2; c3 such that8̂̂̂̂
<̂
ˆ̂̂:
jxj � r and u1.x/ � zVı;p.x/) jxj � c1

p
ı;

jxj � r=2 and u1.x/ � zVı;p.x/) jxj � c2
p
ı;

jxj � r=2) zVı;p.x/ D Vı;p.x/;

r=2 � jxj � r ) j zVı;p.x/j; jr zVı;p.x/j � c3ı
.m�2/=2:

(A.6)

Lemma A.1. We have the following estimates:

(i) kv1k2g D kuk
2
g � 2amu.p/ı

.m�2/=2 C o.ı�.m//,

(ii) jv1j2
�

g;2� D juj
2�

g;2� � 2
�amu.p/ı

.m�2/=2 C o.ı.m�2/=2/,

(iii) kv`k2g D k zVı;pk
2
g C 2.am C bm/u.p/ı

.m�2/=2 C o.ı�.m//,

(iv) jv`j2
�

g;2� D j
zVı;pj

2�

g;2� C 2
�bmu.p/ı

.m�2/=2 C o.ı.m�2/=2/,

where

�.m/ WD

´
.m � 2/=2 if either m � 6 or .M; g/ is l.c.f.,

4 if m � 7 and .M; g/ is not l.c.f.,

and

am WD .m � 2/.m.m � 2//
.m�2/=4!m�1 and bm WD

Z
Rm

U 2
��1

1 : (A.7)

Proof. (i) From (A.4) and (A.6) we obtain

kv1k
2
g � kuk

2
g

D

Z
¹jxj�rº\¹u� zVı;pº

Œ.jrg.u� zVı;p/j
2
C �mSg.u� zVı;p/

2/� .jrguj
2
C �mSgu

2/� d�g

�

Z
¹jxj�rº\¹u� zVı;pº

.jrguj
2
C �mSgu

2/ d�g„ ƒ‚ …
DO.ım=2/
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D

Z
¹jxj�rº\¹u� zVı;pº

.jrg zVı;pj
2
C �mSg zV

2
ı;p/ d�g

� 2

Z
¹jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pig C �mSgu zVı;p/ d�g CO.ım=2/

D O

�Z
¹c2
p
ı�jxj�rº

.jrg zVı;pj
2
C �mSg zV

2
ı;p/ d�g

�
„ ƒ‚ …

DO.ım=2/

� 2

Z
¹jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g„ ƒ‚ …
see (A.8)

CO.ım=2/;

and, using (A.6) again,Z
¹jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g

D

Z
¹2c1
p
ı�jxj�rº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g

D

Z
¹2c1
p
ı�jxj�rº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g CO.ım=2/

D

Z
¹2c1
p
ı�jxj�rº

.��g zVı;p C �mSg zVı;p � zV
2��1
ı;p /u d�g„ ƒ‚ …

see (A.10)

CO.ım=2/

C

Z
¹2c1
p
ı�jxj�rº

zV 2
��1

ı;p u d�g„ ƒ‚ …
DO.ım=2/

C

Z
¹2c1
p
ıDjxjº

@� zVı;pu„ ƒ‚ …
see (A.9)

C

Z
¹rDjxjº

@� zVı;pu„ ƒ‚ …
D0

(A.8)

where @� is the exterior normal derivative,Z
¹2c1
p
ıDjxjº

@� zVı;pu D .m � 2/.m.m � 2//
m�2
4 !m�1„ ƒ‚ …

Dam

u.p/ı
m�2
2 C o.ı

m�2
2 / (A.9)

and�Z
¹2c1
p
ı�jxj�rº

j��g zVı;p C �mSg zVı;p � zV
2��1
ı;p j

2m
mC2 d�g

�mC2
2m

D

8̂̂<̂
:̂
O.ı

m�1
2 / if m D 4; 5; or M is l.c.f.;

O.ı4jln ıj2=3/ if m D 6 and M is not l.c.f.;

O.ı
mC10
4 / if m � 7 and M is not l.c.f.

(A.10)
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Indeed, arguing as in [29] we obtainZ
¹2c1
p
ı�jxj�rº

j��g zVı;p C �mSg zVı;p � zV
2��1
ı;p j

2m
mC2 d�g

D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

O

�Z r

2c1
p
ı

ım

.ı2 C s2/
m2

mC2

s
2m2

mC2
�1Cm.m�6/

mC2 ds
�

if m D 4; 5; or M is l.c.f.;

O

�Z r

2c1
p
ı

ım

.ı2 C s2/
m2

mC2

s8jln sj ds
�

if m D 6 and M is not l.c.f.;

O

�Z r

2c1
p
ı

ım

.ı2 C s2/
m2

mC2

s
2m2

mC2
�1Cm.m�6/

mC2 ds
�

if m � 7 and M is not l.c.f.

D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

O

�
ı
2m.m�2/
mC2

Z 1
1=
p
ı

s�1C
m.m�6/
mC2 ds

�
if m D 4; 5; or M is l.c.f.;

O

�
ı6
Z r=

p
ı

2c1=
p
ı

jln ısj

.1C s2/
9
2

s8 ds
�

if m D 6 and M is not l.c.f.;

O

�
ı
8m
mC2

Z 1
1=
p
ı

s�1�
m.m�6/
mC2 ds

�
if m � 7 and M is not l.c.f.

D

8̂̂<̂
:̂
O.ı

2m.m�2/
mC2

�
m.m�6/
2.mC2/ / if m D 4; 5; or M is l.c.f.;

O.ı8jln ıj/ if m D 6 and M is not l.c.f.;

O.ı
8m
mC2

C
m.m�6/
2.mC2/ / if m � 7 and M is not l.c.f.

This concludes the proof of statement (i).
(ii) Using the inequalitiesˇ̌
jaC bj2

�

� jaj2
� ˇ̌
� c.jaj2

��1
jbj C jbj2

�

/ 8a; b 2 R;ˇ̌
jaC bj2

�

� jaj2
�

� 2�ajaj2
��2
jbj
ˇ̌
� c.jaj2

��2
jbj2 C jbj2

�

/ 8a; b 2 R;

we obtain

jv1j
2�

g;2� � juj
2�

g;2�

D

Z
¹jxj�rº

juj2
�

d�g C
Z
¹jxj�rº

j.u � zVı;p/
C
j
2� d�g �

Z
M

juj2
�

d�g

D

Z
¹jxj�rº\¹u� zVı;pº

.ju � zVı;pj
2�
� juj2

�

C 2�u2
��1 zVı;p/ d�g

� 2�
Z
¹jxj�rº\¹u� zVı;pº

u2
��1 zVı;p d�g �

Z
¹jxj�rº\¹u� zVı;pº

juj2
�

d�g
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D O

�Z
¹c2
p
ı�jxj�rº

.u2
��2 zV 2ı;p C

zV 2
�

ı;p

�
d�g/„ ƒ‚ …

O.ım=2/ ifm�5

�2�
Z
¹2c1
p
ı�jxj�rº

u2
��1 zVı;p d�g„ ƒ‚ …

see (A.11)

C

Z
¹2c1
p
ı�jxj�rº\¹u� zVı;pº

u2
��1 zVı;p d�g„ ƒ‚ …

D0 (see (A.6)/

�

Z
¹jxj�2c1

p
ıº\¹u� zVı;pº

u2
��1 zVı;p d�g„ ƒ‚ …

DO.ım=2/

CO

�Z
¹jxj�c1

p
ıº

u2
�

d�g

�
„ ƒ‚ …

DO.ım=2/

;

whereZ
¹2c1
p
ı�jxj�rº

u2
��1 zVı;p d�g D

Z
¹2c1
p
ı�jxj�rº

.��guC �mSgu/ zVı;p d�g

D

Z
¹2c1
p
ı�jxj�rº

.��g zVı;p C �mSg zVı;p/u d�g �
Z
¹2c1
p
ıDjxjº

zVı;p@�u„ ƒ‚ …
DO.ı.m�1/=2/

�

Z
¹rDjxjº

zVı;p@�u„ ƒ‚ …
D0

C

Z
¹2c1
p
ıDjxjº

@� zVı;pu„ ƒ‚ …
see (A.9)

C

Z
¹rDjxjº

@� zVı;pu„ ƒ‚ …
D0

: (A.11)

This concludes the proof of statement (ii).
(iii) Using (A.5) and (A.6) we obtain

kv`k
2
g � k

zVı;pk
2
g

D

Z
¹jxj�rº\¹u� zVı;pº

Œjrg.u� zVı;p/j
2C�mSg.u� zVı;p/

2�jrg zVı;pj
2C�mSg zV

2
ı;p
� d�g

�

Z
¹jxj�rº\¹u� zVı;pº

.jrg zVı;pj
2
C �mSg zV

2
ı;p/ d�g

D

Z
¹jxj�rº\¹u� zVı;pº

.jrguj
2
C �mSgu

2/ d�g

� 2

Z
¹jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g

CO

�Z
¹c2
p
ı�jxj�rº

.jrg zVı;pj
2
C �mSg zV

2
ı;p

�
d�g/„ ƒ‚ …

DO.ım=2/
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D O

�Z
¹jxj�c1

p
ıº

.jrguj
2
C �mSgu

2

�
d�g/„ ƒ‚ …

DO.ım=2/

� 2

Z
¹jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g CO.ım=2/

D �2

Z
¹jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g„ ƒ‚ …
see (A.12)

CO.ım=2/

andZ
¹jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g

D

Z
¹jxj�

c2
2

p
ıº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g

C

Z
¹
c2
2

p
ı�jxj�rº\¹u� zVı;pº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g„ ƒ‚ …
DO.ım=2/

D

Z
¹jxj�

c2
2

p
ıº

.hrgu;rg zVı;pi C �mSgu zVı;p/ d�g CO.ım=2/

D

Z
¹jxj�

c2
2

p
ıº

.��g zVı;p C �mSg zVı;p � zV
2��1
ı;p /u d�g„ ƒ‚ …

see (A.14)

C

Z
¹jxj�

c2
2

p
ıº

zV 2
��1

ı;p u d�g„ ƒ‚ …
see (A.13)

C

Z
¹2c1
p
ıDjxjº

@� zVı;pu„ ƒ‚ …
see (A.9)

CO.ım=2/; (A.12)

whereZ
¹jxj�

c2
2

p
ıº

zV 2
��1

ı;p u d�g D u.p/
�Z

Rm
U 2
��1

1 dx

�
„ ƒ‚ …

Dbm

ı.m�2/=2 CO.ım=2/; (A.13)
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and, arguing as in [29],Z
¹jxj�

c2
2

p
ıº

j��g zVı;p C �mSg zVı;p � zV
2��1
ı;p j

2m
mC2 d�g

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

O

�Z c2
2

0

p
ı

ım

.ı2 C s2/
m2

mC2

s
2m2

mC2
�1Cm.m�6/

mC2 ds
�

if m D 4; 5; or M is l.c.f.;

O

�Z c2
2

p
ı

0

ım

.ı2 C s2/
m2

mC2

s8jln sj ds
�

if m D 6 and M is not l.c.f.;

O

�Z c2
2

p
ı

0

ım

.ı2 C s2/
m2

mC2

s
2m2

mC2
�1�m.m�6/

mC2 ds
�

if m � 7 and M is not l.c.f.

D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

O

�
ım
Z c2

2

p
ı

0

s�1C
m.m�6/
mC2 ds

�
if m D 4; 5; or M is l.c.f.;

O

�
ı6
Z c2

2

p
ı

0

jln sj
s

ds
�

if m D 6 and M is not l.c.f.;

O

�
ım
Z c2

2

p
ı

0

s�1�
m.m�6/
mC2 ds

�
if m � 7 and M is not l.c.f.

D

8̂̂<̂
:̂
O.ı

m.3m�2/
2.mC2/ / if m D 4; 5; or M is l.c.f.;

O.ı6jln ıj2/ if m D 6 and M is not l.c.f.;

O.ı
m.mC10/
2.mC2/ / if m � 7 and M is not l.c.f.

(A.14)

This concludes the proof of statement (iii).
(iv) Using (A.5) and (A.6) we obtain

jv`j
2�

g;2� � j
zVı;pj

2�

g;2�

D

Z
¹jxj�rº\¹u� zVı;pº

.j zVı;p � uj
2�
� j zVı;pj

2�
C 2� zV 2

��1
ı;p u/ d�g

� 2�
Z
¹jxj�rº\¹u� zVı;pº

zV 2
��1

ı;p u d�g �
Z
¹jxj�rº\¹u� zVı;pº

zV 2
�

ı;p d�g

D O

�Z
¹jxj�c1

p
ıº

. zV 2
��2

ı;p u2 C u2
�

/ d�g

�
„ ƒ‚ …

DO.ım=2/

�2�
Z
¹jxj�rº\¹u� zVı;pº

zV 2
��1

ı;p u d�g„ ƒ‚ …
see (A.15)

CO

�Z
¹c2
p
ı�jxj�rº

zV 2
�

ı;p d�g

�
„ ƒ‚ …

DO.ım=2/

and
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¹jxj�rº\¹u� zVı;pº

zV 2
��1

ı;p u d�g D
Z
¹jxj�

c2
2

p
ıº

zV 2
��1

ı;p u d�g„ ƒ‚ …
see (A.13)

�

Z
¹jxj�

c2
2

p
ıº\¹u� zVı;pº

zV 2
��1

ı;p u d�g„ ƒ‚ …
D0 see (A.6)

C

Z
¹
c2
2

p
ı�jxj�rº\¹u� zVı;pº

zV 2
��1

ı;p u d�g„ ƒ‚ …
DO.ım=2/

D bmu.p/ı
.m�2/=2

CO.ım=2/: (A.15)

This concludes the proof of statement (iv).

Appendix B. Uniform bounds in Hölder spaces

In this appendix we prove Lemma 4.4. Since it does not require additional effort, we
consider the more general system

Lgui D hi .p; ui /C
X̀
jD1
j¤i

�juj j

C1
jui j


�1ui in M; i D 1; : : : ; `; (B.1)

where .M; g/ is a closed Riemannian manifold of dimension m � 1, � < 0, 
 > 0, and
hi W M � R! R is a continuous function satisfying jhi .p; s/j � C jsj for every p 2 M
and jsj � 1.

Lemma 4.4 is a particular case of the following result.

Theorem B.1. For each � < 0 let .u�;1; : : : ; u�;`/ be a nonnegative solution to (B.1)
such that ¹u�;i W � < 0º is uniformly bounded in L1.M/ for every i D 1; : : : ; `. Then,
for any ˛ 2 .0; 1/, there exists C˛ > 0 such that

ku�;ikC0;˛.M/ � C˛ for every � < 0; i D 1; : : : ; `:

In local coordinates, the system (B.1) becomes8̂̂<̂
:̂
�

1
a.x/

div.A.x/rui / D ��mSg.x/ui C hi .x; ui /C
P̀
jD1
j¤i

�juj j

C1jui j


�1ui in �;

i D 1; : : : ; `;

where � is an open subset of Rm, a.x/ WD
p
jg.x/j, A.x/ WD

p
jg.x/j.gkl .x//, .gkl / is

the metric written in local coordinates, .gkl / is its inverse and jgj is the determinant of
.gkl /. Observe that the second order differential operator is uniformly elliptic, and since
M is compact, a is bounded away from 0. Therefore, we end up with a system of the form

� div.A.x/rui /Dfi .x;ui /C a.x/
X̀
jD1
j¤i

�juj j

C1
jui j


�1ui in �; iD1; : : : ; `: (B.2)
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Let Symm � Rm.mC1/=2 be the space of real symmetric m �m matrices. For the system
(B.2) we prove the following result.

Theorem B.2. Let � be an open subset of Rm, and 
 > 0. Assume that

(H1) a 2 C0.�/ and a > 0 in �,

(H2) A 2 C1.�;Symm/ and there exists � > 0 such that

hA.x/�; �i � � j�j2 for all x 2 �, � 2 Rm,

(H3) fi W � �R! R is continuous and there exists Nc > 0 such that

jfi .x; s/j � Ncjsj for all x 2 �; jsj � 1; i D 1; : : : ; `.

For each � < 0 let .u�;1; : : : ; u�;`/ be a nonnegative solution to the system (B.2) such
that ¹u�;i W � < 0º is uniformly bounded in L1.�/ for every i D 1; : : : ; `. Then, given a
compact subset K of � and ˛ 2 .0; 1/, there exists C > 0 such that

ku�;ikC0;˛.K/ � C for every � < 0; i D 1; : : : ; `:

We now show that Theorem 1.4 follows from Theorem B.2.

Proof of Theorem B.1. Arguing by contradiction, assume that ¹u�;i W �< 0º is unbounded
in C0;˛.M/ for some ˛ 2 .0; 1/ and some i D 1; : : : ; `. Since, by assumption, this set
is uniformly bounded in L1.M/, there exist �n ! �1 and pn ¤ qn in M such that
un;i WD u�n;i satisfies

jun;i .pn/ � un;i .qn/j

Œdg.pn; qn/�˛
!1;

where dg is the geodesic distance in .M; g/. As .un;i / is uniformly bounded in L1.M/,
this implies that dg.pn; qn/! 0. Moreover, since M is compact, a subsequence satisfies
pn ! Np in M . Hence, qn ! Np. Now, in local coordinates around Np the system (B.1)
becomes (B.2) with fi .x; s/ WD a.x/.��mSg.x/s C hi .x; s//. This contradicts Theo-
rem B.2.

Remark B.3. We point out that proving local uniform Hölder bounds for solutions of
(B.2) .and hence (B.1)) is the starting point to prove local Lipschitz uniform bounds,
which are optimal in this context. This has been done recently in [25, Theorem 1.1 and
Corollary 1.4].

For the remainder of the appendix, our goal is to prove Theorem B.2. We follow very
closely the proof of [49, Theorem 1.2], where the case A.x/ D Id was treated, mainly
highlighting the differences that arise from having a divergence-type operator instead of
the Laplacian.

We use the following notation for the seminorm in Hölder spaces:

Œu�C0;˛.�/ WD sup
x;y2�

x¤y

ju.x/ � u.y/j

jx � yj˛
:
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B.1. Auxiliary lemmas

We present the following generalization of [9, Lemma 5.2], [51, Lemma 4.1] and [53,
Lemma 2.2] to our setting. The first part of the lemma is required to treat the case 
 � 1,
while the second part is needed for 
 > 1 (see the upcoming proof of Lemma B.7 for
more details).

Lemma B.4 (Decay estimates). Let z� be an open subset of Rm and zA 2 C1. z�; Symm/

be bounded in the C1-norm and such that there are 0 < � < ‚ with � j�j2 � h zA.x/�; �i �
‚j�j2 for all x 2 z� and � 2 Rm. Let a0 � k zAkC1.z�;Symm/

. For any R > 0 satisfying

B2R.0/ � z� we have the following results:

(1) Take C � 1 and let u 2 H 1.B2R.0// \ C0.B2R.0// be a nonnegative solution of

� div. zA.x/ru/ � �Cu in B2R.0/:

Then there exist constants c1; c2 > 0, depending only on m, ‚ and a0, such that

kukL1.BR.0// � c1kukL1.B2R.0// e
�c2R

p
C :

(2) Take ı > 0, 
 � 1, C � 1 and let u 2 H 1.B2R.0// \ C0.B2R.0// be a nonnegative
solution of

� div. zA.x/ru/ � �Cu
 C ı in B2R.0/:

Then there exists a constant c > 0, depending only on m, ‚ and a0, such that

Ckuk



L1.BR.0//
�

c

RCR2
kukL1.B2R.0// C ı:

Proof. (1) For the first statement we follow closely the proof of [51, Lemma 4.1], which
concerns the case of a constant matrix. Define

z.x/ WD

mX
iD1

cosh.
p
C=Lxi / with L WD max ¹1; .a0mC‚/2º:

Observe that, for x 2 B2R.0/,

div. zA.x/rz/ D
mX

i;jD1

�
@ zAij

@xi
.x/

@z

@xj
C zAij .x/

@2z

@xi@xj

�
D

r
C

L

mX
i;j

@ zAij

@xi
.x/ sinh

�r
C

L
xj

�
C
C

L

mX
iD1

zAi i .x/ cosh
�r

C

L
xi

�
�

r
C

L
a0

mX
jD1

ˇ̌̌̌
sinh

�r
C

L
xj

�ˇ̌̌̌
C
C‚

L
z.x/

� Cz.x/

�
a0
p
CL
C
‚

L

�
� Cz.x/;



Yamabe systems, optimal partitions and nodal solutions to the Yamabe equation 3747

where in the last inequality we have usedC � 1 and the definition ofL. Moreover, observe
that there exist c1; c2 > 0, depending on L (that is, on m, a0 and ‚), such that

z.x/ � c1e
c2jxj

p
C for every x 2 Rm:

Therefore, given x0 2 BR.0/, by the comparison principle (which we can apply because
C > 0) we have

u.x/

kukL1.B2R.0//
�
z.x � x0/

c1ec2R
p
C

in BR.x0/:

Evaluating the previous inequality at x D x0 yields

u.x0/ �
m

c1
e�c2R

p
C
kukL1.B2R.0//;

and the conclusion follows.
(2) We follow the proof of [53, Lemma 2.2] (which deals with the Laplace operator).

Our main addition is the use of the mean value theorem for divergence operators, which
reads as follows: Given � � Rm there exist k;K > 0, only depending on �;‚ > 0, such
that for y 2 � there exists an increasing family of sets Dr .y/ � � such that Bkr .y/ �
Dr .y/ � BKr .y/ and, for every solution w of � div.A.x/rw/ � 0 in �,

r 7!
1

jDr .y/j

Z
Dr .y/

w is increasing, and w.y/ �
1

jDr .x0/j

Z
Dr .y/

w:

(See [6, Theorem 6.3] for the proof of this result, which was previously stated in [10,12].)
Now take a nonnegative solution v 2 H 1.B2R.0// of

� div.A.x/rw/C Cw
 D 0 in B2R.0/; v D kukL1.B2R.0// on @B2R.0/:

Using the uniform ellipticity and since C > 0, we can apply the maximum principle to
deduce that v � kukL1.B2R.0// in B2R.0/. Let � 2 C1c .B2R.0// with 0 � � � 1 be a
cut-off function such that � D 1 in B3R=2.0/, and take �R.x/ WD �.x=R/. ThenZ

B3R=2.0/

Cv
 �

Z
B2R.0/

Cv
�R D

Z
B2R.0/

div. zA.x/rv/�R

D

X̀
i;jD1

Z
B2R.0/

v

�
zAij .x/

@2�

@xj @xi

�
x

R

�
1

R2
C
@ zAij

@xj
.x/

@�

@xi

�
x

R

�
1

R

�
� a0.R

m�1
CRm�2/kvkL1.B2R.0//:

Now let y 2BR.0/. Since 
 � 1, by the mean value theorem presented above and Jensen’s
inequality we have

Cv.y/
 � C

�
1

jDR=.2K/.y/j

Z
DR=.2K/.y/

v

�

�

1

jDR=.2K/.y/j

Z
jDR=.2K/.y/j

Cv


�
1

jB kR
2K
.y/j

Z
BR=2.y/

Cv
 �

�
2K

kR

�m
1

jB1.0/j

Z
B3R=2.0/

Cv


�
a0

RCR2
kvkL1.B2R.0//:
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By the maximum principle we have u � v C .ı=C /1=
 , from which the conclusion fol-
lows.

Lemma B.5 (Liouville-type results). Let A 2 Symm be a constant matrix and ˛ 2 .0; 1/.

(1) Let u; v 2 H 1
loc.R

m/ \ C0.Rm/ be nonnegative functions satisfying uv � 0 and

� div.Aru/ � 0; � div.Arv/ � 0 in Rm:

If Œu�C0;˛.Rm/ <1 and Œv�C0;˛.Rm/ <1 then either u � 0 or v � 0.

(2) Let u; v 2 H 1
loc.R

m/ \ C0.Rm/ be nonnegative solutions of

� div.Aru/ � �au
v
C1; � div.Aru/ � �av
u
C1 in Rm;

with a > 0 and 
 > 0. If Œu�C0;˛.Rm/ <1 and Œv�C0;˛.Rm/ <1 then either u � 0
or v � 0.

(3) Let u be a solution of � div.Aru/ D 0 in Rm such that Œu�C0;˛.Rm/ <1. Then u is
constant.

Proof. Inspired by the proof of [51, Theorem 3.1] we find that since A is symmetric
and positive definite, there exist an orthogonal matrix O and a diagonal matrix D D
diag.d1; : : : ; d`/with di >0 such thatO tAODD. Then, for

p
D WDdiag.

p
d1; : : : ;

p
d`/

and Nu.x/ WD u.O
p
Dx/, we have

� Nu.x/ D div.Aru/.O
p
Dx/:

Under this change of variables, we reduce the proof to the case of the Laplace operator.
Therefore, parts (1) and (3) follow from [43, Proposition 2.2 and Corollary 2.3], while (2)
follows from [49, Lemma A.3] (see also [50, Corollary 1.14 (ii)] for the case 
 � 1).

B.2. A contradiction argument and a blow-up analysis

Fix ˛ 2 .0; 1/. Without loss of generality, we assume that B3.0/ � �. Under the assump-
tions of Theorem B.2, we aim at proving the uniform Hölder bound in B1.0/. Fix ƒ > 0

such that
ku�;ikL1.B3.0// � ƒ 8� < 0; i D 1; : : : ; `: (B.3)

Let � 2 C1c .R
m/ be a radially decreasing cut-off function such that8̂̂<̂

:̂
�.x/ D 1 for x 2 B1.0/;

�.x/ D 0 for x 2 Rm X B2.0/;

�.x/ D .2 � jxj/2 for x 2 B2.0/ X B3=2.0/:

For x 2 B2.0/, let dx WD dist.x; @B2.0//. It is shown in [49, Remark 2.1] that

sup
x2B2.0/

sup
�2.0;dx=2/

supB�.x/ �

infB�.x/ �
� 16: (B.4)
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Our goal is to prove that there exists C > 0 such that

sup
x¤y

x;y2B2.0/

j.�un;i /.x/ � .�un;i /.y/j

jx � yj˛
� C 8� < 0; i D 1; : : : ; `: (B.5)

Since � D 1 in B1.0/, Theorem B.2 follows readily from (B.5).
To prove (B.5), assume that it is false. Then there exist �n ! �1 such that un;i WD

u�n;i satisfies

Ln WD max
iD1;:::;`

sup
x¤y

x;y2B2.0/

j.�un;i /.x/ � .�un;i /.y/j

jx � yj˛
!1 as n!1: (B.6)

We may assume that the maximum is attained at i D 1. Then, for each n, we fix a pair of
points xn; yn 2 B2.0/ with xn ¤ yn such that

Ln D
j.�un;1/.xn/ � .�un;1/.yn/j

jxn � ynj˛
:

As .un/ is uniformly bounded in L1.B2.0//, this implies that jxn � ynj ! 0. So .xn/
and .yn/ converge to the same point. We denote

x1 WD lim
n!1

xn D lim
n!1

yn; A1 WD A.x1/; a1 WD a.x1/: (B.7)

The contradiction argument is based on two blow-up sequences

vn;i .x/ WD �.xn/
un;i .xn C rnx/

Lnr˛n
and Nvn;i .x/ WD

.�un;i /.xn C rnx/

Lnr˛n
;

both defined in the scaled domain�n WD .B3.0/� xn/=rn; see [49,53,61,63]. Here rn 2
.0; 1/, rn ! 0, will be conveniently chosen later. Observe that B1=rn.0/ � �n, therefore
�n approaches Rm as n!1. Since � is positive in B2.0/, the functions vn;i and Nvn;i
are nonnegative and nontrivial in �0n WD .B2.0/ � xn/=rn. Note that as xn 2 B2.0/, �0n
approaches a limit domain �1 which is either a half-space or the whole Rm, as n!1.

Lemma B.6. Under the assumptions of Theorem B.2, vn;i and Nvn;i have the following
properties:

(1) The sequence .Œ Nvn;i �C0;˛.�0n// of ˛-Hölder seminorms is uniformly bounded. Further-
more, for every n 2 N,

max
iD1;:::;`

sup
x¤y

x;y2�0n

j Nvn;i .x/ � Nvn;i .y/j

jx � yj˛
D

ˇ̌
Nvn;1.0/ � Nvn;1

�
yn�xn
rn

�ˇ̌ˇ̌
yn�xn
rn

ˇ̌˛ D 1:

(2) vn;i solves

� div.An.x/rvn;i / D gn;i .x/C an.x/
X
j¤i

ƒnjvn;j j

C1
jvn;i j


�1vn;i in �n;
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where

an.x/ WD a.xn C rnx/; An.x/ WD A.xn C rnx/;

gn;i .x/ WD
�.xn/r

2�˛
n

Ln
fn;i .xn C rnx; un;i .xn C rnx//;

ƒn WD �nr
2.˛
C1/
n

�
Ln

�.xn/

�2

:

(3) There exist a0; a1; a2; �;‚ > 0 such that, for every n 2 N,

a1 � an.x/ � a2; � j�j2 � hAn.x/�; �i � ‚j�j
2
8x 2 �n; � 2 Rm;

kAnkC1.�n;Symm/ � a0:

(4) kgn;ikL1.�n/ ! 0, and there is c0 > 0 such that jgn;i .x/j � c0r2n jvn;i .x/j for all
x 2 �0n; n 2 N.

(5) kvn;i � Nvn;ikL1.K/ ! 0 for any compact set K � Rm and every i D 1; : : : ; `.

(6) For any compact set K � Rm there exists C > 0 such that

jvn;i .x/ � vn;i .y/j � C C jx � yj
˛
8x; y 2K; i D 1; : : : ; `:

In particular, .vn;i / has uniformly bounded oscillation in any compact set.

Proof. The first two statements are proved by direct computation. The third one fol-
lows from (H1)–.H2/ with a1 WD minx2B3.0/ a.x/, a2 WD maxx2B3.0/ a.x/, ‚ WD
kAk

C0.B3.0/;Symm/
and a0 WD kAkC1.B3.0/;Symm/

, while the fourth one is a consequence
of (H3), (B.3), (B.6) and rn ! 0. The last two statements are proved exactly as those in
[49, Lemma 2.2 (4)–(5)].

Lemma B.7. Take rn ! 0C such that

lim inf
n!1

jƒnj > 0 and lim sup
n!1

jxn � ynj

rn
<1: (B.8)

Then the sequence .vn.0// is bounded in R`, where vn WD .vn;1; : : : ; vn;`/.

Proof. We follow [49, Lemma 2.3], to which we refer for further details.
Assume towards a contradiction that jvn;Ni .0/j !1 for some Ni 2 ¹1; : : : ; `º. TakeR �

jyn � xnj=rn for all n2N. From Lemma B.6 (1) we get jvn;Ni .0/j D j Nvn;Ni .0/j � j Nvn;Ni .x/j C
.2R/˛ if x 2 �0n \B2R.0/. So inf�0n\B2R.0/ j Nvn;Ni .x/j ! 1 and, as Nvn;Ni jRmX�0n D 0, we
conclude that B2R.0/ � �0n for n large enough. Since R is arbitrary, it follows that �0n
approaches Rm as n!1.

Let ' 2 C1c .B2R.0// be a nonnegative cut-off function such that ' D 1 in BR.0/.
Take i D 1; : : : ; `. Testing the equation for vi;n in Lemma B.6 (2) against vi;n'2, we
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obtain

�

Z
B2R.0/

jrvn;i j
2'2 C

Z
B2R.0/

an
X
j¤i

jƒnj jvn;j j

C1
jvn;i j


C1'2

�

Z
B2R.0/

hAnrvn;i ;rvn;i i'
2
C

Z
B2R.0/

an
X
j¤i

jƒnj jvn;j j

C1
jvn;i j


C1'2

D �2

Z
B2R.0/

hAnrvn;i ;r'ivn;i' C

Z
B2R.0/

gn;ivn;i'
2

�
�

2

Z
B2R.0/

jrvn;i j
2'2 C C

Z
B2R.0/

.v2n;i C 1/;

where in the last inequality we have used Lemma B.6 (4), (H2) and Young’s inequality.
By Lemma B.6 (3) we haveX

j¤i

Z
BR.0/

jƒnj jvn;j j

C1
jvn;i j


C1
� C

Z
B2R.0/

.v2n;i C 1/:

Combining this inequality with lim inf jƒnj > 0 and Lemma B.6 (6) we deduce that

jvn;j .x/j
2.pC1/

jvn;i .x/j
2.pC1/

� C.jvn;i .x/j
2
C 1/.jvn;j .x/j

2
C 1/ 8x 2 BR.0/;

for any i ¤ j . Using again Lemma B.6 (6) and our assumption that jvn;Ni .0/j ! 1 we
derive

inf
B2R.0/

jvn;Ni j ! 1; sup
B2R.0/

jvn;i j ! 0 8i ¤ Ni :

Now we consider two cases.
Assume first that 
 2 .0; 1� (as when 2.
 C 1/ D 2� andm � 5). There are again two

possibilities:

Case 1. If Ni D 1, take In WD a1jƒnj infB2R.0/ jvn;1j

C1!1. Since vn;i ! 0 in B2R.0/

and 
 � 1, from Lemma B.6 we get

� div.Anrvn;i / � Cr2nvn;i � Inv


n;i � �

In

2
vn;i in B2R.0/; 8i > 1;

Since kAnkC1.�n;Symm/ � a0 for all n 2 N (by Lemma B.6 (5)), Lemma B.4 (1) yields

0 � vn;i � c1e
�c2
p
In in BR.0/;

and therefore

j�njMnv

C1
n;i v



n;1 � 2Inc1e

�c2.
C1/
p
In ! 0 in BR.0/

for n large, and
div.Anrvn;i /! 0 in L1.BR.0//:
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Then, setting wn.x/ WD vn;1.x/ � vn;1.0/, by the Arzelà–Ascoli theorem we deduce that
wn ! w1 in L1.BR.0//. Moreover, An.x/ ! A.x1/ DW A1 with x1 as in (B.7).
Observing that R may be taken arbitrarily large, we conclude that

div.A1rw1/ D 0 in Rm:

Arguing as in [49, pp. 401–402] and using (B.4), we see that Œw1�C0;˛.Rm/ D 1, which
contradicts Lemma B.5 (3).

Case 2. If Ni > 1, take In WD
P
j>1 jƒnj infB2R.0/ jvn;j j


C1 !1. Then

� div.Anrvn;1/ � �
In

2
jv1;nj



� �

In

2
jvn;1j in B2R.0/:

Therefore, again by Lemma B.4 (1), vn;1 � c1e�c2
p
In in BR.0/, which gives again

div.An.x/rvn;1.x//! 0 uniformly in BR.0/;

a contradiction.
Finally, if 
 > 1, one may argue exactly as in Case 1 of the proof of [49, Lemma 2.3],

using this time the decay estimate Lemma B.4 (2). In both cases, Ni D 1 and Ni > 1, we
end up with div.An.x/rvn;1.x//! 0 locally uniformly in Rm, leading as before to a
contradiction.

Lemma B.8. Up to a subsequence, we have

j�nj

�
Ln

�.xn/

�2

jxn � ynj

2.˛
C1/
!1:

Proof. We follow [49, proof of Lemma 2.5]. To reach a contradiction, assume that the
sequence considered in the statement is bounded and take

rn WD

�
j�nj

�
Ln

�.xn/

�2
��1=.2.˛
C1//
! 0:

With this choice, (B.8) is satisfied and from Lemma B.7 we deduce that . Nvn.0// is
bounded in R`. Combining this fact with Lemma B.6 (1), we deduce the existence of
.v1; : : : ; v`/ 2 C0;˛.Rm;R`/ such that Nvn;i ! vi in the ˛-Hölder norm as n!1. Under
the previous choice of rn one hasƒn D�1. Hence, by elliptic regularity, the convergence
of Nvn;i to vi is actually in C1;˛ , and

� div.A1rvi / D �a1v


i

X
j¤i

v

C1
j in �1;

where �1 is the limit domain of �0n and A1, a1 are defined in (B.7). In particular, for
any i ¤ j , the pair .vi ; vj / is a nonnegative solution of

� div.A1rvi / � �a1v


i v

C1
j ; � div.A1rvj / � �a1v



j v


C1
i in �1;

with bounded ˛-Hölder seminorm. Using Lemma B.5 (2), and reasoning from this point
on word for word as in [49, proof of Lemma 2.5], we obtain a contradiction.
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Lemma B.9. Let rn WD jxn � ynj. Then there exists .v1; : : : ; v`/ 2 C0;˛.Rm;R`/ such
that, up to a subsequence,

(i) vn;i ! vi in L1loc.R
m/ \H 1

loc.R
m/ for all i D 1; : : : ; `;

(ii) for any r > 0,

lim
n!1

Z
Br .0/

jƒnj jvn;i j

C1
jvn;j j


C1
D 0 8i; j D 1; : : : ; ` with i ¤ j:

In particular, vivj � 0 in Rm for any i ¤ j .

Proof. Using Lemmas B.6–B.8, in particular the smoothness, boundedness and uniform
ellipticity of An, the proof is obtained from a straightforward adaptation of that of [49,
Lemma 2.6] (which, in turn, is based on [43, proof of Lemma 3.6]). Observe that vivj � 0
is a direct consequence consequence of the strong convergence of vn, the convergence
in (ii) and the fact that

jƒnj D j�nj

�
Ln

�.xn/

�2

jxn � ynj

2.˛
C1/
!1:

Lemma B.10. Let .v1; : : : ; v`/ be as in Lemma B.9 and A1 be as in (B.7). Then

(i) maxx2@B1 jv1.x/ � v1.0/j D 1 and

div.A1rv1/ D 0 in �1 WD ¹x 2 Rm W v1.x/ > 0º;

where �1 is open and connected, and �1 ¤ Rm;

(ii) vi � 0 in Rm for every i > 1.

Proof. Using the previous lemma together with Lemma B.5, the proof goes exactly as the
one of [49, Lemma 2.7].

B.3. The domain variation formula: end of the proof

Lemma B.11. Let .v1; : : : ; v`/ be as in Lemma B.9 and A1 2 Symm as in (B.7). Then,
for any vector field Y 2 C1c .R

m;Rm/, we haveZ
Rm

�
hdYA1rv1;rv1i � 1

2
hA1rv1;rv1i divY

�
D 0: (B.9)

Proof. We test the i -th equation in Lemma B.6 (2) against hrvn;i ; Y i, integrate by parts
and take the sum for all i D 1; : : : ; ` to obtain

X̀
iD1

Z
�n

hAnrvn;i ;rhrvn;i ; Y ii C
X̀
i;jD1

j¤i

Z
�n

jƒnjanv

C1
n;j v



n;i hrvn;i ; Y i

D

X̀
iD1

Z
�n

gn;i .x/hrvn;i ; Y i:
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Observe thatZ
�n

hAnrvn;i ;rhrvn;i ; Y ii D

Z
�n

hAnrvn;i ; D
2vn;iY C .dY /trvn;i i

D

Z
�n

.hD2vn;iAnrvn;i ; Y i C hdYAnrvn;i ;rvn;i i/

D

Z
�n

�
�
1
2
hAnrvn;i ;rvn;i i divY

�
1
2

X
j;k;l

@.An/jk

@xl
Yl
@vn;i

@xk

@vn;i

@xj
C hdYAnrvn;i ;rvn;i i

�
!

Z
Rm

�
�
1
2
hA1rv1;rv1i divY C hdYA1rv1;rv1i

�
because Y has compact support, vn;i ! vi strongly in H 1

loc.R
m/ and

@.An/jk

@xl
D r2n

@Ajk

@xl
.xn C rn � /! 0 in L1loc.R

m/.

Moreover,

X̀
i;jD1

j¤i

Z
�n

jƒnjanv

C1
n;j v



n;i hrvn;i ; Y i D

1


 C 1

X̀
i;jD1

i<j

Z
�n

jƒnjanhr.v

C1
n;j v


C1
n;i /; Y i

D �

X̀
i;jD1

i<j

Z
�n

jƒnjan.x/v

C1
n;j v


C1
n;i divY

�

X̀
i;jD1

i<j

Z
�n

jƒnjr
2
nv

C1
n;j v


C1
n;i hra.xn C rnx/; Y i ! 0

by Lemma B.9 (ii). The statement follows from this facts.

End of the proof of Theorem B.2. Since A1 2 Symm is positive definite, there exist an
orthogonal matrix O and a diagonal matrix D D diag.d1; : : : ; d`/ with di > 0 such that
O tA1O D D. Let

u1.x/ WD v1.O
p
Dx/; so that ru1.x/ D

p
DO tv1.O

p
Dx/:

Then, from Lemma B.10 we get

� max
j
p
DxjD1

ju1.x/ � u1.0/j D 1;

� �u1 D 0 in ¹u1 > 0º, which is an open connected set that does not coincide with Rm;

while (B.9) turns into Z
Rm

�
hdZru1;ru1i � 1

2
jru1j

2 divZ
�
D 0 (B.10)
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forZ.x/ WD
p
DO tY.O

p
Dx/. Since Y is an arbitrary vector field with compact support,

then (B.10) holds true for every Z 2 C1c .R
m;Rm/. Given x0 2 Rm and r > 0, let �ı 2

C1c .BrCı.x0// be a cut-off function such that 0 � �ı � 1 and �ı D 1 in Br .x0/. Then
taking Z.x/ D Zı.x/ WD .x � x0/�ı in (B.10) and letting ı ! 0, we derive the local
Pohozaev identity

.2 �m/

Z
Br .x0/

jru1j
2
D

Z
@Br .x0/

r.2.@�u1/
2
� jru1j

2/

(see for instance [44, Corollary 3.16] for the details). From this, it is now classical to
deduce an Almgren monotonicity formula, namely, if we set

E.x0; r/ WD
1

rm�2

Z
Br .x0/

jru1j
2; H.x0; r/ WD

1

rm�1

Z
@Br .x0/

u21;

N.x0; r/ WD
E.x0; r/

H.x0; r/
;

then H.x0; r/ ¤ 0 for every r > 0, the function r 7! N.x0; r/ is absolutely continuous
and nondecreasing, and

d
dr

logH.x0; r/ D
2

r
N.x0; r/

(see for instance [44, Theorem 3.21] for a proof). Moreover, if N.x0; r/ D % for every
r 2 Œr1; r2�, then u1 D r%yu1.#/ in ¹r1 < r < r2º, where .r; #/ denotes a system of polar
coordinates centered at x0. Therefore we have obtained precisely the statements contained
in [49, Lemma 2.7 and Proposition 2.9]. From this point on we argue exactly as in [49,
Section 2.3] to obtain a contradiction.

Appendix C. Lipschitz continuity of the limiting profiles and regularity of the free
boundaries

Staying within the framework of Appendix B we continue our study of the system (B.2).
Our aim now is to prove the following result.

Theorem C.1. Let � be an open subset of Rm and 
 > 0. Assume that

(H10) a 2 C1.�/ and a > 0 in �,

and that A and fi satisfy assumptions (H2) and (H3) of Theorem B.2. For each � < 0,
let .u�;1; : : : ; u�;`/ be a nonnegative solution to the system (B.2) satisfying

(H4) u�;i ! ui strongly in H 1.�/ \ C0;˛.�/ for every ˛ 2 .0; 1/, as �! �1, where
ui 6� 0;

(H5)
Z
�

�u



�;i
u



�;j
! 0 whenever i ¤ j ; in particular, uiuj � 0 if i ¤ j ;

(H6) � div.A.x/rui / D fi .x; ui / in the open set ¹x 2 � W ui .x/ > 0º.

Then the following statements hold true:
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(a) ui is Lipschitz continuous for every i D 1; : : : ; `.

(b) The nodal set � WD ¹x 2 � W ui .x/D 0 8i D 1; : : : ; `º is the disjoint union R [S ,
where R is an .m � 1/-dimensional C1;˛-submanifold of � and S is a relatively
closed subset of � whose Hausdorff measure is smaller than or equal to m � 2.
Moreover,

– given x0 2 R, there exist i; j such that

lim
x!x

C

0

hA.x/rui .x/;rui .x/i D lim
x!x�

0

hA.x/ruj .x/;ruj .x/i ¤ 0;

where x ! x˙0 are the limits taken from opposite sides of R;

– if x0 2 S , then

lim
x!x0

hA.x/rui .x/;rui .x/i D 0 for every i D 1; : : : ; `:

The proof of the Lipschitz continuity of the limiting profiles goes along the lines of
[43, Theorem 1.2 and Section 4] (see also [49, Theorem 1.5 (4)], while the regularity of the
nodal set follows [57, Theorem 1.1] (see also [49, Theorem 1.7]), where the differential
operator is the Laplacian. The proof requires a careful blow-up analysis and is mainly
based on the use of an Almgren-type monotonicity formula. Adapting it to divergence-
form operators with nonconstant matrices is not completely straghtforward, and for that
we use ideas from [32, 33, 39, 52].

C.1. Almgren’s monotonicity formula: the case A.0/ D Id

Assume that 0 2 � and, for now, that A.0/ D Id. Our goal is to prove an Almgren mono-
tonicity formula centered at the origin. Later on we shall see how to reduce the case where
A.0/ is any matrix to the one where A.0/ D Id, and in which way this affects the formu-
las. The advantage of making this assumption stems from the fact that, near the origin,
the problem looks like the one for the Laplacian, for which formulas are easier to derive.
As in [33, 39, 52], we define

�.x/ WD

�
A.x/

x

jxj
;
x

jxj

�
; x 2 Rm X ¹0º:

The next lemma quantifies the behavior of various functions involving A as x ! 0, in
terms of

kDAk1 WD max ¹k@xkaij .x/kL1.�/ W i; j D 1; : : : ; `; k D 1; : : : ; mº

(which we assume to be finite, possibly by taking a smaller � from the start). The proof
follows computations in [33]. Here, however, we need to keep track of the dependencies
of the constants involved in the monotonicity formula. This is a key factor in passing from
a general A to one with A.0/ D Id (see the proof of Theorem C.9 below, and its relation
to Theorem C.3).
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Lemma C.2. There exists a constant C , depending only on the dimension m and on an
upper bound for kDAk1, such that, as jxj ! 0,

(1) kA.x/ � Idk � C jxj,

(2) j�.x/ � 1j � C jxj,

(3)
ˇ̌
1

�.x/
� 1

ˇ̌
�

C
1�C jxj

jxj,

(4)
ˇ̌

1
�2.x/

� 1
ˇ̌
�

C
.1�C jxj/2

jxj,

(5) jr�.x/j � C ,

(6)
ˇ̌
div.A.x/rjxj/ � m�1

jxj

ˇ̌
� C ,

(7)
ˇ̌
div
�
A.x/x
�.x/

�
�m

ˇ̌
� C jxj.

Proof. The first statement is a direct consequence of the mean value theorem and the fact
that the coefficients of A are of class C1, which yields

kA.x/ � Idk �
p
mkDAk1jxj:

The second one follows from the identity

�.x/ D

�
x

jxj
;
x

jxj

�
C

�
.A.x/ � Id/

x

jxj
;
x

jxj

�
;

combined with the Cauchy–Schwarz inequality and item 1., which allows us to con-
clude that j�.x/ � 1j �

p
mkDAk1jxj. Items (3) and (4) are direct consequences of

(2), namely, ˇ̌̌̌
1

�.x/
� 1

ˇ̌̌̌
�

p
mkDAk1

1 �
p
mkDAk1jxj

jxj;ˇ̌̌̌
1

�2.x/
� 1

ˇ̌̌̌
�

p
mkDAk1.2C

p
mkDAk1/

.1 � kDAk1jxj/2
jxj:

Regarding (5), from the proof of [33, Lemma 4.2] we get

j@xk�.x/j

�

ˇ̌̌̌ mX
i;jD1

@xkaij .x/xixj

jxj2
C

mX
jD1

2.akj .x/ � ıkj /xj

jxj2
�

mX
i;jD1

2.aij .x/ � ıij /xixjxk

jxj4

ˇ̌̌̌
� kDAk1

� mX
i;jD1

jxi j jxj j

jxj2
C

mX
jD1

2jxj j jxj

jxj2
C

mX
i;jD1

2jxi j jxj j jxkj jxj

jxj4

�
� kDAk1.3m

2
C 2m/:

As for item (6), following the computations in [33, Lemma 4.1], we see that

div.A.x/rjxj/ D
m � 1

jxj
C div..A.x/ � Id/rjxj/;
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and

jdiv.A.x/ � Id/rjxj/j D
ˇ̌̌̌ mX
i;jD1

@xiaij .x/
xj

jxj
C

�
ıij

jxj
�
xixj

jxj3

�
.aij .x/ � ıij /

ˇ̌̌̌
� kDAk1

mX
i;jD1

�
jxj j

jxj
C

�
1

jxj
C
jxixj j

jxj

�
jxj

�
� 3m2kDAk1:

Finally, following [33, Lemma A.5], we have

div
�
jxjA.x/rjxj

�.x/
�m

�
D
jxj div.A.x/rjxj/

�.x/
C 1 �m �

jxjhA.x/rjxj;r�.x/i

�2.x/

D
jxj

�.x/

�
div.A.x/rjxj/ �

m � 1

jxj

�
C .m � 1/

�
1

�.x/
� 1

�
�
jxjhA.x/rjxj;r�.x/i

�2.x/
:

Since
jhA.x/rjxj;r�.x/ij � .jA.x/ � Idj C 1/jr�.x/j � C

(by item (5)), we see that (7) follows from (3), (4) and (6).

Set Br WD Br .0/, u D .u1; : : : ; u`/, juj2 WD
P`
iD1 u

2
i , and

hA.x/ru;rui WD
X̀
iD1

hA.x/rui ;rui i;

f .x; u/ WD .f1.x; u1/; : : : ; f`.x; u`//:

Define

E.r/ WD
1

rm�2

Z
Br

.hA.x/ru;rui � hf .x; u/; ui/ dx

D
1

rm�2

X̀
iD1

Z
Br

.hA.x/rui ;rui i � fi .x; ui /ui / dx;

H.r/ WD
1

rm�1

Z
@Br

�.x/juj2 d� D
1

rm�1

X̀
iD1

Z
@Br

�.x/u2i d�;

and the Almgren quotient

N.r/ WD
E.r/

H.r/
whenever H.r/ ¤ 0:

The main purpose of this section is to prove the following result.

Theorem C.3 (Monotonicity formula, case A.0/ D Id). Take ! b � such that 0 2 !.
There exist C; Nr > 0 .depending only on the dimension m, the ellipticity constant � , the
domain !, and on an upper bound for kDAk1 and kuk1/ such that, whenever r 2 .0; Nr/,
we have H.r/ ¤ 0, the function N is absolutely continuous, and

N 0.r/ � �C.N.r/C 1/:
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In particular, eCr .N.r/C 1/ is a nondecreasing function and the limit

N.0C/ WD lim
r!0C

N.r/

exists and is finite. Moreover,ˇ̌̌̌
.logH.r//0 �

2

r
N.r/

ˇ̌̌̌
� C for every r 2 .0; Nr/: (C.1)

We present here a sketch of the proof of this result, which is based in ideas from
[43, 49, 57], with adaptations obtained in [32, 33, 39, 52] allowing us to deal with variable
coefficients. Our main goal in carrying out this proof and in repeating some computa-
tions is to focus on the dependence of the constants C and Nr , specially on the matrix A,
something that was not needed in previous papers.

Lemma C.4. We have

E.r/ D
1

rm�2

X̀
iD1

Z
@Br

ui hA.x/rui ; �.x/i d�:

Proof. For � < 0, we have

E�.r/ WD
1

rm�2

Z
Br

.hA.x/ru�;ru�i � hf .x; u�/; u�i/ dx

�
1

rm�2

Z
Br

a.x/
X̀
i;jD1

i¤j

�ju�;j j

C1
ju�;i j


C1 dx

D
1

rm�2

X̀
iD1

Z
@Br

u�;i hA.x/ru�;i ; �.x/i d�;

where the last identity is a consequence of testing the i -th equation in (B.2) by u�;i ,
integrating by parts, and taking the sum over i . Passing to the limit as �!�1 and using
assumption (H4) yields the claim.

Lemma C.5. Let ! b � be such that 0 2 !. There exist constants C; Nr > 0, depending
only on the dimension m, on ! and on an upper bound for kDAk1, such thatˇ̌̌̌

H 0.r/ �
2

r
E.r/

ˇ̌̌̌
� CH.r/ for every r 2 .0; Nr/:

In particular, we get (C.1).

Proof. We combine the proof of [52, Lemma 3.3] with the estimates from Lemma C.2.
By [52, (3.7)],

d

dr

Z
@Br

�.x/u2i D 2

Z
@Br

ui hA.x/rui ;rjxji C

Z
@Br

u2i div.A.x/rjxj/;
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which, together with Lemma C.4, yields

H 0.r/ D
1 �m

r
H.r/C

2

rm�1

X̀
iD1

Z
@Br

ui hA.x/rui ; �.x/i

C
1

rm�1

X̀
iD1

Z
@Br

u2i div.A.x/rjxj/

D
1 �m

r
H.r/C

2

r
E.r/C

1

rm�1

X̀
iD1

Z
@Br

u2i div.A.x/rjxj/:

The conclusion now follows from the estimateˇ̌̌̌
1 �m

r
H.r/C

1

rm�1

X̀
iD1

Z
@Br

u2i div.A.x/rjxj/
ˇ̌̌̌

�
1

rm�1

X̀
iD1

Z
@Br

�.x/u2i

�
div.A.x/rjxj/

�.x/
�
1 �m

r

�
� CH.r/;

where the constant C > 0 arises from items (3) and (6) of Lemma C.2.

Define

Z.x/ WD
A.x/x

�.x/
� x as x ! 0:

From now on we use the summation convention for repeated indices, unless stated other-
wise.

Lemma C.6 (Local Pohozaev-type identities). For every r > 0 such that Br � �, we
have the following identity .where A D .aij //

r

Z
@Br

hArui ;rui i D

Z
Br

divZhArui ;rui i C 2
Z
Br

fi .x; ui /hrui ; Zi

C 2

Z
@Br

hZ;rui ihArui ; �i C

Z
Br

hZ;rahli
@ui

@xh

@ui

@xl

� 2

Z
Br

ahl
@Zj

@xh

@ui

@xj

@ui

@xl
: (C.2)

Proof. From system (B.2) we derive an identity for the u�;i ’s, and then pass to the limit as
�! �1. For each i , from the divergence theorem and the definition of �.x/ and Z.x/,
we derive

r

Z
@Br

hAru�;i ;ru�;i i D

Z
@Br

hAru�;i ;ru�;i ihZ; �i D

Z
Br

div.hAru�;i ;ru�;i iZ/

D

Z
Br

divZhAru�;i ;ru�;i i C
Z
Br

hZ;r.hAru�;i ;ru�;i i/i:
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Following now [52, Lemma A.1] (see also [33, Lemma A.9]), we obtainZ
Br

hZ;r.hAru�;i ;ru�;i i/i D

Z
Br

hZ;rahli
@u�;i

@xh

@u�;i

@xl

C 2

Z
@Br

hZ;ru�;i ihAru�;i ; �i � 2

Z
Br

ahl
@Zj

@xh

@u�;i

@xj

@u�;i

@xl

C 2

Z
Br

hZ;rui i
�
fi .x; u�;i /C a.x/�

X̀
jD1

j¤i

ju�;j j

C1
ju�;i j


�1u�;i

�
:

The conclusion will follow once we prove thatX̀
iD1

Z
Br

hZ;ru�;i ia.x/�
X̀
jD1

j¤i

ju�;j j

C1
ju�;i j


�1u�;i ! 0 as �! �1. (C.3)

This is true due to the variational character of the coupling term; in fact, as �! �1,

X̀
iD1

Z
Br

hZ;ru�;i ia.x/�
X̀
jD1

j¤i

ju�;j j

C1
ju�;i j


�1u�;i

D

X
i<j

Z
Br

hZ;r.ju�;i j

C1
ju�;j j


C1/i
a.x/�


 C 1

D �

X
i<j

Z
Br

divZ
a.x/�


 C 1
ju�;i j


C1
ju�;j j


C1
�

X
i<j

Z
Br

hZ;ra.x/i


 C 1
�ju�;i j


C1
ju�;j j


C1

C

X
i<j

Z
@Br

hZ; �ia.x/


 C 1
�ju�;i j


C1
ju�;j j


C1
! 0

by assumption (H5) and because divZ D mC O.r/ (see Lemma C.2 (7)). This proves
(C.3) and completes the proof of Lemma C.6.

Let

zE.r/ WD
1

rm�2

Z
Br

hA.x/ru;rui D
1

rm�2

Z
Br

hA.x/rui ;rui i:

Lemma C.7. We have

zE 0.r/ D
X̀
iD1

�
2

rm�2

Z
@Br

hArui ; �i
2

�
C

2

rm�1

Z
Br

fi .x; ui /hZ;rui i

C
1

rm�1

Z
Br

hZ;rahli
@ui

@xh

@ui

@xl
C

1

rm�1

Z
Br

div.Z � x/hArui ;rui i

�
2

rm�1

Z
Br

ahl
@.Zj � xj /

@xh

@ui

@xj

@ui

@xl

�
: (C.4)
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In particular, given ! b � with 0 2 !, there exist constants C; Nr > 0 .depending only on
m, � , ! and on an upper bound for kDAk1/ such that, for every r 2 .0; Nr/,ˇ̌̌̌

zE 0.r/ �
2

rm�2

X̀
iD1

Z
@Br

hArui ; �i
2

�
�

2

rm�1

Z
Br

fi .x; ui /hZ;rui i

ˇ̌̌̌
� C zE.r/:

Proof. From Lemma C.6 and since

2

r

Z
@Br

hZ;rui ihArui ; �i D 2

Z
@Br

hArui ; �i
2

�
;

we have�Z
Br

hA.x/rui ;rui i

�0
D
m � 2

r

Z
Br

hArui ;rui i C
2

r

Z
Br

fi .x; ui /hrui ; Zi

C 2

Z
@Br

hArui ; �i
2

�
C
1

r

Z
Br

div.Z � x/hArui ;rui i

C
1

r

Z
Br

hZ;rahli
@ui

@xh

@ui

@xl
�
2

r

Z
Br

ahl
@.Zj � xj /

@xh

@ui

@xj

@ui

@xl
:

As
zE 0.r/ D

2 �m

r
zE.r/C

1

rm�2

�Z
Br

hArui ;rui i

�0
;

we conclude that identity (C.4) is true.
Now, by Lemma C.2 (3, 4, 7), we have



 1� � 1






L1.Br /

;





 1�2 � 1





L1.Br /

; kdiv.Z � x/kL1.Br / � Cr

for some constant C > 0 depending only on the dimension m, on ! and on an upper
bound for kDAk1. Then, using also (H2), we obtainˇ̌̌̌
1

rm�1

Z
Br

hZ;rahli
@ui

@xh

@ui

@xl
C

1

rm�1

Z
Br

div.Z � x/hArui ;rui i

�
2

rm�1

Z
Br

ahl
@.Zj � xj /

@xh

@ui

@xj

@ui

@xl

ˇ̌̌̌
� C

1

rm�2

Z
Br

hArui ;rui i D C zE.r/

(see [52, equations (A.3)–(A.12)] for more details). This completes the proof.

Remark C.8. Observe that identities (C.2) and (C.7), which can be seen as local
Pohozaev-type identities, are equivalent. They correspond to condition (G3) for the Lapla-
cian stated in [49] and [57] respectively.
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Proof of Theorem C.3. This result now follows from standard arguments. Here, as before,
we mainly verify the dependence of the constants. Within this proof, O.1/ will represent
a bounded function of r depending only on m, � , ! and on an upper bound for kDAk1
(but which is independent of kuk1). We have, by Lemma C.7,

E 0.r/ D zE 0.r/ �
2 �m

rm�1

Z
Br

fi .x; ui /ui �
1

rm�2

Z
@Br

fi .x; ui /ui

D
2

rm�2

X̀
iD1

Z
@Br

hArui ; �i
2

�
CO.1/E.r/CR.r/; (C.5)

where

R.r/ WD
2

rm�1

Z
Br

fi .x; ui /hZ;rui i C
O.1/

rm�1

Z
Br

fi .x; ui /ui �
1

rm�2

Z
@Br

fi .x; ui /ui :

By (H3), there exists Nd depending on an upper bound for kuk1 such that jfi .x; ui /j
� Ndui . This together with assumption (H2) and Lemma C.2 (2, 3), yields

Z.x/ D A.x/x=�.x/ D O.1/jxj as x ! 0

and

jR.r/j � O.1/ Nd
X̀
iD1

�
1

rm�2

Z
Br

jui j jrui j C
1

rm�1

Z
Br

u2i C
1

rm�2

Z
@Br

u2i

�
� O.1/ Nd

X̀
iD1

�
1

rm�2

Z
Br

hArui ;rui i C
1

rm

Z
Br

u2i C
1

rm�1

Z
@Br

u2i

�
� O.1/ Nd

�
E.r/CH.r/C

1

rm

X̀
iD1

Z
Br

u2i

�
: (C.6)

Using Poincaré’s inequality (see [57, pp. 279–280] for the details), we conclude that

1

rm

X̀
iD1

Z
Br

u2i � O.1/
Nd.E.r/CH.r// (C.7)

for every r 2 .0; Nr/ sufficiently small. Combining (C.5)–(C.7), we arrive at

E 0.r/ D
2

rm�2

X̀
iD1

Z
@Br

hArui ; �i
2

�
CO.1/ Nd.E.r/CH.r//:

Recalling from Lemmas C.4 and C.5 that

E.r/ D
1

rm�2

X̀
iD1

Z
@Br

ui hA.x/rui ; �.x/i and H 0.r/ D
2

r
E.r/CO.1/H.r/;
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we finally deduce the existence of a constant C with the required properties such that

N 0.r/ D
E 0.r/H.r/ �E.r/H 0.r/

H 2.r/

D
2

H 2.r/r2m�3

�X̀
iD1

Z
Br

hArui ; �i

�

X̀
jD1

Z
@Br

�u2j �

�X̀
iD1

Z
@Br

ui hArui ; �i

�2�
C

1

H 2.r/

�
O.1/ Nd H.r/.E.r/CH.r//CO.1/E.r/H.r/

�
� �C.N.r/C 1/;

and eCr .N.r/C 1/ is nondecreasing whenever H.r/ ¤ 0. Now observe that H solves
H 0.r/ D a.r/H.r/ with a.r/ D 2

r
N.r/C O.1/r , and by the existence and uniqueness

theorem for this ODE we find thatH > 0 for sufficiently small r > 0. Finally, the validity
of (C.1) is given by Lemma C.5.

C.2. Almgren’s monotonicity formula: the general case

We have proved a monotonicity formula under the assumption thatA.0/D Id. The general
case can be reduced to this case in the following way: let A.x0/1=2 be the square root
of the (positive definite) matrix A.x0/, that is, the unique positive definite matrix whose
square isA.x0/. We recall thatA.x0/1=2 is also symmetric, it commutes withA.x0/, it has
real entries and the map x0 7! A.x0/

1=2 is continuous (see for instance [37]). Following
[32, 52], we set

Tx0x WD x0 C A.x0/
1=2x;

Ax0.x/ WD A.x0/
�1=2A.Tx0x/A.x0/

�1=2;

�x0.x/ WD

�
Ax0

x

jxj
;
x

jxj

�
;

fx0.x; s/ WD f .Tx0x; s/;

vi;x0 WD ui .Tx0x/:

Observe that Ax0.0/ D Id. Let now

N.x0; u; r/ WD
E.x0; u; r/

H.x0; u; r/
;

where

E.x0; u; r/ WD
1

rN�2

Z
Br .0/

�
hAx0rvx0 ;rvx0i � hfx0.x; vx0/; vx0i

�
dx;

H.x0; u; r/ WD
1

rN�1

Z
@Br .0/

�x0.x/jvx0 j
2:
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These quantities can be expresed in terms of the original function u in the ellipsoidal set

Er .x0/ WD ¹x 2 Rm W jA.x0/
�1=2.x � x0/j < rº:

Namely, by a change of variables one hasZ
Br .0/

hAx0rvx0 ;rvx0i D det.A.x0/�1=2/
Z

Er .x0/

hAru;rui;Z
Br .0/

hfx0.x; vx0/; vx0i D det.A.x0/�1=2/
Z

Er .x0/

hf .x; u/; ui;Z
@Br .0/

�x0.x/jvx0.x/j
2 d�.x/ D

Z
@Er .x0/

bx0.y/ju.y/j
2 d�.y/;

where bx0.y/ WD c.x0; y/jA.x0/
�1=2.y � x0/j

�2hA.x0/
�1A.y/A.x0/

�1y; yi, c.x0; y/
being the dilation coefficient/tangential Jacobian (see for instance [42, Chapter 11]),
which is continuous and positive.

Theorem C.9 (Monotonicity formula, general case). Take ! b � and let u be as before.
Then there exist C; Nr > 0 .depending on the dimension m, the ellipticity constant � and
the domain !, but independent of x0/ such that, whenever r 2 .0; Nr/ and x0 2 !, the func-
tion vx0 satisfies identities (C.2) and (C.4),H.x0; u; r/¤ 0, the function r 7!N.x0; u; r/

is absolutely continuous, and

@

@r
N.x0; u; r/ � �C.N.x0; u; r/C 1/:

In particular, eCr .N.x0; u; r/C 1/ is nondecreasing and the limit

N.x0; u; 0
C/ WD lim

r!0C
N.x0; u; r/

exists and is finite. Moreover,ˇ̌̌̌
@

@r
logH.x0; u; r/ �

2

r
N.r/

ˇ̌̌̌
� C for every r 2 .0; Nr/: (C.8)

Proof. This is basically a direct consequence of Theorem C.3. The only thing left to
check is the dependence of the constants. But this is straightforward by observing that
kvi;x0k1 D kuik1 for every i D 1; : : : ; `, and that

kDAx0.x/k1 D kDA.Tx0x/A.x0/
1=2
k1;

which is uniformly bounded for x 2 !, because of (H2) and the continuity of the map
x0 7! A.x0/

1=2. This allows us to take C and Nr which are independent of x0.

Now that we have shown an Almgren monotonicity formula with constants indepen-
dent of x0 in any compactly contained subset of �, we have all the tools required to
conclude the proof of the main result of this appendix.
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C.3. Proof of the regularity result

End of the proof of Theorem C.1. (a) To prove that the functions ui are Lipschitz contin-
uous for any i D 1; : : : ; ` we argue as in the proof of [49, Proposition 3.4], with minimal
adaptations at this point:

� we have an elliptic divergence-type operator instead of the pure Laplacian operator,
therefore the estimates will depend on the ellipticity constant � ;

� the identity (C.2) plays the role of the identity in the last assumption of [49, Proposition
3.4], while the monotonicity formula (Theorem C.9) plays the role of the monotonicity
formula in [49, Theorem 3.3].

For related proofs of Lipschitz continuity in similar contexts, see also [43, Section 4.1] or
[56, Section 2.4], the latter being a more detailed version of the former.

(b) Regarding the regularity properties of � WD ¹x 2 � W ui .x/ D 0 8i D 1; : : : ; `º,
we argue as in the proof of [57, Theorem 1.1]:

� again, here we have an elliptic divergence-type operator instead of the Laplacian;

� formula of (C.4) plays the role of the expression for the derivative of zE.x0; U; r/ in the
statement of [57, Theorem 1.1] (see condition (G3) therein), while our Theorem C.9
plays the role of the monotonicity formula of [57, Theorem 2.2].

At a regular point x0 2 � , identity (C.4) (or, equivalently, the local Pohozaev identi-
ties (C.2)) together with the equations

� div.A.x/rui / D fi .x; s/ in the open set ¹x 2 � W ui .x/ > 0º; i D 1; : : : ; `;

given by assumption (H6), provide the free boundary condition

lim
x!x

C

0

hA.x/rui ;rui i D lim
x!x�

0

hA.x/ruj ;ruj i ¤ 0;

where x ! x˙0 are the limits taken from opposite sides of �; see [57, Section 2] for the
details.

For related proofs of regularity in similar contexts, see also [49, Theorem 1.7] or
[56, Chapter 3].

Remark C.10. We remark that Theorem C.1 can be seen as a direct consequence of
[57, Theorem 7.1]. However, since the latter result is presented without proof, we have
decided to write this appendix and give all the necessary details.
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