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Abstract. We study a Lorentzian version of the well-known Calderón problem that is concerned
with determination of lower order coefficients in a wave equation on a smooth Lorentzian manifold,
given the associated Dirichlet-to-Neumann map on its timelike boundary. In the earlier work of the
authors it was shown that zeroth order coefficients can be uniquely determined under a two-sided
spacetime curvature bound and the additional assumption that there are no conjugate points along
null or spacelike geodesics. In this paper we show that uniqueness for the zeroth order coefficient
holds for manifolds satisfying a weaker curvature bound and for spacetime perturbations of such
manifolds. This relies on a new enhanced optimal unique continuation principle for the wave equa-
tion in the exterior regions of double null cones. In particular, we solve the Lorentzian Calderón
problem near the Minkowski geometry.

Keywords: inverse problems, wave equation, Lorentzian geometry, pseudo-convexity, unique
continuation, boundary control method.

1. Introduction

1.1. Formulation of the problem

We start with the geometric setup and let .M; g/ be a Lorentzian manifold of dimension
1C n with signature .�;C; : : : ;C/. We make the standing assumption that the manifold
is of the form

M D Œ�T; T � �M0 (1)

for some T > 0 and a compact connected manifold M0 with a smooth boundary. The
metric g is assumed to be of the form

g.t; x/ D c.t; x/.�dt2 C g0.t; x//; 8.t; x/ 2M; (2)
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where c is a smooth strictly positive function on M and g0.t; �/ is a family of smooth
Riemannian metrics on M0 that depend smoothly on t 2 Œ�T; T �. We remark that if a
Lorentzian manifold with timelike boundary admits a global time function then it is iso-
metric to a manifold of the form (1)–(2); see [1, Appendix A] for the details.

Let V 2C1.M/. We consider the following wave equation on .M;g/, with the zeroth
order coefficient given by V :8̂̂<̂

:̂
.�C V /u D 0 on M int;

u D f on † D .�T; T / � @M0,

u.�T; x/ D @tu.�T; x/ D 0 on M0.

(3)

Here, the wave operator� is given in local coordinates .t D x0; : : : ; xn/ on M by

�u D �
nX

j;kD0

jdetgj�1=2
@

@xj

�
jdetgj1=2gjk

@

@xk
u

�
:

It is classical (see for example [22, Theorem 4.1]) that given any f 2H 1
0 .†/, equation (3)

admits a unique solution u in the energy space

C.�T; T IH 1.M0// \ C
1.�T; T IL2.M0//: (4)

Moreover, @�uj† 2 L2.†/ where � is the outward unit normal vector field on †.
We define the Dirichlet-to-Neumann map, ƒV W H 1

0 .†/! L2.†/; by

ƒV f D @�uj†; (5)

where u is the unique solution to (3) with boundary value f on †.
We are interested in the inverse problem of determining the coefficient V from the

knowledge of the Dirichlet-to-Neumann mapƒV , or in other words, the question of injec-
tivity of the map V 7! ƒV . Following [1], we call this the Lorentzian Calderón problem.

1.2. Obstruction to uniqueness

There is a natural obstruction to uniqueness for the coefficient V that is due to finite speed
of propagation for the wave equation. In order to discuss this obstruction, let us first fix
some notation. We say that a piecewise smooth path 
 W I ! M is timelike, causal or
spacelike if for each point on 
 , g. P
; P
/ is negative, nonpositive or positive respectively.
We call a causal path 
 future-pointing if g. P
; @t / < 0 for each point on 
 . This can
be viewed as a choice for an arrow of time in the manifold. We write p � q for points
p; q 2M if there is a future-pointing piecewise smooth causal path on M from p to q or
p D q. We write p � q if there exists a future-pointing piecewise smooth timelike path
on M from p to q. Using these relations, the causal future and past of a point p 2M are
defined via

JC.p/ D ¹q 2M W p � qº and J�.p/ D ¹q 2M W q � pº: (6)
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We also write I˙.p/ for the chronological future and past of the point p that are defined
as in (6) with � replaced by�.

Using the above notation, we note that by finite speed of propagation for the wave
equation, the map ƒV carries no information about the coefficient V on the subset

D D ¹p 2M W JC.p/ \† D ; or J�.p/ \† D ;º:

We refer the reader to [21, Section 1.1] for the details. In order to remove this obstruction,
we will assume throughout this paper that the time interval T is large in comparison to
the support of the coefficient V .

1.3. Main results

Without any further assumptions on .M; g/, the Lorentzian Calderón problem is wide
open. We will solve the Lorentzian Calderón problem for Lorentzian manifolds that sat-
isfy certain geometric assumptions, of the following four types:

� A curvature bound on the manifold.

� An assumption reminiscent of simplicity in Riemannian geometry.

� An assumption on the final time T compared to the support of V .

� A transversality assumption on null geodesics.

The first two assumptions are related to proving our optimal unique continuation result,
while the last two conditions are directly related to the Lorentzian Calderón problem.

We begin with the curvature bound. We assume that

(H1) For any point p 2M , any spacelike vector v 2 TpM , and any null vectorN 2 TpM
with g.v;N / D 0,

g.R.N; v/v;N / 6 0;

where R stands for the curvature tensor on .M; g/ written as a .1; 3/-tensor.

This curvature condition is weaker than the curvature assumption imposed in our earlier
work [1]; see Section 1.4 for a more detailed comparison. Next, we discuss the simplicity
assumption that was also used in our earlier work. Given any p 2 M , we define the
relatively open set

Ep DM n .J
�.p/ [ JC.p//; (7)

and call it the exterior of the double null cone emanating from the point p; see Figure 1.
We assume that

(H2) For any null geodesic 
 and any two points p; q on 
 , the only causal path between
p and q is along 
 . For all p 2 M , the exponential map expp is a diffeomorphism
from the spacelike vectors onto Ep .

Note, for example, that (H2) is satisfied for small perturbations of the Minkowski metric
on spacetime cylindersM D Œ�T;T ����R1Cn with� a bounded domain. On the other
hand, (H2) is violated if we take the ultrastatic Lorentzian manifold M D Œ�T; T � � S2C
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Fig. 1. The schematic for the exterior of the double null cone in the setting of Minkowski geometry
in R1C2. The point p is shown in red, † is gray and @Ep \M int is shown in blue.

with S2C denoting the surface of the upper unit hemisphere in R3 with its induced Rie-
mannian metric, assuming that T is larger than the diameter of S2C. Indeed, taking any
two antipodal points p; q on a great circle in S2C, there are two intersecting null geodesics
in M whose projection onto S2C goes from p to q.

In addition to (H1) and (H2) we need to make an assumption on the size of the final
time T . Roughly speaking, we require that T > 0 must be sufficiently large compared to
the support of V . Precisely, we assume that

(H3) If p 2 suppV , then Ep � .�T;T /�M0. Moreover, there is p0 2M int \ J�.suppV /
such that

Ep0
� .�T; T / �M0 and Ep0

\ Eq D ;;

for any q 2 suppV .

The fourth condition is needed for controllability theory. We assume that

(H4) All inextendible null geodesics in M must intersect @M transversally.

In Section 1.5 we provide some intuition behind the last two assumptions. Our main result
can now be stated as follows.

Theorem 1.1. Let .M; g/ be a Lorentzian manifold of the form (1)–(2). For j D 1; 2,
let Vj 2 C1.M/. Suppose that assumptions (H1)–(H4) are satisfied. Then the following
hold:

(i) Let ƒVj
, j D 1; 2, be defined as in (5) corresponding to the wave equation (3) on

.M; g/ with V D Vj . If ƒV1
f D ƒV2

f for all f 2 H 1
0 .†/ then V1 D V2 on M .

(ii) Let Qg be a smooth Lorentzian metric on M that lies in a sufficiently small C 2.M/-
neighborhood of g .independent of V1, V2/. Then (i) is valid with .M; g/ replaced
with .M; Qg/.



Lorentzian Calderón problem near the Minkowski geometry 3775

As an immediate corollary of the above result, we can solve the Lorentzian Calderón
problem near the Minkowski geometry. Recall that the Minkowski metric � on R1Cn is
defined via � D �.dt/2 C .dx1/2 C � � � C .dxn/2; and also that its associated curvature
tensor R vanishes identically.

Corollary 1.2. Let � � Rn be a bounded domain with a smooth strictly convex bound-
ary. For j D 1; 2; let Vj 2 C1c .R ��/. Let T > 0 be sufficiently large so that (H3) is
satisfied with respect to the Minkowski metric �. Suppose that g is a smooth metric on
M D Œ�T; T � �� that is in a sufficiently small C 2.M/-neighborhood of � .independent
of V1, V2/. LetƒVj

be defined as in (5), corresponding to the wave equation (3) on .M;g/
with V D Vj . If ƒV1

f D ƒV2
f for all f 2 H 1

0 .†/, then V1 D V2 on M .

The key tool in proving Theorem 1.1 is a new optimal unique continuation property
for the wave equation in exterior regions of double null cones.

Theorem 1.3. Let .M; g/ be a Lorentzian manifold of the form (1)–(2) and assume that
(H1)–(H2) are satisfied. Let X be a first order linear differential operator with smooth
coefficients on M . Then the following unique continuation results hold:

(i) Let p 2 M int be such that Ep � .�T; T / �M0, where Ep is defined by (7). Let u 2
H�s.M/ for some s > 0 be a distributional solution to

�uCXu D 0 on Ep;

where � is the wave operator associated to .M; g/. Suppose that the traces u and
@�u both vanish on the set † \ Ep . Then u D 0 on Ep .

(ii) Let Qg be a smooth Lorentzian metric on M that lies in a sufficiently small C 2.M/-
neighborhood of g .independent of X/. Then (i) is valid with .M; g/ replaced with
.M; Qg/.

1.4. Previous literature and comparison with our earlier work

Before reviewing the literature on the Lorentzian Calderón problem, let us make a com-
parison with related results in the elliptic setting. Recall that the analogous injectivity
question for V 7! ƒV with ƒV denoting the Dirichlet-to-Neumann map associated to
a Riemannian manifold .M; g/ and with � replaced by the Laplace–Beltrami opera-
tor on .M; g/ is the well known Calderón problem. In this elliptic setting, the seminal
work [35] proves uniqueness for the coefficient V on Euclidean domains of dimension
larger than 2. Uniqueness in the two-dimensional case was proved in [25] for certain
classes of smooth V and later in [10] for general smooth V . We also mention that unique-
ness is known when the manifold .M; g/ and V are both real-analytic [23]. Outside of
these categories, uniqueness is only known for certain manifolds .M;g/ with a Euclidean
direction under additional assumptions [12, 13]. Here, existence of a Euclidean direction
essentially means that the components of the Riemannian metric must be independent of
one of the coordinates on the manifold. For a review of the literature on the (Riemannian)
Calderón problem we refer the reader to the survey article [38].
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The results that are related to recovery of lower order coefficients in wave equations
can in general be divided into two categories: of time-independent and time-dependent
coefficients. Starting with the seminal work [7], there is a rich literature related to the
recovery of time-independent coefficients based on the Boundary Control (BC) method.
The BC method fundamentally relies on the optimal unique continuation theorem of
Tataru [36] (see also the important precursor by Robbiano [28], and related later results
by Robbiano and Zuilly [29] and Tataru [37]). This result says that, in the case of the wave
equation with analytic in time coefficients, the unique continuation principle holds across
any noncharacteristic hypersurface. Nonetheless, the unique continuation principle fails
when the coefficients in the equation are only smooth [4]. In line with this, the works by
Eskin [14, 15] solve the inverse problem of recovering time-analytic coefficients for the
wave equation. We refer the reader to [8, 20] for a review of the results that are based on
the BC method.

Outside the category of wave equations with time-analytic coefficients, results are
scarce. We mention the works [27, 30, 32] that solve the problem of recovering time-
dependent lower order coefficients in the Minkowski spacetime. The approach of Ste-
fanov [32] uses the principle of propagation of singularities for the wave equation to
reduce the inverse problem to the study of the injectivity of the light ray transform of the
unkown coefficient. The inversion of this transform follows from Fourier analysis in the
Minkowski geometry. The reduction step from injectivity of the map V 7! ƒV to injec-
tivity of the light ray transform has been generalized to a broad geometric setting [34] but
there are few results about injectivity of the light ray transform. Indeed, this transform is
known to be injective only in the case of ultrastatic metrics [16] (see also the related ear-
lier work [21]), stationary metrics [17], and in the case of real-analytic spacetimes [33],
under certain additional convexity conditions.

In the recent work by the present authors [1], an optimal unique continuation theorem
was proved for the wave equation in Lorentzian geometries that satisfy a certain two-sided
curvature bound first introduced by Andersson and Howard [5]. This curvature bound
requires that there exists some K 2 R such that the following inequality is satisfied at
each point p 2M and for any pair of vectors X; Y 2 TpM :

g.R.X; Y /Y;X/ 6 K
�
g.X;X/g.Y; Y / � g.X; Y /2

�
; (8)

where R stands for the curvature tensor on .M; g/.
In [1], we proved that given the curvature bound (8) and under similar assumptions

to (H1)–(H2), a unique continuation theorem analogous to Theorem 1.3 is satisfied in the
exterior region of double null cones, albeit without the presence of first order terms in
the wave operator. As a consequence of this unique continuation principle, together with
some controllability theory for the wave equation in rough Sobolev spaces, we were able
to show unique determination of zeroth order coefficients in certain geometries where no
real-analytic features are present. The result [1] covers perturbations of ultrastatic mani-
folds with strictly negative spatial sectional curvature. However, the Minkowski spacetime
is on the boundary of the spacetimes allowed in [1], and its perturbations are not covered
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by the theory. Let us also remark that in general the curvature bound (8) is unstable under
perturbations.

Our proof of the unique continuation theorem in [1] relied on the notion of space-
time convex functions that can be constructed under two-sided curvature bounds [3, 5],
together with Carleman estimates with degenerate weights. Here, by a spacetime convex
function �, we mean that an inequality of the following form is satisfied at each point
p 2M and each X 2 TpM :

Hess�.X;X/ > �g.X;X/ (9)

for some � > 0. In relation to the latter idea, we mention the earlier works [2, 31] that
prove a similar unique continuation result in the Minkowski geometry.

In the present work, we have identified a weaker curvature bound (H1) that replaces
the curvature bound (8) of the previous work. Indeed, note that (H1) corresponds to (8)
restricted to the case that X is a null vector and Y is a spacelike vector that is normal
to X . Thus, (H1) is strictly weaker than (8). This leads to our enhanced unique continu-
ation result (cf. [1, Theorem 2.1]). The weakening of the curvature bound is essentially
related to a new comparison result for a Riccati equation (see Proposition 2.3). As a result
of assuming only this weaker curvature bound we can solve the Lorentzian Calderón
problem for manifolds satisfying (H1)–(H4) as well as for sufficiently small perturbations
of such manifolds. In particular, in contrast to [1] we also solve the Lorentzian Calderón
problem for spacetime perturbations of the Minkowski geometry.

Let us also mention that the proof of the unique continuation principle in this paper is
fundamentally different from the previous work. For each point p on M , we construct a
function with strictly pseudo-convex level sets that give a foliation of the exterior of the
double null cone Ep . This function can then be used as a Carleman weight to deduce our
unique continuation principle. As the function has strictly pseudo-convex level sets, we
are also able to allow first order terms in the wave operator. We remark that the level sets
of the spacetime convex functions used in [1] are pseudo-convex only in a nonstrict sense.

Unique continuation near the Minkowski geometry was proven independently by
Vaibhav Kumar Jena and Arick Shao. Their preprint [19] was posted in arXiv around
the same time (17 December 2021) as ours (3 December 2021), and the proofs in these
two works are very different. They assume that the curvature of the manifold is small in
norm, while we assume the one-sided bound (H1). For example, an ultrastatic manifold
whose spatial factor is a Riemannian manifold of arbitrarily large negative curvature is
covered by our theory (see [1] for details), but not by [19]. On the other hand, their result
has the advantage of being more quantitative in the sense that it comes with a Carleman
estimate.

1.5. Sketch of the proof of Theorem 1.1 via our unique continuation principle

As mentioned earlier, our enhanced unique continuation principle (Theorem 1.3) is the
key tool in solving the Lorentzian Calderón problem under the weaker curvature bound
compared to our earlier work. Indeed, as stated in [1, Section 1.2] any improvements
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(in terms of geometric assumptions) on unique continuation principles stated on Ep will
automatically lead to improvements on results on the Lorentzian Calderón problem. This
is due to the fact that our solution of the Lorentzian Calderón problem in [1] only relies
on the unique continuation principle in exterior regions of double null cones together with
an exact controllability argument which we will very briefly recall here.

Given a point p D .t0; x0/ 2 suppV , we uniquely recover the value of V.p/ from the
Dirichlet-to-Neumann mapƒV by the following procedure. We begin with a point p0 that
is in the sufficiently distant past of p as given in (H3). The significance of p0 is related
to existence of a suitable exact controllability theory on time slices that are in the causal
future of p0. Indeed, writing p0 D .t1; x1/ and as shown in [1, Proposition 6.1], given
any s > 0 and any .w0; w1/ 2 H�s.M0/ �H

�s�1.M0/ we can find f 2 H�s.†/ with
compact support in .�T; t1/ � @M0 such that the solution to (3) with boundary data f
satisfies .ujtDt0 ; @tujtDt0/ D .w0; w1/: This allows us to construct Dirichlet boundary
values f in (3) that are supported on a neighborhood of Ep0

\ † producing focused
solutions at the fixed time slice t D t0. Here, by focused solutions we mean solutions u
to (3) that satisfy

ujtDt0 D 0 and @tujtDt0 D !ıx0
; (10)

where! is a constant and ıx0
is the delta distribution supported at xD x0. Moreover, these

focused solutions can always be sensed by measuring the Cauchy data set of solutions
to (3) on Ep \†. In order to explain this in more detail, assume that f 2 H�.nC1/=2.†/
is chosen such that the solution to (3) with boundary value f satisfies (10). In view of the
finite speed of propagation for the wave equation, it follows that

ujEp\† D @�ujEp\† D 0: (11)

On the other hand, given any solution u to (3) that satisfies (11) with f 2H�.nC1/=2.†/,
we may apply our unique continuation principle to deduce that (10) must also be satisfied
for some constant !.

Finally, the knowledge of the focused solutions at p gives us the knowledge of V.p/
up to a multiplicative constant that is independent of f . This constant may then be shown
to be identically 1 via some additional technical arguments.

We refer the reader to [1, Sections 6–7] for the detailed proof of how unique contin-
uation results in Ep can be used to solve the Lorentzian Calderón problem. The reader
should just swap [1, Theorem 2.1] with our enhanced Theorem 1.3.

1.6. Organization of the paper

In Section 2, we derive a comparison result for a Riccati equation on Rn. This abstract
Riccati equation is later utilized in the construction of a function on Ep with strictly
pseudo-convex level sets. In Section 3, we show that conditions (H1)–(H2) are stable
after a conformal scaling of the metric. Together with transformation rules for the wave
operator under conformal scaling of the metric, we arrive at an equivalent formulation
of the unique continuation principle that will be easier to prove; see Theorem 3.1 for the
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precise formulation. The rest of the paper is devoted to the proof of the latter theorem.
In Section 4, we show that under the hypotheses of Theorem 3.1, the Lorentzian distance
function to the tip of the null cones gives a foliation of the set Ep by strictly pseudo-
convex hypersurfaces; see Proposition 4.1 for the precise formulation. We show that this
foliation can be used together with Hörmander’s local unique continuation result across
strictly pseudo-convex hypersurfaces to conclude the proof of Theorem 3.1.

2. Comparison result for a Riccati equation on Rn

Let us consider the Minkowski inner product on Rn with n > 2, defined by

hv;wi D �v0w0 C

n�1X
jD1

vjwj :

A vector v 2 Rn is null if hv; vi D 0, and a matrix L 2 Rn�n is symmetric (with respect
to the Minkowski metric) if

hLv;wi D hv;Lwi for all v;w 2 Rn.

Definition 2.1. A symmetric matrix L 2 Rn�n is null negative-definite, written LG 0, if

hLv; vi < 0 for all nonzero null vectors v 2 Rn;

We also say that L is null negative semi-definite, written LG 0, if

hLv; vi 6 0 for all null vectors v 2 Rn:

Lemma 2.2. Let L 2 Rn�n be a symmetric matrix that is null negative semi-definite
but not null negative-definite. Then there exists a nonzero null vector x 2 Rn such that
Lx D �x for some � 2 R.

Proof. Set e0 D .1; 0; : : : ; 0/. Since L is null negative semi-definite but not null negative-
definite, there must exist a null vector x D e0 C Qx with he0; Qxi D 0 and h Qx; Qxi D 1 such
that

hLx; xi D 0:

When n D 2, there are c0; c1 2 R such that

Lx D c0e0 C c1 Qx: (12)

The claim follows since c0 D c1 due to

0 D hLx; xi D �c0 C c1:

When n > 3, we proceed by letting y be any vector that satisfies

hy; yi D 1 and hy; e0i D hy; Qxi D 0; (13)
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and subsequently define, for any " 2 .�1; 1/,

z" D e0 C
p

1 � "2 Qx C "y:

Observe that z" is null and also that

z" D x C "y CO."
2/:

As hLx; xi D 0, we have

0 > hLz"; z"i D 2"hLx; yi CO."2/:

Since the latter expression must be valid for all y that satisfy (13), we deduce that (12)
holds for some c0; c1 2 R, and conclude as in the case n D 2.

Proposition 2.3. Let T > 0. Suppose that B 2 C.Œ0; T �IRn�n/ satisfies

B.t/G 0 for all t 2 Œ0; T �:

Let L be the unique symmetric matrix that solves the Riccati equation

tL0.t/C L2.t/ � L.t/C t2B.t/ D 0 for all t 2 .0; T �; (14)

with L.0/ D id, where id stands for the identity matrix. Then

�L.t/G 0 for all t 2 .0; T �:

Proof. By differentiating (14) we obtain

L0 C tL00 C L0LC LL0 � L0 C .t2B/0 D 0:

Plugging t D 0 in the latter expression, we deduce that

L0.0/ D 0: (15)

Differentiating the equation again and plugging t D 0, we also obtain

L00.0/ D �2
3
B.0/: (16)

Together with the fact that B.0/G 0, it follows that

�L.t/G 0 for all t 2 .0; ı/, (17)

for some small ı > 0. To show that �LG 0 on the entire interval .0; T �, assume that this
is not the case. Then, by (17), there is t0 2 .0; T / such that �L.t/ is null negative-definite
for all t 2 .0; t0/, and �L.t0/ is null negative semi-definite but not null negative-definite.
Thus, in view of Lemma 2.2,

L.t0/x0 D �x0 (18)
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for some nonzero null vector x0 and some � 2 R. Next, let us define

f .t/ D �hL.t/x0; x0i:

Then applying (14) we may write

t0f
0.t0/ D h�t0L

0.t0/x0; x0i

D hL.t0/x0; L.t0/x0i � hL.t0/x0; x0i C t
2
0 hB.t0/x0; x0i: (19)

Note that since x0 is null and (18) holds, we have

hL.t0/x0; L.t0/x0i D 0 and hL.t0/x0; x0i D 0:

Thus, we may simplify (19) to obtain

t0f
0.t0/ D t

2
0 hB.t0/x0; x0i < 0;

where we have also used the fact that B G 0. On the other hand, f < 0 on .0; t0/, since
�LG 0 on this interval, and also f .t0/ D 0. Hence t0f 0.t0/ > 0, a contradiction.

3. Stability of (H1)–(H2) under conformal scaling and unique continuation

Let us begin by defining a stronger variant of (H1) with a strict inequality:

.H1/0 For any point p 2M , any spacelike vector v 2 TpM , and any nonzero null vector
N 2 TpM with g.v;N / D 0, we have

g.R.N; v/v;N / < 0:

The aim of this section is to show that in order to prove our main unique continuation
theorem, Theorem 1.3, it suffices to prove the following alternative theorem:

Theorem 3.1. Let .M; g/ be a Lorentzian manifold of the form (1)–(2) and assume that
.H1/0–(H2) are satisfied. Let X be a first order linear differential operator with smooth
coefficients on M . Let p 2 M int be such that Ep � .�T; T / �M0, where Ep is defined
by (7). Let u 2 H�s.M/ for some s > 0 be a distributional solution to

�uCXu D 0 on Ep;

where � is the wave operator associated to .M; g/. Suppose that u and @�u both vanish
on † \ Ep . Then u D 0 on Ep .

Observe that, at first sight, Theorem 3.1 is weaker than Theorem 1.3 as we are impos-
ing the stronger geometric assumption .H1/0 here. However, as we will show in the
remainder of this section, due to a stability under conformal scaling for (H1)–(H2), The-
orem 1.3 follows from Theorem 3.1. To show this, we start with two geometric lemmas.
Our first lemma roughly states that conditions .H1/0–(H2) can always be attained from
(H1)–(H2) via a conformal scaling of the metric that is close to the constant function.
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First, let us fix some notation. We write R.�; �/ � for the curvature tensor on .M; g/ as
a .1; 3/-tensor that is defined by

R.X; Y /Z D rXrYZ � rYrXZ � rŒX;Y �Z

for any smooth vector fields X; Y; Z. Here, r is the covariant derivative. We also write
R.�; �; �; �/ for the curvature tensor on .M; g/ as a .0; 4/-tensor with components given by
Rijkl with i; j; k; l D 0; : : : ; n. Note that given any p 2M and X; Y 2 TpM , we have

g.R.X; Y /Y;X/ D R.X; Y;X; Y / D

nX
i;j;k;lD0

RijklX
iY jXkY l : (20)

Given any two symmetric .0; 2/-tensors A and B , we recall that their Kulkarni–Nomizu
product A 
̂ B is the .0; 4/-tensor given by the expression

.A 
̂ B/.X1; X2; X3; X4/ D A.X1; X3/ B.X2; X4/C A.X2; X4/ B.X1; X3/

� A.X1; X4/ B.X2; X3/ � A.X2; X3/ B.X1; X4/: (21)

Given a smooth function � on M , we define the Hessian of �, denoted by Hess �,
as a bilinear form on the tangent space, defined for all p 2 M and X; Y 2 TpM via the
expression

Hess�.X; Y / D g.rXr�; Y /: (22)

We recall here that r� is the gradient of the function � defined in local coordinates
.t D x0; x1; : : : ; xn/ via

r� D

nX
j;kD0

gjk @j� @k :

Finally, and for the sake of brevity, we write t also for the function that maps any point
.t; x/ in M to its time coordinate t . For instance,

rt D �c�1@t ; (23)

where c is as given by (2). We record here that given any � 2 C1.M/, by compactness
there is a constant C > 0 such that for any p 2M and X 2 TpM ,

jHess�.X;X/j 6 C jX j2; (24)

where jX j is the length of X with respect to an auxiliary Riemannian metric.
We will consider the following quantitative version of .H1/0.

.H1/00 There is � > 0 such that for any point p 2M , any spacelike vector v 2 TpM , and
any null vector N 2 TpM with g.v;N / D 0,

R.N; v;N; v/ � ��jN j2g.v; v/:
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Lemma 3.2. Let .M; g/ be a Lorentzian manifold of the form (1)–(2) that satisfies
(H1)–(H2). Then in any neighborhood of the zero function there exists f 2 C1.M/ such
that the Lorentzian manifold .M; e2f g/ satisfies .H1/00–(H2).

Proof. There is a constant C>0 such that given any p 2M and any null vectorN 2TpM ,

jN j 6 C jg.N; @t /j: (25)

Indeed, to prove this, let us define the Riemannian metric

h D .dt/2 C g0.t; x/

onM D Œ�T;T ��M0 where g0 is as in (2). Let pD .t0; x0/ 2M and ¹ekºnkD0 � Tx0
M0

be an orthonormal basis with respect to g0.p/. Writing N D N 0@t C
Pn
kD1N

kek , and
recalling that N is a null vector, it follows that

.N 0/2 D

nX
kD1

.N k/2 and g.N; @t / D �c.p/N
0;

where c is as in (2). Therefore,

h.N;N / D .N 0/2 C

nX
kD1

.N k/2 D 2.N 0/2 D
2

c.p/2
g.N; @t /

2:

The desired estimate (25) now follows immediately as M is compact and as all norms on
finite-dimensional vector spaces are equivalent.

Recalling (24), it follows from (25) that there exists some constant C0 > 0 only
depending on .M; g/ such that given any p 2M and any null vector N 2 TpM ,

jHess t .N;N /j 6 C0 g.N; @t /2:

Fixing any � > 2C0 and defining �.t; x/ D e�t for all .t; x/ 2M , it follows that

Hess �.N;N / D e�t .�Hess t .N;N /C �2 g.N; @t /2/

> �C0g.N; @t /2 > C1 g.N;r�/2; (26)

where C1 > 0 depends on C0 and �. Next, let us define

Qg D e2f g with f D ı �; (27)

where ı 2 .0; C1/ is sufficiently small so that .M; Qg/ satisfies (H2). This is always pos-
sible as (H2) is a stable condition with respect to small perturbations of the metric: see
[1, Section 3] for the proof.

We claim that .M; Qg/ also satisfies .H1/00 when ı > 0 is small enough. It is well known
(see e.g. [9, Theorem 1.159]) that under a conformal scaling of the metric, the curvature
tensor, when written as a .0; 4/-tensor, transforms according to the formula

zR D e2fR � e2f g 
̂
�
Hessf � df ˝ df C 1

2
g.rf;rf / g

�
: (28)
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Here zR is the curvature tensor on .M; Qg/. Let p 2M , v 2 TpM and nonzero N 2 TpM
satisfy

g.v; v/ > 0; g.N;N / D 0; and g.N; v/ D 0:

Using equation (28) together with R.N; v;N; v/ 6 0, we have

zR.N; v;N; v/ � � Qg.v; v/.Hessf .N;N / � g.N;rf /2/:

Moreover, for small enough ı > 0, the bounds (26) and (25) imply

�Hessf .N;N /C g.N;rf /2 D �ıHess �.N;N /C ı2g.N;r�/2 � ��jN j2

for a constant � > 0.

Our second geometric lemma roughly states that conditions .H1/00–(H2) are stable
under small perturbations of the metric.

Lemma 3.3. Let .M; g/ be a Lorentzian manifold of the form (1)–(2) that satisfies
.H1/00–(H2). Given any smooth Lorentzian metric Qg in a sufficiently small C 2.M/-neigh-
borhood of g, the manifold .M; Qg/ also satisfies .H1/00–(H2) with .M; g/ replaced by
.M; Qg/.

Proof. The fact that (H2) remains valid on manifolds .M; Qg/, with Qg a small perturbation
of g, follows from [1, Section 3]. We write " > 0 for the distance in C 2.M/ of the metric
Qg from g and write zR for the curvature tensor on .M; Qg/.

Our goal is to show that for " > 0 sufficiently small, any p 2 M , and any vectors
zN 2 TpM and Qv 2 TpM satisfying

j zN j D 1; Qg. zN; zN/ D 0; Qg. Qv; Qv/ D 1; and Qg. Qv; zN/ D 0;

we have
zR. zN; Qv; zN; Qv/ � ��=2; (29)

where � > 0 is as in .H1/00 for .M; g/. In view of the symmetries of the curvature tensor,
it is enough to show this with Qv replaced by Qw 2 RN C Qv satisfying j Qwj � C , where the
constant C > 0 is given by Lemma 3.4 below. Observe that

Qg. Qw; Qw/ D 1; Qg. Qw; zN/ D 0:

Let us show that there is a 2R of size O."/ such thatN D a@t C zN satisfies g.N;N /
D 0. Solving this equation for a gives

a D
g.@t ; zN/˙

q
g.@t ; zN/2 � 4g.@t ; zN/g. zN; zN/

2g.@t ; @t /
:

We choose the sign that is opposite to the sign of g.@t ; zN/, and a D O."/ follows then
from

g. zN; zN/ D Qg. zN; zN/CO."/ D O."/:



Lorentzian Calderón problem near the Minkowski geometry 3785

A similar argument shows that there is b 2R of size O."/ such that v D b@t C Qw satisfies
g.v;N / D 0. Moreover, for small enough " > 0,

g.v; v/ D Qg. Qw; Qw/CO."/ D 1CO."/ > 0:

Now .H1/00 for .M; g/ gives, for small enough " > 0,

zR. zN; Qv; zN; Qv/ D R.N; v;N; v/CO."/ 6 �� CO."/ 6 ��=2:

Lemma 3.4. Let .M; g/ be a Lorentzian manifold of the form (1)–(2). Then for a suffi-
ciently small C 1.M/-neighborhoodB of g, there is C > 0 such that for all p 2K, Qg 2B ,
and all N; v 2 TpM , satisfying

Qg.N;N / D 0; Qg.v; v/ D 1; Qg.v;N / D 0; (30)

and N ¤ 0, there are a 2 R and w 2 TpM satisfying

v D aN C w; jwj � C: (31)

Proof. The vector field @t is timelike with respect to any Qg 2 B for sufficiently small B .
Thus the restriction of Qg 2 B to the subspace

¹w 2 TpM j Qg.w; @t / D 0º (32)

is positive definite for all p 2M . Hence there is ı > 0 such that

ı � Qg.w;w/ D
Qg.w;w/

jwj2
(33)

in the compact set

¹. Qg;w/ j Qg 2 B; w 2 TpM; p 2M; Qg.w; @t / D 0; jwj D 1º: (34)

Here B is the C.M/-closure of B . Due to homogeneity, for all Qg 2 B and all w 2 TpM ,
p 2M , satisfying Qg.w; @t / D 0, we have

ıjwj2 � Qg.w;w/: (35)

Let p 2 M and Qg 2 B , and choose coordinates such that Qg is the Minkowski metric
at p, @t D .1; 0/ 2 R1Cn, N D c.1; 1; 0/ 2 R1C1C.n�1/ for some c ¤ 0. Write v D
.a0; a00; b/ 2 R1C1C.n�1/. Then

0 D Qg.v;N / D c.�a0 C a00/: (36)

Thus v D aN C w where a D a0=c and w D .0; 0; b/. Moreover,

Qg.w;w/ D 1; Qg.w; @t / D 0; (37)

and the claim follows from (35).
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Combining Lemmas 3.2 and 3.3 we obtain the following corollary.

Corollary 3.5. Let .M; g/ be a Lorentzian manifold of the form (1)–(2) that satisfies
(H1)–(H2). There exists f 2 C1.M/ in a neighborhood of the zero function such that
given any smooth Lorentzian metric Qg on M that lies in a sufficiently small C 2.M/-
neighborhood of g, the manifold .M; e2f Qg/ satisfies .H1/0–(H2).

We are now ready to prove that Theorem 3.1 implies Theorem 1.3.

Proof of Theorem 1.3 via Theorem 3.1. We assume that .M; g/ is as in Theorem 1.3. Let
Qg be in a sufficiently small neighborhood of g in C 2.M/, so that the conclusion of Corol-
lary 3.5 holds, that is, there exists f 2 C1.M/ close to zero such that the manifold
.M; e2f Qg/ satisfies .H1/0–(H2). Finally, we assume that the point p, the differential oper-
ator X and u 2 H�s.M/, s > 0, are as in Theorem 1.3. We aim to show that u vanishes
identically on the set Ep defined by (7) with respect to .M; Qg/.

We write�e2f Qg and� Qg for the wave operator on .M; e2f Qg/ and .M; Qg/ respectively.
Then (see e.g. [24])

�e2f Qgv D e
�

nC3
2 f .� Qg C qf /.e

n�1
2 f v/ 8v 2 C1.M/; (38)

where
qf D �e

�n�1
2 f� Qg e

n�1
2 f :

Recall that
.� Qg CX/u D 0 on Ep:

We note that since null geodesics are conformally invariant, the exterior region of the
double null cone Ep is the same set for both manifolds .M; Qg/ and .M; e2f Qg/. In view
of (38), there exists a smooth first order differential operator zX depending on .M; Qg/, X
and f , such that

.�e2f Qg C
zX/.e�

n�1
2 f u/ D 0 on Ep:

As the manifold .M; e2f Qg/ satisfies .H1/0–(H2), we may apply Theorem 3.1 (with g
replaced by e2f Qg, X replaced with zX , and u replaced with e�.n�1/=2f u) to conclude
that the distribution u must vanish identically on Ep .

4. Proof of Theorem 3.1 via a strictly pseudo-convex foliation

The aim of this section is to prove the unique continuation principle stated in Theorem 3.1.
In order to state our strategy, we first recall that a smooth function � on a Lorentzian
manifold .M; g/ is said to have a strictly pseudo-convex level set at a point p 2 ��1.0/ if

Hess�.N;N / > 0 (39)

for all nonzero null vectors N 2 TpM that satisfy g.N;r�/ D 0.
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Strict pseudo-convexity was used by Hörmander (see e.g. [18, Theorem 28.4.3]) to
prove unique continuation for solutions to various pseudo-differential operators. His result
applies in particular to the wave equation

.�CX/u D 0; (40)

locally near a point p 2 ��1.0/ across the level set ��1.0/. More precisely, under the
strict pseudo-convexity property above, if a solution u to the latter equation vanishes on
the region ¹� > 0º in a small neighborhood of p, then if must also vanish in a small
neighborhood of p in ¹� < 0º. The strict pseudo-convexity condition can in this case be
interpreted as saying that all the null geodesics that are tangent to ��1.0/ at p must lie in
¹� > 0º away from p.

In order to prove Theorem 3.1 we construct a global foliation of the exterior of the
double null cone Ep by strictly pseudo-convex hypersurfaces. This foliation is going to be
given by the level sets of the Lorentzian distance function, denoted by rp below. Precisely,
given any point q 2 Ep , in view of (H2), we consider the unique unit speed spacelike
geodesic, 
 W Œ0; Lq�!M , that connects p D 
.0/ to q D 
.Lq/. Here, by geodesic we
mean that r P
 P
 D 0 and by unit speed we mean that g. P
; P
/ D 1. We define rp to be the
length of 
 , that is,

rp.q/ D Lq : (41)

We note that rp is a smooth positive function on the open set Ep (recall from (7) that Ep
does not contain p, nor the null cones emanating from p).

It will be convenient for us to give a coordinate expression for the function
rp 2 C

1.Ep/. To this end, given any p 2M int we let e0; : : : ; en be an orthonormal basis
of TpM in the sense of [26, Lemma 24, p. 50], that is, for distinct j; k D 0; : : : ; n,

g.ej ; ek/ D 0; g.ej ; ej / D "j ;

where "0 D �1, and "j D 1 for j D 1; : : : ; n. Then, in the normal coordinate system

y D .y0; : : : ; yn/ 7! expp.y
j ej /; (42)

we have
rp.y/ D

�
�.y0/2 C .y1/2 C � � � C .yn/2

�1=2
: (43)

Indeed, consider the local hyperquadric

Q D ¹! 2 TpM W g.!; !/ D 1º:

In the region Ep , we consider the normal polar coordinates y D r! with r > 0 and ! 2Q,
where y is as in (42). Let q 2 Ep and write q D s! in polar coordinates. Note that in view
of (H2) there is a unique unit speed geodesic segment 
q connecting p to q. It is well
known (see e.g. [26, p. 71]) that the mapping r 7! r! with r 2 Œ0; s� is the representation
of 
q in polar coordinates. Therefore, rp.q/ defined by (41) is equal to s which is also
equal to the right hand side of (43).
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For future reference, we also prove that rp is a distance function, that is,

g.rrp;rrp/ D 1: (44)

Gauss’s lemma (see e.g. [26, Lemma 1, p. 127]) implies that in polar coordinates, the
metric tensor has the orthogonal splitting

g D

�
h.r!/ 0

0 1

�
;

where the n � n matrix h corresponds to the !-coordinates while the last entry corre-
sponds to the r-coordinate. The equality (44) follows immediately since rp.y/ D r for
y D r!.

In the remainder of this section, we prove the following proposition regarding pseudo-
convexity of the level sets of rp , which will be key in proving Theorem 3.1.

Proposition 4.1. Let .M; g/ be a Lorentzian manifold of the form (1)–(2) that satisfies
.H1/0–(H2). Let p 2 M int and let rp be the Lorentzian distance function to the point p
defined above. Given any point q 2 Ep , we have

Hess rp.N;N / > 0 (45)

for any nonzero N 2 TqM with g.N;rrp/ D g.N;N / D 0:

Before proving this proposition, let us show how it can be utilized together with the
local unique continuation result of Hörmander to conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. Let p and u be as in the hypotheses of Theorem 3.1. First, we
apply [1, Lemma 5.2] to conclude that u is smooth on Ep , that is, u 2 C1.Ep/. Next, we
extend the manifold M0 to a slightly larger manifold zM0. We write zM D Œ�T; T � � zM0

and extend the metric g smoothly to zM . We write zEp for the exterior of the double null
cone on zM . We extend u by zero on zEp and write Qu for the extension. As the traces u
and @�u both vanish on the timelike hypersurface Ep \†, we deduce that� QuD 0 on zEp ,
where we recall that Qu D 0 on zEp nM . We aim to prove that

Qu D 0 on zEp: (46)

Let Qrp be as defined by (43) but corresponding to the slightly larger set zEp . By Proposi-
tion 4.1 (applied on the larger manifold zM ) the level sets of Qrp are strictly pseudo-convex
and give a foliation of zEp ,

zEp D
[

s2.0;a�

Qr�1p .s/;

for some a > 0. Let

� D inf ¹� 2 .0; a� W Qu.y/ D 0 for all y 2 zEp with Qrp.y/ 2 .�; a�º: (47)

In order to prove (46), it suffices to show that � D 0. Since Qu D 0 on zEp nM , � must
be strictly less than a. To get a contradiction, we suppose that � 2 .0; a/. By smoothness
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of Qu on zEp we have

Qu.y/ D 0 for all y 2 zEp with Qrp.y/ 2 Œ�; a�:

Let S D Qr�1p .�/. Proposition 4.1 implies that S is a smooth strictly pseudo-convex hyper-
surface. Applying Hörmander’s local unique continuation principle [18, Theorem 28.3.4],
it follows that given any point q 2 S (away from the boundary zEp \ @ zM ), we have

Qu D 0 in a neighborhood of q:

Finally, combining this with the facts that Qu is continuous on zEp , that it vanishes on a
neighborhood of the boundary zEp \ @ zM and that S is compact, we conclude that there
exists " > 0 such that

Qu.y/ D 0 for all y 2 zEp with Qrp.y/ 2 .� � "; a�;

contradicting the minimality of � in (47).

In the remainder of this paper, we aim to prove Proposition 4.1.

4.1. Radial curvature equation

The directional curvature operator is defined by

Rvw D R.w; v/v; v; w 2 TxM; x 2M;

where R is the .1; 3/ curvature tensor. We also recall that a function r WM ! R is called
a distance function if g.dr; dr/ D 1. Writing @r for the gradient of r it is straightforward
to see that

r@r
@r D 0:

Lemma 4.2. Let r W M ! R be a distance function, and consider the shape operator S
corresponding to r2=2, defined by

1
2

Hess r2.v; w/ D g.Sv;w/;

for all v; w 2 TxM with g.v; @r / D g.w; @r / D 0. In other words, SX D rXY for a
vector field X with g.X; Y / D 0, where Y is the gradient of r2=2. Then S satisfies the
radial curvature equation

rY S � S C S
2
CRY D 0 (48)

on Y ? D ¹X 2 TxM W g.X; Y / D 0º.

Proof. First, let us show that Y ? is closed with respect to S and RY in the sense that
SY ? � Y ? and RY Y ? � Y ?. Writing @r for the gradient of r , we observe that Y D
1
2
rr2 D r@r . Hence, for any X 2 Y ?,

g.SX; Y / D g.rXY; Y / D
1
2
X.g.Y; Y // D 1

2
X.r2/ D rX.r/ D g.X; Y / D 0;
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thus proving that SX 2 Y ?. Note also that

g.RYX; Y / D g.R.X; Y /Y; Y / D 0;

by anti-symmetry of R in its last two indices. Thus, RYX 2 Y ? as well. Next, we write

.rY S/X C S
2X D rY .SX/ � SrYX C S

2X

D rYrXY � rrYXY CrrXY Y D rYrXY CrŒX;Y �Y:

On the other hand,

RYX D R.X; Y /Y D rXrY Y � rYrXY � rŒX;Y �Y:

Moreover,
rY Y D rr@r

.r@r / D r@r C r
2
r@r

@r D Y:

Thus rXrY Y D SX and

.rY S/X C S
2X D �RYX C SX:

4.2. Comparison result on .M; g/

Proof of Proposition 4.1. We will prove inequality (45) at an arbitrary point q 2 Ep , by
using the Riccati equation (48) associated to the distance function rp along the radial
geodesic segment 
 that connects p to q. We write p D 
.0/ and consider an orthonormal
frame ¹ Qej .0/ºn�1jD0 on P
.0/? in the sense that for distinct j; k D 0; : : : ; n � 1,

g. Qej ; Qek/ D 0; g. Qej ; Qej / D "j ;

where "0 D �1, and "j D 1 for j D 1; : : : ; n� 1. For each j D 0; 1; : : : ; n� 1, we define
Qej .s/ 2 P
.s/

? to be the parallel transport of the vector Qej .0/ along 
 from 
.0/ to 
.s/.
Note that for all v 2 P
?,

v D

n�1X
jD0

"jg.v; Qej / Qej :

In particular, the matrix QS of a linear map S on P
?, defined by S Qek D QS
j

k
Qej , satisfies QSj

k
D

"jg.S Qek ; Qej /. Let us now take S as in Lemma 4.2 restricted to the geodesic segment 
 and
use the abbreviated notation r in place of rp . Note that the radial curvature equation (48)
implies that, on 
 ,

r@r"jg.S Qej ; Qek/ D "jg..rr@r
S/ Qej ; Qek/

D "jg.S Qej ; Qek/ � "jg.S
2
Qej ; Qek/ � r

2"jg.R@r
Qej ; Qek/:

Thus the matrix QSj
k

of S satisfies the Riccati equation

r QS 0 � QS C QS2 C r2 QR D 0; (49)

with QR the matrix of R@r
on P
? with respect to the frame ¹ Qej ºn�1jD0 (note that in the flat

case, with the metric tensor
Pn
jD0 "j .dx

j /2, we have QS D id). In general, QS.0/ D id.
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Moreover, the curvature bound .H1/0 implies that the matrix QR is null negative-definite in
the sense of Definition 2.1. The proof is complete, thanks to Proposition 2.3 with L D QS
and B D QR.
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