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Abstract. We prove a conjecture of the first named author (2014) on the upper bound Fourier
coefficients of automorphic forms in Arthur packets of all classical groups over any number field.
This conjecture generalizes the global version of the local tempered L-packet conjecture of Shahidi
(1990). Under certain assumption, we also compute the wavefront sets of the unramified unitary
dual for split classical groups.
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1. Introduction

In the classical theory of automorphic forms, Fourier coefficients encode abundant arith-
metic information of automorphic forms. In the modern theory of automorphic forms,
i.e., the theory of automorphic representations of reductive algebraic groups defined over
a number field k (or a global field), Fourier coefficients bridge the connection from
harmonic analysis to number theory via automorphic forms. When the reductive group
is the general linear group GLn, by a classical theorem of Piatetski-Shapiro [37] and Sha-
lika [40], every cuspidal automorphic representation of GLn.A/, where A is the ring of
adeles of k, has a non-zero Whittaker–Fourier coefficient. This fundamental result has
been indispensable in the theory, especially the theory of automorphic L-functions. The
theorem of Piatetski-Shapiro and Shalika has been extended to the discrete spectrum of
GLn.A/ in [21] and to the isobaric sum automorphic spectrum of GLn.A/ in [28].

In general, due to the nature of the discrete spectrum of square-integrable automorphic
forms on reductive algebraic groups G.A/, one has to consider more general version of
Fourier coefficients, i.e., Fourier coefficients of automorphic forms associated to nilpotent
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orbits in the Lie algebra g of G. Such general Fourier coefficients of automorphic forms,
including Bessel–Fourier coefficients and Fourier–Jacobi coefficients have been widely
used in theory of automorphic L-functions via integral representation method (see [15,
16, 25, 26], for instance), in the automorphic descent method of Ginzburg, Rallis and
Soudry to produce special cases of explicit Langlands functorial transfers [17], and in the
Gan–Gross–Prasad conjecture on vanishing of the central value of certain automorphic
L-functions of symplectic type [12, 14, 26]. More recent applications of such general
Fourier coefficients to explicit constructions of endoscopy transfers for classical groups
can be found in [20] (and also in [13] for split classical groups).

In this paper, we consider following classical groups defined over k, Gn D Sp2n,
SO2nC1, SO˛2n, quasi-split, and Un, quasi-split or inner forms. We follow the formulation
in [18] for the definition of generalized Whittaker–Fourier coefficients of automorphic
forms associated to nilpotent orbits, see Section 2 for details. It is well known that nil-
potent orbits of the quasi-split classical group Gn are parameterized by symplectic or
orthogonal partitions and certain quadratic forms when Gn D Sp2n; SO2nC1; SO˛2n, and
by relevant partitions when Gn D Un (see [11, 35, 43], for instance). For any irreducible
automorphic representation � of Gn.A/, let n.�/ be the set of nilpotent orbits providing
non-zero generalized Whittaker–Fourier coefficients for � , which is called the wavefront
set of � , as in [24], for instance. Let nm.�/ be the subset that consists of maximal ele-
ments in n.�/ under the dominance ordering of nilpotent orbits, and denote by pm.�/ the
set of the partitions of type Gn corresponding to nilpotent orbits in nm.�/.

It is an interesting problem to determine the structure of the set nm.�/ and equi-
valently the set pm.�/ for any given irreducible automorphic representation � of Gn.A/,
by means of other invariants of � . When � occurs in the discrete spectrum of square integ-
rable automorphic functions on Gn.A/, the global Arthur parameter attached to � [2, 27,
31] is clearly a fundamental invariant for � . An important conjecture made in [20], which
is the natural generalization of the global version of the local tempered L-packet conjec-
ture of Shahidi [38, 39], asserts an intrinsic relation between the structure of the global
Arthur parameter of � and the structure of the set pm.�/. It is well known that the conjec-
ture of Shahidi and its global version (see [23, Section 3] for discussion and proof) have
played a fundamental role in the understanding of the local and global Arthur packets for
generic Arthur parameters, according to the endoscopic classification of Arthur [2,27,31].
It is well expected that the conjecture made in [20] for general global Arthur parameters
will be important to the understanding of the structure of general global Arthur packets.

To state the conjecture of [20], for simplicity, we briefly recall the endoscopic classi-
fication of the discrete spectrum for Gn.A/ from [2] for Gn D Sp2n;SO2nC1;SO˛2n.

The set of global Arthur parameters for the discrete spectrum of Gn is denoted, as
in [2], by z‰2.Gn/, the elements of which are of the form

 WD  1 �  2 � � � ��  r ;

where i are pairwise different simple global Arthur parameters of orthogonal type (when
Gn D Sp2n; SO˛2n) or symplectic type (when Gn D SO2nC1), and have the form  i D
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.�i ; bi /. The notations are explained in order. Let Acusp.GLai / be the set of equivalence
classes of irreducible cuspidal automorphic representations of GLai .A/. We have �i 2
Acusp.GLai / with

rX
iD1

aibi D

´
2nC 1 when Gn D Sp2n;

2n when Gn D SO2nC1 or SO˛2n;

and the central character of  and the central characters of �i ’s satisfy the following
constraints: Y

i

!bi�i D

´
1 when Gn D Sp2n or SO2nC1;

�˛ when Gn D SO˛2n;

following [2, Section 1.4]. More precisely, for each 1 � i � r ,  i D .�i ; bi / satisfies the
following conditions: if �i is of symplectic type (i.e., L.s; �i ;^2/ has a pole at s D 1),
then bi is even (when Gn D Sp2n; SO˛2n), or odd (when Gn D SO2nC1); and if �i is of
orthogonal type (i.e., L.s; �i ; Sym2/ has a pole at s D 1), then bi is odd (when Gn D
Sp2n;SO˛2n), or even (when Gn D SO2nC1).

Theorem 1.1 ([2, Theorem 1.5.2]). For each global Arthur parameter  2 z‰2.Gn/,
a global Arthur packet z… is defined. The discrete spectrum of Gn.A/ has the follow-
ing decomposition:

L2disc.Gn.k/nGn.A// Š
M

 2z‰2.Gn/

m 

� M
�2 z… ." /

�
�
;

where z… ." / denotes the subset of z… consisting of members which occur in the dis-
crete spectrum, and m is the discrete multiplicity of …, which is either 1 or 2.

As in [20], one may call z… ." / the automorphic L2-packet attached to  . For
� 2 z… ." /, the structure of the global Arthur parameter  deduces constraints on the
structure of pm.�/, which is given by the following conjecture of the first named author.
We recall from [20] that for a given global Arthur parameter  as above,

p. / D Œ.b1/
a1 � � � .br /

ar �

is the partition attached to . ;G_.C//.

Conjecture 1.2 ([20, Conjecture 4.2 (1) and (2)]). For any  2 z‰2.Gn/, let z… ." /

be the automorphic L2-packet attached to  and p. / be the partition attached to

. ;G_n .C//. For any � 2 z… ." /, if a partition p 2 pm.�/, then

p � �g_n ;gn
.p. //:

Here �g_n ;gn
denotes the Barbasch–Vogan–Spaltenstein duality map from the partitions

for the dual group G_n .C/ to the partitions for Gn as introduced in [41] and [6], see
also [1].
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Conjecture 4.2 in [20] consists of two parts: one is the upper-bound conjecture (Con-
jecture 1.2) and the other is the sharpness conjecture ([20, Conjecture 4.2 (3)], i.e., there
exists � 2 z… ." / such that �g_;g.p. // 2 pm.�/). It is clear that if the global Arthur
parameter  is generic, then [20, Conjecture 4.2] asserts that the corresponding global
Arthur packet z… ." / contains an automorphic member that is generic, i.e., has a non-
zero Whittaker–Fourier coefficient. This is the global version of the local tempered L-
packet conjecture of Shahidi [38], and it was proved in [23, Section 3] by using auto-
morphic descent of Ginzburg, Rallis, and Soudry [17]. The goal of this paper is to prove
Conjecture 1.2 for general global Arthur parameters. The sharpness conjecture is global
in nature and will be fully considered in future projects.

In [22], using the method of local descents, we partially prove Conjecture 1.2 for
Gn D Sp2n, namely, for any � 2 z… ." /, if a partition p 2 pm.�/, then

p �L �g_n ;gn
.p. //;

under the lexicographical order. We refer to [20, Section 4] for more discussion on this
conjecture and related topics.

In order to prove Conjecture 1.2, we study the structure of the unramified local com-
ponents �v of � and of the set pm.�v/which is defined similarly to pm.�/. Our discussion
reduces the general situation to a special case of strongly negative unramified unitary rep-
resentations of Gn (see Section 3 for details). In such a special situation, the structure of
the wavefront set (Theorem 3.8) can be deduced as a special case from [36, Theorem 0.6].

To be more precise, first, for the Arthur parameter  D�riD1.�i ; bi /, by [22, Proposi-
tion 6.1] (see Proposition 4.1), there exist infinitely many finite places v such that Gn.kv/
is split, all �i;v’s have trivial central characters, and hence �v is the unramified component
of an induced representation of the following form

� D �riD1v
˛i�i .detmi / Ì �sn;

where 0 � ˛i < 1, �sn is a special family of strongly negative representations which have
Arthur parameters of the form

Ls
jD1 1W 0F

˝ S2njC1 (see Section 3 for details), with W 0F
being the Weil–Deligne group and n1 < n2 < � � � < ns . It is known that the wavefront
set of � (hence of �v) is bounded above by the induced orbits once we know the leading
orbits for the wavefront set of �sn. On the other hand, Okada [36, Theorem 0.6] computed
the leading orbits in the wavefront set of those unramified representations whose Arthur
parameters are trivial when restricted to the Weil–Deligne group.

Theorem 1.3 (Main Theorem). Conjecture 1.2 holds for any  2 z‰2.Gn/.

We remark that for non-quasi-split even orthogonal groups, once the Arthur classific-
ation is carried out (see [7, 8] for recent progress in this direction), Conjecture 1.2 can be
proved by similar arguments.

In the last part of this paper, we study the wavefront set of the unramified unitary dual
for split classical groups Gn D Sp2n; SO2nC1;O2n. Under a conjecture on the wavefront
set of negative representations (Conjecture 8.1), we are able to determine the set pm.�/



On wavefront sets of global Arthur packets of classical groups: Upper bound 3845

for general unramified unitary representations (Theorem 8.2). This provides a reduction
towards understanding the wavefront set of the whole unramified unitary dual, which has
its own interests.

The structure of this paper is the following. In Section 2, we recall certain twisted
Jacquet modules and Fourier coefficients associated to nilpotent orbits, following the for-
mulation in [18]. The structure of unramified unitary dual of Gn.Fv/ was determined
by Barbasch in [4] and by Muić and Tadić in [34] with different approaches. In Section 3,
we recall from [34] the results on unramified unitary dual for Gn D Sp2n; SO2nC1;O2n.
For the split group Gn D SO2n, we do not need the full classification of the unramified
unitary dual as given in [4], instead, we only need a family of unramified unitary rep-
resentations, see Remark 3.6. In Section 4, we determine, for any given global Arthur
parameter  2 z‰2.Gn/, the unramified components �v of any � 2 z… ." / in terms
of the classification data in [34], and prove Theorem 1.3 by means of Theorem 4.2
which is about certain properties of p 2 pm.�v/. Theorem 4.2 is technical and will be
proved in Sections 5, 6, and 7 for Gn D Sp2n; SO2nC1; SO˛2n, respectively. In Section 8,
we determine the leading orbits in the wavefront set of general unramified unitary rep-
resentations assuming Conjecture 8.1 for split classical groups Gn D Sp2n;SO2nC1;O2n
(Theorem 8.2). Note that for representations of non-connected groups, we follow [10] for
the character expansions at the identity to define the wavefront set.

2. Fourier coefficients associated to nilpotent orbits

In this section, we recall certain twisted Jacquet modules and Fourier coefficients associ-
ated to nilpotent orbits, following the formulation of Gomez, Gourevitch and Sahi in [18].

Let G be a reductive group defined over a field F of characteristic zero, and g be
the Lie algebra of G D G.F /. Given any semi-simple element s 2 g, under the adjoint
action, g is decomposed into a direct sum of eigenspaces gsi corresponding to eigenval-
ues i . The element s is called rational semi-simple if all its eigenvalues are in Q. Given
a nilpotent element u and a semi-simple element s in g, the pair .s;u/ is called a Whittaker
pair if s is a rational semi-simple element, and u 2 gs�2. The element s in a Whittaker
pair .s; u/ is called a neutral element for u if there is a nilpotent element v 2 g such that
.v; s; u/ is an sl2-triple. A Whittaker pair .s; u/ with s being a neutral element is called
a neutral pair.

Given any Whittaker pair .s; u/, define an anti-symmetric form !u on g � g by

!u.X; Y / WD �.u; ŒX; Y �/;

where � is the Killing form on g. For any rational number r 2Q, let gs�r D
L
r 0�r gsr 0 . Let

us D gs�1 and let ns;u be the radical of !ujus . Then Œus;us�� gs�2 � ns;u. For anyX 2 g,
let gX be the centralizer ofX in g. By [18, Lemma 3.2.6], one has ns;u D gs�2C gs1 \ gu.
Note that if the Whittaker pair .s; u/ comes from an sl2-triple .v; s; u/, then ns;u D gs�2.
We denote by Ns;u D exp.ns;u/ the corresponding unipotent subgroup of G.
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When F D kv is a non-Archimedean local field, we take  WF ! C� to be a fixed
non-trivial additive character and define a character of Ns;u by

 u.n/ D  .�.u; log.n///:

Let � be an irreducible admissible representation of G.F /. The twisted Jacquet module
of � associated to a Whittaker pair .s; u/ is defined to be �Ns;u; u . Let n.�/ be the set
of nilpotent orbits O � g such that the twisted Jacquet module �Ns;u; u is non-zero for
some neutral pair .s; u/ with u 2 O.

When F D k is a number field, let A be the ring of adeles, and let  WF nA! C� be
a fixed non-trivial additive character. Extend the Killing form � to g.A/ � g.A/. Define
a character of Ns;u.A/ by

 u.n/ D  .�.u; log.n///:

It is clear from the definition that the character  u.n/ is trivial when restricted to the
discrete subgroup Ns;u.F /, and hence can be viewed as a function on

ŒNs;u� WD Ns;u.F /nNs;u.A/:

Let � be an irreducible automorphic representation of G.A/. For any � 2 � , the degener-
ate Whittaker–Fourier coefficient of � attached to a Whittaker pair .s; u/ is defined to be

Fs;u.�/.g/ WD

Z
ŒNs;u�

�.ng/ �1u .n/ dn:

If .s; u/ is a neutral pair, then Fs;u.�/ is also called a generalized Whittaker–Fourier
coefficient of �. Define

Fs;u.�/ WD ¹Fs;u.�/ j � 2 �º;

which is called the Fourier coefficient of � . The wavefront set n.�/ of � is defined to
be the set of nilpotent orbits O such that Fs;u.�/ is non-zero for some neutral pair .s; u/
with u 2 O.

Note that if �Ns;u u or Fs;u.�/ is non-zero for some neutral pair .s; u/ with u 2 O,
then it is non-zero for any such neutral pair .s; u/, since the non-vanishing property of
such Whittaker models or Fourier coefficients does not depend on the choices of repres-
entatives of O. Moreover, we let nm.�/ and nm.�/ be the sets of maximal elements in the
wavefront sets n.�/ and n.�/, respectively, under the natural ordering of nilpotent orbits
(i.e., O1 � O2 if O1 � O2, the Zariski closure of O2).

In this paper, we mainly consider classical groups Gn D Sp2n;SO2nC1, SO˛2n (quasi-
split), and Un (quasi-split or inner forms) and study the sets p.�/ and p.�/, which are the
partitions corresponding to the nilpotent orbits in the wavefront sets of � and � , respect-
ively. Here � is any irreducible automorphic representation of Gn.A/, which occurs in the
discrete spectrum of Gn.A/ as displayed in Theorem 1.1, and � denotes the unramified
local component �v of � at some finite local place v of the number field k.
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3. Unramified unitary dual of split classical groups

We take F D kv to be a non-Archimedean local field of k. In this section, we recall
the classification of the unramified unitary dual of the split classical groups Gn D Sp2n;
SO2nC1;O2n over F , which was obtained by Barbasch in [4] and by Muić and Tadić
in [34], using different methods. We mainly follow the formulation in [34]. In this paper,
we do not need the full classification of the unramified unitary dual of the split group
Gn D SO2n as given in [4], instead, we only need a family of unramified unitary repres-
entations, see Remark 3.6. The classification in [34] starts from classifying two special
families of irreducible unramified representations of Gn.F / that are called strongly neg-
ative and negative. We refer to [32] for definitions of strongly negative and negative
representations and for more related discussion on these two families of unramified rep-
resentations. In the following, we recall from [34] the classification of these two families
in terms of Jordan blocks. The Muić–Tadić classification also provides the explicit con-
structions.

A pair .�; m/, where � is an unramified unitary character of F � and m 2 Z>0, is
called a Jordan block. When Gn D Sp2n;O2n, define Jordsn.n/ to be the collection of all
sets of Jordan blocks of the following form:

¹.�0; 2n1 C 1/; : : : ; .�0; 2nk C 1/; .1GL1 ; 2m1 C 1/; : : : ; .1GL1 ; 2ml C 1/º; (3.1)

where �0 is the unique non-trivial unramified unitary character of F � of order 2, given by
the local Hilbert symbol .ı; �/F � , with ı being a non-square unit in OF ; k is even, and l is
odd when Gn D Sp2n and even when Gn D O2n. There are also the following constraints:

0 < n1 < n2 < � � � < nk ; 0 < m1 < m2 < � � � < ml ;

and
kX
iD1

.2ni C 1/C

lX
jD1

.2mj C 1/ D

´
2nC 1 when Gn D Sp2n;

2n when Gn D O2n:

When Gn D SO2nC1, define Jordsn.n/ to be the collection of all sets of Jordan blocks of
the following form:

¹.�0; 2n1/; : : : ; .�0; 2nk/; .1GL1 ; 2m1/; : : : ; .1GL1 ; 2ml /º;

where
0 � n1 < n2 < � � � < nk ; 0 � m1 < m2 < � � � < ml ;

both k and l are even and

kX
iD1

.2ni /C

lX
jD1

.2mj / D 2n:

For each Jord 2 Jordsn.n/, we can associate a representation �.Jord/, which is the
unique irreducible unramified subquotient of the following induced representation.
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When Gn D Sp2n, it is given by

�
nk�1�nk

2 �0.detnk�1CnkC1/ � �
nk�3�nk�2

2 �0.detnk�3Cnk�2C1/

� � � � � �
n1�n2
2 �0.detn1Cn2C1/

� �
ml�1�ml

2 1detml�1CmlC1
� �

ml�3�ml�2
2 1detml�3Cml�2C1

� � � � � �
m2�m3

2 1detm2Cm3C1
Ì 1Sp2m1

:

When Gn D O2n, it is given by

�
nk�1�nk

2 �0.detnk�1CnkC1/ � �
nk�3�nk�2

2 �0.detnk�3Cnk�2C1/

� � � � � �
n1�n2
2 �0.detn1Cn2C1/

� �
ml�1�ml

2 1detml�1CmlC1
� �

ml�3�ml�2
2 1detml�3Cml�2C1

� � � � � �
m1�m2

2 1detm1Cm2C1
Ì 1O0 :

When Gn D SO2nC1, it is given by

�
nk�1�nk

2 �0.detnk�1Cnk / � �
nk�3�nk�2

2 �0.detnk�3Cnk�2/

� � � � � �
n1�n2
2 �0.detn1Cn2/

� �
ml�1�ml

2 1detml�1Cml
� �

ml�3�ml�2
2 1detml�3Cml�2

� � � � � �
m1�m2

2 1detm1Cm2
Ì 1SO1 :

Theorem 3.1 ([34, Theorem 5-8]). Assume that n > 0. The map Jord 7! �.Jord/ defines
a one-to-one correspondence between the set Jordsn.n/ and the set of all irreducible
strongly negative unramified representations of Gn.F /.

The inverse of the map in Theorem 3.1 is denoted by � 7! Jord.�/. Based on the
classification in Theorem 3.1, irreducible negative unramified representations can be con-
structed from irreducible strongly negative unramified representations of smaller rank
groups as follows.

Theorem 3.2 ([34, Thereom 5-10]). For any sequence of pairs .�1; n1/; : : : ; .�t ; nt /
with �i being unramified unitary characters of F � and ni 2 Z�1, for 1 � i � t , and
for a strongly negative representation �sn of Gn0.F / with

Pt
iD1 ni C n

0 D n, the unique
irreducible unramified subquotient of the induced representation

�1.detn1/ � � � � � �t .detnt / Ì �sn

is negative and it is a subrepresentation.
Conversely, any irreducible negative unramified representation �neg of Gn.F / can be

obtained from the above construction. The data

.�1; n1/; : : : ; .�t ; nt /

and �sn are unique, up to permutations and taking inverses of �i ’s.
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For any irreducible negative unramified representation �neg with data in Theorem 3.2,
we define

Jord.�neg/ D Jord.�sn/ [ ¹.�i ; ni /; .�
�1
i ; ni / j 1 � i � tº:

By [33, Corollary 3.8], any irreducible negative representation is unitary. In particular,
we have the following.

Corollary 3.3. Any irreducible negative unramified representation of Gn.F / is unitary.

To describe the general unramified unitary dual, we need to recall the following defin-
ition.

Definition 3.4 ([34, Definition 5-13]). Let Munr.n/ be the set of pairs .e; �neg/, where e
is a multi-set of triples .�; m; ˛/ with � being an unramified unitary character of F �,
m 2 Z>0 and ˛ 2 R>0, and �neg is an irreducible negative unramified representation
of Gn00.F /, having the property thatX

.�;m/

m � #e.�;m/C n00 D n

with
e.�;m/ D ¹˛ j .�;m; ˛/ 2 eº:

Note that ˛ 2 e.�;m/ is counted with multiplicity.
Let Mu;unr.n/ be the subset of Munr.n/ consisting of pairs .e; �neg/, which satisfy the

following conditions:

(1) If �2 ¤ 1GL1 , then e.�;m/ D e.��1; m/, and 0 < ˛ < 1
2

, for all ˛ 2 e.�;m/.
(2) If �2D 1GL1 andm is even, then 0<˛ < 1

2
, for all ˛ 2 e.�;m/, when GnD Sp2n;O2n;

0 < ˛ < 1, for all ˛ 2 e.�;m/, when Gn D SO2nC1.

(3) If �2D 1GL1 andm is odd, then 0 < ˛ < 1, for all ˛ 2 e.�;m/, when GnD Sp2n;O2n;
0 < ˛ < 1

2
, for all ˛ 2 e.�;m/, when Gn D SO2nC1.

Write elements in e.�;m/ as follows:

0 < ˛1 � � � � � ˛k �
1

2
< ˇ1 � � � � � ˇl < 1

with k; l 2 Z�0. They satisfy the following conditions:

(a) If .�;m/ … Jord.�neg/, then k C l is even.

(b) If k � 2, then ˛k�1 ¤ 1
2

.

(c) If l � 2, then ˇ1 < ˇ2 < � � � < ˇl .

(d) ˛i C ǰ ¤ 1 for any 1 � i � k, 1 � j � l .

(e) If l � 1, then #¹i j 1 � ˇ1 < ˛i � 1
2
º is even.

(f) If l � 2, then #¹i j 1 � ǰC1 < ˛i < 1 � ǰ º is odd for any 1 � j � l � 1.
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Theorem 3.5 ([34, Theorem 5-14]). The map

.e; �neg/ 7! �.�;m;˛/2ev
˛�.detm/ Ì �neg

defines a one-to-one correspondence between the set Mu;unr.n/ and the set of equivalence
classes of all irreducible unramified unitary representations of Gn.F /.

Remark 3.6. For Gn D SO2n, in this paper, we do not need the full classification of the
unramified unitary dual as given in [4], instead, we only need the irreducible unramified
unitary representations as follows:

� D �.�;m;˛/2ev
˛�.detm/ Ì �neg $ .e; �neg/;

where eD¹.�;m;˛/ j� is an unramified unitary character of F �; m2Z>0; ˛ 2R>0 and
0 < ˛ < 1

2
º, and �neg is the unique irreducible negative unramified subrepresentation of

the following induced representation:

�1.detn1/ � � � � � �t .detnt / Ì �sn;

with �sn being the unique irreducible strongly negative unramified constituent of the fol-
lowing induced representation:

�
nk�1�nk

2 �0.detnk�1CnkC1/ � �
nk�3�nk�2

2 �0.detnk�3Cnk�2C1/

� � � � � �
n1�n2
2 �0.detn1Cn2C1/

� �
ml�1�ml

2 1detml�1CmlC1
� �

ml�3�ml�2
2 1detml�3Cml�2C1

� � � � � �
m1�m2

2 1detm1Cm2C1
Ì 1SO0 :

Here, ni ; mi 2 Z, 0 < n1 < n2 < � � � < nk , 0 < m1 < m2 < � � � < ml , and k, l are even.
In this case, we also define

Jord.�sn/ D ¹.�0; 2n1/; : : : ; .�0; 2nk/; .1GL1 ; 2m1/; : : : ; .1GL1 ; 2ml /º;

Jord.�neg/ D Jord.�sn/ [ ¹.�i ; ni /; .�
�1
i ; ni / j 1 � i � tº;

(3.2)

and define Mu;unr.n/ to be the set of pairs .e; �neg/ as above.

In Sections 4–7, we will mainly consider the following type of unramified unitary
representations.

Type I. An irreducible unramified unitary representations of Gn.F /, where Gn D Sp2n;
SO2nC1;SO2n, is called of Type I if it is of the following form:

� D �.�;m;˛/2ev
˛�.detm/ Ì �neg $ .e; �neg/; (3.3)

where e is as in Remark 3.6 for GnD SO2n, �neg is the unique irreducible negative unrami-
fied subrepresentation of the following induced representation:

�1.detn1/ � � � � � �t .detnt / Ì �sn;



On wavefront sets of global Arthur packets of classical groups: Upper bound 3851

with �sn being the unique irreducible strongly negative unramified constituent of the fol-
lowing induced representation:

Gn D Sp2nW �
ml�1�ml

2 1detml�1CmlC1
� �

ml�3�ml�2
2 1detml�3Cml�2C1

� � � � � �
m2�m3

2 1detm2Cm3C1
Ì 1Sp2m1

;

Gn D SO2nC1W �
ml�1�ml

2 1detml�1Cml
� �

ml�3�ml�2
2 1detml�3Cml�2

� � � � � �
m1�m2

2 1detm1Cm2
Ì 1SO1 ;

Gn D SO2nW �
ml�1�ml

2 1detml�1CmlC1
� �

ml�3�ml�2
2 1detml�3Cml�2C1

� � � � � �
m1�m2

2 1detm1Cm2C1
Ì 1SO0 :

(3.4)

Remark 3.7. Assume that �sn is an irreducible strongly negative unramified unitary rep-
resentation of Gn.F / as in (3.4). If Gn D Sp2n or SO2n, then the local Arthur parameter
of �sn is

1GL1 ˝ S1 ˝ S2m1C1 ˚ � � � ˚ 1GL1 ˝ S1 ˝ S2mlC1:

Here we recall that l is odd when GnD Sp2n and even when GnD SO2n. If GnD SO2nC1,
then the local Arthur parameter of �sn is

1GL1 ˝ S1 ˝ S2m1 ˚ � � � ˚ 1GL1 ˝ S1 ˝ S2ml ;

where Sk is the k-th irreducible representation of SL2.C/. This can be easily obtained
from Mœglin’s construction of local Arthur packets in [29], or the algorithms given in [3]
and [19].

At the end of this section, we recall the following theorem, which is a special case
of [36, Theorem 0.6]. We remark that the spherical representations considered in [36,
Theorem 0.6] have trivial Arthur parameters on the Weil–Deligne group (see [36, Intro-
duction] for the setting), while general unramified representations have Arthur parameters
that are trivial on the subgroup IF � SL2.C/, where IF is the inertia subgroup of the Weil
group WF .

Theorem 3.8 ([36, Theorem 0.6]). Let �sn be an irreducible strongly negative unramified
unitary representation of Gn.F / as in (3.4). If Gn D Sp2n;SO2n, then the set of maximal
partitions of the wavefront set of �sn is given by

pm.�sn/ D ¹�g_n ;gn
.Œ.2m1 C 1/ � � � .2ml C 1/�/º:

If Gn D SO2nC1, then the set of maximal partitions of the wavefront set of �sn is given by

pm.�sn/ D ¹�g_n ;gn
.Œ.2m1/ � � � .2ml /�/º:
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4. Arthur parameters and unramified local components

In this section, in terms of the classification of the unramified unitary dual of Gn, we study
the structure of the unramified local components � D �v of an irreducible automorphic
representation � D ˝v�v of Gn.A/ belonging to an automorphic L2-packet z… ." / for
an arbitrary global Arthur parameter  2 z‰2.Gn/. Then, we prove Theorem 1.3. We first
consider the cases of Gn D Sp2n; SO2nC1; SO˛2n and leave the case of Gn D Un to the
end of the section.

4.1. Unramified structure of Arthur parameters

For a given global Arthur parameter  2 z‰2.Gn/, z… ." / is the corresponding auto-
morphic L2-packet. It is clear that the irreducible unramified representations, which are
the local components of � 2 z… ." /, are determined by the local Arthur parameter  v
at almost all unramified local places v of k. We fix one of the members, � 2 z… ." /,
and describe the unramified local component �v at a finite local place v, where the local
Arthur parameter

 v D  1;v �  2;v � � � ��  r;v
is unramified, i.e., �i;v for i D 1; 2; : : : ; r are all unramified, and Gn.kv/ is split.

We write F D kv and first consider the case of Gn D Sp2n; SO˛2n. Rewrite the global
Arthur parameter  as follows:

 D Œ�kiD1.�i ; 2bi /�� Œ�
kCl
jDkC1

.�j ; 2bj C 1/�� Œ�kClC2tC1sDkClC1
.�s; 2bs C 1/�;

where �i 2Acusp.GL2ai / is of symplectic type for 1 � i � k, and �j 2Acusp.GL2aj / and
�s 2Acusp.GL2asC1/ are of orthogonal type for k C 1 � j � k C l and k C l C 1 � s �
k C l C 2t C 1. Define

I WD ¹1; 2; : : : ; kº;

J WD ¹k C 1; k C 2; : : : ; k C lº;

S WD ¹k C l C 1; k C l C 2; : : : ; k C l C 2t C 1º:

Let J1 be the subset of J such that !�j;vD1, and J2DJ nJ1, that is, for j 2J2, !�j;vD�0.
Let S1 be the subset of S such that !�s;v D 1, and S2 D SnS1, that is, for s 2 S2,
!�s;v D �0. From the definition of Arthur parameters, we can easily see that #¹J2º [
#¹S2º is even, which implies that #¹J2º [ #¹S1º is odd when Gn D Sp2n and even when
Gn D SO˛2n. The local unramified Arthur parameter  v has the following structure:

� For i 2 I ,
�i;v D �

ai
qD1�

ˇ iq�iq �
ai
qD1 �

�ˇ iq�i;�1q ;

where 0 � ˇiq <
1
2

, for 1 � q � ai , and �iq’s are unramified unitary characters of F �.

� For j 2 J1,
�j;v D �

aj
qD1�

ˇ
j
q �jq �

aj
qD1 �

�ˇ
j
q �j;�1q ;

where 0 � ˇjq < 1
2

, for 1 � q � aj , and �jq ’s are unramified unitary characters of F �.
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� For j 2 J2,

�j;v D �
aj�1

qD1 �
ˇ
j
q �jq � �0 � 1GL1 �

aj�1

qD1 �
�ˇ

j
q �j;�1q ;

where 0 � ˇjq < 1
2

, for 1 � q � aj , and �jq ’s are unramified unitary characters of F �.

� For s 2 S1,
�s;v D �

as
qD1�

ˇsq�sq � 1GL1 �
as
qD1 �

�ˇsq�s;�1q ;

where 0 � ˇsq <
1
2

, for 1 � q � as , and �sq’s are unramified unitary characters of F �.

� For s 2 S2,
�s;v D �

as
qD1�

ˇsq�sq � �0 �
as
qD1 �

�ˇsq�s;�1q ;

where 0 � ˇsq <
1
2

, for 1 � q � as , and �sq’s are unramified unitary characters of F �.

We define

Jord1 D ¹.�0; 2bj C 1/; j 2 J2I .�0; 2bs C 1/; s 2 S2I

.1GL1 ; 2bj C 1/; j 2 J2I .1GL1 ; 2bs C 1/; s 2 S1º:

Note that Jord1 is a multi-set. Let Jord2 be a set consisting of different Jordan blocks with
odd multiplicities in Jord1. Thus Jord2 has the form of (3.1) and (3.2). By Theorem 3.1
and Remark 3.6, there is a corresponding irreducible strongly negative unramified repres-
entation �sn. Then we define the following Jordan blocks:

JordI D ¹.�iq; 2bi /; .�
i;�1
q ; 2bi /; i 2 I; 1 � q � ai ; ˇ

i
q D 0º;

JordJ1 D ¹.�
j
q ; 2bj C 1/; .�

j;�1
q ; 2bj C 1/; j 2 J1; 1 � q � aj ; ˇ

j
q D 0º;

JordJ2 D ¹.�
j
q ; 2bj C 1/; .�

j;�1
q ; 2bj C 1/; j 2 J2; 1 � q � aj � 1; ˇ

j
q D 0º;

JordS1 D ¹.�
s
q; 2bs C 1/; .�

s;�1
q ; 2bs C 1/; s 2 S1; 1 � q � as; ˇ

s
q D 0º;

JordS2 D ¹.�
s
q; 2bs C 1/; .�

s;�1
q ; 2bs C 1/; s 2 S2; 1 � q � as; ˇ

s
q D 0º:

Finally, we define

Jord3 D .Jord1nJord2/ [ JordI [ JordJ1 [ JordJ2 [ JordS1 [ JordS2 :

By Theorem 3.2 and Remark 3.6, corresponding to the data Jord3 and �sn, there is an
irreducible negative unramified presentation �neg.

Let

eI D ¹.�iq; 2bi ; ˇ
i
q/; i 2 I; 1 � q � ai ; ˇ

i
q > 0º;

eJ1 D ¹.�
j
q ; 2bj C 1; ˇ

j
q /; j 2 J1; 1 � q � aj ; ˇ

j
q > 0º;

eJ2 D ¹.�
j
q ; 2bj C 1; ˇ

j
q /; j 2 J2; 1 � q � aj � 1; ˇ

j
q > 0º;

eS1 D ¹.�
s
q; 2bs C 1; ˇ

s
q/; s 2 S1; 1 � q � as; ˇ

s
q > 0º;

eS2 D ¹.�
s
q; 2bs C 1; ˇ

s
q/; s 2 S2; 1 � q � as; ˇ

s
q > 0º:
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Then we define
e D eI [ eJ1 [ eJ2 [ eS1 [ eS2 :

Since the unramified component �v is unitary, we must have that .e; �neg/ 2Mu;unr.n/,
and �v is exactly the irreducible unramified unitary representation � of Gn.F / which
corresponds to .e; �neg/ as in Theorem 3.5 and Remark 3.6.

Now we consider the case of Gn D SO2nC1. Rewrite the global Arthur parameter  
as follows:

 D Œ�kiD1.�i ; 2bi C 1/�� Œ�
kCl
jDkC1

.�j ; 2bj /�� Œ�kClC2tC1sDkClC1
.�s; 2bs/�;

where �i 2 Acusp.GL2ai / is of symplectic type for 1 � i � k, �j 2 Acusp.GL2aj / and
�s 2Acusp.GL2asC1/ are of orthogonal type for k C 1 � j � k C l and k C l C 1 � s �
k C l C 2t C 1. Similarly, we define

I WD ¹1; 2; : : : ; kº;

J WD ¹k C 1; k C 2; : : : ; k C lº;

S WD ¹k C l C 1; k C l C 2; : : : ; k C l C 2t C 1º:

Let J1 be the subset of J such that !�j;v D 1, and J2 D J nJ1, that is, for j 2 J2, !�j;v D
�0. Let S1 be the subset of S such that !�s;v D 1, and S2 D SnS1, that is, for s 2 S2,
!�s;v D �0. The local unramified Arthur parameter  v has the following structure:

� For i 2 I1,

�i;v D �
ai
qD1�

ˇ iq�iq �
ai
qD1 �

�ˇ iq�i;�1q ;

where 0 � ˇiq <
1
2

, for 1 � q � ai , and �iq’s are unramified unitary characters of F �.

� For j 2 J1,

�j;v D �
aj
qD1�

ˇ
j
q �jq �

aj
qD1 �

�ˇ
j
q �j;�1q ;

where 0 � ˇjq < 1
2

, for 1 � q � aj , and �jq ’s are unramified unitary characters of F �.

� For j 2 J2,

�j;v D �
aj�1

qD1 �
ˇ
j
q �jq � �0 � 1GL1 �

aj�1

qD1 �
�ˇ

j
q �j;�1q ;

where 0 � ˇjq < 1
2

, for 1 � q � aj , and �jq ’s are unramified unitary characters of F �.

� For s 2 S1,

�s;v D �
as
qD1�

ˇsq�sq � 1GL1 �
as
qD1 �

�ˇsq�s;�1q ;

where 0 � ˇsq <
1
2

, for 1 � q � as , and �sq’s are unramified unitary characters of F �.

� For s 2 S2,

�s;v D �
as
qD1�

ˇsq�sq � �0 �
as
qD1 �

�ˇsq�s;�1q ;

where 0 � ˇsq <
1
2

, for 1 � q � as , and �sq’s are unramified unitary characters of F �.
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We define

Jord1 D
®
.�0; 2bj /; j 2 J2I .�0; 2bs/; s 2 S2I

.1GL1 ; 2bj /; j 2 J2I .1GL1 ; 2bs/; s 2 S1
¯
:

Note that Jord1 is a multi-set. Let Jord2 be a set consisting of different Jordan blocks
with odd multiplicities in Jord1. Thus Jord2 has the form of (3.1). By Theorem 3.1, there
is a corresponding irreducible strongly negative unramified representation �sn. Then we
define the following Jordan blocks:

JordI D ¹.�iq; 2bi C 1/; .�
i;�1
q ; 2bi C 1/; i 2 I; 1 � q � ai ; ˇ

i
q D 0º;

JordJ1 D ¹.�
j
q ; 2bj /; .�

j;�1
q ; 2bj /; j 2 J1; 1 � q � aj ; ˇ

j
q D 0º;

JordJ2 D ¹.�
j
q ; 2bj /; .�

j;�1
q ; 2bj /; j 2 J2; 1 � q � aj � 1; ˇ

j
q D 0º;

JordS1 D ¹.�
s
q; 2bs/; .�

s;�1
q ; 2bs/; s 2 S1; 1 � q � as; ˇ

s
q D 0º;

JordS2 D ¹.�
s
q; 2bs/; .�

s;�1
q ; 2bs/; s 2 S2; 1 � q � as; ˇ

s
q D 0º:

Finally, we define

Jord3 D .Jord1nJord2/ [ JordI [ JordJ1 [ JordJ2 [ JordS1 [ JordS2 :

By Theorem 3.2, corresponding to the data Jord3 and �sn, there is an irreducible negative
unramified presentation �neg.

Let

eI D ¹.�iq; 2bi C 1; ˇ
i
q/; i 2 I; 1 � q � ai ; ˇ

i
q > 0º;

eJ1 D ¹.�
j
q ; 2bj ; ˇ

j
q /; j 2 J1; 1 � q � aj ; ˇ

j
q > 0º;

eJ2 D ¹.�
j
q ; 2bj ; ˇ

j
q /; j 2 J2; 1 � q � aj � 1; ˇ

j
q > 0º;

eS1 D ¹.�
s
q; 2bs; ˇ

s
q/; s 2 S1; 1 � q � as; ˇ

s
q > 0º;

eS2 D ¹.�
s
q; 2bs; ˇ

s
q/; s 2 S2; 1 � q � as; ˇ

s
q > 0º:

Then we define
e D eI [ eJ1 [ eJ2 [ eS1 [ eS2 :

Since the unramified component �v is unitary, we must have that .e; �neg/ 2Mu;unr.n/,
and �v is exactly the irreducible unramified unitary representation � of Gn.F / which
corresponds to .e; �neg/ as in Theorem 3.5.

4.2. Proof of Theorem 1.3

The following result from [22] is needed for the proof of Theorem 1.3.

Proposition 4.1 ([22, Proposition 6.1]). For any finitely many non-square elements ˛i …
k�=.k�/2, 1 � i � t , there are infinitely many finite places v such that ˛i 2 .k�v /

2 for any
1 � i � t .
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Now we are going to prove Theorem 1.3. First we consider the cases of Gn D Sp2n,
SO2nC1, SO˛2n. Given any  D �riD1.�i ; bi / 2 z‰2.Gn/, assume that ¹�i1 ; : : : ; �iq º is
a multi-set of all the � ’s with non-trivial central characters. Since all �ij ’s are self-dual, the
central characters !�ij ’s are all quadratic characters, which are parameterized by global
non-square elements. Assume that !�ij D �˛ij , where ˛ij 2 k

�=.k�/2, and �˛ij is the
quadratic character given by the global Hilbert symbol .�; ˛ij /. Note that ¹˛i1 ; : : : ; ˛iq º
is a multi-set. By Proposition 4.1, there are infinitely many finite places v such that ˛
and ˛ij ’s are all squares in kv . Therefore, for the given  , there are infinitely many
finite places v such that Gn.kv/ split and all �i;v’s have trivial central characters. From
the discussion in Section 3, for any � 2 z… ." /, there is a finite local place v with
such a property that �v is an irreducible unramified unitary representation of Type I as
in (3.3).

We are going to discuss the connection with the classification of Barbasch in [4].
Assume first that Gn D Sp2n; SO˛2n. If � is an irreducible unramified unitary rep-

resentation of Gn.kv/ corresponding to the pair .e; �neg/ 2 Mu;unr.n/, then the orbit LO
corresponding to � in [4] is given by the following partition:�� tY

jD1

n2j

�� Y
.�;m;˛/2e

m2
�� kY

iD1

.2ni C 1/

�� lY
iD1

.2mi C 1/

��
:

When �v is of Type I as in (3.3), the orbit LO corresponding to � D �v in [4] is given by
the following partition:�� tY

jD1

n2j

�� Y
.�;m;˛/2e

m2
�� lY

iD1

.2mi C 1/

��
; (4.1)

which turns out to be p. / exactly.
Assume now that Gn D SO2nC1. If � is an irreducible unramified unitary repres-

entation of Gn.kv/ corresponding to the pair .e; �neg/ 2 Mu;unr.n/, then the orbit LO
corresponding to � in [4] is given by the following partition:�� tY

jD1

n2j

�� Y
.�;m;˛/2e

m2
�� kY

iD1

.2ni /

�� lY
iD1

.2mi /

��
: (4.2)

When �v is of Type I as in (3.3), the orbit LO corresponding to � D �v in [4] is given by
the following partition:�� tY

jD1

n2j

�� Y
.�;m;˛/2e

m2
�� lY

iD1

.2mi /

��
;

which turns out to be p. / exactly.
We claim that for the cases of GnD Sp2n;SO2nC1;SO˛2n, Theorem 1.3 can be deduced

from the following theorem whose proof will be given in the next three sections.
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Theorem 4.2. Let � be an irreducible unramified unitary representations of Gn.kv/ of
Type I as in (3.3). For any p 2 pm.�/, the following bound

p � �g_n ;gn

�� tY
jD1

n2j

�� Y
.�;m;˛/2e

m2
�� lY

iD1

.2mi C 1/

��
holds with the partition on the left-hand side from (4.1) when Gn D Sp2n; SO2n; and the
following bound

p � �g_n ;gn

�� tY
jD1

n2j

�� Y
.�;m;˛/2e

m2
�� lY

iD1

.2mi /

��
holds with the partition on the left-hand side from (4.2) when Gn D SO2nC1.

For the case when Gn D Un and E=k is a quadratic extension, by similar arguments,
for any � 2 z… ." /, there is a finite local place v such that Gn.Ev/ D GLn.kv/ �
GLn.kv/, split, and �v is unramified. Then, Theorem 1.3 is simply implied by the classi-
fication of the unramified unitary dual of GLn [42] and the result of Mœglin and Wald-
spurger on the wavefront set of representations of GLn [30, Section II.2]. Note that for
Gn D Un, the Barbasch–Vogan–Spaltenstein duality is just the transpose of partitions.
We omit the details here.

This completes the proof of Theorem 1.3.

Remark 4.3. We expect that the method of proving Theorem 1.3 in this paper also
applies to the inner forms of even orthogonal groups, once the full Arthur classification
of the discrete spectrum is carried out (see [7, 8] for recent progress in this direction).
The same method can also be applied to the metaplectic double cover of symplectic
groups, whose proof will appear elsewhere. Note that for the metaplectic double cover of
symplectic groups, the notion of Barbasch–Vogan–Spaltenstein duality has been defined
in [5].

5. Proof of Theorem 4.2, Gn D Sp2n

First, we recall the following general lemma which can be deduced from the argument in
[30, Section II.1.3].

Lemma 5.1 ([30, Section II.1.3]). Let G be a reductive group defined over a non-Archi-
medean local field F , and let Q D MN be a parabolic subgroup of G. Let ı be an
irreducible admissible representation of M . Then

nm.IndGQı/ D ¹Indg
qO W O 2 nm.ı/º;

where q and g are the Lie algebras ofQ andG, respectively. For induced nilpotent orbits,
see [11, Chapter 7].
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Now we prove Theorem 4.2 for the case Gn D Sp2n. By the assumption of The-
orem 4.2, � is of Type I and is of the form

� D �.�;m;˛/2ev
˛�.detm/ Ì �neg;

where �neg is the unique irreducible negative unramified subrepresentation of the follow-
ing induced representation:

�1.detn1/ � � � � � �t .detnt / Ì �sn;

with �sn being the unique strongly negative unramified constituent of the following in-
duced representation:

�
ml�1�ml

2 1detml�1CmlC1
� �

ml�3�ml�2
2 1detml�3Cml�2C1

� � � � � �
m2�m3

2 1detm2Cm3C1
Ì 1Sp2m1

:

Recall that mi 2 Z, 0 < m1 < m2 < � � � < ml , and l is odd.
From the properties of representations of general linear groups, it is known that

pm.�.detk// D ¹Œ1k �º

for any given character � and any integer k. By Lemma 5.1, we have

pm.�.�;m;˛/2ev
˛�.detm/ � �1.detn1/ � � � � � �t .detnt //

D ¹C.�;m;˛/2eŒ1
m�C Œ1n1 �C � � � C Œ1nt �º D

²�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t³
:

By Theorem 3.8, Lemma 5.1, and by [11, Theorem 7.3.3] on formula for induced nilpotent
orbits, for any p 2 pm.�/, we have

p �

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �so2kC1;sp2k

�� lY
jD1

.2mj C 1/

���
Sp2n

;

where 2k D .
Pl
iD1.2mi C 1// � 1.

To prove Theorem 4.2 in this case, it suffices to show the following lemma.

Lemma 5.2. The following identity

�so2nC1;sp2n.p. //

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �so2kC1;sp2k

�� lY
jD1

.2mj C 1/

���
Sp2n

holds with 2k D .
Pl
iD1.2mi C 1// � 1.
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Proof. Recall that

p. / D

�� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

�� lY
jD1

.2mj C 1/

��
and

�so2nC1;sp2n.p. // D ..p. /
�/Sp2n/

t ;

where given any partition p D Œpr � � �p1� with pr � � � � � p1, we have that

p� D Œpr � � � .p1 � 1/�:

On the other hand, we have�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �so2kC1;sp2k

�� lY
jD1

.2mj C 1/

���
Sp2n

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C

��� lY
jD1

.2mj C 1

����
Sp2k

�t�
Sp2n

D

��� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj C 1/

���
Sp2k

��t�
Sp2n

:

Given any partition p of Sp2n, it is known that .pSp2n/t D .pt /Sp2n (see [11, proof of
Theorem 6.3.11]). Note that�� Y

.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj C 1/

���
Sp2k

��
is indeed a symplectic partition. Hence, we have��� Y

.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj C 1/

���
Sp2k

��t�
Sp2n

D

��� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj C 1/

���
Sp2k

��Sp2n�t
:

Therefore, we only need to show that

.p. /�/Sp2n D

�� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj C 1/

���
Sp2k

��Sp2n
: (5.1)

Note that�� lY
jD1

.2mj C 1/

���
Sp2k

D Œ.2ml /.2ml�1 C 2/ � � � .2m3/.2m2 C 2/.2m1/�:
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We have to rewrite the partition�� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

��
as Œk2s k

2
s�1 � � �k

2
1 �with ks � ks�1 � � � � � k1. To proceed, we consider the following cases:

(1) k1 � 2m1 C 1;

(2) k1 < 2m1 C 1.

In each case, for 1 � j � l�1
2

, we list all the different odd ki ’s between 2m2jC1 C 1 and
2m2j C 1 as

2m2jC1 C 1 > k
1
j > k

2
j > � � � > k

sj
j > 2m2j C 1:

Case (1): k1 � 2m1 C 1. We have

p. /� D

�
.k2s k

2
s�1 � � � k

2
1/

� lY
jD2

.2mj C 1/

�
.2m1/

�
:

Then .p. /�/Sp2n is obtained from p. /� via replacing .2m2jC1 C 1; 2m2j C 1/ by
.2m2jC1; 2m2j C 2/, and ki;2j by .kij C 1; k

i
j � 1/ for 1 � j � l�1

2
, 1 � i � sj . On the

other hand, we have�
k2s � � � k

2
1

��� lY
jD1

.2mj C 1/

���
Sp2k

��Sp2n

D Œk2s � � � k
2
1.2ml /.2ml�1 C 2/ � � � .2m3/.2m2 C 2/.2m1/�

Sp2n ;

which is obtained from

Œk2s � � � k
2
1.2ml /.2ml�1 C 2/ � � � .2m3/.2m2 C 2/.2m1/�

via replacing ki;2j by .kij C 1; k
i
j � 1/ for 1 � j � l�1

2
, 1 � i � sj . Hence, we deduce

that (5.1) holds.

Case (2): k1 < 2m1 C 1. We have

p. /� D

�
.k2s k

2
s�1 � � � k

2
2/

� lY
jD1

.2mj C 1/

�
.k1/.k1 � 1/

�
:

To carry out the Sp2n-collapse of p. /�, we also need to list all the different odd ki ’s
between 2m1 C 1 and k1 as

2m1 C 1 > k
1
0 > k

2
0 > � � � > k

s0
0 > k1:

Then .p. /�/Sp2n is obtained from p. /� via replacing .2m2jC1 C 1; 2m2j C 1/ by
.2m2jC1; 2m2j C 2/ and ki;2j by .kij C 1; k

i
j � 1/, for 1 � j � l�1

2
, 1 � i � sj ; and then
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replacing .2m1 C 1; k1 � 1/ by .2m1; k1/ if k1 is even, .2m1 C 1; k1/ by .2m1; k1 C 1/
if k1 is odd, and ki;20 by .ki0 C 1; k

i
0 � 1/ for 1 � i � s0. On the other hand, we get�

k2s � � � k
2
1

��� lY
jD1

.2mj C 1/

���
Sp2k

��Sp2n

D Œk2s � � � k
2
1.2ml /.2ml�1 C 2/ � � � .2m3/.2m2 C 2/.2m1/�

Sp2n ;

which is obtained from Œk2s � � �k
2
1.2ml /.2ml�1C 2/ � � � .2m3/.2m2C 2/.2m1/� via repla-

cing ki;2j by .kij C 1; k
i
j � 1/, for 1 � j � l�1

2
, 1 � i � sj ; and then replacing k21 by

.k1 C 1; k1 � 1/ if k1 is odd, ki;20 by .ki0 C 1; k
i
0 � 1/, for 1 � i � s0. Hence, we deduce

that (5.1) still holds.
This completes the proof of the lemma.

The proof of Theorem 4.2 has been completed for Gn D Sp2n.

6. Proof of Theorem 4.2, Gn D SO2nC1

By the assumption of Theorem 4.2, � is of Type I and is of the form

� D �.�;m;˛/2ev
˛�.detm/ Ì �neg;

where �neg is the unique irreducible negative unramified subrepresentation of the follow-
ing induced representation

�1.detn1/ � � � � � �t .detnt / Ì �sn;

with �sn being the unique strongly negative unramified constituent of the following in-
duced representation:

�
ml�1�ml

2 1detml�1Cml
� �

ml�3�ml�2
2 1detml�3Cml�2

� � � � � �
m1�m2

2 1detm1Cm2
Ì 1SO1 :

Recall that mi 2 Z, 0 � m1 < m2 < � � � < ml , and l is even.
As in Section 5, by Lemma 5.1, we have

pm.�.�;m;˛/2ev
˛�.detm/ � �1.detn1/ � � � � � �t .detnt //

D

²�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t³
:

By Theorem 3.8, Lemma 5.1, and by [11, Theorem 7.3.3] on formula for induced nilpotent
orbits, any p 2 pm.�/ has the following upper bound:

p �

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �sp2k ;so2kC1

�� lY
jD1

.2mj /

���
SO2nC1

;

where 2k D
Pl
iD1.2mi /.

To prove Theorem 4.2 in this case, it suffices to show the following lemma.
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Lemma 6.1. The following identity

�sp2n;so2nC1.p. //

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �sp2k ;so2kC1

�� lY
jD1

.2mj /

���
SO2nC1

holds with 2k D
Pl
iD1.2mi /.

Proof. Recall that

p. / D

�� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

�� lY
jD1

.2mj /

��
and

�sp2k ;so2kC1.p. // D ..p. /
C/SO2nC1/

t ;

where for any given partition p D Œpr � � �p1� with pr � � � � � p1, we have

pC D Œ.pr C 1/ � � �p1�:

On the other hand, we have�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �sp2k ;so2kC1

�� lY
jD1

.2mj /

���
SO2nC1

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C

��� lY
jD1

.2mj /

�C�
SO2kC1

�t�
SO2nC1

D

��� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj /

�C�
SO2kC1

��t�
SO2nC1

:

Given any partition p of SO2nC1, it is known that .pSO2nC1/t D .pt /SO2nC1 (see [11,
proof of Theorem 6.3.11]). Note that�� Y

.�;m;˛/2e

m2/

� tY
iD1

n2i

���� lY
jD1

.2mj /

�C�
SO2kC1

��
is indeed an orthogonal partition. Hence, we obtain that��� Y

.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj /

�C�
SO2kC1

��t�
SO2nC1

D

��� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj /

�C�
SO2kC1

��SO2nC1�t
:
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Therefore, we only need to show that

.p. /C/SO2nC1 D

�� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

���� lY
jD1

.2mj /

�C�
SO2kC1

��SO2nC1
: (6.1)

Note that the partition �� lY
jD1

.2mj /

�C�
SO2kC1

is equal to

Œ.2ml C 1/.2ml�1 � 1/.2ml�2 C 1/ � � � .2m3 � 1/.2m2 C 1/.2m1 � 1/1�;

where we omit the “.2m1 � 1/1”-term if 2m1 D 0.
We are going to rewrite the partition�� Y

.�;m;˛/2e

m2
�� tY

iD1

n2i

��
as Œk2s k

2
s�1 � � �k

2
1 �with ks � ks�1 � � � � � k1. To proceed, we consider the following cases:

(1) ks � 2ml ;

(2) ks > 2ml .

In each case, for 1 � j � l�2
2

, we list all the different even ki ’s between 2m2jC1 and
2m2j as

2m2jC1 > k
1
j > k

2
j > � � � > k

sj
j > 2m2j :

Case (1): ks � 2ml . We have

p. /C D

�
.k2s � � � k

2
1/.2ml C 1/

l�1Y
jD1

.2mj /

�
:

If 2m1 ¤ 0, to carry out the SO2nC1-collapse of p. /C, we also need to list all the
different even ki ’s between 2m1 and 0 as

2m1 > k
1
0 > k

2
0 > � � � > k

s0
0 > 0:

Then .p. /C/SO2nC1 is obtained from p. /C via replacing .2m2jC1; 2m2j / by
.2m2jC1 � 1; 2m2j C 1/ and ki;2j by .kij C 1; k

i
j � 1/, for 1 � j � l�2

2
and 1 � i � sj ;

and then replacing .2m1; 0/ by .2m1 � 1; 1/ and ki;20 by .ki0 C 1; k
i
0 � 1/with 1� i � s0,

if 2m1 ¤ 0. On the other hand, we have�
k2s � � � k

2
1

��� lY
jD1

.2mj /

�C�
SO2kC1

��SO2nC1

D Œk2s � � � k
2
1.2ml C 1/.2ml�1 � 1/.2ml�2 C 1/ � � � .2m1 � 1/1�

SO2nC1 ;
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which is obtained from

Œk2s � � � k
2
1.2ml C 1/.2ml�1 � 1/.2ml�2 C 1/ � � � .2m1 � 1/1�

via replacing ki;2j by .kij C 1; k
i
j � 1/ for 1 � j � l�2

2
, 1 � i � sj ; and then replacing

k
i;2
0 by .ki0 C 1; k

i
0 � 1/, 1 � i � s0. Hence, (6.1) holds in this case.

Case (2): ks > 2ml . We have

p. /C D

�
..ks C 1/ksk

2
s�1 � � � k

2
1/

� lY
jD1

.2mj /

��
:

To carry out the SO2nC1-collapse of p. /C, we also need to list all the different even
ki ’s between ks and 2ml as

ks > k
1
l > k

2
l > � � � > k

sl
l
> 2ml ;

and if 2m1 ¤ 0, list all the different even ki ’s between 2m1 and 0 as

2m1 > k
1
0 > k

2
0 > � � � > k

s0
0 > 0:

Then .p. /C/SO2nC1 is obtained from p. /C via replacing .2m2jC1; 2m2j / by
.2m2jC1 � 1;2m2j C 1/ and ki;2j by .kij C 1; k

i
j � 1/ for 1� j � l�2

2
and 1� i � sj ; and

replacing .ks C 1; 2ml / by .ks; 2ml C 1/ if ks is odd and .ks; 2ml / by .ks � 1; 2ml C 1/
if ks is even, and ki;2

l
by .ki

l
C 1; ki

l
� 1/ with 1 � i � sl ; and finally replacing .2m1; 0/

by .2m1 � 1; 1/ and ki;20 by .ki0 C 1; k
i
0 � 1/ for 1 � i � s0, if 2m1 ¤ 0. On the other

hand, we have�
k2s � � � k

2
1

��� lY
jD1

.2mj /

�C�
SO2kC1

��SO2nC1

D Œk2s � � � k
2
1.2ml C 1/.2ml�1 � 1/.2ml�2 C 1/ � � � .2m1 � 1/1�

SO2nC1 ;

which is obtained from

Œk2s � � � k
2
1.2ml C 1/.2ml�1 � 1/.2ml�2 C 1/ � � � .2m1 � 1/1�

via replacing k2s by .ks C 1; ks � 1/ if ks is even and ki;2j by .kij C 1; k
i
j � 1/ for 1 �

j � l�2
2

and 1 � i � sj ; and replacing ki;2
l

by .ki
l
C 1; ki

l
� 1/ for 1 � i � sl ; and finally

replacing ki;20 by .ki0 C 1; k
i
0 � 1/ for 1 � i � s0. Hence, (6.1) still holds in this case.

This completes the proof of the lemma.

The proof of Theorem 4.2 has been completed for Gn D SO2nC1.
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7. Proof of Theorem 4.2, Gn D SO2n

By the assumption of Theorem 4.2, � is of Type I and is of the form

� D �.�;m;˛/2ev
˛�.detm/ Ì �neg;

where �neg is the unique irreducible negative unramified subrepresentation of the follow-
ing induced representation:

�1.detn1/ � � � � � �t .detnt / Ì �sn;

with �sn being the unique strongly negative unramified constituent of the following in-
duced representation:

�
ml�1�ml

2 1detml�1CmlC1
� �

ml�3�ml�2
2 1detml�3Cml�2C1

� � � � � �
m1�m2

2 1detm1Cm2C1
Ì 1SO0 :

Recall that mi 2 Z, 0 < m1 < m2 < � � � < ml , and l is even.
As in Sections 5 and 6, by Lemma 5.1, we have

pm.�.�;m;˛/2ev
˛�.detm/ � �1.detn1/ � � � � � �t .detnt //

D

²�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t³
:

By Theorem 3.8, Lemma 5.1, and by [11, Theorem 7.3.3] on formula for induced nilpotent
orbits, any p 2 pm.�/ has the following upper bound:

p �

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �o2k ;o2k

�� lY
jD1

.2mj C 1/

���
SO2n

with 2k D
Pl
iD1.2mi C 1/.

To prove Theorem 4.2 in this case, it suffices to show the following lemma.

Lemma 7.1. The following identity

�so2n;so2n.p. //

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �o2k ;o2k

�� lY
jD1

.2mj C 1/

���
SO2n

holds with 2k D
Pl
iD1.2mi C 1/.

Proof. Recall that

p. / D

�� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

�� lY
jD1

.2mj C 1/

��
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and
�so2n;so2n.p. // D .p. /

t /SO2n :

Also recall that given any partition p D Œpr � � �p1� with pr � � � � � p1, we have

pC D Œ.pr C 1/ � � �p1�;

p� D Œpr � � � .p1 � 1/�:

By [1, Lemma 3.3], given a partition p of 2n, if it is an orthogonal partition or its transpose
is a symplectic partition, then .pt /SO2n D ..p

C�/Sp2n/
t . Hence, we obtain that�

2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �so2k ;so2k

�� lY
jD1

.2mj C 1/

���
SO2n

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C

�� lY
jD1

.2mj C 1/

�t�
SO2k

�
SO2n

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C

��� lY
jD1

.2mj C 1/

�C��
Sp2k

�t�
SO2n

:

It is easy to see that�� Y
.�;m;˛/2e

m2
�� tY

iD1

n2i

�� lY
jD1

.2mj C 1/

��t
D 2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C

�� lY
jD1

.2mj C 1/

��t
is a partition of the following form�

p1l � � �p
2m1C1

l

� l�1Y
jD1

p1j � � �p
2mlC1�j�2ml�j
j

�
p10 � � �p

m0
0

�
;

where pi
l

with 1� i � 2m1C 1, pi2j with 1� i � 2mlC1�2j � 2ml�2j and 1� j � l�2
2

,
and pk0 with 1 � k � m0 are all even; and pi2jC1 with 1 � i � 2ml�2j � 2ml�2j�1
and 0 � j � l�2

2
are all odd; and finally,

p1l � � � � � p
2m1C1

l
> p1l�1; p1j � � � � � p

2mlC1�j�2ml�j
j > p1j�1; 1 � j � l � 1;

with p10 � � � � � p
m0
0 . Note that�� lY

jD1

.2mj C 1/

�C��
Sp2k

D

�
.2ml C 2/

l�1Y
jD2

.2mj C 1/.2m1/

�
Sp2k

D

�
.2ml C 2/

.l�2/=2Y
jD1

.2m2jC1/.2m2j C 2/.2m1/

�
:
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Then the partition

2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C

��� lY
jD1

.2mj C 1/

�C��
Sp2k

�t
is equal to the following partition�

p1l � � �p
2m1
l

.p
2m1C1

l
� 1/

.l�2/=2Y
jD0

p12jC1 � � �p
2ml�2j�2ml�2j�1
2jC1

�

.l�2/=2Y
jD1

.p12j C 1/p
2
2j � � �p

2mlC1�2j�2ml�2j�1

2j .p
2mlC1�2j�2ml�2j
2j � 1/

� .p10 C 1/p
2
0 � � �p

m0
0

�
:

Following the recipe on carrying out the SO2n-collapse [11, Lemma 6.3.8], we obtain that
the partition ��� Y

.�;m;˛/2e

m2
�� tY

iD1

n2i

�� lY
jD1

.2mj C 1/

��t�
SO2n

is equal to the following partition�
.p1l � � �p

2m1
l

/SO.p
2m1C1

l
� 1/

.l�2/=2Y
jD0

p12jC1 � � �p
2ml�2j�2ml�2j�1
2jC1

�

.l�2/=2Y
jD1

.p12j C 1/.p
2
2j � � �p

2mlC1�2j�2ml�2j�1

2j /SO.p
2mlC1�2j�2ml�2j
2j � 1/

� .p10 C 1/.p
2
0 � � �p

m0
0 /SO

�
;

and the partition�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C

��� lY
jD1

.2mj C 1/

�C��
Sp2k

�t�
SO2n

can be written as�
p1l � � �p

2m1
l

.p
2m1C1

l
� 1/

.l�2/=2Y
jD0

p12jC1 � � �p
2ml�2j�2ml�2j�1
2jC1

�

.l�2/=2Y
jD1

.p12j C 1/p
2
2j � � �p

2mlC1�2j�2ml�2j�1

2j .p
2mlC1�2j�2ml�2j
2j � 1/

� .p10 C 1/p
2
0 � � �p

m0
0

�
SO2n

;
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which is equal to�
.p1l � � �p

2m1
l

/SO.p
2m1C1

l
� 1/

.l�2/=2Y
jD0

p12jC1 � � �p
2ml�2j�2ml�2j�1
2jC1

�

.l�2/=2Y
jD1

.p12j C 1/.p
2
2j � � �p

2mlC1�2j�2ml�2j�1

2j /SO.p
2mlC1�2j�2ml�2j
2j � 1/

� .p10 C 1/.p
2
0 � � �p

m0
0 /SO

�
:

Hence, we obtain that

�so2n;so2n.p. //

D

�
2

�� Y
.�;m;˛/2e

m
�� tY

iD1

ni

��t
C �so2k ;so2k

�� lY
jD1

.2mj C 1/

���
SO2n

:

This completes the proof of the lemma.

The proof of Theorem 4.2 has been completed for Gn D SO2n.

8. On the wavefront set of unramified unitary representations

In this last section, we study the wavefront set of the unramified unitary representations
for split classical groups Gn D Sp2n; SO2nC1;O2n. Under assumptions on the leading
orbits in the wavefront set of negative representations, we determine the set pm.�/ for
general unramified unitary representations. This reduction process has its own interests.
We remark that for representations of non-connected groups O2n, we follow [10] for the
character expansions at the identity to define the wavefront set.

Assume that � is any irreducible unramified unitary representation of Gn.F / as in
Theorem 3.5,

� D �.�;m;˛/2ev
˛�.detm/ Ì �neg;

where �neg is a negative representation of Gn�.F /, and

Jord.�neg/ D Jord.�sn/ [ ¹.�i ; ni /; .�
�1
i ; ni / j 1 � i � tº:

Here Jord.�sn/ is equal to

¹.�0; 2n1 C 1/; : : : ; .�0; 2nk C 1/; .1GL1 ; 2m1 C 1/; : : : ; .1GL1 ; 2ml C 1/º;

when Gn� D Sp2n� ;O2n� , and is equal to

¹.�0; 2n1/; : : : ; .�0; 2nk/; .1GL1 ; 2m1/; : : : ; .1GL1 ; 2ml /º;

when Gn� D SO2n�C1, as in Section 3.
We have the following conjecture on the maximal partitions in the wavefront set of

negative representations.
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Conjecture 8.1. Given negative representations �neg as above, we have

pm.�neg/ D

²
�g_
n�
;gn�

��� tY
jD1

n2j

�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

���³
;

when Gn� D Sp2n� ;O2n� ;

pm.�neg/ D

²
�g_
n�
;gn�

��� tY
jD1

n2j

�� lY
iD1

.2mi /

kY
sD1

.2ns/

���³
;

when Gn� D SO2n�C1.

Based on Conjecture 8.1, we obtain the explicit description of the maximal partitions
in the wavefront set of general irreducible unramified unitary representations � of Gn.F /.

Theorem 8.2. Assume Conjecture 8.1 is true. For any irreducible unramified unitary rep-
resentation � of Gn.F /, the maximal partitions in the wavefront set p.�/ are given as
follows:

pm.�/ D

²
�g_n ;gn

��� Y
.�;m;˛/2e

m2
�� tY

jD1

n2j

�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

���³
when Gn D Sp2n;O2n; and

pm.�/ D

²
�g_n ;gn

��� Y
.�;m;˛/2e

m2
�� tY

jD1

n2j

�� lY
iD1

.2mi /

kY
sD1

.2ns/

���³
when Gn D SO2nC1.

We remark that Ciubotaru, Mason-Brown, and Okada [9] recently computed the max-
imal orbits in the wavefront set of irreducible Iwahori-spherical representations of split
connected reductive p-adic groups with “real infinitesimal characters”, which partially
proved Conjecture 8.1 and Theorem 8.2. This provides evidence for Conjecture 8.1.

By Lemma 5.1, we have

pm.�.�;m;˛/2ev
˛�.detm// D ¹C.�;m;˛/2eŒ1

m�º D
°h� Y

.�;m;˛/2e

m
�it±

:

By Lemma 5.1, and by [11, Theorem 7.3.3] on formula for induced nilpotent orbits,
we obtain that

pm.�/ D
°�
2
h� Y

.�;m;˛/2e

m
�it
C p

�neg

�
Gn

ˇ̌
p
�neg
2 pm.�neg/

±
:

Hence, by the assumption, to prove Theorem 8.2, it suffices to show the following lemma
which will be proved case-by-case in the following subsections.
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Lemma 8.3. The following identities hold:

�g_n ;gn

��� Y
.�;m;˛/2e

m2
�� tY

jD1

n2j

�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

���
D

�
2

�� Y
.�;m;˛/2e

m
��t
C �g_

n�
;gn�

��� tY
jD1

n2j

�� lY
iD1

.2miC 1/

kY
sD1

.2nsC 1/

����
Gn

when Gn D Sp2n;O2n; and

�g_n ;gn

��� Y
.�;m;˛/2e

m2
�� tY

jD1

n2j

�� lY
iD1

.2mi /

kY
sD1

.2ns/

���
D

�
2

�� Y
.�;m;˛/2e

m
��t
C �g_

n�
;gn�

��� tY
jD1

n2j

�� lY
iD1

.2mi /

kY
sD1

.2ns/

����
Gn

when Gn D SO2nC1.

8.1. Proof of Lemma 8.3, Gn D Sp2n

By arguments similar to those in the proof of the Sp2n-case of Lemma 5.2, we only need
to show that��� Y

.�;m;˛/2e

m2
�� tY

jD1

n2j

�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

����
Sp2n

(8.1)

D

�� Y
.�;m;˛/2e

m2
���� tY

jD1

n2j

�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

����
Sp2n�

�Sp2n
:

For any given partition p D Œpr � � �p1� with pr � � � � � p1, we recall that p� D Œpr � � �
.p1 � 1/�. Rewrite the partition Œ

Q
.�;m;˛/2em

2� as Œp2up
2
u�1 � � � p

2
1 � with pu � pu�1 �

� � � � p1; and Œ
Qt
iD1 n

2
i � as Œq2vq

2
v�1 � � � q

2
1 � with qv � qv�1 � � � � � q1. And rewrite�� lY

iD1

.2mi C 1/

kY
sD1

.2ns C 1/

��
as Œ
QlCk
wD1.2rw C 1/� with rlCk � rlCk�1 � � � � � r1 > 0. Then, (8.1) becomes��� uY

iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n

D

�� uY
iD1

p21

���� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n�

�Sp2n
: (8.2)
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To proceed, we consider the following cases:

(1) When q1 � 2r1 C 1, we have (a) p1 � 2r1 C 1 and (b) p1 < 2r1 C 1.
(2) When q1 < 2r1 C 1, we have (a) p1 � q1, and (b) p1 < q1.

In each case, for 1 � z � lCk�1
2

, if 2r2zC1 C 1 > 2r2z C 1, we list all the different
odd pi ’s, qj ’s between 2r2zC1 C 1 and 2r2z C 1 as

2r2zC1 C 1 > p
1
z > p

2
z > � � � > p

xz
z > 2r2z C 1;

2r2zC1 C 1 > q
1
z > q

2
z > � � � > q

yz
z > 2r2z C 1:

Case (1-a): q1 � 2r1 C 1, p1 � 2r1 C 1. We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n

D

�� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n

:

The collapse �� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n

can be obtained from �� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
via replacing .2r2zC1 C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/, p

i;2
z by .piz C 1; p

i
z � 1/,

and qj;2z by .qjz C 1; q
j
z � 1/, for 1 � z � lCs�1

2
, 1 � i � xz , and 1 � j � yz , whenever

2r2zC1 C 1 > 2r2z C 1. On the other hand, we have�� uY
iD1

p21

���� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n�

�Sp2n

D

�� uY
iD1

p21

��� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n�

�Sp2n
: (8.3)

Then �� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n�

can be obtained from �� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
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via replacing .2r2zC1C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/ and qj;2z by .qjz C 1; q
j
z � 1/,

for 1 � z � lCs�1
2

and 1 � j � yz , whenever 2r2zC1 C 1 > 2r2z C 1. And the partition�� uY
iD1

p21

��� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n�

�Sp2n

can be obtained from�� uY
iD1

p21

��� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n�

�
via replacing pi;2z by .piz C 1; p

i
z � 1/ for 1 � z � lCs�1

2
and 1 � i � xz , whenever

2r2zC1 C 1 > 2r2z C 1. Hence, (8.2) holds in this case.

Case (1-b): q1 � 2r1 C 1, p1 < 2r1 C 1. We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n

D

�� uY
iD2

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/p1.p1 � 1/

�
Sp2n

:

To carry out the Sp2n-collapse, we also need to list all the different odd pi ’s, qj ’s between
2r1 C 1 and p1 as

2r1 C 1 > p
1
0 > p

2
0 > � � � > p

x0
0 > p1;

2r1 C 1 > q
1
0 > q

2
0 > � � � > q

y0
0 > p1:

Then �� uY
iD2

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/p1.p1 � 1/

�
Sp2n

can be obtained from�� uY
iD2

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/p1.p1 � 1/

�
via replacing .2r2zC1 C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/, p

i;2
z by .piz C 1; p

i
z � 1/,

and qj;2z by .qjz C 1; q
j
z � 1/, for 1 � z � lCs�1

2
, 1 � i � xz , and 1 � j � yz , whenever

2r2zC1 C 1 > 2r2z C 1; and replacing .2r1 C 1; p1 � 1/ by .2r1; p1/ if p1 is even and
.2r1C 1;p1/ by .2r1; p1C 1/ if p1 is odd; and finally replacing pi;20 by .pi0C 1;p

i
0 � 1/

and qj;20 by .qj0 C 1; q
j
0 � 1/, for 1 � i � x0 and 1 � j � y0.

On the other hand, as in case (1-a), we still have (8.3). Then the partition�� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n�
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can be obtained from �� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
via replacing .2r2zC1C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/ and qj;2z by .qjz C 1; q

j
z � 1/,

for 1 � z � lCs�1
2

and 1 � j � yz , whenever 2r2zC1 C 1 > 2r2z C 1. And the partition�� uY
iD1

p21

��� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n�

�Sp2n

can be obtained from�� uY
iD1

p21

��� vY
jD1

q2j

� lCkY
wD2

.2rw C 1/.2r1/

�
Sp2n�

�
via replacing pi;2z by .piz C 1; p

i
z � 1/ for 1 � z � lCs�1

2
and 1 � i � xz , whenever

2r2zC1 C 1 > 2r2z C 1; and then replacing p21 by .p1 C 1; p1 � 1/ if p1 is odd, pi;20 by
.pi0 C 1; p

i
0 � 1/, and qj;20 by .qj0 C 1; q

j
0 � 1/ for 1 � i � x0 and 1 � j � y0. Hence,

(8.2) holds in this case.

Case (2-a): q1 < 2r1 C 1, p1 � q1. We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n

D

�� uY
iD1

p21

�� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n

:

To carry out the Sp2n-collapse, we also need to list all the different odd pi ’s, qj ’s between
2r1 C 1 and q1 as

2r1 C 1 > p
1
0 > p

2
0 > � � � > p

x0
0 > q1;

2r1 C 1 > q
1
0 > q

2
0 > � � � > q

y0
0 > q1:

Then �� uY
iD1

p21

�� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n

can be obtained from�� uY
iD1

p21

�� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
via replacing .2r2zC1 C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/, p

i;2
z by .piz C 1; p

i
z � 1/,

and qj;2z by .qjz C 1; q
j
z � 1/, for 1 � z � lCs�1

2
, 1 � i � xz , and 1 � j � yz , whenever
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2r2zC1 C 1 > 2r2z C 1; and replacing .2r1 C 1; q1 � 1/ by .2r1; q1/ if q1 is even,
.2r1 C 1; q1/ by .2r1; q1 C 1/ if q1 is odd; and finally replacing pi;20 by .pi0 C 1; p

i
0 � 1/

and qj;20 by .qj0 C 1; q
j
0 � 1/ for 1 � i � x0 and 1 � j � y0. On the other hand, we have�� uY

iD1

p21

���� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n�

�Sp2n

D

�� uY
iD1

p21

��� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n�

�Sp2n
: (8.4)

Then �� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n�

can be obtained from �� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
via replacing .2r2zC1 C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/ and qj;2z by .qjz C 1; q

j
z � 1/

for 1 � z � lCs�1
2

and 1 � j � yz , whenever 2r2zC1C 1 > 2r2z C 1; and then replacing
.2r1C 1; q1 � 1/ by .2r1; q1/ if q1 is even and .2r1C 1; q1/ by .2r1; q1C 1/ if q1 is odd,
and qj;20 by .qj0 C 1; q

j
0 � 1/ for 1 � j � y0. And the partition�� uY

iD1

p21

��� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n�

�Sp2n

can be obtained from�� uY
iD1

p21

��� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n�

�
via replacing pi;2z by .piz C 1; p

i
z � 1/ for 1 � z � lCs�1

2
and 1 � i � xz , whenever

2r2zC1C 1> 2r2z C 1; and then replacing pi;20 by .pi0C 1;p
i
0 � 1/ for 1� i � x0. Hence,

(8.2) holds in this case.

Case (2-b): q1 < 2r1 C 1, p1 < q1. We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

���
Sp2n

D

�� uY
iD2

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/p1.p1 � 1/

�
Sp2n

:
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To carry out the Sp2n-collapse, we also need to list all the different odd pi ’s, qj ’s between
2r1 C 1 and p1 as

2r1 C 1 > p
1
0 > p

2
0 > � � � > p

x0
0 > p1;

2r1 C 1 > q
1
0 > q

2
0 > � � � > q

y0
0 > p1:

Then �� uY
iD2

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/p1.p1 � 1/

�
Sp2n

can be obtained from�� uY
iD2

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/p1.p1 � 1/

�
via replacing .2r2zC1 C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/, p

i;2
z by .piz C 1; p

i
z � 1/,

and qj;2z by .qjz C 1; q
j
z � 1/, for 1 � z � lCs�1

2
, 1 � i � xz , and 1 � j � yz , whenever

2r2zC1 C 1 > 2r2z C 1; and then replacing .2r1 C 1; p1 � 1/ by .2r1; p1/ if p1 is even,
.2r1 C 1;p1/ by .2r1; p1 C 1/ if p1 is odd, and also pi;20 by .pi0 C 1;p

i
0 � 1/ and qj;20 by

.q
j
0 C 1; q

j
0 � 1/ for 1 � i � x0 and 1 � j � y0.

On the other hand, we still have (8.4). Then the partition�� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n�

can be obtained from �� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
via replacing .2r2zC1 C 1; 2r2z C 1/ by .2r2zC1; 2r2z C 2/ and qj;2z by .qjz C 1; q

j
z � 1/

for 1 � z � lCs�1
2

and 1 � j � yz , whenever 2r2zC1C 1 > 2r2z C 1; and then replacing
.2r1 C 1; q1 � 1/ by .2r1; q1/ if q1 is even, .2r1 C 1; q1/ by .2r1; q1 C 1/ if q1 is odd,
and also qj;20 by .qj0 C 1; q

j
0 � 1/ if qj0 ¤ q1 and 1 � j � y0. And the partition�� uY

iD1

p21

��� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n�

�Sp2n

can be obtained from�� uY
iD1

p21

��� vY
jD2

q2j

� lCkY
wD1

.2rw C 1/q1.q1 � 1/

�
Sp2n�

�
via replacing pi;2z by .piz C 1; p

i
z � 1/ for 1 � z � lCs�1

2
and 1 � i � xz , whenever

2r2zC1 C 1 > 2r2z C 1; and then replacing p21 by .p1 C 1; p1 � 1/ if p1 is odd, pi;20 by
.pi0 C 1; p

i
0 � 1/ for 1 � i � x0. Hence, (8.1) holds in this case.

The proof of Lemma 8.3 has been completed for Gn D Sp2n.
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8.2. Proof of Lemma 8.3, Gn D SO2nC1

By similar arguments as in the proof of the SO2nC1-case of Lemma 5.2, we only need to
show that��� Y

.�;m;˛/2e

m2
�� tY

jD1

n2j

�� lY
iD1

.2mi /

kY
sD1

.2ns/

��C�
SO2nC1

(8.5)

D

�� Y
.�;m;˛/2e

m2
���� tY

jD1

n2j

�� lY
iD1

.2mi /

kY
sD1

.2ns/

��C�
SO2n�C1

�SO2nC1
:

For any given partition p D Œpr � � �p1� with pr � � � � � p1, recall that pC D Œ.pr C 1/
� � �p1�. Rewrite the partition Œ

Q
.�;m;˛/2em

2� as Œp2up
2
u�1 � � �p

2
1 � with pu � pu�1 � � � � �

p1; and the partition Œ
Qt
iD1 n

2
i � as Œq2vq

2
v�1 � � �q

2
1 � with qv � qv�1 � � � � � q1. And rewrite

the partition Œ.
Ql
iD1.2mi /

Qk
sD1.2ns//� as Œ

QlCk
wD1.2rw/� with rlCk � rlCk�1 � � � � �

r1 � 0. Then, (8.5) becomes��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2nC1

D

�� uY
iD1

p21

���� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2n�C1

�SO2nC1
: (8.6)

To proceed, we consider the following cases:

(1) When qv � 2rlCk , we have (a) pu � 2rlCk and (b) pu > 2rlCk .

(2) When qv > 2rlCk , we have (a) pu � qv and (b) pu > qv .

In each case, for 1 � z � lCk�2
2

, if 2r2zC1 > 2r2z , we list all the different even pi ’s, qj ’s
between 2r2zC1 and 2r2z as

2r2zC1 > p
1
z > p

2
z > � � � > p

xz
z > 2r2z ;

2r2zC1 > q
1
z > q

2
z > � � � > q

yz
z > 2r2z :

If 2r1 ¤ 0, we also list all the different even pi ’s, qj ’s between 2r1 and 0 as

2r1 > p
1
0 > p

2
0 > � � � > p

x0
0 > 0;

2r1 > q
1
0 > q

2
0 > � � � > q

y0
0 > 0:

Case (1-a): qv � 2rlCk , pu � 2rlCk . We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2nC1

D

�� uY
iD1

p21

�� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2nC1

:
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The collapse �� uY
iD1

p21

�� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2nC1

can be obtained from�� uY
iD1

p21

�� vY
jD1

q2j

��
2rlCk C 1

� lCk�1Y
wD1

.2rw/

�
via replacing .2r2zC1; 2r2z/ by .2r2zC1 � 1; 2r2z C 1/, p

i;2
z by .piz C 1; p

i
z � 1/, and

q
j;2
z by .qjz C 1; q

j
z � 1/, for 1 � z � lCs�2

2
, 1 � i � xz , and 1 � j � yz , whenever

2r2zC1 > 2r2z ; and then replacing .2r1; 0/ by .2r1 � 1; 1/, p
i;2
0 by .pi0 C 1; p

i
0 � 1/, and

q
j;2
0 by .qj0 C 1; q

j
0 � 1/, for 1 � i � x0 and 1 � j � y0, if 2r1 ¤ 0.

On the other hand, we have�� uY
iD1

p21

���� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2n�C1

�SO2nC1

D

�� uY
iD1

p21

��� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2n�C1

�SO2nC1
: (8.7)

Then �� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2n�C1

can be obtained from �� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
via replacing .2r2zC1; 2r2z/ by .2r2zC1 � 1; 2r2z C 1/ and qj;2z by .qjz C 1; q

j
z � 1/, for

1 � z � lCs�2
2

and 1 � j � yz , whenever 2r2zC1 > 2r2z ; and then replacing .2r1; 0/ by
.2r1 � 1; 1/ and qj;20 by .qj0 C 1; q

j
0 � 1/ for 1 � j � y0, if 2r1 ¤ 0. And the partition�� uY

iD1

p21

��� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2n�C1

�SO2nC1

can be obtained from�� uY
iD1

p21

��� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2n�C1

�
via replacing pi;2z by .piz C 1; p

i
z � 1/ for 1 � z � lCs�2

2
and 1 � i � xz , whenever

2r2zC1 > 2r2z ; and then replacing pi;20 by .pi0 C 1; p
i
0 � 1/ for 1 � i � x0, if 2r1 ¤ 0.

Hence, (8.6) holds in this case.
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Case (1-b): qv � 2rlCk , pu > 2rlCk . We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2nC1

D

�
.pu C 1/pu

� u�1Y
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2nC1

:

To carry out the SO2nC1-collapse, we also need to list all the different even pi ’s be-
tween pu and 2rlCk as

pu > p
1
lCk > p

2
lCk > � � � > p

xlCk
lCk

> 2rlCk :

The collapse �� uY
iD1

p21

�� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2nC1

can be obtained from�� uY
iD1

p21

�� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
via replacing .pu; 2rlCk/ by .pu � 1; 2rlCk C 1/ if pu is even, .pu C 1; 2rlCk/ by
.pu; 2rlCk C 1/ if pu is odd, and pi;2

lCk
by .pi

lCk
C 1; pi

lCk
� 1/, for 1 � i � xlCk ; and

replacing .2r2zC1; 2r2z/ by .2r2zC1 � 1; 2r2z C 1/, p
i;2
z by .piz C 1;p

i
z � 1/, and qj;2z by

.q
j
z C 1; q

j
z � 1/, for 1 � z � lCs�2

2
, 1 � i � xz , and 1 � j � yz , whenever 2r2zC1 >

2r2z ; and finally replacing .2r1; 0/ by .2r1 � 1; 1/, p
i;2
0 by .pi0 C 1; p

i
0 � 1/, and qj;20 by

.q
j
0 C 1; q

j
0 � 1/, for 1 � i � x0 and 1 � j � y0, if 2r1 ¤ 0.

On the other hand, we still have (8.7). We obtain the partition�� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2n�C1

from �� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
via replacing .2r2zC1; 2r2z/ by .2r2zC1 � 1; 2r2z C 1/ and qj;2z by .qjz C 1; q

j
z � 1/, for

1 � z � lCs�2
2

and 1 � j � yz , whenever 2r2zC1 > 2r2z ; and replacing .2r1; 0/ by
.2r1 � 1; 1/ and qj;20 by .qj0 C 1; q

j
0 � 1/, for 1 � j � y0, if 2r1 ¤ 0. And the partition�� uY

iD1

p21

��� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2n�C1

�SO2nC1
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can be obtained from�� uY
iD1

p21

��� vY
jD1

q2j

�
.2rlCk C 1/

lCk�1Y
wD1

.2rw/

�
SO2n�C1

�
via replacing p2u by .pu C 1; pu � 1/ if pu is even, pi;2

lCk
by .pi

lCk
C 1; pi

lCk
� 1/, for

1 � i � xlCk ; and replacing pi;2z by .piz C 1; p
i
z � 1/, for 1 � z � lCs�2

2
, 1 � i � xz ,

whenever 2r2zC1 > 2r2z ; and finally replacing pi;20 by .pi0 C 1; p
i
0 � 1/, 1 � i � x0, if

2r1 ¤ 0. Hence, (8.6) holds in this case.

Case (2-a): qv > 2rlCk , pu � qv . We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2nC1

D

�� uY
iD1

p21

�
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2nC1

:

To carry out the SO2nC1-collapse, we also need to list all the different even pi ’s and qj ’s
between qv and 2rlCk as

qv > p
1
lCk > p

2
lCk > � � � > p

xlCk
lCk

> 2rlCk ;

qv > q
1
lCk > q

2
lCk > � � � > q

ylCk
lCk

> 2rlCk :

The collapse �� uY
iD1

p21

�
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2nC1

can be obtained from �� uY
iD1

p21

�
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
via replacing .qv; 2rlCk/ by .qv � 1; 2rlCk C 1/ if qv is even, .qv C 1; 2rlCk/ by .qv;
2rlCk C 1/ if qv is odd, pi;2

lCk
by .pi

lCk
C 1; pi

lCk
� 1/, and qj;2

lCk
by .qj

lCk
C 1;q

j

lCk
� 1/,

for 1 � i � xlCk and 1 � j � ylCk ; and replacing .2r2zC1; 2r2z/ by .2r2zC1 � 1;
2r2z C 1/, p

i;2
z by .piz C 1; p

i
z � 1/, and qj;2z by .qjz C 1; q

j
z � 1/, for 1 � z � lCs�2

2
,

1 � i � xz , and 1 � j � yz , whenever 2r2zC1 > 2r2z ; and finally replacing .2r1; 0/ by
.2r1 � 1; 1/, p

i;2
0 by .pi0 C 1; p

i
0 � 1/, and qj;20 by .qj0 C 1; q

j
0 � 1/, for 1 � i � x0 and

1 � j � y0, if 2r1 ¤ 0.
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On the other hand, we have�� uY
iD1

p21

���� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2n�C1

�SO2nC1

D

�� uY
iD1

p21

��
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2n�C1

�SO2nC1
: (8.8)

Then �
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2n�C1

can be obtained from �
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
via replacing .qv; 2rlCk/ by .qv � 1; 2rlCk C 1/ if qv is even, .qv C 1; 2rlCk/ by .qv;
2rlCk C 1/ if qv is odd, and qj;2

lCk
by .qj

lCk
C 1; q

j

lCk
� 1/, for 1 � j � ylCk ; and

replacing .2r2zC1; 2r2z/ by .2r2zC1 � 1; 2r2z C 1/ and qj;2z by .qjz C 1; q
j
z � 1/, for

1 � z � lCs�2
2

and 1 � j � yz , whenever 2r2zC1 > 2r2z ; and finally replacing .2r1; 0/
by .2r1 � 1; 1/ and qj;20 by .qj0 C 1; q

j
0 � 1/ for 1 � j � y0, if 2r1 ¤ 0. And the parti-

tion �� uY
iD1

p21

��
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2n�C1

�SO2nC1

can be obtained from� uY
iD1

p21

��
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2n�C1

via replacing p2u by .pu C 1; pu � 1/ if pu is even, and pi;2
lCk

by .pi
lCk
C 1; pi

lCk
� 1/,

for 1� i � xlCk ; and replacing pi;2z by .piz C 1;p
i
z � 1/ for 1� z� lCs�2

2
and 1� i � xz ,

whenever 2r2zC1 > 2r2z ; and finally replacing pi;20 by .pi0 C 1; p
i
0 � 1/ for 1 � i � x0,

if 2r1 ¤ 0. Hence, (8.6) still holds in this case.

Case (2-b): qv > 2rlCk , pu > qv . We have��� uY
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�C�
SO2nC1

D

�
.pu C 1/pu

� u�1Y
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2nC1

:
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To carry out the SO2nC1-collapse, we also need to list all the different even pi ’s and qj ’s
between pu and 2rlCk as

pu > p
1
lCk > p

2
lCk > � � � > p

xlCk
lCk

> 2rlCk ;

pu > q
1
lCk > q

2
lCk > � � � > q

ylCk
lCk

> 2rlCk :

The collapse Œ.pu C 1/pu.
Qu�1
iD1 p

2
1/.
Qv
jD1 q

2
j /
QlCk
wD1.2rw/�SO2nC1 can be obtained

from �
.pu C 1/pu

� u�1Y
iD1

p21

�� vY
jD1

q2j

� lCkY
wD1

.2rw/

�
via replacing .pu; 2rlCk/ by .pu � 1; 2rlCk C 1/ if pu is even, .pu C 1; 2rlCk/ by
.pu; 2rlCk C 1/ if pu is odd, pi;2

lCk
by .pi

lCk
C 1; pi

lCk
� 1/, and qj;2

lCk
by .qj

lCk
C 1;

q
j

lCk
� 1/, for 1� i � xlCk and 1� j � ylCk ; and replacing .2r2zC1; 2r2z/ by .2r2zC1 �

1; 2r2z C 1/, p
i;2
z by .piz C 1; p

i
z � 1/, and qj;2z by .qjz C 1; q

j
z � 1/, for 1 � z � lCs�2

2
,

1 � i � xz , and 1 � j � yz , whenever 2r2zC1 > 2r2z ; and finally replacing .2r1; 0/ by
.2r1 � 1; 1/, p

i;2
0 by .pi0 C 1; p

i
0 � 1/, and qj;20 by .qj0 C 1; q

j
0 � 1/, for 1 � i � x0 and

1 � j � y0, if 2r1 ¤ 0.
On the other hand, we still have (8.8). We obtain the partition�

.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2n�C1

from �
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
via replacing .qv; 2rlCk/ by .qv � 1; 2rlCk C 1/ if qv is even, .qv C 1; 2rlCk/ by .qv;
2rlCk C 1/ if qv is odd, and qj;2

lCk
by .qj

lCk
C 1;q

j

lCk
� 1/ if qj

lCk
¤ qv , for 1� j � ylCk ;

and replacing .2r2zC1; 2r2z/ by .2r2zC1 � 1; 2r2z C 1/ and qj;2z by .qjz C 1; q
j
z � 1/, for

1 � z � lCs�2
2

and 1 � j � yz , whenever 2r2zC1 > 2r2z ; and finally replacing .2r1; 0/
by .2r1 � 1; 1/ and qj;20 by .qj0 C 1; q

j
0 � 1/, for 1� j � y0, if 2r1 ¤ 0. And the partition�� uY

iD1

p21

��
.qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2n�C1

�SO2nC1

can be obtained from� uY
iD1

p21

���
qv C 1/qv

� v�1Y
jD1

q2j

� lCkY
wD1

.2rw/

�
SO2n�C1

via replacing p2u by .pu C 1; pu � 1/ if pu is even and pi;2
lCk

by .pi
lCk
C 1; pi

lCk
� 1/,

for 1 � i � xlCk ; and replacing pi;2z by .piz C 1;p
i
z � 1/ for 1 � z � lCs�2

2
, 1 � i � xz ,

whenever 2r2zC1 > 2r2z ; and finally replacing pi;20 by .pi0 C 1; p
i
0 � 1/, for 1 � i � x0,

if 2r1 ¤ 0. Hence, (8.6) holds in this case.
The proof of Lemma 8.3 has been completed for Gn D SO2nC1.
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8.3. Proof of Lemma 8.3, Gn D O2n

By similar arguments as in the proof of the O2n-case of Lemma 5.2, we only need to show
that��� Y

.�;m;˛/2e

m2
�� tY

jD1

n2j

�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

��t�
O2n

(8.9)

D

�� Y
.�;m;˛/2e

m2
�t
C

��� tY
jD1

n2j

�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

��t�
O2n�

�
O2n

:

For any given partition p D Œpr � � �p1� with pr � � � � � p1, recall that pC D Œ.pr C 1/
� � �p1� and p�D Œpr � � �.p1� 1/�. Rewrite the partition Œ

Q
.�;m;˛/2em

2� as Œp2up
2
u�1 � � �p

2
1 �

with pu � pu�1 � � � � � p1; and the partition Œ
Qt
iD1 n

2
i � as Œq2vq

2
v�1 � � � q

2
1 � with qv �

qv�1 � � � � � q1. And rewrite the partition�� lY
iD1

.2mi C 1/

kY
sD1

.2ns C 1/

��
as Œ
QlCk
wD1.2rw C 1/� with rlCk � rlCk�1 � � � � � r1 > 0. Then, (8.9) becomes��� uY

iD1

p2i

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n

D

�� uY
iD1

p2i

�t
C

��� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n�

�
O2n

:

As in the proof of the O2n-case of Lemma 5.2, it is easy to see that�� uY
iD1

p2i

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t
D

�� uY
iD1

p2i

�� vY
jD1

q2j

��t
C

�� lCkY
wD1

.2rw C 1/

��t
is a partition of the following form�

p1lCk � � �p
2r1C1

lCk

� lCk�1Y
jD1

p1j � � �p
2rlCkC1�j�2rlCk�j
j

�
p10 � � �p

r0
0

�
;

where pi
lCk

with 1 � i � 2r1 C 1, pi2j with 1 � i � 2rlCkC1�2j � 2rlCk�2j and 1 �
j � lCk�2

2
, and pk0 with 1 � k � r0, are all even; and pi2jC1 with 1 � i � 2rlCk�2j �

2rlCk�2j�1 and 0� j � lCk�2
2

are all odd; and finally p1
lCk
� � � � � p

2r1C1

lCk
, p1j � � � � �

p
2rlCkC1�j�2rlCk�j
j � p1j�1 with 1 � j � l C k � 1, and p10 � � � � � p

r0
0 > 0.
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Following the recipe on carrying out the O2n-collapse [11, Lemma 6.3.8], we obtain
that ��� uY

iD1

p2i

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n

is equal to�
.p1lCk � � �p

2r1
lCk

/O.p
2r1C1

lCk
� 1/

.lCk�2/=2Y
jD0

p12jC1 � � �p
2rlCk�2j�2rlCk�2j�1
2jC1

�

.lCk�2/=2Y
jD1

.p12j C 1/.p
2
2j � � �p

2rlCkC1�2j�2rlCk�2j�1

2j /O

� .p
2rlCkC1�2j�2rlCk�2j
2j � 1/.p10 C 1/.p

2
0 � � �p

r0
0 /O

�
: (8.10)

Similarly, we have�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t
D

�� vY
jD1

q2j

��t
C

� lCkY
wD1

.2rw C 1/

�t
is a partition of the following form�

q1lCk � � � q
2r1C1

lCk

� lCk�1Y
jD1

q1j � � � q
2rlCkC1�j�2rlCk�j
j

�
q10 � � � q

r0
0

�
;

where qi
lCk

with 1 � i � 2r1 C 1, qi2j with 1 � i � 2rlCkC1�2j � 2rlCk�2j and 1 �
j � lCk�2

2
, and qk0 with 1 � k � r0, are all even; and qi2jC1 with 1 � i � 2rlCk�2j �

2rlCk�2j�1 and 0 � j � lCk�2
2

are all odd; and finally q1
lCk
� � � � � q

2r1C1

lCk
, q1j � � � � �

q
2rlCkC1�j�2rlCk�j
j � q1j�1 with 1 � j � l C k � 1, and q10 � � � � � q

r0
0 � 0. (Note that

we are adding 0’s at the end of the partition if necessary.)
Following the recipe on carrying out the O2n� -collapse [11, Lemma 6.3.8], we obtain

that the partition ��� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n�

is equal to�
.q1lCk � � � q

2r1
lCk

/O.q
2r1C1

lCk
� 1/

.lCk�2/=2Y
jD0

q12jC1 � � � q
2rlCk�2j�2rlCk�2j�1
2jC1

�

.lCk�2/=2Y
jD1

.q12j C 1/.q
2
2j � � � q

2rlCkC1�2j�2rlCk�2j�1

2j /O

� .q
2rlCkC1�2j�2rlCk�2j
2j � 1/.q10 C 1/.q

2
0 � � � q

r0
0 /O

�
:
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Without loss of generality and adding 0’s if necessary, we can assume that .
Qu
iD1 p

2
i /
t is

an even partition of the following form:�
s1lCk � � � s

2r1C1

lCk

� lCk�1Y
jD1

s1j � � � s
2rlCkC1�j�2rlCk�j
j

�
s10 � � � s

r0
0

�
:

Then the partition � uY
iD1

p2i

�t
C

��� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n�

is equal to�
..s1lCk � � � s

2r1
lCk

/C .q1lCk � � � q
2r1
lCk

/O/.t
2r1C1

lCk
� 1/

�

.lCk�2/=2Y
jD0

t12jC1 � � � t
2rlCk�2j�2rlCk�2j�1
2jC1

�

.lCk�2/=2Y
jD1

.t12j C 1/..s
2
2j � � � s

2rlCkC1�2j�2rlCk�2j�1

2j /

C .q22j � � � q
2rlCkC1�2j�2rlCk�2j�1

2j /O/

� .t
2rlCkC1�2j�2rlCk�2j
2j � 1/.t10 C 1/..s

2
0 � � � s

r0
0 /C .q

2
0 � � � q

r0
0 /O/

�
;

where all the t -terms are the summation of the corresponding q-terms and s-terms. It is
clear that the t -terms are exactly the corresponding p-terms in (8.10).

Now, following the recipe on carrying out the O2n� -collapse [11, Lemma 6.3.8],
we obtain that the partition�� uY

iD1

p2i

�t
C

��� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n�

�
O2n

is equal to�
..s1lCk � � � s

2r1
lCk

/C .q1lCk � � � q
2r1
lCk

/O/O.t
2r1C1

lCk
� 1/

�

.lCk�2/=2Y
jD0

t12jC1 � � � t
2rlCk�2j�2rlCk�2j�1
2jC1

�

.lCk�2/=2Y
jD1

.t12j C 1/..s
2
2j � � � s

2rlCkC1�2j�2rlCk�2j�1

2j /

C .q22j � � � q
2rlCkC1�2j�2rlCk�2j�1

2j /O/O

� .t
2rlCkC1�2j�2rlCk�2j
2j � 1/.t10 C 1/..s

2
0 � � � s

r0
0 /C .q

2
0 � � � q

r0
0 /O/O

�
:
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Since s-terms are all even, by [1, Lemma 3.1], we have

..s1lCk � � � s
2r1
lCk

/C .q1lCk � � � q
2r1
lCk

/O/O

D .s1lCk � � � s
2r1
lCk

/O C .q
1
lCk � � � q

2r1
lCk

/O D ..s
1
lCk � � � s

2r1
lCk

/C .q1lCk � � � q
2r1
lCk

//O

D .p1lCk � � �p
2r1
lCk

/O;

..s22j � � � s
2rlCkC1�2j�2rlCk�2j�1

2j /C .q22j � � � q
2rlCkC1�2j�2rlCk�2j�1

2j /O/O

D .s22j � � � s
2rlCkC1�2j�2rlCk�2j�1

2j /O C .q
2
2j � � � q

2rlCkC1�2j�2rlCk�2j�1

2j /O

D ..s22j � � � s
2rlCkC1�2j�2rlCk�2j�1

2j /C .q22j � � � q
2rlCkC1�2j�2rlCk�2j�1

2j //O

D .p22j � � �p
2rlCkC1�2j�2rlCk�2j�1

2j /O;

..s20 � � � s
r0
0 /C .q

2
0 � � � q

r0
0 /O/O

D .s20 � � � s
r0
0 /O C .q

2
0 � � � q

r0
0 /O D ..s

2
0 � � � s

r0
0 /C .q

2
0 � � � q

r0
0 //O D .p

2
0 � � �p

r0
0 /O:

Hence, the partition�� uY
iD1

p2i

�t
C

��� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n�

�
O2n

is equal to�
.p1lCk � � �p

2r1
lCk

/O.p
2r1C1

lCk
� 1/

.lCk�2/=2Y
jD0

p12jC1 � � �p
2rlCk�2j�2rlCk�2j�1
2jC1

�

.lCk�2/=2Y
jD1

.p12j C 1/.p
2
2j � � �p

2rlCkC1�2j�2rlCk�2j�1

2j /O

� .p
2rlCkC1�2j�2rlCk�2j
2j � 1/.p10 C 1/.p

2
0 � � �p

r0
0 /O

�
;

which is exactly equal to��� uY
iD1

p2i

�� vY
jD1

q2j

� lCkY
wD1

.2rw C 1/

�t�
O2n

by (8.10). Therefore, we have shown (8.9), hence complete the proof of Gn D O2n-case
of Lemma 8.3.

Acknowledgements. We would like to thank Freydoon Shahidi, Fan Gao, and Lei Zhang for helpful
comments and discussions. We also would like to thank the referee for the helpful suggestions.

Funding. The research of the first named author is partially supported by the NSF Grants DMS-
1901802, DMS-2200890. The research of the second named author is partially supported by the
NSF Grants DMS-1702218, DMS-1848058, and by start-up funds from the Department of Math-
ematics at Purdue University.



D. Jiang, B. Liu 3886

References

[1] Achar, P. N.: An order-reversing duality map for conjugacy classes in Lusztig’s canonical
quotient. Transform. Groups 8, 107–145 (2003) Zbl 1021.22003 MR 1976456

[2] Arthur, J.: The endoscopic classification of representations. Orthogonal and symplectic
groups. Amer. Math. Soc. Colloq. Publ. 61, American Mathematical Society, Providence, RI
(2013) Zbl 1310.22014 MR 3135650

[3] Atobe, H.: The set of localA-packets containing a given representation. J. Reine Angew. Math.
804, 263–286 (2023) Zbl 07761120 MR 4661536

[4] Barbasch, D.: The unitary spherical spectrum for split classical groups. J. Inst. Math. Jussieu
9, 265–356 (2010) Zbl 1188.22010 MR 2602028

[5] Barbasch, D., Ma, J.-J., Sun, B., Zhu, C.-B.: On the notion of metaplectic Barbasch–Vogan
duality. Int. Math. Res. Not. IMRN 2023, 17822–17852 (2023) Zbl 07794959 MR 4659865

[6] Barbasch, D., Vogan, D. A., Jr.: Unipotent representations of complex semisimple groups.
Ann. of Math. (2) 121, 41–110 (1985) Zbl 0582.22007 MR 782556

[7] Chen, R., Zou, J.: Theta correspondence and Arthur packets. arXiv:2104.12354 (2021)
[8] Chen, R., Zou, J.: Arthur’s multiplicity formula for even orthogonal and unitary groups.

arXiv:2103.07956 (2022)
[9] Ciubotaru, D., Mason-Brown, L., Okada, E.: Wavefront sets of unipotent unipotent represent-

ations of reductive p-adic groups I. arXiv:2112.14354 (2023)
[10] Clozel, L.: Characters of nonconnected, reductive p-adic groups. Canad. J. Math. 39, 149–167

(1987) Zbl 0629.22008 MR 889110
[11] Collingwood, D. H., McGovern, W. M.: Nilpotent orbits in semisimple Lie algebras. Van

Nostrand Reinhold Math. Ser., Van Nostrand Reinhold, New York (1993) Zbl 0972.17008
MR 1251060

[12] Gan, W. T., Gross, B. H., Prasad, D.: Symplectic local root numbers, central critical L values,
and restriction problems in the representation theory of classical groups. 346, 1–109 (2012)
Zbl 1280.22019 MR 3202556

[13] Ginzburg, D.: Constructing automorphic representations in split classical groups. Electron.
Res. Announc. Math. Sci. 19, 18–32 (2012) Zbl 1291.22020 MR 2891119

[14] Ginzburg, D., Jiang, D., Rallis, S.: On the nonvanishing of the central value of the Rankin–
Selberg L-functions. J. Amer. Math. Soc. 17, 679–722 (2004) Zbl 1057.11029
MR 2053953

[15] Ginzburg, D., Jiang, D., Rallis, S., Soudry, D.: L-functions for symplectic groups using
Fourier–Jacobi models. In: Arithmetic geometry and automorphic forms, Adv. Lect. Math.
(ALM) 19, International Press, Somerville, MA, 183–207 (2011) Zbl 1325.11042
MR 2906909

[16] Ginzburg, D., Piatetski-Shapiro, I., Rallis, S.: L functions for the orthogonal group. Mem.
Amer. Math. Soc. 128, viii+218 pp. (1997) Zbl 0884.11022 MR 1357823

[17] Ginzburg, D., Rallis, S., Soudry, D.: The descent map from automorphic representations of
GL.n/ to classical groups. World Scientific, Hackensack, NJ (2011) Zbl 1233.11056
MR 2848523

[18] Gomez, R., Gourevitch, D., Sahi, S.: Generalized and degenerate Whittaker models. Compos.
Math. 153, 223–256 (2017) Zbl 1384.20039 MR 3705224

[19] Hazeltine, A., Liu, B., Lo, C.-H.: On the intersection of local Arthur packets for classical
groups and applications. arXiv:2201.10539 (2024)

[20] Jiang, D.: Automorphic integral transforms for classical groups I: Endoscopy corresponden-
ces. In: Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Sha-
piro, Contemp. Math. 614, American Mathematical Society, Providence, RI, 179–242 (2014)
Zbl 1315.11037 MR 3220929

https://doi.org/10.1007/s00031-003-0422-x
https://doi.org/10.1007/s00031-003-0422-x
https://zbmath.org/?q=an:1021.22003
https://mathscinet.ams.org/mathscinet-getitem?mr=1976456
https://doi.org/10.1090/coll/061
https://doi.org/10.1090/coll/061
https://zbmath.org/?q=an:1310.22014
https://mathscinet.ams.org/mathscinet-getitem?mr=3135650
https://doi.org/10.1515/crelle-2023-0073
https://zbmath.org/?q=an:07761120
https://mathscinet.ams.org/mathscinet-getitem?mr=4661536
https://doi.org/10.1017/S1474748009000231
https://zbmath.org/?q=an:1188.22010
https://mathscinet.ams.org/mathscinet-getitem?mr=2602028
https://doi.org/10.1093/imrn/rnad097
https://doi.org/10.1093/imrn/rnad097
https://zbmath.org/?q=an:07794959
https://mathscinet.ams.org/mathscinet-getitem?mr=4659865
https://doi.org/10.2307/1971193
https://zbmath.org/?q=an:0582.22007
https://mathscinet.ams.org/mathscinet-getitem?mr=782556
https://arxiv.org/abs/2104.12354
https://arxiv.org/abs/2103.07956
https://arxiv.org/abs/2112.14354
https://doi.org/10.4153/CJM-1987-008-3
https://zbmath.org/?q=an:0629.22008
https://mathscinet.ams.org/mathscinet-getitem?mr=889110
https://zbmath.org/?q=an:0972.17008
https://mathscinet.ams.org/mathscinet-getitem?mr=1251060
https://zbmath.org/?q=an:1280.22019
https://mathscinet.ams.org/mathscinet-getitem?mr=3202556
https://doi.org/10.3934/era.2012.19.18
https://zbmath.org/?q=an:1291.22020
https://mathscinet.ams.org/mathscinet-getitem?mr=2891119
https://doi.org/10.1090/S0894-0347-04-00455-2
https://doi.org/10.1090/S0894-0347-04-00455-2
https://zbmath.org/?q=an:1057.11029
https://mathscinet.ams.org/mathscinet-getitem?mr=2053953
https://zbmath.org/?q=an:1325.11042
https://mathscinet.ams.org/mathscinet-getitem?mr=2906909
https://doi.org/10.1090/memo/0611
https://zbmath.org/?q=an:0884.11022
https://mathscinet.ams.org/mathscinet-getitem?mr=1357823
https://doi.org/10.1142/9789814304993
https://doi.org/10.1142/9789814304993
https://zbmath.org/?q=an:1233.11056
https://mathscinet.ams.org/mathscinet-getitem?mr=2848523
https://doi.org/10.1112/S0010437X16007788
https://zbmath.org/?q=an:1384.20039
https://mathscinet.ams.org/mathscinet-getitem?mr=3705224
https://arxiv.org/abs/2201.10539
https://doi.org/10.1090/conm/614/12253
https://doi.org/10.1090/conm/614/12253
https://zbmath.org/?q=an:1315.11037
https://mathscinet.ams.org/mathscinet-getitem?mr=3220929


On wavefront sets of global Arthur packets of classical groups: Upper bound 3887

[21] Jiang, D., Liu, B.: On Fourier coefficients of automorphic forms of GL.n/. Int. Math. Res.
Not. IMRN 2013, 4029–4071 (2013) Zbl 1359.11039 MR 3096918

[22] Jiang, D., Liu, B.: Arthur parameters and Fourier coefficients for automorphic forms on sym-
plectic groups. Ann. Inst. Fourier (Grenoble) 66, 477–519 (2016) Zbl 1417.11086
MR 3477882

[23] Jiang, D., Liu, B.: Fourier coefficients for automorphic forms on quasisplit classical groups.
In: Advances in the theory of automorphic forms and their L-functions, Contemp. Math. 664,
American Mathematical Society, Providence, RI, 187–208 (2016) Zbl 1418.11095
MR 3502983

[24] Jiang, D., Liu, B., Savin, G.: Raising nilpotent orbits in wave-front sets. Represent. Theory
20, 419–450 (2016) Zbl 1417.11087 MR 3564676

[25] Jiang, D., Zhang, L.: A product of tensor product L-functions of quasi-split classical
groups of Hermitian type. Geom. Funct. Anal. 24, 552–609 (2014) Zbl 1298.11046
MR 3192035

[26] Jiang, D., Zhang, L.: Arthur parameters and cuspidal automorphic modules of classical groups.
Ann. of Math. (2) 191, 739–827 (2020) Zbl 1443.11084 MR 4088351

[27] Kaletha, T., Minguez, A., Shin, S. W., White, P.-J.: Endoscopic classification of representa-
tions: Inner forms of unitary groups. arXiv:1409.3731 (2014)

[28] Liu, B., Xu, B.: On top Fourier coefficients of certain automorphic representations of GLn.
Manuscripta Math. 164, 1–22 (2021) Zbl 1476.11077 MR 4203681

[29] Mœglin, C.: Multiplicité 1 dans les paquets d’Arthur aux places p-adiques. In: On certain
L-functions, Clay Math. Proc. 13, American Mathematical Society, Providence, RI, 333–374
(2011) Zbl 1225.22015 MR 2767522

[30] Mœglin, C., Waldspurger, J.-L.: Modèles de Whittaker dégénérés pour des groupes p-adiques.
Math. Z. 196, 427–452 (1987) Zbl 0612.22008 MR 913667

[31] Mok, C. P.: Endoscopic classification of representations of quasi-split unitary groups. Mem.
Amer. Math. Soc. 235, vi+248 pp. (2015) Zbl 1316.22018 MR 3338302
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[33] Muić, G.: On certain classes of unitary representations for split classical groups. Canad. J.
Math. 59, 148–185 (2007) Zbl 1119.22011 MR 2289422
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