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Out(F,)-invariant probability measures on the space
of n-generated marked groups

Denis Osin

Abstract. Let §, denote the space of n-generated marked groups. We prove that, for every n > 2,
there exist 2%0 non-atomic, Out(Fy, )-invariant, mixing probability measures on §,. On the other
hand, there are non-empty closed subsets of g, that admit no Out(Fy)-invariant probability mea-
sure. Acylindrical hyperbolicity of the group Aut(Fy) plays a crucial role in the proof of both
results. We also discuss model-theoretic implications of the existence of Out(Fy )-invariant, ergodic
probability measures on 9.

To R. I. Grigorchuk on the occasion of his 70th birthday

1. Introduction

Let n be a natural number. An n-generated marked group is a pair (G, X), where G is a

group and X € G" is an ordered generating set of G. Two marked groups (G, (x1,...,X»))
and (H, (¥1, ..., yn)) are isomorphic if there exists a group isomorphism G — H that
sends x; to y; foralli =1,...,n.

The set of isomorphism classes of n-generated marked groups, denoted by §,, can
be naturally identified with normal subgroup of F;, the free group of rank n. Namely, a
marked group (G, X) corresponds to the kernel of the natural homomorphism F,, — G
induced by mapping a fixed basis of F,, to X. The product topology on 2 induces the
structure of a compact Polish space on the set of normal subgroups of F,, and, via the
above identification, on §,.

In the context of combinatorial group theory, the usefulness of this topological
approach was demonstrated by Grigorchuk in [8]. Ever since, the space §, has played
an important role in the study of algebraic, geometric, and model-theoretic properties of
groups. For more details, we refer the reader to [1,2,9, 19] and references therein.

The action of Aut(F,) on F, gives rise to an action of Out(F,) on §, by homeo-
morphisms, which preserves the (unmarked) isomorphism relation; that is, if (G, X) and
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(H,Y) belong to the same Out(F})-orbit in G,, then G = H. In this paper, we study the
existence of invariant Borel probability measures in this dynamical system. Specifically,
we address the following basic question asked by Grigorchuk during a talk at the con-
ference “Self-similarity of groups, trees and fractals” in June 2022 (a similar problem is
discussed in the paper [9]).

Question 1.1. Does there exist an Out(F})-invariant, non-atomic, ergodic probability
measure on §,?

Remark 1.2. Atomic Out(F,)-invariant probability measures on §,, are easy to construct.
Indeed, the action of Out(F},) on §, fixes all points corresponding to characteristic sub-
groups of Fj,. Clearly, the Dirac measures supported on these points are Out( F}, )-invariant.
More generally, we can define probability measures supported on finite orbits (e.g., orbits
of finite marked groups).

Furthermore, Olshanskii’s solution of the finite basis problem for group varieties [15]
implies the existence of 280 points in §, fixed by Out(F,,). Since the set of fixed points
is closed, it contains a non-empty closed subset € without isolated points by the Cantor—
Bendixson theorem. Recall that the set of non-atomic probability measures supported on a
compact metrizable space X without isolated points is dense in the space of all probability
measures on X equipped with the weak™ topology. Therefore, there exist plenty of non-
atomic, Out( F},)-invariant measures on §, supported on €. However, all these measures
are not ergodic.

Apart from being natural, Question 1.1 is also motivated by the following observa-
tion: if u is an Out(Fy)-invariant, ergodic probability measure on Gy, then [-generic
marked groups are “virtually indistinguishable”. The precise formulation of this claim
involves infinitary model theory and is given in Section 4. In particular, every non-
atomic, Out(F, )-invariant, ergodic probability measure on g, gives rise to an uncountable
set of finitely generated, pairwise non-isomorphic, elementarily equivalent groups (see
Proposition 4.1 and Remark 4.2). Examples of this kind are of interest since the stan-
dard tools for constructing elementarily equivalent models, such as ultrapowers and the
Lowenheim—Skolem theorem, are incapable of producing finitely generated structures.

As shown below, the answer to Question 1.1 is affirmative. This prompts yet another
natural problem.

Question 1.3. Does every subsystem of Out(F,) ~ &, admit an Out(F})-invariant
probability measure?

By a subsystem of the dynamical system Out(F,) ~, §,, we mean a non-empty, closed,
Out(F,)-invariant subset of g,. Note that the “obvious” probability measures discussed in
Remark 1.2 can be avoided by passing to minimal subsystems containing infinitely many
points.



Out(Fy,)-invariant probability measures on the space of n-generated marked groups 433

The main goal of this paper is to answer both questions. For a group G, we denote
by 29 the power set of G endowed with the product topology. The action of G on itself
by left multiplication induces a continuous G-action on 2¢. Our approach is based on the
following theorem of independent interest.

Theorem 1.4. For every integer n > 2, there exists a continuous, injective, Out(Fy)-
equivariant map 20" — g,

Theorem 1.4 allows us to translate various dynamical phenomena occurring in 201(F)
to G,. Its proof makes use of acylindrical hyperbolicity of the group Aut(F,) established
in [7] and certain results obtained via group theoretic Dehn filling in [3].

It is well known that the dynamical system G 26 has 2% non-atomic, G-invariant,
mixing measures. Utilizing Theorem 1.4, we obtain the affirmative answer to Question 1.1.

Corollary 1.5. For any n > 2, there exist 280 pairwise distinct, non-atomic, Out(F,)-
invariant, mixing (in particular, ergodic), probability measures on §,,.

On the other hand, for every non-amenable group G, there exists a closed G-invariant
subset of 2¢ without any G-invariant probability measure (see [6, Theorem 1.2.2]). Since
Out(F},) is non-amenable for all n > 2, we get the negative answer to Question 1.3.

Corollary 1.6. For any n > 2, the dynamical system Out(F,) ~ §, contains a subsystem
that does not admit any Out(Fy,)-invariant probability measure.

The paper is organized as follows. In the next section, we collect some basic defini-
tions and necessary results on acylindrically hyperbolic groups. In Section 3, we prove a
generalization of Theorem 1.4 and derive Corollaries 1.5 and 1.6. Section 4 is devoted to
the discussion of model-theoretic aspects of ergodic measures on G,,.

2. Preliminaries

2.1. Dynamical systems

Let G ~ X be a topological dynamical system; that is, X is a topological space endowed
with a continuous action of a group G. By a subsystem of G ~, X, we mean any closed
subset of X endowed with the induced action of G.

A probability measure on X is a countably additive measure p defined on the o-
algebra of all Borel subsets of X such that «(X) = 1. A probability measure p on X is
G-invariant if u(gA) = pu(A) for every Borel subset A C X and any g € G. Further, a
G-invariant measure ¢ on X is said to be

* non-atomic if u(x) = 0 forall x € X;

* ergodicif p(A) € {0, 1} for every G-invariant Borel set A C X;
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* mixing if, for any Borel A, B C X and any ¢ > 0, there exists a finite subset S € G
such that |u(A N gB) — u(A)u(B)| < eforallg € G\ S.

Obviously, every mixing measure is ergodic.

For an abstract set 1, let 27 denote the set of all subsets of I endowed with the prod-
uct topology. Recall that the product topology on 2! is simply the topology of pointwise
convergence of indicator functions. Equivalently, it can be defined by taking the family
of sets U(S, F) ={T €2/ | T N F = SN F}, where F ranges in the set of all finite
subsets of I, as the base of neighborhoods of the point S € 27. By Tychonoff’s theorem,
2! is compact. For any measure . on {0, 1}, we denote by ! the product measure on 2/
(formally speaking, we identify the power set of I with {0, 1}/ here).

Dynamical systems of particular interest to us are generalized Bernoulli shifts G ~,
20/H \where H is a subgroup of G and G/H denotes the set of left cosets. The action of
the group G on G/H by left multiplication induces a continuous action of G on 2¢/# _If
H = {1}, we obtain the ordinary Bernoulli shift G ~, 2¢. We will need the following.

Lemma 2.1 ([12, Proposition 2.3] and [6, Theorem 1.2.2]). Let G be a countably infinite
group.
(a) If w is a measure on {0, 1} that does not concentrate on a single point, then the
product measure 1€ on 29 is mixing.

(b) The group G is amenable if and only if every subsystem of G ~, 2Y admits an
invariant probability measure.

2.2. Acylindrically hyperbolic groups

An isometric action of a group G on a metric space S is acylindrical if for every ¢ > 0
there exist R, N > 0 such that for every two points x, y € S with d(x, y) > R, there are
at most N elements g € G satisfying

d(x,gx) <e and d(y,gy) <e.

An action of a group G on a hyperbolic space S is non-elementary if the limit set
of G on the Gromov boundary .5 has infinitely many points; for acylindrical actions, this
condition is equivalent to the requirement that G is not virtually cyclic, and the action has
infinite orbits [17, Theorem 1.1]. Every group has an acylindrical action on a hyperbolic
space, namely the trivial action on the point. For this reason, we want to avoid elementary
actions in the definition below.

Definition 2.2. A group is acylindrically hyperbolic if it admits a non-elementary
acylindrical action (by isometries) on a hyperbolic space.

The class of acylindrically hyperbolic groups is rather wide and includes all non-
elementary hyperbolic and relatively hyperbolic groups, Out(F},) for n > 2, mapping
class groups of closed surfaces of genus at least 2, finitely presented groups of deficiency
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at least 2, most 3-manifold groups, and many other examples. For details, we refer the
reader to [17,18] and references therein. An example of particular importance for us is the
group Aut(F,), whose acylindrical hyperbolicity was recently proved by Genevois and
Horbez [7].

Below, we summarize some results about acylindrically hyperbolic groups from [3, 5,
10] necessary for the proof of Theorem 1.4. Note that acylindrically hyperbolic groups
appear in [5] under the name of “groups with non-degenerate hyperbolically embed-
ded subgroups”. The equivalence of this condition to acylindrical hyperbolicity was
established later in [17].

Lemma 2.3 ([5, Theorem 2.24]). Every acylindrically hyperbolic group G contains a
unique maximal finite normal subgroup.

The maximal finite normal subgroup of an acylindrically hyperbolic group G is called
the finite radical of G and is denoted by K(G).

A subgroup H of an acylindrically hyperbolic group G is said to be suitable if there
is a generating set X of G such that the Cayley graph Cay(G, X) is hyperbolic, the action
of H on Cay(G, X) is non-elementary, and H does not normalize any non-trivial, finite,
normal subgroup of G (see [10, Definition 1.4]). The next lemma is well known to experts,
although it does not seem to have been recorded in the literature.

Lemma 2.4. If G is an acylindrically hyperbolic group with K(G) = {1}, then every
non-trivial normal subgroup of G is suitable.

Proof. Let M be a non-trivial normal subgroup of G. Note that M must be infinite
as K(G) = {1}. By [17, Theorem 1.2], there exists a generating set X of G such that
the Cayley graph Cay(G, X) is hyperbolic and the action of G on Cay(G, X) is non-
elementary. Since M is normal in G and infinite, the induced action of M on Cay(G, X)
is non-elementary by [17, Lemma 7.1]. Further, by [10, Lemma 5.5], this implies the exis-
tence of a finite subgroup L < G normalized by M such that every other finite subgroup
of G normalized by M is contained in L. Since M <1 G, the conjugates g~ ! Lg are also
normalized by M for all g € G. Therefore, g~'Lg < L for all g € G. This implies that
L <1 G and hence L < K(G) = {1}. Thus, M is suitable. |

An element g of an acylindrically hyperbolic group G is called loxodromic if there
exists an acylindrical action of G on a hyperbolic space S such that (g) has unbounded
orbits (for details and equivalent definitions, see [17]).

Lemma 2.5 ([5, Corollary 2.9]). Let G be an acylindrically hyperbolic group. Every
loxodromic element g € G is contained in a unique maximal virtually cyclic subgroup

of G.

The maximal virtually cyclic subgroup of an acylindrically hyperbolic group G con-
taining a loxodromic element g € G is denoted by E(g). By [10, Corollary 5.7], every
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suitable subgroup of G contains a loxodromic element g € G such that E(g) = (g).
Combining this with Lemma 2.4 yields the following.

Lemma 2.6. Let G be an acylindrically hyperbolic group with K(G) = {1}. Every
non-trivial normal subgroup of G contains a loxodromic element g such that E(g) = (g).

2.3. Wreath-like products of groups

Our proof of Theorem 1.4 makes use of the notion of a wreath-like product of groups
introduced in [3]. We recall the definition here.

Definition 2.7. Let A, Q be arbitrary groups, I an abstract set, and Q ~, I a (left) action
of Q on I. A group W is called a wreath-like product of groups A and Q corresponding
to the action Q ~, I if W is an extension of the form

1— BW) — W30 —1, (1)
where
BW) =P 4, )
iel

A; = Aforalli € I, and the action of W on B(W) by conjugation satisfies the rule
wA,-w_l = Aa(w)i 3)

for all i € I. The subgroup B(W) is called the base of the wreath-like product W and
the map e: W — Q is called the canonical homomorphism associated to the wreath-like

structure of W. The set of all wreath-like products of groups A and Q corresponding to
the action Q ~, I is denoted by WR(A, Q ~ I).

The following lemma can be found in [3]; in fact, it easily follows from the descrip-
tion of kernels of group theoretic Dehn fillings obtained in [20]. For an element g of a
group G, we denote by {(g)) the smallest normal subgroup of G containing g.

Lemma 2.8 ([3, Theorem 2.6]). Let G be an acylindrically hyperbolic group, g € G a
loxodromic element. Suppose that d is a natural number such that (g%) <1 E(g). Then,
Sfor any sufficiently large k € N divisible by d, we have

G/[(g"). (g")] € WR(Z.G/(g") ~ 1),

where I is the set of cosets G/E(g){(g*) and the action G/{(g*) ~ I is by left
multiplication.
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3. Proofs of the main results

3.1. Dynamical systems associated to normal subgroups of acylindrically
hyperbolic groups

For a group G, we denote by N (G) the subspace of 2¢ consisting of all normal sub-
groups of G. It is easy to see that N (G) is closed in 2¢ and, therefore, is a Polish space
with respect to the induced topology. The base of neighborhoods of a subgroup N € N (G)
is given by the sets

Ug(N.F)={M <G |MNF=NnNF}, @)

where F ranges in the set of all finite subsets of G.
We begin with auxiliary results.

Lemma 3.1. Let G be a group, J an abstract set. Suppose that G contains a subgroup of
the form ies Nj, where all Nj are non-trivial normal subgroups of G. Then the map
1:27 — N(G) defined by 1(S) = EBjes Nj forall S C J is injective and continuous.

Proof. We first note that the image of every S C J is indeed a normal subgroup of G
since so is every N;. Injectivity of the map ¢ follows immediately from the assumption
that all subgroups N; are non-trivial.

Further, fix an arbitrary S € J and an arbitrary finite subset F' of G. To prove the
continuity of ¢, it suffices to show that there exists a neighborhood V of S in 27 such that
(V) C Ug(L(S), F), where Ug (¢(S), F) is defined by (4). Since F is finite, there exists

a finite subset K € J such that
Fc < g N,»>. )

jeK

LetV ={T CI|TNK=SNK} Forevery T €V, we obviously have

n(Un)= @ v= @ v=wn(Un)

jeK jeTNK jeSNK jeK

Combining this with (5), we obtain «(T) N F = ¢(S) N F, thatis, «(T) €e Ug (¢.(S), F). =

Lemma 3.2. Let G, H be any groups, y: G — H a surjective homomorphism. For a
subset S C H, we denote by y~'(S) its full preimage in G. The map 7: N (H) — N (G)
defined by the rule y(N) = y~Y(N) for all N <1 H is continuous.

Proof. Let F be a finite subset of G andlet N <1 H.For M <« H, we have M N y(F) =
N Ny(N)ifandonlyif y~'(M) N F = y~1(N) N F. Therefore, ¥ sends Ug (N, y(F))
to Ug (Y(N), F) and the result follows. [
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Lemma 3.3. Let W € WR(A, Q ~ I), where A # {1} and the action Q ~ [ is tran-
sitive. Suppose that R is a normal subgroup of W containing the normalizer Ny (A;) for
some i € I. Then there exists a continuous, injective, W -equivariant map 2W/IR 5 N(R).

Proof. Throughout the proof, we use the notation and terminology introduced in Defini-
tion 2.7. Fix i € I such that Ny (A4;) < R. Obviously, we have B(W) < Ny (A4;) < R.
For every wR € W/R, we define

Nuwr :< U As(r)i> = @ As(r)i =< B(W)7

rewR rewR

where e: W — Q is the canonical homomorphism. Using (3), we obtain

tNyrt™" =< 9 tAs(r)it_l> =< g As(tr)i> =< g As(s)i> = Nwwr. (0

rewR rewR s€EtwR

If t € R, then tfwR = w(w™'tw)R = wR for every w € W. Hence, N,z <1 R for all
wR € W/R.

Suppose that Ag); = Agw)i for some u, v € W. Using (3) again, we obtain u"ly e
Nw (A;) < R and, therefore, uR = vR. This implies that N,,g and N, are generated by
disjoint sets of direct summands of B(W') whenever uR # vR. Thus, we have

BW)= P Nur. @)

wReW/R

Let J = W/R. Consider the injective, continuous map ¢: 2%/® — N (R) defined as in
Lemma 3.1. Forany t € W and any S € J = W/R, we have

(1S) =< U Ny >=< U N,uR> =< U tNuRt_l> = 1(S)t™!

wRetS uReS uReS
by (6). Thus, ¢ is W-equivariant. ]

If M is a normal subgroup of a group G, then the action of G on M by conjugation
induces a continuous action of G/M on N (M). We are now ready to prove the main
result of this section. Recall that K(G) denotes the maximal finite normal subgroup of an
acylindrically hyperbolic group G.

Theorem 3.4. Let G be an acylindrically hyperbolic group. For every infinite normal
subgroup M of G containing K(G), there exists a continuous, injective, G-equivariant
map 2°/M s N (M).

Proof. The group G = G/K(G) is acylindrically hyperbolic and has trivial finite radical
by [14, Lemma 3.9]. Since M is infinite, M = M/K(G) is a non-trivial normal subgroup
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of G. By Lemma 2.6, there exists a loxodromic element g € M such that E(g) = (g). Fur-
ther, by Lemma 2.8, there exists k € N such that the group W = G /[((g*))., (g% ))] belongs
to WR(Z,G/{g*) ~ I), where I = G/E(g){g")) and the action G/{(g*)) ~ I is by
left multiplication.

For brevity, we denote the subgroup [(g¥)). {(g*)] by D.Let R = M /D <1 W and
leti = E(g){(g*) (we think of i as a coset of E(g)((g¥)) in G and thus i € I). In what
follows, we employ the notation introduced in Definition 2.7. In particular, we denote by
e: W — G/((g*)) the canonical homomorphism.

For every w € Ny (4;), the element e(w) € G/ {(g)) stabilizes i by (3). This means

that e(w) € E(g){(g*)/{(g*). Since M <1 G and g € M, we obtain

w e E(@)(g")/D = (¢)(¢")/D < M/D = R.

Thus, Nw (A4;) < R. Applying Lemma 3.3 to the group W and the subgroup R, we obtain
a continuous, injective, W -equivariant map 1: 2%/R — N (R).
Let y: G — W be the composition of the natural homomorphisms

G—-G=G/K(G)— W =G/D.

We endow W/R and N (R) with the action of G induced by y and the action of W on
the corresponding set. Since K(G) < M and g € M, we have Kery < M. Therefore,
G/M = y(G)/y(M) =~ W/R. This isomorphism induces a G-equivariant homeomor-
phism «:26/M _ 2W/R_ Applying Lemma 3.2 to the restriction of y to M, we obtain
a continuous, injective map 7: N (R) — N (M), which is also G-equivariant. Thus, the
composition J o ¢ o k has all the required properties. ]

Remark 3.5. Since the action of M on 26/M and N (M) is trivial, we can think of both
20/M and N (M) and G/M -sets. In these settings, the map constructed in Theorem 3.4
is G/ M -equivariant.

Out(Fy)-invariant probability measures on §,. Recall that the group Aut(F,) is
acylindrically hyperbolic for any n > 2 [7]. It is also well known and easy to prove that
Aut(F},) has no non-trivial finite normal subgroups. Indeed, let K be a finite normal sub-
group of Aut(F,). We identify F,, with Inn(F},) and think of it as a subgroup of Aut(F},).
Consider P = (F,, K). Since both F}, and K are normal in P and F,, N K = {1}, we have
P = F, x K. Hence, the action of K < Aut(F}) on F,, is trivial, and we obtain K = {1}.

Proof of Theorem 1.4. Apply Theorem 3.4 (and Remark 3.5) to the group G = Aut(F},)
and its normal subgroup M = F},. ]

Corollaries 1.5 and 1.6 are derived from Theorem 1.4 by considering the push-forward
and pull-back measures, respectively.

Proof of Corollary 1.5. Let u be a non-atomic, Out(F})-invariant, mixing probability
measure on 20UF) Let £:200F) s ¢ be a continuous, injective, Out(F, )-equivariant
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map provided by Theorem 1.4. For every Borel subset A € §,, we define v(A) =
w(f~1(A)). It is easy to see that v is a non-atomic, Out(F,)-invariant, mixing proba-
bility measure on §,. It remains to note that there exist 28 pairwise distinct non-atomic,
Out(F,,)-invariant, mixing probability measures on 2°"F») by Lemma 2.1 (a), and distinct
measures on 2°F») jnduce distinct measures on G,. [

Proof of Corollary 1.6. The natural homomorphism F, — F,/[F,, F,;] = Z" induces an
epimorphism Out(F,,) — GL(n, Z). It is well known that GL(n, Z) contains a non-cyclic
free subgroup whenever n > 2. Thus, GL(n, Z) is non-amenable and, therefore, so is
Out(Fy,) forn > 2. By Lemma 2.1 (b), there exists a non-empty, closed, Out( F;,)-invariant
subset C C 20"(Fx) that admits no Out(F, )-invariant probability measure. Note that the
set C is compact being a closed subset of the compact space 20(F»)

Let f:20%(F2) _ g be a continuous, injective, G-equivariant map provided by Theo-
rem 1.4 andlet D = f(C). Since f is continuous and Out(F,)-equivariant, D is also com-
pact and Out(F;,)-invariant. Thus, D is a subsystem of Out(F},) ~ §,. Suppose that there
exists an Out(F,)-invariant probability measure v on D. Then the rule w(B) = v(f(B))
for all Borel subsets B C 2°"F») induces an Out(F,)-invariant probability measure y on

20ut(F, "), which leads to a contradiction. n

4. Model-theoretic aspects of Out(F,)-invariant ergodic measures
ong,

4.1. Elementary equivalence of generic groups

Let £ denote the language of groups. That is, &£ is the first-order language with the signa-
ture {-, 7!, 1}, where - (respectively, ~!) is a binary (respectively, unary) operation and 1 is
a constant interpreted in the obvious way. Recall that £, ., is the infinitary version of &,
where countable conjunctions and disjunctions (but only finite sequences of quantifiers)
are allowed. For details, we refer the reader to [13].

The expressive power of £, is much greater than that of £. In fact, most alge-
braic, geometric, and even analytic properties of groups can be expressed by £, »-
sentences. Examples include finiteness, solvability, hyperbolicity, amenability, prop-
erty (T) of Kazhdan, exponential and subexponential growth, etc. (see [19] and references
therein). Note that none of these properties can be defined by first-order sentences.

Given any countable set F' of sentences in &£4,,,, We say that a group G is F-
equivalent to a group H and write G =r H if G and H satisfy the same sentences
from F'; that is, for every o € F, we have G |= o if and only if H = o. If F is the set of
all first-order sentences, =r becomes the familiar elementary equivalence relation.

The following proposition is a standard application of ergodicity.

Proposition 4.1. Let i be an Out(Fy)-invariant, ergodic measure on §,. For any count-
able set F of sentences in &£, w, there exists a Borel subset A C §, of measure
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W(AF) = 1 such that, for any (G, X),(H,Y) € Af, we have G =f H. In particular,
there exists a Borel subset A C G, such that u(A) = 1 and, for any (G, X),(H,Y) € A,
the groups G and H are elementarily equivalent.

Proof. Fix some n € N and an ergodic, Out(F},)-invariant probability measure p on §,.
For every sentence 0 € &£,,,,,,, we define its set of models

Mod, (0) ={(G,X) €&, |G Ed}.

It is well known that Mod,, (o) is a Borel subset of §, for every o € £, . For instance,
this follows immediately from [19, Proposition 5.1].

For any « € Out(F},) and any (G, X) € §,, we have (G, X) = (G, X') for some X’.
Therefore, Mod, (¢) is Out(F,)-invariant. By ergodicity, we have

wn(Mody (0)) € {0, 1}. ®)
Let T denote the set of all sentences o € F such that u(Mod, (c)) = 1 and let

Arp ={(G,X)e§,|GEoforalloc e T} = ﬂ Mod, (o).
oeT

Since F is countable, so is T and, therefore, u(Ar) = 1. We claim that, for any
(G,X) € Ar andany o € F,wehave G = o ifandonly ifo € T.

Indeed, if 0 € T, then G |= o by the definition of Ar.If o ¢ T, then u(Mod, (c)) =0
by (8) and u(Mod, (—0)) = u(8, \ Mod, (¢)) = 1. Therefore, —o € T and G E —o;
equivalently, G does not satisfy ¢. Thus, all groups whose markings belong to Ar are
F-equivalent. u

Remark 4.2. If u is non-atomic, every Borel subset A C §, of measure 1 must have the
cardinality of the continuum. (Recall that the continuum hypothesis holds for Borel sets
as proved by Alexandrov and Hausdorff, see [1 1, Theorem 3.16].) Since the isomorphism
class [G], = {(H,Y) €8, | H = G} of every finitely generated group G in g, is at
most countable, such a subset A must contain 2% pairwise non-isomorphic, elementarily
equivalent groups.

4.2. An application

Recall that the support of a measure p on a topological space X, denoted by supp(u), is
the set of all points x € X such that every open neighborhood of x has positive measure.
For example, the support of the product measure on 2N corresponding to any non-trivial
probability distribution on {0, 1} is the whole space 2.

Proposition 4.1 imposes strong restrictions on the possible supports of Out(F})-
invariant, ergodic probability measures on §,. We illustrate this by deriving the following.

Corollary 4.3. Let J#, denote the subset of §,, consisting of all pairs (G, X) such that G
is non-elementary hyperbolic. For any n > 2, there is no Out(Fy)-invariant, ergodic
probability measure (1 on '§, whose support contains J,.
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Remark 4.4. It is well known and easy to prove that #, has no isolated points (see,
e.g., [19]). Our interest in Corollary 4.3 stems from the fact that all measures constructed
in the previous section are supported on J#, for appropriate n € N. The proof of this
fact is rather technical and we do not provide it here. The main idea generalizes the
well-known observation that the ordinary wreath product Z wr Z can be approximated
by groups Z/kZ wr Z as k — oo, and the latter groups are limits of hyperbolic groups
obtained by “truncating” the standard presentation (see, e.g., [16, Lemmas 3.1 and 3.2]).
Furthermore, the supports of our measures are “very small” (in particular, proper) subsets
of %n. Corollary 4.3 shows that, in a certain sense, this is unavoidable.

Proof of Corollary 4.3. We will need two auxiliary hyperbolic groups H; and H, defined
as follows. Let
0 = (a,b | aba®b---a'®b = 1).

It is straightforward to verify that the latter presentation satisfies the C’(1/6) condition
and, therefore, Q is hyperbolic. Furthermore, Q is not virtually cyclic as it surjects on
7./27 & 7./2Z. Let H, is the following extension of Z /3Z = (¢ | ¢ = 1) by O:

Hy ={a,b,c|c= aba®b---a'®%, 3 =1,aY'ca=b"cb = c_l).

Since hyperbolicity is invariant under taking extensions with finite kernel, H; is also
hyperbolic. Note that H; is generated by two elements, namely a and b.

Further, let H, be a 2-generated non-elementary hyperbolic group with trivial abelian-
ization. Such a group is easy to define explicitly by a presentation satisfying the C’(1/6)
condition; alternatively, such a group exists by [4, Corollary 3.24].

Fix some n > 2 and some generating sets X; and X, of H; and Hj, respectively, so
that (H;, X;) € G, fori = 1,2. Since H; is finitely presented, there exists an open neigh-
borhood U of (Hy, X1) such that, for any (G, X) € U, G is a quotient of H; (see, e.g., [8]
or [2, Lemma 2.3]) and the images of ¢ and ¢ ™! in G are distinct. The action of the image
of a on the image of (¢) in G yields a non-trivial homomorphism G — Z/27.

Similarly, there is an open neighborhood V of (H,, X;) such that, for every
(H,Y)eV, H is a quotient of H,. Obviously, every such H has trivial abelianization
since so does Ho.

Although having trivial abelianization is not a first-order property, it can be axioma-
tized in £, . Specifically, let o denote the sentence

oo
Ve \/(301"' Jask g = [ar, az] -+ [a2k—1, a2]).
k=1

where [a, b] is the abbreviation of a~!'h~'ab. Since the commutant of every group is
generated by commutators, a group G satisfies o if and only if G = [G, G].

Let © be an Out(Fy)-invariant, ergodic probability measure on the space §,. By
Proposition 4.1 applied to F' = {0}, there exists a subset Ar C &, of measure u(Ar) =1
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such that all marked groups from A simultaneously satisfy o or —o. If both (H, X;)
and (H», X») belong to supp(i), we have p(U) > 0 and (V) > 0. Hence, U N A # 0
and V N Ar # 0, which yields a contradiction. Thus, (Hy, X1) and (H>, X3) cannot
simultaneously belong to supp(it). L]

Our proof of Corollary 4.3 essentially relies on the existence of torsion in H; and H>.
We do not know the answer to the following.

Question 4.5. Let n > 2. Does there exist a non-atomic, Out(F})-invariant, ergodic
probability measure pu on §, such that supp(u) contains all non-cyclic, torsion free,
n-generated, hyperbolic marked groups?

It would also be interesting to know whether there exist non-atomic, Out(F})-
invariant, ergodic probability measures on §, concentrated on other natural classes of
groups such as solvable groups, groups of intermediate growth, etc. Grigorchuk and
Kropholler indicated to the author that the answer to this question might be positive for
solvable groups of derived length 3.
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